
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2021

Training Intelligent Red Team Agents Via
Reinforcement Deep Learning

Ballard, Marcus A.
Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/69898

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

TRAINING INTELLIGENT RED TEAM AGENTS VIA

REINFORCEMENT DEEP LEARNING

by

Alan Ballard

January 2022

DISTRIBUTION STATEMENT A.

Approved for public release. Distribution is unlimited.

Prepared for: Marine Corps Systems Command (MARCORSYSCOM). This research is

supported by funding from the Naval Postgraduate School, Naval Research Program (PE

0605853N/2098). NRP Project ID: NPS-21-M079-B

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Wargames are an essential tool for education, training, and formulation of strategy. They

are especially important in the evaluation of threats from, and strategies against, trained

adversaries who present significant risk to friendly forces. We proposed to develop a wargame

adversary trained to defeat the current strategy of friendly forces, allowing the evaluation of

alternate strategies against an intelligent, simulated opponent. This research sought to evaluate

the ability of different deep neural network algorithms to train an enemy red team against a

friendly blue team with an existing strategy, in terms of both efficacy and efficiency, and the

resiliency of the trained red team to subsequent changes in blue team strategy.

A simulated combat environment was created in which a blue team was first trained using

deep reinforcement learning to defeat a stationary opponent in an open battlefield, establishing a

baseline blue strategy. The red team was then trained, again with deep reinforcement learning, to

defeat this blue team, after which the blue team’s strategy was altered, and the two teams were

allowed to engage in combat again. During this experiment, the time required to train the red

team and the proportion of combat outcomes that red won were calculated and later analyzed

using linear models. Several important variables were identified, from both the combat

environment and the algorithms employed to train each team, that significantly affected the time

required to train the red team and the red team’s subsequent ability to win against an opponent

with an altered strategy. Additionally, it was determined that while there was no significant

difference between the algorithms in the mean time required for red team training, the choice of

algorithm had a significant effect on the red team’s subsequent ability to win against an opponent

whose strategy differs from the one against it was trained.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. ROLE AND DESIGN OF WARGAMES ... 1

B. DEEP REINFORCEMENT LEARNING .. 1
C. ALTERNATIVE APPROACHES ... 4
D. SCALING ISSUES.. 6

II. OBJECTIVES ... 8

III. METHODOLOGY ... 9

A. EXPERIMENT DESIGN ... 9

1. Stage 1 .. 9
2. Stage 2 .. 9

3. Stage 3 .. 9
B. EXPERIMENT VARIABLES ... 10

1. Map Width: {10, 15} ... 10
2. Red Team Size: {2, 5} ... 11
3. Blue Team Size: {2, 5} ... 11

4. Training Duration: {50, 250} ... 11
5. Learning Factor: {0.965, 0.995} ... 11

6. Learning Rate: {0.0001, 0.01} .. 11
7. Blue Alpha: {0.25, 0.75} .. 11
8. NN Structure: {(32,), (96,96)} .. 12

9. Combat Model: {Deterministic, Stochastic} ... 12
10. Delta: {0.001, 0.05} .. 12

C. CODE AND ALGORITHMS .. 12
1. Vanilla Policy Gradient (VPG) .. 13

2. Trust Region Policy Optimization (TRPO) .. 13
3. Proximal Policy Optimization (PPO) .. 13

D. ANALYSIS .. 14

1. Descriptive Statistics ... 14
2. Training Time.. 17

3. Win Rate .. 21
4. Difference in Means .. 25
5. Relationship Between Training Time and Win Rate ... 26

IV. DISCUSSION .. 28

1. Algorithm-Related Variables ... 28
2. Environment-Related Variables .. 29
3. Other .. 30
4. Training Time and Win Rate ... 30

V. SUMMARY ... 32

APPENDIX .. 36

LIST OF REFERENCES ... 41

INITIAL DISTRIBUTION LIST .. 46

 viii

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 1. Example environment with opposing red and blue agents 10
Figure 2. Histograms of training time (in seconds) .. 15
Figure 3. Histograms of win rate .. 16

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1. Training Time (seconds) ... 14
Table 2. Win Rate ... 15
Table 3. Training Time ALL Model ... 19
Table 4. Training Time Models By-Algorithm ... 21

Table 5. Win Rate ALL Model ... 22
Table 6. Win Rate Models By-Algorithm ... 23
Table 7. ANOVA for Training Time Model ... 25
Table 8. ANOVA for Win Rate Model ... 25
Table 9. Tukey’s Test for Win Rate Model .. 26

Table 10. Pearson Correlation Between Training Time and Win Rate 26
Table 11. Simple Linear Regression Relating Training Time and Win Rate under PPO 27

Table 12. Correlation Matrices ... 36

Table 13. P-Values for Correlation Significant Tests ... 37
Table 14. Training Time Full Models ... 38
Table 15. Win Rate Full Models ... 39

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. ROLE AND DESIGN OF WARGAMES

“The core attribute of a good wargame is an adversarial environment…”

(Pournelle, 2017, p.51).

A wargame is simulated combat in an artificial environment in which players take

actions and then observe the consequences of their actions. In that sense, wargames are

an important tool for military forces to evaluate current or potential strategies and

capabilities in a risk-free environment. Simulations such as wargames provide a window

into the interaction of opposing systems and are useful for deriving insight into how

decisions are made in the face of uncertainty (Pournelle, 2017).

These simulations have historically been conducted by assembling a group of

subject matter experts to play as blue (friendly) and red (enemy) agents. Each agent takes

an action – moving forces, firing on the enemy’s forces, etc. – and the consequences of

that action are determined – forces are successfully moved, enemy forces lose 10%

combat strength, etc. The method of determining the consequences might be agreement

among players, decision of a subject matter expert, correlation, or interpolation of

historical trends (Wade, 2018).

According to (Wade, 2018), “wargames are best used for unstructured problems

where human decision making is central to the issue being addressed” and “a wargame is

effective because it focuses on human decision making in a competitive sequential

environment”. While it is true that wargaming has heretofore been a human endeavor,

artificial intelligence (AI) has begun to take its own role in wargaming.

B. DEEP REINFORCEMENT LEARNING

At its simplest, reinforcement learning involves a trial-and-error approach in

which an artificial agent takes an action under uncertainty given its understanding of its

environment (the “state”), and receives a reward, possibly negative. The agent learns

whether the action was good or bad according to the reward received and updates its

understanding of the environmental state accordingly before taking another action and

repeating the cycle until a pre-specified goal is achieved. The agent’s primary objective is

 2

to maximize the sum of these rewards, thus learning the “best” means of achieving its

goal.

In a discrete environment, there are m possible states and n possible actions. Q-

Learning (Watkins, 1989) populates a m x n “Q table” containing the maximum expected

future reward for each possible combination of states and actions in the environment. At

some time t, the environment will be in state 𝑠𝑡 and the agent may take action 𝑎𝑡. If so,

the expected future reward for all subsequent actions can be found using the Bellman

equation, Q(𝑠𝑡, 𝑎𝑡) = E[𝑅𝑡+1 + γ ∗ 𝑅𝑡+2 + γ2 ∗ 𝑅𝑡+3 + …] , where 𝑅𝑡 is the reward at

time t after taking action 𝑎𝑡 from state 𝑠𝑡, 𝑅𝑡+1 is the reward after the subsequent step,

and so on, and γ is the discount rate applied to the reward. The discount rate is an

adjustable parameter that signals to the agent how to value rewards over time. Higher

values of γ indicate to the agent that long-term rewards are more important when

selecting actions while smaller values place more importance on short-term rewards.

The Q table is initialized with random values, the agent selects the action that

currently yields the maximum expected reward from the current state, 𝑅(𝑠, 𝑎). The

algorithm then updates the expected future reward for that state and action using this

equation:

Updated Q(𝑠, 𝑎) = Q(𝑠, 𝑎) + α * [𝑅(𝑠, 𝑎) + γ ∗ max{𝑄′(𝑠′, 𝑎′)] - Q(𝑠, 𝑎)}],

where max[𝑄′(𝑠′, 𝑎′)] is the maximum expected future reward among all other possible

states and actions and α is an adjustable learning rate that controls how quickly the agent

will explore the environment. This process repeats until a pre-specified goal is achieved

or some stopping criteria is met.

After population, the Q table will yield a clear “policy” that tells the agent which

action will yield the highest expected future reward from a given state. However, this

method faces two major challenges. First, the table must contain all possible states and

actions that can exist within the environment. An exhaustive list of environmental states

quickly becomes prohibitive as the dimensions of the environment grows large. Second,

as the number of possible states grows large, the number of state/action combination

which an agent might be expected to actually encounter grows small. Thus, the Q table

will be sparsely populated with rewards and therefore ineffective.

 3

Q-Learning experienced a breakthrough when DeepMind introduced Deep Q-

Network (DQN) in 2015 (Mnih et al, 2015). DQN combines Q-learning with a deep

neural network (DNN) to learn a low-dimensional representation of a high-dimensional

environment. In DQN, a neural network (NN) with multiple layers between the input and

output layers - a “deep” neural network - is created with randomly assigned parameters θ.

The inputs to the network are the states of the environment and the outputs of the network

are probabilities assigned to each possible action from that state. When the agent

encounters a given state, it will select the action with the highest associated probability.

However, with randomly initialized parameters, the network will not be very accurate at

first and tends to recommend actions that lead to sub-optimal rewards. This error can be

quantified in a loss function:

Loss = [𝑅(𝑠, 𝑎) + 𝛾 ∗ {Q′(𝑠′, 𝑎′)] − Q(𝑠, 𝑎)}]2

If the reward from the action taken is close to the maximum possible reward

obtainable from the optimal action, the loss will be small. If the network recommends an

action that is significantly less rewarding than the optimal action’s reward, the loss will

be large. Therefore, a reasonable strategy to identify optimal actions is to constrain the

network to recommend actions that result in minimal loss. This is done by using a

technique called “back propagation” where the gradient of the loss function ∇Loss(θ) is

calculated with respect to each parameter in the network using the chain rule from

calculus. The parameters of the networks are then updated as:

New θ = θ - α * ∇Loss(θ)

With parameters updated, the DQN model then recommends the next action for

the agent to take and repeats the process. Thus, as the agent explores the environment, the

DNN incrementally improves its ability to predict which action is best in a given

situation.

This approach is particularly suitable to simulations. Given a goal, an agent may

be allowed to play in a simulated environment many, many times until the model

develops a sense of which actions are best. In fact, DQN and later evolutions of DQN

have learned to play some games well beyond human capabilities against both computer

and human competitors, such as Atari (Mnih et al, 2013), Chess (Silver et al, 2018) and

mass multiplayer online games Dota2 (Berner et al, 2019) and StarCraft II (Vinyals et al,

 4

2019). According to (Wade, 2018), the four critical parts of a military wargame are the

players, the scenario, the rule set, and the adjudication method. Additionally, a well-

designed wargame should include uncertainty, fair competitive environment, adjudication

of and consequences for actions, and iterations (Pournelle, 2017). Therefore, it is natural

that DRL would be applied when developing artificially intelligent agents for use in

wargames as the DRL agents themselves learn to operate in a defined environment with

pre-specified goals, competitive players, actions decided under uncertainty and

consequences for those actions.

Further, there is an international effort to apply AI in general, and DRL in

particular, to military wargames. In Australia, (Moy and Shekh, 2019) investigated the

ability of combining AlphaZero deep reinforcement learning and supervised learning to

automatically learn to play wargames. In China, (Wang et al, 2020) investigated the

large-scale use of DRL in wargames. (Zhang and Xue, 2020) proposed an actor-critic

framework for AI decision making using Convolutional Neural Networks. In the UK,

researchers proposed decision-making software that uses AI to allocate “forces in space

and time in order to achieve a particular objective, in a situation of partial knowledge and

where the enemy is also planning and reacting” (Lucek and Collander-Brown, 2017) and

wrote a comprehensive reference paper detailing the use of AI in military wargames

(Goodman, Sebastian and Lucas, 2020). The US Army has developed prototype

wargaming software that uses AI to recommend Course of Actions improvements to

commanders and staff (Schwartz et al, 2020), while US Navy researchers have conducted

simulations to test various DRL algorithms’ ability to train red team agents (Boron and

Darken, 2020). In (Boron and Darken, 2020)’s experiment, a small group of mobile red

team agents was allowed to learn attacking behavior using DRL against stationary blue

team agents.

C. ALTERNATIVE APPROACHES

However, DRL is not the only option for developing intelligent wargaming

agents. Evolutionary algorithms (EA), for example, begin with a (potentially random)

selection of possible solutions and mutate the best solutions from that set in some fashion

to form a new set of solutions. This process is repeated until a good solution, even if sub-

 5

optimal, is obtained. EAs are capable of moving in large random steps through the set of

potential solutions and so are less prone to getting trapped in local optima than DNNs,

which rely on derivatives and back-propagation. Genetic algorithms, simulated annealing,

and CMA-ES (Hansen and Ostermeier, 2001) are examples of evolutionary algorithms.

As the number of possible actions in an environment grow larger, evaluating

every possible solution quickly becomes infeasible. Statistical Forward Planning (SFP)

(Perez, Samothrakis, Lucas and Rohlfshagen, 2013) is group of stochastic AI algorithms

that do not require training. Instead, they use “Forward Models” to simulate possible

outcomes from the current state and assign a value to the proposed action. While they do

not require training data in advance, the computational burden of simulating possible

outcomes every time a decision is required is expensive. Examples of SFPs are Monte

Carlo Tree Search (MCTS) and Rolling Horizon Evolutionary Algorithms (RHEA).

MCTS creates a tree of possible actions and calculates expected rewards at each action

node in the current level, and then further expands the nodes with the highest expected

reward to include subsequent action nodes. This process is continued until a solution is

found. RHEA, on the other hand, uses EAs to generate a series of actions at each step of

the simulation, and then takes the first action of the best series found as the next game

step (Perez-Liebana et al, 2019).

Hybrid models also exist. Expert Iteration, for example, uses SFP to generate

training data which is in turn used by supervised RL models to learn optimal policies

(Anthony, Tian, and Barber, 2017). (Stanescu, Barriga, Hess and Buro, 2016) used

Convolutional Neural Networks to evaluate sequences of actions during MCTS.

(Khadkha and Tumer, 2018) proposed Evolutionary Reinforcement Learning as a hybrid

algorithm that uses the population from EA to train a RL agent and then periodically

reinserts the RL agent back into the EA population as a means of introducing gradient

information back to the EA.

While DRL algorithms have achieved super-human performance in many games,

they frequently exhibit non-human behavior. That is, taking actions that are counter-

intuitive or actions that no rational human would choose in a given scenario. However,

some algorithms have been developed in an attempt to inject a human-like quality into

their behavior. Examples of such algorithms are training racing games to imitate human

 6

driving style (Muñoz, Gutierrez, and Sanchis, 2012) and Inverse Reinforcement Learning

(Ng and Russell, 2000). Algorithms mimicking human behavior generally train a policy

using supervised learning based on actual human gameplay. The goal of the algorithms is

to minimize the error between a model’s predicted actions and the actions actually taken

by humans. Inverse Reinforcement Learning also uses human-generated data but rather

than attempting to learn a policy directly from the data, it attempts to learn the reward

function for the task that generated the data. Once the reward function has been learned,

standard RL methods can then be used to learn a suitable policy for the agent to use.

D. SCALING ISSUES

Scalability refers to extending the use of an algorithm to an increasingly large

environment with a larger number of agents, and potentially to a larger variety of agent

types and possible actions from which agents can select. This is not a trivial extension as

there is a combinatorial explosion of possible agent/action combinations in the larger

environment. Assume that we have four homogeneous agents who can select from four

possible actions. There are 256 possible agent/action combinations. If we extend the

example to ten agents with ten possible actions, then there are 10 billion possible

agent/action combinations to manage.

QT-Opt (Kalashnikov et al, 2018) uses a derivate-free optimization algorithm

called the cross-entropy method to identify the action that maximizes a DNN’s output.

The algorithm maintains a buffer of labelled agent experiences from which in-training

agents can sample. Thus, a large number of agents can be trained asynchronously by

sampling from, and contributing to, this experience buffer.

(Salimans, Ho, Chen, Sidor and Sutskever, 2017) explored the use of natural

evolution strategies (NES) as an alternative to RL-based techniques. NES works by using

a statistical distribution to select possible solutions, which are in turn evaluated by a

fitness function. NES then takes a step, based on the natural gradient, in the direction

with the highest expected fitness value. The process repeats until some stopping criteria is

met. While requiring more data than RL-based methods, NES was observed to require

significantly less computing power since they lack value functions and do not perform

 7

back-propagation. Further, multiple agents can be deployed in parallel with little

dependence, making the process extremely scalable.

By adding heuristic/expert knowledge to the AlphaZero RL framework, (Moy and

Shekh, 2019) was able to both train a DRL model that could outperform the heuristics

used to train it and realized significant computational savings over using MCTS alone.

Another potential avenue for increased scalability is hierarchical models. (Wang

et al, 2020) proposed a hierarchical RL algorithm. The higher-level network selects

actions (move, fire, etc.) while the lower-level network chooses the direction. In the

authors’ determination, the lower-lever policies for agents are relatively independent and

cooperation is more a function of the higher-level network decisions. Therefore, once a

lower-level network solution is found for one agent, it can be freely copied to other

agents. Alternatively, the lower-level network can simply be replaced with heuristic

methods or models learned offline.

(Pentreath, 2020) presented four opportunities to improve scalability: developing

innovate computing architecture for low-resource environments, model compression

techniques such as quantization where model parameters, etc. are stored in a lower bit

state, making models smaller by removing weights that have little impact on prediction,

and model distillation in which smaller neural networks are taught by a larger neural

network to behave like the larger neural network.

Open source distributed computing libraries, such as Uber’s Fiber (Zhi, Wang,

Clune and Stanley, 2020) and DeepMind’s Acme (Hoffman et al, 2020), have been

developed to facilitate distributed reinforcement learning. Solutions such as these allow

developers to dynamically scale up algorithms to meeting existing available resources

with limited coding overhead.

 8

II. OBJECTIVES

This research intends to evaluate the viability of using reinforcement learning to

train competent adversarial forces. We will seek to answer the following questions:

• Is there a significant, quantifiable difference in the various reinforcement learning

algorithms’ abilities to train adversaries capable of defeating friendly forces?

• Is there a quantifiable tradeoff between a reinforcement learning algorithm’s

ability to train adversaries capable of defeating friendly forces, and the

time/resources required to train the adversary?

• Given an adversary that has been reinforcement learning-trained to defeat friendly

forces, how sensitive are the adversary’s capabilities to subsequent changes in

friendly force strategy and/or simulation environment?

• How do the answers to the above questions affect the ability to scale the

simulations?

 9

III. METHODOLOGY

A. EXPERIMENT DESIGN

“Good wargames are small and have an aggressive and dynamic red team.”

(Pournelle, 2017, p.52)

The goal of this experiment is to identify the effect the changes in simulation

environment and other training-specific variables have on the time required to train a red

team to defeat a blue team and to test the resiliency of the trained red team by

subsequently modifying wargame conditions. To accomplish this, the experiment was

conducted in three stages.

1. Stage 1

A mobile blue team is trained to defeat a stationary red team, similar to the

experiment conducted by (Boron, 2020). This learned blue strategy serves as a

proxy for a real-world combat strategy for which we want to develop a red team

capable of defeating.

2. Stage 2

The wargame is reinitialized with the blue team’s strategy fixed at that

learned in Stage 1 and the red team is trained to defeat the blue team in the current

stage. The red team is now capable of defeating blue under its current strategy.

Information on the time required to train the red team to defeat a blue team using

a fixed strategy is collected here.

3. Stage 3

Having trained a competent red team in Stage 2, the resiliency of the

trained red team is tested in the current stage by injecting random movement into

the blue team’s previous strategy. 100 simulated battles were conducted between

the trained red team and the blue team with a modified strategy, and information

on the proportion of wargames in which the red team was able to defeat the blue

team is collected here.

 10

In each stage, the blue and red team began on opposing ends of a hexagonal map, as

illustrated in Figure 1.

Figure 1. Example environment with opposing red and blue agents

B. EXPERIMENT VARIABLES

The following variables are set at the start of Stage 1 and remain constant through

the subsequent stages. This experiment was developed as a screening design using (JMP,

n.d.), designed to test the effects of up to two-way interactions. Further, the experiment

was repeated for each of three RL algorithms described below, and two repetitions were

taken at each combination of variable settings. When possible, variable names and

settings were selected to remain consistent with previous research (Boron, 2020) and

such that the experiment could be completed within the time allotted for this research.

Evaluated settings are shown in brackets.

1. Map Width: {10, 15}

Each simulation was completed on a map of n x n hexagons. Red and blue

teams were placed in a row on opposite ends of the map at the start of each

simulation, with each individual agent of the team occupying its own hexagon.

Agents can move in any of six directions from a given hexagon but are not

allowed to move outside a map’s boundaries.

 11

2. Red Team Size: {2, 5}

The number of red team agents at the start of the simulation. Each

individual agent was identical in capabilities, namely, to move from hexagon to

hexagon in permitted directions, to opt to remain in place, and to attack enemy

agents when in range.

3. Blue Team Size: {2, 5}

The number of blue team agents at the start of the simulation. Each

individual agent was identical in capabilities, namely, to move from hexagon to

hexagon in permitted directions, to opt to remain in place, and to attack enemy

agents when in range.

4. Training Duration: {50, 250}

The number of epochs. Equivalent to the number of policy updates.

5. Learning Factor: {0.965, 0.995}

The discount factor. Determines the timeframe over which agents place

most value when evaluating potential moves. Larger learning factors place a

greater value on long-term gains while smaller learning factors place a greater

value on short-term gains.

6. Learning Rate: {0.0001, 0.01}

The learning rate for the optimization algorithm. Larger learning rates

allow for larger changes in the DRL network’s parameters at each update and

thereby more opportunity to explore vastly different solutions. Smaller learning

rates restrict the amount by which the parameters can be changed at each update,

allowing the algorithm more time to linger in and exploit areas in which

potentially superior solutions may exist.

7. Blue Alpha: {0.25, 0.75}

The probability of a blue team agent making a uniformly random-selected

move in Stage 3. Conversely, the blue team agents select moves according to the

strategy learned in Stage 1 with probability (1 – Blue Alpha).

 12

8. NN Structure: {(32,), (96,96)}

The structure of the neural network to be optimized through simulation.

Networks consisted of either a single 32-node hidden layer or two 96-node hidden

layers. All networks were fully connected and used Rectified Linear Units (ReLu)

activation functions.

9. Combat Model: {Deterministic, Stochastic}

The method of adjudicating damage from combat between two opposing

agents. The amount of damage an attacking force could deliver was calculated as:

Deterministic Lanchester: combat efficiency * attacking force size

Stochastic Lanchester: combat efficiency * attacking force size * RAND,

where RAND is a random float selected uniformly from the (0, 1) interval.

Both sides started with a force size of 150, intended to simulate a

company-sized unit. Combat efficiency was set at 0.1. See (Boron, 2020, pp.26-

28) for details on how combat is adjudicated using these equations.

10. Delta: {0.001, 0.05}

This variable was only applicable to TRPO and limits the difference

between the current policy and a new candidate policy selected by the optimizer.

Smaller values constrain the algorithm to focus on candidate policies that are

similar to the current solution policy, while larger values allow the algorithm to

test candidate policies that are more dissimilar to the current solution.

Any variables not included here remained at their default settings available at

(Spinning Up, n.d.).

C. CODE AND ALGORITHMS

The experiment was created using Python3 in (Anaconda, n.d.), with particular

use of the (Gym, n.d.) and (Spinning Up, n.d.) packages. The code was based on that

developed for, and generously shared by, (Boron, 2020) and (Boron and Darken, 2020).

Gym is a toolkit for developing and testing reinforcement learning algorithms.

SpinningUp provides a framework for developing custom reinforcement learning

environments and experiments. SpinningUp also provides several off-the-shelf DRL

 13

algorithms for use in experimentation, as well as tools for recording key training data and

outputting visual results. The algorithms tested in this experiment, described below, were

selected because they were readily available in SpinningUp, with minimum modification

required, and represent an evolution in the development of RL algorithms (SpinningUp,

Why These Algorithms? n.d.). Further, these algorithms were used in previous research in

a similar application (Boron, 2020). Descriptions and quoted text are taken from

(Spinning Up, n.d.). and detailed information can be found there:

1. Vanilla Policy Gradient (VPG)

An “on-policy algorithm”, VPG updates policy parameters via stochastic

gradient ascent in an attempt to maximize the finite-horizon return of the policy.

“It explores by sampling actions according to the latest version of its stochastic

policy…Over the course of training, the policy typically becomes progressively

less random, as the update rule encourages it to exploit rewards that it has already

found” (Spinning Up, n.d.). Probabilities of actions that lead to higher returns are

pushed up and probabilities of actions that lead to lower return are pushed down

until you arrive at the optimal policy.

2. Trust Region Policy Optimization (TRPO)

In normal policy gradient algorithms, such as VPG, changes are made to

the policy parameters such that old and new policies do not diverge greatly over a

single update. TRPO, however, “updates policies by taking the largest step

possible to improve performance, while satisfying a special constraint on how

close the new and old policies are allowed to be” (Spinning Up, n.d.).

3. Proximal Policy Optimization (PPO)

Like TRPO, PPO seeks to take the biggest possible step to improve policy,

“without stepping so far that we accidentally cause performance collapse”

(Spinning Up, n.d.). PPO employs first-order methods, while TRPO’s methods

are second-order, making PPO simpler to implement.

 14

D. ANALYSIS

Once each simulation was completed, the total time, measured in seconds,

required to train the red team in Stage 2 (“Training Time”) and the proportion of

simulations in which the red team was able to completely eliminate the blue team in

Stage 3 (“Win Rate”) were calculated. First the data for Training Time and Win Rate was

analyzed to get a sense of the distribution and any possible relationships of note. Then,

linear models were built to identify any variables and their interactions that may have a

significant effect on Training Time and/or Win Rate. Models were built and analyzed

from both with and without respect to individual DRL algorithm.

1. Descriptive Statistics

TRPO required the most time to train the red team, on average, of any

algorithm. TRPO also had the smallest standard error due to the presence of the

additional Delta variable requiring more simulations in the screening design.

VPG, on the other hand required the least amount of time and had the smallest

standard error.

Table 1. Training Time (seconds)

ALL PPO TRPO VPG

Mean 577.1841 567.6558 603.0471 552.9781

Std Dev 393.2262 383.2536 412.856 378.8281

Std Err Mean 22.55307 39.95695 37.68843 39.49556

Upper 95% Mean 621.5646 647.0254 677.6739 631.4312

Lower 95% Mean 532.8036 488.2862 528.4202 474.5251

N 304 92 120 92

 15

ALL PPO

TRPO VPG

Figure 2. Histograms of training time (in seconds)

As can be seen from Figure 2, Training Times were bimodal whether

considered together or on a by-algorithm basis. In either case, nearly 50% of

simulations were concluded within 300 seconds. With the exception of VPG, the

remaining simulation Training Times were distributed approximately

symmetrically in a bell-shape around a mean ranging from 900 to 1000 seconds.

Table 2. Win Rate

All PPO TRPO VPG

Mean 0.321149 0.300066 0.412328 0.223302

Std Dev 0.431033 0.433981 0.452628 0.375869

Std Err Mean 0.024721 0.045246 0.041319 0.039187

Upper 95% Mean 0.369796 0.389941 0.494144 0.301142

Lower 95% Mean 0.272501 0.210191 0.330512 0.145462

 16

N 304 92 120 92

N Zero 180 57 59 64

Proportion of simulations which

neither side won

0.592105 0.619565 0.491667 0.695652

ALL PPO

TRPO VPG

Figure 3. Histograms of win rate

Figure 3 indicates that Win Rate is also bimodal, with a minority of

outcomes disperses between the two extremes. In every case, the majority of

simulations ended with no wins, meaning that neither side was completely able to

eliminate the other. The specific rate of no wins ranged from 59% to 70% as show

in Table 2. The percentage of simulations ending in wins ranged from 15% to

28%, with the remaining outcomes distributed in an approximate bell-shape

between the two extremes.

Full Correlation Matrices are Available in Table 12 of the Appendix.

Training Time was strongly positively correlated with Training Duration when

 17

evaluating all algorithms together or separately. The correlation coefficient ranged

from 0.94 to 0.97, each with an associated p-value of <0.0001 [Table 13 of the

Appendix]. Training Time in PPO and VPG had smaller, but statistically

significant, correlations with Blue Team Size of 0.23 and 0.25, and p-values of

0.03 and 0.02, respectively.

Win Rate was strongly negatively correlated with Blue Team Size when

evaluating all algorithms together or separately. The correlation coefficient ranged

from -0.56 to -0.815, each with an associated p-value of <0.0001. Win Rate in

PPO and VPG had smaller, but statistically significant, correlations with Map

Width of -0.26 and -0.25, and p-values of 0.01 and 0.02, respectively. TRPO’s

Win Rate had a moderate positive correlation of 0.27 with Red Team Size and p-

value of 0.003.

Linear models were built to evaluate the effects of the previously

enumerated experiment variables on Training Time and Win Rate. The models

evaluated took the form:

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑗

𝑚

𝑗=1

𝑋𝑖𝑗 + ∑ ∑ 𝛽𝑗𝑘𝑋𝑖𝑗𝑋𝑖𝑘

𝑚

𝑘≠𝑗

𝑚

𝑗=1

+ 𝜀𝑖, 𝑖 = 1, … , 𝑛

where 𝑌𝑖 is the predicted value at the ith observation of the 𝑚 variables

 𝑋𝑖𝑗 is ith observation of the jth variable

 𝛽0 is the intercept term

 𝛽𝑗 is the coefficient for the jth variable

 𝛽𝑗𝑘 is the coefficient for the interaction between the jth and kth variables

𝜀𝑖 is the random error term, assumed to be Normally distributed with a

mean of zero and constant variance

𝑛 is the total number of observations

2. Training Time

First a linear model that did not consider a difference in algorithm was

evaluated. That is, the data from all three algorithms were treated as if they had

 18

been generated from a single source. However, since the Delta variable is only

used in the TRPO algorithm, this model was evaluated using all variables except

Delta. The variable Blue Alpha was also not considered in any Training Time

model since Training Time is calculated in Stage 2 and Blue Alpha is only

relevant to Stage 3.

The model was significant (p=0.0001) and is included in Table 3. All

individual variables had a significant effect on Training Time, with the exceptions

of Learning Factor and Combat Model. The effects of individual variables on

Training Time were all positive, except for Learning Rate and NN Structure.

Training Duration had the largest positive effect on Training Time, far eclipsing

the effect of other individual variables. This is expected as it is reasonable for

Training Time to increase along with the number of simulations. The next largest

positive significant effect came from Blue Team Size, much larger than the

remaining individual variables. This is also reasonable as it will take the red team

longer to learn how to defeat an increasingly larger blue team.

NN Structure and Learning Rate were the only variables with significant

negative effect on Training Time. Learning Rate’s negative effect is not surprising

as a larger Learning Rate allows the optimizer to search for a broader range of

solutions. Not all of these solutions will be good and so it can take longer for the

optimizer to home in on a promising set of solutions. The negative effect of NN

Structure, however, is surprising. The experiment design does not allow

differentiation between the effects of increased number of nodes and increased

number of layers. However, as both of these numbers increase, the overall

Training Time decreased significantly. Perhaps there is an efficiency gained by

using a larger network structure, in terms of the time required to reach a solution,

that outpaces the increased time required for the optimizer to train the increased

number of parameters in a larger network. While more research would be needed

to reach a definitive conclusion, it is not reasonable to expect increasingly larger

networks to have a continuing negative effect on Training Time. The increased

number of parameters requiring training would likely cause NN Structure to have

 19

a positive effective on Training Time once the network has reached a critical size,

in terms of the number of hidden layers and/or the number of nodes.

Several two-way interactions were also significant, but most of these were

in line with expectations given the effects of individual variables. One notable

exception was the interaction between Training Duration and NN Structure,

which was negative. Individually, Training Duration had a very large positive

effect on Training Time while NN Structure had a smaller negative effect. A

simultaneous increase in both of these variables however has an overall negative

effect, lending credence to the previous suggestion of efficiency gains from a

larger NN Structure. However, the same caveat from earlier applies. It is unlikely

that indefinite increases in NN Structure, paired with increasing long Training

Durations, will continues to have a negative effect on Training Time.

The interaction between Red and Blue Team Sizes was also negative.

While these might seem counter-intuitive at first glance given that both of the

individual variables had positive effects, we hypothesize that simultaneously

increasing both variables also makes it easier for opposing agents to find each

other on the simulated battlefield and engage in combat, thus reducing the overall

Training Time.

Table 3. Training Time ALL Model

Term Estimate Std Error Prob>|t| Significance

Intercept 566.7882 3.549825 <.0001 ***

Map Width 19.30811 3.64956 <.0001 ***

Red Team Size 18.79764 3.735498 <.0001 ***

Blue Team Size 73.10628 3.67727 <.0001 ***

Training Duration 375.7265 3.804612 <.0001 ***

Learning Factor 3.079145 3.725537 0.4093

Learning Rate -6.64219 3.745186 0.0773 *

NN Structure[(32,)] -21.8369 3.687565 <.0001 ***

Combat Model[Deterministic] 1.928856 3.778603 0.6101

Map Width*Red Team Size -3.58364 3.689783 0.3323

Map Width*Blue Team Size -5.32753 3.623559 0.1427

Map Width*Training Duration 13.12429 3.681089 0.0004 ***

Map Width*Learning Factor 2.092978 3.795309 0.5818

Map Width*Learning Rate -4.33738 3.826685 0.258

Map Width*NN Structure[(32,)] -2.70593 3.723258 0.468

Map Width*Combat Model[Deterministic] 0.981867 3.880303 0.8004

Red Team Size*Blue Team Size -11.968 3.695362 0.0014 ***

Red Team Size*Training Duration 10.7236 3.724014 0.0043 ***

Red Team Size*Learning Factor -4.39013 3.719705 0.239

 20

Red Team Size*Learning Rate -5.50414 3.627005 0.1303

Red Team Size*NN Structure[(32,)] 3.495108 3.755447 0.3529

Red Team Size*Combat Model[Deterministic] -1.08664 3.78111 0.774

Blue Team Size*Training Duration 48.45899 3.711667 <.0001 ***

Blue Team Size*Learning Factor 4.646716 3.690479 0.2091

Blue Team Size*Learning Rate -2.24097 3.657138 0.5406

Blue Team Size*NN Structure[(32,)] -6.03209 3.762882 0.1101

Blue Team Size*Combat Model[Deterministic] 2.160163 3.695079 0.5593

Training Duration*Learning Factor 5.959679 3.750948 0.1133

Training Duration*Learning Rate -5.3535 3.798781 0.1599

Training Duration*NN Structure[(32,)] -19.3901 3.763516 <.0001 ***

Training Duration*Combat Model[Deterministic] 1.383407 3.794258 0.7157

Learning Factor*Learning Rate 0.155986 3.947207 0.9685

Learning Factor*NN Structure[(32,)] 0.789762 3.663633 0.8295

Learning Factor*Combat Model[Deterministic] 2.497323 3.905414 0.5231

Learning Rate*NN Structure[(32,)] -2.64627 3.732624 0.479

Learning Rate*Combat Model[Deterministic] -4.13691 3.931581 0.2936

NN Structure[(32,)]*Combat Model[Deterministic] -1.8863 3.785331 0.6187

(Significance: *** < 0.01, **<.05, *<.10)

Next, Linear models were built for each of the three algorithms evaluated. It is

instructive to observe which variables, if any, have significant effects across all three

algorithms and which differ depending on the algorithm selected. The full results are too

large to include here but are available in the Appendix. Table 4 summarizes the single

variables and two-way interactions that had significant effects on Training Time.

Some variables consistently affected Training Time regardless of algorithm such

as Map Width, Blue Team Size and Training Duration, while others were algorithm

specific. NN Structure’s effect on Training Time, for example, was significant but only

when using PPO and VPG, not for TRPO. An increase in Red Team only increased

Training Time in the TRPO algorithm and had little effect on the other algorithms.

Similar to the model where all algorithms are considered together, increased Learning

Rate had a negative effect on Training Time but only for the PPO algorithm. And Combat

Model, which was not significant when all algorithms were considered together, had a

significant effect on the Training Time required for the PPO algorithm but not for TRPO

and VPG.

The interactions of Map Width and Training Duration, and Blue Team Size and

Training Duration, were significantly positive across all three algorithms. Several

interactions were significant across only two algorithms. Training Duration and NN

Structure had a significantly negative effect on Training Time in PPO and VPG but did

not have a significant effect under TRPO. This is consistent with the significances

 21

observed in these two individual variables among the three algorithms. The interaction of

Red and Blue Team sizes was significantly negative for PPO and VPG, much like the

combined model, but not significant under TRPO. While there were interactions that

were significant for both TRPO and VPG, such as Red Team Size and Training Duration,

there were no two-way interactions that were significant for both PPO and TRPO but not

VPG.

Table 4. Training Time Models By-Algorithm

PPO

VPG

TRPO

Term Est. Sig. Est. Sig. Est. Sig.

Intercept 548.63 *** 535.88 *** 604.27 ***

Map Width 27.35 *** 17.13 *** 16.24 ***

Red Team Size 4.90

2.50

36.19 ***

Blue Team Size 75.93 *** 88.67 *** 62.77 ***

Training Duration 358.36 *** 352.08 *** 398.52 ***

Learning Rate -15.09 ** -0.66

-1.26

NN Structure[(32,)] -26.78 *** -35.61 *** -3.74

Combat Model[Deterministic] 12.00 * -0.87

2.66

Map Width*Training Duration 20.68 *** 8.59 *** 13.82 ***

Map Width*Learning Rate -9.93

-10.80 *** 3.73

Map Width*NN Structure[(32,)] 7.50

4.60 ** -2.09

Map Width*Combat Model[Deterministic] -2.20

-7.36 *** -4.93 *

Red Team Size*Blue Team Size -12.10 * -20.00 *** -1.71

Red Team Size*Training Duration 3.31

5.18 ** 20.81 ***

Red Team Size*NN Structure[(32,)] 7.28

5.59 *** -3.13

Red Team Size*Combat Model[Deterministic] -1.09

4.64 ** 1.74

Blue Team Size*Training Duration 52.27 *** 60.64 *** 42.17 ***

Blue Team Size*Learning Rate -6.40

3.95 ** -0.88

Blue Team Size*NN Structure[(32,)] -6.05

-9.25 *** 0.05

Blue Team Size*Combat Model[Deterministic] -1.58

-1.71

5.13 *

Training Duration*Learning Factor 15.04 ** 1.94

1.85

Training Duration*NN Structure[(32,)] -18.76 *** -22.82 *** 1.57

Training Duration*Combat Model[Deterministic] 13.87 ** 3.46 * 1.80

Learning Factor*Learning Rate -2.32

-5.34 ** -7.66 **

Learning Factor*Combat Model[Deterministic] 1.36

-5.22 ** 4.05

Learning Rate*NN Structure[(32,)] 2.26

-9.18 *** -1.65

Learning Rate*Combat Model[Deterministic] 6.04

6.09 *** -4.75 *

NN Structure[(32,)]*Combat Model[Deterministic] -6.14

-1.43

0.54

Red Team Size*Delta

-5.31 **

Delta*NN Structure[(32,)]

-4.86 *

(Significance: *** < 0.01, **<.05, *<.10)

3. Win Rate

As with Training Time, a model that did not consider a difference in algorithm

was first evaluated on Win Rate, excluding the variable Delta. Unlike the Training Time

 22

models however, the variable Blue Alpha was considered in all Win Rate models since it

was a factor in Stage 3 where Win Rate was calculated.

The constructed model was significant (p=0.0001) and is included in Table 5.

Map Width and Combat Model had a significant effect on Win Rate, while Training

Duration did not. Both Map Width and Combat Model both have a negative effect on

Win Rate, albeit minor. As before, Red and Blue Team Sizes were both significant, with

larger Red Team Size contributing to a higher Win Rate and larger Blue Team Size

contributing to a lower Win Rate.

There were several significant interactions but most of these did not have large

effects. Of note, there are several significant interactions including Learning Factor that

had a significant effect on Win Rate, whereas none had an effect on Training Time. Two

of these newly significant interactions were between Learning Factor and Blue Alpha,

and Learning Factor and Learning Rate. While none of the factors in these combinations

were significant on their own, combined they had a significant effect on Win Rate.

Table 5. Win Rate ALL Model

Term Estimate Std Error Prob>|t| Significance

Intercept 0.312439 0.016375 <.0001 ***

Map Width -0.06522 0.016916 0.0001 ***

Red Team Size 0.054481 0.017522 0.0021 ***

Blue Team Size -0.32224 0.017574 <.0001 ***

Training Duration 0.008892 0.01831 0.6276

Learning Factor -0.00781 0.017368 0.6534

Learning Rate 0.001881 0.017385 0.9139

Blue Alpha -0.00826 0.017463 0.6368

NN Structure[(32,)] 0.019773 0.01772 0.2655

Combat Model[Deterministic] -0.03641 0.017847 0.0424 **

Map Width*Red Team Size 0.015809 0.017673 0.3719

Map Width*Blue Team Size 0.0603 0.017239 0.0006 ***

Map Width*Training Duration 0.062047 0.01767 0.0005 ***

Map Width*Learning Factor -0.01491 0.018047 0.4096

Map Width*Learning Rate 0.040192 0.017989 0.0263 **

Map Width*Blue Alpha 0.00621 0.017712 0.7262

Map Width*NN Structure[(32,)] -0.00441 0.017355 0.7994

Map Width*Combat Model[Deterministic] -0.03803 0.01822 0.0379 **

Red Team Size*Blue Team Size -0.06306 0.017466 0.0004 ***

Red Team Size*Training Duration 0.010771 0.017885 0.5476

Red Team Size*Learning Factor -0.03011 0.018059 0.0966 *

Red Team Size*Learning Rate -0.02336 0.01703 0.1713

Red Team Size*Blue Alpha -0.02627 0.017627 0.1373

Red Team Size*NN Structure[(32,)] 0.057643 0.017418 0.0011 ***

Red Team Size*Combat Model[Deterministic] -0.00242 0.017789 0.8917

Blue Team Size*Training Duration -0.00653 0.017359 0.7073

Blue Team Size*Learning Factor 0.014409 0.017476 0.4104

 23

Blue Team Size*Learning Rate 0.020102 0.017189 0.2433

Blue Team Size*Blue Alpha -0.01322 0.017794 0.4583

Blue Team Size*NN Structure[(32,)] -0.01682 0.017909 0.3485

Blue Team Size*Combat Model[Deterministic] 0.010371 0.017095 0.5446

Training Duration*Learning Factor -0.02321 0.017799 0.1935

Training Duration*Learning Rate -0.01467 0.017791 0.4104

Training Duration*Blue Alpha 0.004449 0.01824 0.8075

Training Duration*NN Structure[(32,)] 0.024922 0.017495 0.1555

Training Duration*Combat Model[Deterministic] 0.031311 0.018055 0.0841 *

Learning Factor*Learning Rate -0.03466 0.018188 0.0578 *

Learning Factor*Blue Alpha 0.03702 0.017539 0.0358 **

Learning Factor*NN Structure -0.00755 0.016976 0.6567

Learning Factor*Combat Model[Deterministic] 0.033734 0.018199 0.0649 *

Learning Rate*Blue Alpha 0.001714 0.017195 0.9207

Learning Rate*NN Structure[(32,)] 0.016066 0.017308 0.3542

Learning Rate*Combat Model[Deterministic] -0.01599 0.018593 0.3906

Blue Alpha*NN Structure[(32,)] 0.00554 0.017149 0.7469

Blue Alpha*Combat Model[Deterministic] -0.01329 0.017121 0.4382

NN Structure[(32,)]*Combat Model[Deterministic] 0.026434 0.017553 0.1333

(Significance: *** < 0.01, **<.05, *<.10)

As with Training Time, we also built linear models to evaluate the effect of

individual variables and their interactions on win rate by algorithm. Table 6 presents a

summary of these results with the full output available in the Appendix. Surprisingly,

Training Duration was the only single variable to be significant across all three

algorithms, although the signs of the effects differed. Combat Model was significant with

large positive effects under PPO and VPG but otherwise, none of the single variables

were significant in more than one algorithm. Red Team Size and Blue Team Size only

had a significant effect on the Win Rate when using the TRPO algorithm, while Map

Width, Blue Alpha and NN Structure only affected Win Rate under PPO. However, the

effect size of these variables under PPO was relatively large.

Of the two-way interactions, only Map Width and Blue Team Size, and Training

Duration and Combat Model, had a significant effect on Win Rate over all three

algorithms. While Learning Rate was only significant in VPG, Learning Rate had

significant interactions with several variables common to VPG and TRPO. Namely, Map

Width, Red Team Size and Learning Factor. Combat Model, on the other hand, had two

significant, large interaction effects with two variables common to PPO and VPG:

Learning Factor and Learning Rate.

Table 6. Win Rate Models By-Algorithm

 24

PPO

VPG

TRPO

Term Est. Sig. Est. Sig. Est. Sig.

Intercept -0.18

-0.17

0.38 ***

Map Width 0.44 ** 0.10

-0.03

Red Team Size 0.14

0.19

0.11 ***

Blue Team Size 0.02

-0.19

-0.39 ***

Training Duration -0.20 ** -0.17 *** 0.08 ***

Learning Factor -0.27

0.06

0.01

Learning Rate 0.08

-0.24 * 0.02

Blue Alpha -0.73 *** 0.05

-0.02

NN Structure[(32,)] 0.58 *** 0.08

-0.03

Combat Model[Deterministic] 0.48 ** 0.31 ** -0.03

Map Width*Red Team Size 0.02

-0.03

0.00

Map Width*Blue Team Size 0.10 *** 0.13 *** 0.04 *

Map Width*Training Duration 0.22 ** 0.07

0.09 ***

Map Width*Learning Factor 0.04

-0.02

-0.02

Map Width*Learning Rate -0.01

0.16 *** 0.06 **

Map Width*Blue Alpha 0.01

-0.04

0.01

Map Width*NN Structure[(32,)] 0.10 *** -0.01

0.00

Map Width*Combat Model[Deterministic] -0.10 ** 0.03

-0.05 **

Red Team Size*Blue Team Size -0.08 ** -0.03

-0.06 **

Red Team Size*Training Duration 0.08

0.05

0.02

Red Team Size*Learning Factor -0.04

0.02

-0.03

Red Team Size*Learning Rate -0.03

-0.05 ** 0.05 **

Red Team Size*Blue Alpha -0.05

0.01

-0.04

Red Team Size*NN Structure[(32,)] 0.02

0.13 *** 0.02

Red Team Size*Combat Model[Deterministic] 0.05

0.03

-0.01

Blue Team Size*Training Duration 0.15 * 0.03

-0.05 **

Blue Team Size*Learning Factor 0.00

0.01

-0.02

Blue Team Size*Learning Rate 0.04

-0.03

0.00

Blue Team Size*Blue Alpha -0.01

0.04

0.01

Blue Team Size*NN Structure[(32,)] 0.01

-0.07 ** 0.01

Blue Team Size*Combat Model[Deterministic] 0.03

0.00

0.01

Training Duration*Learning Factor -0.12

0.05

-0.03

Training Duration*Learning Rate 0.06

-0.11 * -0.03

Training Duration*Blue Alpha -0.30 *** 0.03

0.02

Training Duration*NN Structure[(32,)] 0.23 *** 0.00

0.05 **

Training Duration*Combat Model[Deterministic] 0.19 ** 0.16 ** 0.06 ***

Learning Factor*Learning Rate -0.02

-0.07 ** -0.06 ***

Learning Factor*Blue Alpha 0.03

0.07 *** 0.00

Learning Factor*NN Structure[(32,)] -0.03

0.03

0.01

Learning Factor*Combat Model[Deterministic] 0.11 *** 0.06 ** 0.03

Learning Rate*Blue Alpha 0.03

-0.04

0.02

Learning Rate*NN Structure[(32,)] -0.02

0.08 *** 0.04

Learning Rate*Combat Model[Deterministic] 0.12 *** -0.08 ** 0.02

Blue Alpha*NN Structure[(32,)] 0.03

-0.01

0.02

Blue Alpha*Combat Model[Deterministic] -0.06 * 0.00

0.00

NN Structure[(32,)]*Combat Model[Deterministic] 0.08 ** 0.02

-0.03

Delta

0.02

Map Width*Delta

0.02

Red Team Size*Delta

0.03

Blue Team Size*Delta

-0.04 *

Training Duration*Delta

0.00

Learning Factor*Delta

-0.03

Learning Rate*Delta

0.01

Blue Alpha*Delta

-0.01

Delta*NN Structure[(32,)]

-0.02

Delta*Combat Model[Deterministic]

0.02

(Significance: *** < 0.01, **<.05, *<.10)

 25

4. Difference in Means

Next, we examine whether the algorithm used had a significant effect on the mean

Training Time and/or Win Rate and if so, were there significant differences in the

performance of the individual algorithms. To do this, we performed an ANOVA test on

the algorithms against Training Time and Win Rate. If the ANOVA results were found to

be significant, we followed up by simultaneously testing pairs of algorithms to determine

if the mean performance of one was better than others. A straightforward t-test of

significance between each pair of algorithms would inflate the risk of a type 1 error, or

mistakenly concluding a significant difference exists when there is none. To counter this,

we employ Tukey’s Honest Significant Difference Test to test for significant differences

in performance between pairs of algorithms. We also use a Tukey-Kramer adjustment to

account for the different sample sizes between algorithms.

Table 7. ANOVA for Training Time Model

Source DF
Sum of
Squares

Mean
Square F Ratio

Model 2 142525 71263 0.4592

Error 301 46709413 155181 Prob > F

C. Total 303 46851938 0.6322

The p-value of 0.6322 indicates that there is no significant difference in the mean

Training Time between the algorithms examined here. Therefore, we do not conduct any

follow-up tests.

Table 8. ANOVA for Win Rate Model

Source DF
Sum of
Squares

Mean
Square F Ratio

Model 2 1.919339 0.959669 5.3124

Error 301 54.374916 0.180648 Prob > F

C. Total 303 56.294255 0.0054

 26

In contrast to Training Time, the p-value of 0.0054 indicates a strong likelihood that their

does exist a difference in mean Win Rate between the algorithms examined here. Next,

we use Tukey’s Test to examine differences in the algorithms mean effect on Win Rate

on a pair-wise basis.

Table 9. Tukey’s Test for Win Rate Model

Algorithm 1 Algorithm 2 Difference Std Error
t
Ratio Prob>|t|

Lower
95%

Upper
95%

PPO TRPO -0.112262 0.058898 -1.91 0.1387 -0.250992 0.0264684

PPO VPG 0.076764 0.062667 1.22 0.4394 -0.070844 0.2243719

TRPO VPG 0.189026 0.058898 3.21 0.0042 0.050296 0.3277564

Quantile = 1.96788 DF = 301.0

The test indicates that there is no significant difference in the mean Win Rate between

PPO and TRPO, nor between PPO and VPG. However, the p-value of 0.0042 indicates

that there is a statistically significant difference in the mean Win Rates of TRPO and

VPG. It can be observed from Table 2 that the mean Win Rate of TRPO is 0.4123.

Compared to the mean Win Rates of PPO and VPG, 0.3000 and 0.2233 respectively, we

can conclude that TRPO produces, on average, higher win rates than PPO or VPG.

5. Relationship Between Training Time and Win Rate

We have thus far examined the relationship between several independent

variables and the dependent variables Training Time and Win Rate. Finally, we examine

the relationship between the two dependent variables. The following correlations are

extracted from Table 12 and Table 13:

Table 10. Pearson Correlation Between Training Time and Win Rate

 Correlation p-value

Combined -0.080 0.1650

PPO -0.209 0.0457

 27

TRPO 0.025 0.7850

VPG -0.156 0.1383

The correlation coefficients generally indicate a negative relationship between Training

Time and Win Rate. While this is also supported by the previous general observations

made under the full and by-algorithm linear models that Win Rate tends to decrease as

Training Duration increases, with the exception of TRPO, the significances of the

correlations are weak. The correlation p-values in Table 10 are also the significance

values for simple linear regression models relating Training Time to Win Rate. The

regression output for PPO, the only significant algorithm, is presented in Table 11.

Table 11. Simple Linear Regression Relating Training Time and Win Rate under

PPO

Term Estimate Std Error Prob>|t|

Intercept 0.4343085 0.079814 <.0001

Training Time -0.000236 0.000117 0.0457

Although Training Time does have a statistically significant effect on Win Rate when

training under the PPO algorithm, the actual effect -0.000236 is very small.

 28

IV. DISCUSSION

It would be ideal to identify variables that simultaneously reduce training time

and increase win rate, or at least improve one without worsening the other. It would also

be useful to know which variables, if any, cause both metrics to worsen. In the following

sub-sections, variables are analyzed for their effect on Training Time and Win Rate based

upon their role in the experiment. Analysis below is separated based on whether the

variable is an input to a DRL algorithm, a characteristic of the environment, or other.

“Combined” and “overall” analysis refer to models built without regard to DRL

algorithm.

1. Algorithm-Related Variables

Learning Rate and NN Structure demonstrated desirable behavior with

respect to Training Time. Overall, increasing Learning Rate (-6.642, p=0.0773)

and/or NN Structure (-21.836, p<0.0001) significantly reduced Training Time.

When evaluated on a by-algorithm basis, increasing Learning Rate significantly

reduced Training Time under PPO (-15.09, p=0.0184), but had no effect under

VPG or TRPO. Increased NN Structure significantly reduced Training Time

under PPO (-26.777, p=0.0001) and VPG (-35.612, p<0.0001), but had no effect

under TRPO.

Overall, neither Learning Rate nor NN Structure had a significant effect

on Win Rate. However, when analyzed by-algorithm, increases in Learning Rate

had a large negative effect on Win Rate under VPG (-0.239, p=0.0997), while NN

Structure had a large positive effect on Win Rate under PPO (0.584, p=0.0042).

Therefore, it is generally advisable to increase both of these variables during

training – subject to the previous caveat on NN Structure – but changes to

Learning Rate may require extra consideration when using VPG.

When the data was combined, Changing Combat Model from

Deterministic to Stochastic had a significant effect on Training Time under PPO

(11.999, p=0.0619). Changing Combat Model had an overall negative effect (-

0.036, p=0.0424) on Win Rate but extremely large positive effects under PPO

 29

(0.477, p=0.0265) and VPG (0.306, p=0.0377). These results indicate that a

mixed approach to Combat Model may be appropriate, i.e., training agents using a

Deterministic model while employing them in an environment where a Stochastic

model is used to adjudicate combat. For PPO, this was also accompanied by a

marginal increase in training time (11.999, p=0.0619) but should still be

considered as a potential tool for improving outcomes.

Training Duration is the most significant driver behind training time in all

cases (Combined: 375.726, p<0.0001, PPO: 358.36, p<0.0001, VPG: 352.081,

p<0.0001, TRPO: 398.524, p<0.0001). The effect of Training Duration on Win

Rate was mixed. Win Rate increased under TRPO (0.075, p=0.00019) when

Training Duration was increased but decreased at a substantially larger rate under

PPO (-0.203, p=0.0329) and VPG (-0.171, p=0.0097). Generally, Training

Duration can be decreased to reduce training time with little negative effect on

Win Rate. However, under TRPO, Training Duration can be increased to increase

Win Rate at the expense of higher Training Time.

Learning Factor and Delta had no effect on Training Time or Win Rate,

whether looking at the combined data or on a by-algorithm basis. Therefore, these

variables can be set to a convenient value.

2. Environment-Related Variables

In all cases, increasing Map Width resulted in increased Training Time

(Combined: 19.308, p<0.0001, PPO: 27.353, p<0.0001, VPG: 17.13, p<0.0001,

TRPO: 16.244, p<0.0001). As this experimented pitted two teams of opposing

agents on a featureless battlefield, this result is reasonable. Excess Map Width

presents opportunities for agents to wander without engaging their opponents.

Reducing excess space on the map should reduce this wandering so that agents

will require less Training Time.

The effect of increasing Map Width on Win Rate was more complicated.

With combined data, this reduced (-0.065, p=0.0001) the Win Rate. By-algorithm,

increasing Map Width increased the Win Rate under PPO (0.44, p=0.0412) but

had no significant effect under VPG and TRPO. Based on these results, the

 30

existence of a relationship between Map Width and Win Rate cannot be

conclusively determined and may warrant further testing.

Red Team Size requires a tradeoff. Increasing the number of red team

agents tends to increase Win Rate (Combined: 0.04, p=0.0021, TRPO: 0.114,

p=0.0209) but also requires more Training Time (Combined: 18.797, p<0.0001,

TRPO 36.193, p<0.0001). Red Team Size had no effect on Training Time or Win

Rate under PPO or VPG. Generally, we can expect a decrease in Training Time

by decreasing the Red Team size, but at a cost of a lower Win Rate. Conversely,

increasing Red Team Size should lead to higher Win Rate at the expense of higher

Training Time.

When combined, increasing Blue Team Size increased Training Time

(Blue Team Size: 73.106, p<0.0001) and decreased Win Rate (Blue Team Size: -

0.3222, p<0.0001). Similar effect sizes and significance were observed for

Training Time on a by-algorithm basis. However, Blue Team Size only had an

algorithm-specific significant effect on Win Rate when using TRPO (-0.386,

p<0.0001). The conclusion is that Blue Team Size should be reduced in order to

reduce Training Time and increase Win Rate.

3. Other

Blue Alpha only affected Win Rate, and then only when using the PPO

algorithm. This effect was quite large (-0.727, p=0.0008) though and so can’t be

easily overlooked. Overall and under other algorithms, changes in Blue Alpha had

no effect on Training Time or Win Rate. However, if an AI red team is being

trained to address a specific blue team strategy, then it may be worthwhile to

decrease Blue Alpha in order to maximize the subsequent Win Rate. If the goal is

to develop a generalizable red team though, then it may be necessary to accept the

reduction in Win Rate that (potentially) accompanies an increase in Blue Alpha.

4. Training Time and Win Rate

With the exception of PPO, the effect of Training Time on Win Rate was

not significant and even under PPO, was so small as to be negligible. This is a

 31

surprising result as an agent begins with no knowledge of how to defeat an enemy

and should reasonably be expected to gain that knowledge as the time spent

training increases. However, we present two possible explanations for this

apparent contradiction.

The first is that additional Training Time does not equal additional time in

combat with enemy agents. As previously mentioned, with no communications

between the red team agents as to the location of any blue team agent, there was

significant opportunity for the red team agents to individually wander in search of

enemy. Even if the red team manages to defeat the blue team and increase its win

count by one, time spend wandering during training would disproportionally

increase its Training Time.

The second possible explanation is that the red team may have been

overtrained. Given the particular variable settings of an individual match, there is

a point beyond which additional training will not significantly increase the red

team’s ability to win. While this is similar to the above explanation in that

Training Time increases with no corresponding increase in Win Rate, the cause is

a matter of failing to end training once learning plateaus as opposed to agents

wandering about unable to find an opponent to fight.

Unfortunately, data was not collected during the experiments that would

determine the exact cause of, or potential solutions for, the lack of expected

relationship between Training Time and Win rate. Further research is suggested to

either refute these results or if confirmed, determine causes and solutions.

 32

V. SUMMARY

In this work, we sought to determine how changes in scale and other training-

specific variables might affect time required to train AI agents and their ability to win in

combat, as measured by Training Time and Win Rate respectively, within a simulated

wargame environment. A three-stage framework was developed in which a red team of

agents learned to defeat a pre-trained blue team of agents and were then evaluated on

how well they were able to overcome subsequent changes to the blue team’s strategy.

Here we summarize the findings with respect to the research objectives first listed

in section II OBJECTIVES.

• Is there a significant, quantifiable difference in the various reinforcement learning

algorithms’ abilities to train adversaries capable of defeating friendly forces?

We found that while there was no difference in mean Training Time

between the algorithms examined in this experiment, TRPO produced

significantly higher Win Rates on average than PPO or VPG. This confirms that

the choice of training algorithm can be a significant factor in the AI red team

agent’s ability to win in subsequent matches, particularly against a blue team

whose strategy may be changing.

• Is there a quantifiable tradeoff between a reinforcement learning algorithm’s

ability to train adversaries capable of defeating friendly forces, and the

time/resources required to train the adversary?

We were unable to find any significant relationship between the red

team’s Training Time and the red team’s Win Rate in subsequent matches against

a blue team with an altered strategy. However, we have outlined some potential

reasons for this phenomenon and suggest additional research.

 33

• Given an adversary that has been reinforcement learning-trained to defeat friendly

forces, how sensitive are the adversary’s capabilities to subsequent changes in

friendly force strategy and/or simulation environment?

Generally, the red team’s ability to win matches was not affected by

changes in the blue team’s strategy. Changes in blue team strategy negatively

affected the red team’s ability to win only when the red team was trained using

the PPO algorithm. This effect was quite large though and so can’t be easily

overlooked.

Training the red team using a deterministic model for adjudicating combat

also tends to significantly increase the Win Rate in subsequent matches, whether

those matches are adjudicated with a deterministic or stochastic model, with little

effect on Training Time. The red team’s ability to win in subsequent matches was

also positively affected by a larger Red Team Size and negatively affected by a

larger Blue Team Size or Map Width.

Overall, we found the AI red team to be fairly resistant to changes in blue

team strategy but highly sensitive to changes in the simulation environment.

• How do the answers to the above questions affect the ability to scale the

simulations?

All of the environment-specific variables considered would have a

significant effect on the time required to train the red team and the ability of the

red team to win against a changing blue team strategy if the scale of the

simulation were changed. Increasing the Red Team Size tends to lengthen

Training Time but improves the Win Rate. Increasing the Blue Team Size also

increases Training Time but leads to a lower Win Rate. Likewise, increasing the

size of the simulation map, Map Width, increases Training Time and lowers the

red team’s subsequent Win Rate.

Although not simulation environment-related, we also found several

algorithm-specific variables that had significant effects on the red team’s Training

 34

Time and subsequent Win Rate. Decreasing Training Duration, increasing

Learning Rate and/or increasing the size of the NN Structure was observed to lead

to decreased Training Time with minimal effect on Win Rate. Training the red

team using a deterministic model for adjudicating combat also tends to increase

the red team’s Win Rate in subsequent matches, whether those matches are

adjudicated with a deterministic or stochastic model, with little effect on the red

team’s Training Time. Some algorithm or experiment-specific variables, such as

Blue Alpha, Learning Factor and Delta, did not have a significant effect on either

Training Time or Win Rate.

This research was conducted on a simulated, open battlefield with identical agents

on both teams seeking only to destroy the other team. Popular, off-the-shelf, well-

supported DRL algorithms were selected for the experiment. Additionally, DRL neural

networks can be much larger than the two-hidden layers of 96 nodes considered in this

work, with much more complicated architectures connecting the nodes between layers.

Therefore, this work should not be considered a definitive answer as to which variables

can be changed to improve outcomes in all solutions, nor which algorithms are best, but

rather a baseline from which to conduct further work in which environments and agents

have more sophisticated characteristics and goals, alternative algorithms are employed,

and/or the networks used to train the agents take on more sophisticated architectures.

 35

THIS PAGE INTENTIONALLY LEFT BLANK

 36

APPENDIX

Table 12. Correlation Matrices

ALL

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width 1.000 -0.041 0.041 0.012 0.041 0.040 0.002 -0.006 0.086 -0.159

Red Team

Size

-0.041 1.000 -0.078 -0.001 -0.026 0.053 -0.012 -0.056 0.042 0.177

Blue Team

Size

0.041 -0.078 1.000 0.001 -0.001 -0.026 0.012 0.125 0.200 -0.697

Training

Duration

0.012 -0.001 0.001 1.000 0.027 -0.026 -0.012 -0.062 0.952 0.039

Learning

Factor

0.041 -0.026 -0.001 0.027 1.000 -0.026 0.012 0.035 0.048 -0.008

Learning Rate 0.040 0.053 -0.026 -0.026 -0.026 1.000 0.040 -0.036 -0.040 0.028

Blue Alpha 0.002 -0.012 0.012 -0.012 0.012 0.040 1.000 -0.003 0.001 -0.010

Delta -0.006 -0.056 0.125 -0.062 0.035 -0.036 -0.003 1.000 0.011 0.117

Training Time 0.086 0.042 0.200 0.952 0.048 -0.040 0.001 0.011 1.000 -0.080

Win Rate -0.159 0.177 -0.697 0.039 -0.008 0.028 -0.010 0.117 -0.080 1.000

PPO

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width 1.000 -0.046 0.087 0.042 0.046 0.000 0.004 0.150 -0.255

Red Team

Size

-0.046 1.000 -0.087 -0.046 -0.042 0.087 0.004 -0.039 0.081

Blue Team

Size

0.087 -0.087 1.000 0.000 0.000 -0.044 0.044 0.226 -0.686

Training

Duration

0.042 -0.046 0.000 1.000 0.046 0.000 0.004 0.944 -0.058

Learning

Factor

0.046 -0.042 0.000 0.046 1.000 0.000 -0.004 0.081 -0.017

Learning Rate 0.000 0.087 -0.044 0.000 0.000 1.000 0.044 -0.030 -0.020

Blue Alpha 0.004 0.004 0.044 0.004 -0.004 0.044 1.000 0.051 0.041

Delta

Training Time 0.150 -0.039 0.226 0.944 0.081 -0.030 0.051 1.000 -0.209

Win Rate -0.255 0.081 -0.686 -0.058 -0.017 -0.020 0.041 -0.209 1.000

TRPO

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width 1.000 -0.033 -0.031 -0.033 0.033 0.100 -0.001 0.001 0.012 -0.038

Red Team

Size

-0.033 1.000 -0.067 0.067 0.000 0.000 -0.033 0.033 0.154 0.269

Blue Team

Size

-0.031 -0.067 1.000 0.000 0.000 0.000 -0.031 0.031 0.154 -0.815

Training

Duration

-0.033 0.067 0.000 1.000 0.000 -0.067 -0.033 0.033 0.973 0.147

Learning

Factor

0.033 0.000 0.000 0.000 1.000 -0.067 0.033 0.033 0.020 -0.013

Learning Rate 0.100 0.000 0.000 -0.067 -0.067 1.000 0.033 -0.033 -0.087 0.028

Blue Alpha -0.001 -0.033 -0.031 -0.033 0.033 0.033 1.000 -0.066 -0.060 -0.053

Delta 0.001 0.033 0.031 0.033 0.033 -0.033 -0.066 1.000 0.053 0.095

Training Time 0.012 0.154 0.154 0.973 0.020 -0.087 -0.060 0.053 1.000 0.025

Win Rate -0.038 0.269 -0.815 0.147 -0.013 0.028 -0.053 0.095 0.025 1.000

VPG

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width 1.000 -0.046 0.087 0.042 0.046 0.000 0.004 0.128 -0.249

Red Team

Size

-0.046 1.000 -0.087 -0.046 -0.042 0.087 0.004 -0.032 0.172

Blue Team

Size

0.087 -0.087 1.000 0.000 0.000 -0.044 0.044 0.246 -0.557

Training

Duration

0.042 -0.046 0.000 1.000 0.046 0.000 0.004 0.942 -0.001

Learning

Factor

0.046 -0.042 0.000 0.046 1.000 0.000 -0.004 0.050 -0.006

Learning Rate 0.000 0.087 -0.044 0.000 0.000 1.000 0.044 0.019 0.085

Blue Alpha 0.004 0.004 0.044 0.004 -0.004 0.044 1.000 0.029 -0.040

Delta

Training Time 0.128 -0.032 0.246 0.942 0.050 0.019 0.029 1.000 -0.156

Win Rate -0.249 0.172 -0.557 -0.001 -0.006 0.085 -0.040 -0.156 1.000

 37

Table 13. P-Values for Correlation Significant Tests

All

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width <.0001 0.481 0.481 0.833 0.481 0.493 0.978 0.950 0.136 0.005

Red Team Size 0.481 <.0001 0.173 0.990 0.656 0.360 0.833 0.553 0.469 0.002

Blue Team

Size

0.481 0.173 <.0001 0.990 0.990 0.648 0.833 0.185 0.001 <.0001

Training

Duration

0.833 0.990 0.990 <.0001 0.639 0.648 0.833 0.511 <.0001 0.496

Learning

Factor

0.481 0.656 0.990 0.639 <.0001 0.648 0.833 0.710 0.409 0.889

Learning Rate 0.493 0.360 0.648 0.648 0.648 <.0001 0.493 0.704 0.493 0.627

Blue Alpha 0.978 0.833 0.833 0.833 0.833 0.493 <.0001 0.979 0.981 0.863

Delta 0.950 0.553 0.185 0.511 0.710 0.704 0.979 <.0001 0.909 0.213

Training Time 0.136 0.469 0.001 <.0001 0.409 0.493 0.981 0.909 <.0001 0.165

Win Rate 0.005 0.002 <.0001 0.496 0.889 0.627 0.863 0.213 0.165 <.0001

PPO

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width <.0001 0.667 0.409 0.693 0.667 1.000 0.971 0.153 0.014

Red Team Size 0.667 <.0001 0.409 0.667 0.693 0.409 0.971 0.710 0.446

Blue Team

Size

0.409 0.409 <.0001 1.000 1.000 0.681 0.680 0.031 <.0001

Training

Duration

0.693 0.667 1.000 <.0001 0.667 1.000 0.971 <.0001 0.584

Learning

Factor

0.667 0.693 1.000 0.667 <.0001 1.000 0.971 0.444 0.876

Learning Rate 1.000 0.409 0.681 1.000 1.000 <.0001 0.680 0.775 0.853

Blue Alpha 0.971 0.971 0.680 0.971 0.971 0.680 <.0001 0.632 0.699

Delta

Training Time 0.153 0.710 0.031 <.0001 0.444 0.775 0.632 <.0001 0.046

Win Rate 0.014 0.446 <.0001 0.584 0.876 0.853 0.699 0.046 <.0001

TRPO

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width <.0001 0.718 0.735 0.718 0.718 0.277 0.990 0.990 0.901 0.680

Red Team Size 0.718 <.0001 0.468 0.469 1.000 1.000 0.718 0.718 0.093 0.003

Blue Team

Size

0.735 0.468 <.0001 1.000 1.000 1.000 0.735 0.735 0.093 <.0001

Training

Duration

0.718 0.469 1.000 <.0001 1.000 0.469 0.718 0.718 <.0001 0.111

Learning

Factor

0.718 1.000 1.000 1.000 <.0001 0.469 0.718 0.718 0.827 0.892

Learning Rate 0.277 1.000 1.000 0.469 0.469 <.0001 0.718 0.718 0.344 0.758

Blue Alpha 0.990 0.718 0.735 0.718 0.718 0.718 <.0001 0.476 0.513 0.565

Delta 0.990 0.718 0.735 0.718 0.718 0.718 0.476 <.0001 0.566 0.304

Training Time 0.901 0.093 0.093 <.0001 0.827 0.344 0.513 0.566 <.0001 0.785

Win Rate 0.680 0.003 <.0001 0.111 0.892 0.758 0.565 0.304 0.785 <.0001

VPG

Map

Width

Red Team

Size

Blue Team

Size

Training

Duration

Learning

Factor

Learning

Rate

Blue

Alpha

Delta Training

Time

Win

Rate

Map Width <.0001 0.667 0.409 0.693 0.667 1.000 0.971 0.224 0.017

Red Team Size 0.667 <.0001 0.409 0.667 0.693 0.409 0.971 0.760 0.102

Blue Team

Size

0.409 0.409 <.0001 1.000 1.000 0.681 0.680 0.018 <.0001

Training

Duration

0.693 0.667 1.000 <.0001 0.667 1.000 0.971 <.0001 0.995

Learning

Factor

0.667 0.693 1.000 0.667 <.0001 1.000 0.971 0.639 0.957

Learning Rate 1.000 0.409 0.681 1.000 1.000 <.0001 0.680 0.859 0.423

Blue Alpha 0.971 0.971 0.680 0.971 0.971 0.680 <.0001 0.785 0.706

Delta

Training Time 0.224 0.760 0.018 <.0001 0.639 0.859 0.785 <.0001 0.138

Win Rate 0.017 0.102 <.0001 0.995 0.957 0.423 0.706 0.138 <.0001

 38

Table 14. Training Time Full Models

PPO

VPG

TRPO

Term Estimate Std Error Prob>|t| Estimate Std Error Prob>|t| Estimate Std Error Prob>|t|

Intercept 548.6348 5.545927 <.0001 535.8835 1.77972 <.0001 604.2748 2.423381 <.0001

Map Width 27.35314 6.038547 <.0001 17.13074 1.937804 <.0001 16.24479 2.8734 <.0001

Red Team Size 4.899031 6.469421 0.4521 2.497753 2.076074 0.2341 36.19321 2.709249 <.0001

Blue Team Size 75.93179 6.207401 <.0001 88.67028 1.991991 <.0001 62.77187 2.708236 <.0001

Training Duration 358.3601 6.452641 <.0001 352.081 2.07069 <.0001 398.5247 3.01018 <.0001

Learning Factor 8.483058 6.035747 0.1655 2.644132 1.936906 0.1778 1.286219 2.731853 0.6392

Learning Rate -15.0902 6.208844 0.0184 -0.66188 1.992454 0.741 -1.26363 2.991701 0.674

NN Structure[(32,)] -26.7777 6.412599 0.0001 -35.6128 2.05784 <.0001 -3.73703 2.685317 0.1682

Combat Model[Deterministic] 11.99971 6.295859 0.0619 -0.87162 2.020377 0.6679 2.658324 2.718474 0.3313

Map Width*Red Team Size -5.40421 6.421072 0.4036 0.091665 2.060559 0.9647 -1.03166 2.731597 0.7068

Map Width*Blue Team Size -3.2446 6.042021 0.5934 1.165569 1.938919 0.5502 0.024626 2.839157 0.9931

Map Width*Training Duration 20.68412 6.196748 0.0015 8.590916 1.988572 <.0001 13.8153 2.925329 <.0001

Map Width*Learning Factor 2.518827 6.733354 0.7098 0.496616 2.160772 0.8191 -1.35846 2.713347 0.6181

Map Width*Learning Rate -9.93395 6.621622 0.1393 -10.8015 2.124917 <.0001 3.732275 2.8628 0.1964

Map Width*NN Structure[(32,)] 7.502948 6.210004 0.2321 4.596851 1.992826 0.0249 -2.08838 2.804146 0.4588

Map Width*Combat

Model[Deterministic]

-2.20454 7.032468 0.7551 -7.36413 2.256759 0.0019 -4.92959 2.875065 0.0906

Red Team Size*Blue Team Size -12.1037 6.212309 0.0565 -20.0027 1.993566 <.0001 -1.70504 2.940993 0.5638

Red Team Size*Training Duration 3.310198 6.734553 0.625 5.178245 2.161157 0.02 20.80863 2.610506 <.0001

Red Team Size*Learning Factor -2.18472 6.629732 0.743 -0.79604 2.127519 0.7097 -0.6067 2.579504 0.8147

Red Team Size*Learning Rate -7.80731 6.285777 0.2195 -1.80216 2.017142 0.3755 1.22402 2.703799 0.6521

Red Team Size*NN Structure[(32,)] 7.279009 6.352063 0.2568 5.585089 2.038414 0.0083 -3.1341 2.776934 0.2627

Red Team Size*Combat

Model[Deterministic]

-1.09236 6.852069 0.8739 4.642191 2.198868 0.0393 1.736773 2.674099 0.518

Blue Team Size*Training Duration 52.27482 6.334985 <.0001 60.64408 2.032933 <.0001 42.16584 2.737776 <.0001

Blue Team Size*Learning Factor 0.259294 6.804479 0.9697 -3.3163 2.183597 0.1346 3.621512 2.707331 0.1851

Blue Team Size*Learning Rate -6.40015 6.041812 0.2941 3.949734 1.938852 0.0465 -0.87854 2.763715 0.7515

Blue Team Size*NN Structure[(32,)] -6.04938 6.849894 0.381 -9.25246 2.198171 <.0001 0.051518 2.70511 0.9849

Blue Team Size*Combat

Model[Deterministic]

-1.5758 6.284491 0.8029 -1.71191 2.016729 0.3996 5.131846 2.697466 0.061

Training Duration*Learning Factor 15.03796 6.792483 0.031 1.939009 2.179747 0.3776 1.850441 2.705869 0.4962

Training Duration*Learning Rate -9.32837 6.679837 0.1682 3.298389 2.143598 0.1296 -3.72915 3.018345 0.2206

Training Duration*NN Structure[(32,)] -18.7598 6.060126 0.0031 -22.8196 1.944729 <.0001 1.568932 3.006856 0.6034

Training Duration*Combat

Model[Deterministic]

13.8654 6.422075 0.0352 3.461028 2.060881 0.0987 1.799215 2.724545 0.5111

Learning Factor*Learning Rate -2.32152 7.375998 0.7541 -5.3448 2.367 0.0279 -7.65803 2.908909 0.0103

Learning Factor*NN Structure[(32,)] -6.76477 6.404735 0.2955 -0.72207 2.055316 0.7267 2.324519 2.863308 0.4195

Learning Factor*Combat

Model[Deterministic]

1.360818 6.810728 0.8424 -5.22316 2.185602 0.0203 4.047957 2.802279 0.1528

Learning Rate*NN Structure[(32,)] 2.264058 6.066338 0.7104 -9.17811 1.946723 <.0001 -1.64697 3.202701 0.6086

Learning Rate*Combat Model 6.043313 7.053572 0.3953 6.090063 2.263532 0.0094 -4.74998 2.844956 0.0992

NN Structure[(32,)]*Combat

Model[Deterministic]

-6.1425 6.810749 0.3711 -1.43182 2.185608 0.5151 0.536576 2.934393 0.8554

Delta

-4.76304 2.868742 0.1011

Map Width*Delta -0.14907 2.92661 0.9595

Red Team Size*Delta -5.30897 2.662556 0.0498

Blue Team Size*Delta -0.07895 2.735208 0.9771

Training Duration*Delta 2.443057 2.736432 0.3749

Learning Factor*Delta 1.888187 2.65155 0.4786

Learning Rate*Delta 0.966764 2.687959 0.7201

Delta*NN Structure[(32,)] -4.85847 2.694638 0.0755

Delta*Combat Model[Deterministic] -2.57005 2.747315 0.3526

 39

Table 15. Win Rate Full Models

PPO

VPG

TRPO

Term Estimate Std Error Prob>|t| Estimate Std Error Prob>|t| Estimate Std Error Prob>|t|

Intercept -0.18185 0.220112 0.413 -0.17372 0.151377 0.2571 0.378161 0.017411 <.0001

Map Width 0.440362 0.209687 0.0412 0.104951 0.144208 0.4704 -0.03416 0.022415 0.1325

Red Team Size 0.14089 0.216302 0.5181 0.191228 0.148757 0.2051 0.114016 0.020959 <.0001

Blue Team Size 0.01714 0.205085 0.9338 -0.19424 0.141043 0.1751 -0.38685 0.021274 <.0001

Training Duration -0.20358 0.092561 0.0329 -0.17182 0.063657 0.0097 0.075317 0.023189 0.0019

Learning Factor -0.27369 0.209748 0.1984 0.061167 0.14425 0.6735 0.011119 0.020593 0.5911

Learning Rate 0.082023 0.207489 0.6944 -0.23979 0.142696 0.0997 0.020739 0.022275 0.3553

Blue Alpha -0.7278 0.203044 0.0008 0.048448 0.139639 0.7302 -0.01531 0.020941 0.4673

NN Structure[(32,)] 0.584996 0.194276 0.0042 0.076377 0.133609 0.5703 -0.03007 0.020713 0.1514

Combat Model[Deterministic] 0.477403 0.208236 0.0265 0.306491 0.14321 0.0377 -0.03281 0.022844 0.1558

Map Width*Red Team Size 0.018411 0.034341 0.5945 -0.0294 0.023618 0.2195 0.001391 0.022538 0.951

Map Width*Blue Team Size 0.103232 0.032588 0.0027 0.131454 0.022412 <.0001 0.043654 0.023333 0.0659

Map Width*Training Duration 0.223569 0.084661 0.0113 0.072715 0.058224 0.218 0.094036 0.023039 0.0001

Map Width*Learning Factor 0.037652 0.038231 0.3299 -0.01888 0.026293 0.4764 -0.01656 0.021731 0.449

Map Width*Learning Rate -0.00971 0.03852 0.8022 0.157698 0.026492 <.0001 0.055175 0.02328 0.0208

Map Width*Blue Alpha 0.008389 0.036106 0.8173 -0.0374 0.024831 0.1389 0.007708 0.025192 0.7606

Map Width*NN Structure[(32,)] 0.103558 0.033599 0.0035 -0.01349 0.023107 0.5622 -0.00135 0.020971 0.9491

Map Width*Combat

Model[Deterministic]

-0.097 0.039448 0.0178 0.030852 0.02713 0.2613 -0.04532 0.0226 0.0492

Red Team Size*Blue Team Size -0.08434 0.0339 0.0165 -0.02753 0.023314 0.2437 -0.05795 0.022621 0.0128

Red Team Size*Training Duration 0.076576 0.090922 0.404 0.048792 0.06253 0.4392 0.017937 0.022486 0.428

Red Team Size*Learning Factor -0.04092 0.03479 0.2455 0.024808 0.023926 0.3052 -0.02952 0.020903 0.1628

Red Team Size*Learning Rate -0.03404 0.034198 0.3248 -0.0511 0.023519 0.035 0.053072 0.02141 0.0158

Red Team Size*Blue Alpha -0.05309 0.034014 0.1254 0.014709 0.023392 0.5326 -0.03683 0.023625 0.124

Red Team Size*NN Structure[(32,)] 0.024776 0.035582 0.4897 0.127293 0.024471 <.0001 0.01587 0.021991 0.4731

Red Team Size*Combat

Model[Deterministic]

0.054574 0.038603 0.1642 0.03375 0.026548 0.21 -0.01107 0.020591 0.5926

Blue Team Size*Training Duration 0.14567 0.083537 0.0879 0.028826 0.057451 0.6182 -0.05446 0.021495 0.0137

Blue Team Size*Learning Factor 0.000103 0.038307 0.9979 0.009858 0.026345 0.71 -0.02442 0.020346 0.2345

Blue Team Size*Learning Rate 0.043232 0.032196 0.1859 -0.02848 0.022142 0.2047 0.004736 0.020483 0.8179

Blue Team Size*Blue Alpha -0.0121 0.037053 0.7456 0.039903 0.025483 0.1242 0.007799 0.021784 0.7215

Blue Team Size*NN Structure[(32,)] 0.011092 0.035783 0.758 -0.06509 0.024609 0.0111 0.011997 0.020075 0.5522

Blue Team Size*Combat

Model[Deterministic]

0.030911 0.033389 0.3594 0.003507 0.022963 0.8793 0.010459 0.020187 0.6062

Training Duration*Learning Factor -0.11864 0.08745 0.1815 0.047184 0.060142 0.4367 -0.02956 0.021076 0.1656

Training Duration*Learning Rate 0.059995 0.089333 0.5052 -0.11271 0.061437 0.073 -0.02602 0.023857 0.2795

Training Duration*Blue Alpha -0.29796 0.084129 0.0009 0.030995 0.057858 0.5947 0.018489 0.023025 0.425

Training Duration*NN Structure[(32,)] 0.226641 0.079577 0.0066 -0.00372 0.054727 0.9462 0.052431 0.022345 0.0221

Training Duration*Combat

Model[Deterministic]

0.192259 0.087181 0.0325 0.159777 0.059957 0.0106 0.057971 0.020314 0.0058

Learning Factor*Learning Rate -0.022 0.038836 0.5739 -0.06579 0.026709 0.0176 -0.0633 0.023435 0.0088

Learning Factor*Blue Alpha 0.030898 0.03287 0.3521 0.072939 0.022606 0.0023 0.004734 0.021889 0.8295

Learning Factor*NN Structure[(32,)] -0.0309 0.035614 0.3901 0.026675 0.024493 0.2818 0.00555 0.021332 0.7956

Learning Factor*Combat

Model[Deterministic]

0.10891 0.035913 0.004 0.064146 0.024698 0.0126 0.025529 0.021065 0.23

Learning Rate*Blue Alpha 0.025575 0.034892 0.4673 -0.03664 0.023996 0.1336 0.016592 0.021457 0.4422

Learning Rate*NN Structure[(32,)] -0.01713 0.032695 0.6029 0.082273 0.022485 0.0007 0.036128 0.024448 0.1444

Learning Rate*Combat

Model[Deterministic]

0.118453 0.041899 0.0069 -0.07536 0.028815 0.012 0.019567 0.02089 0.3525

Blue Alpha*NN Structure[(32,)] 0.027043 0.032801 0.4139 -0.0084 0.022559 0.7114 0.017357 0.018416 0.3495

Blue Alpha*Combat

Model[Deterministic]

-0.06454 0.034391 0.0669 0.001891 0.023652 0.9366 -0.00035 0.019831 0.9859

NN Structure*Combat

Model[Deterministic]

0.08405 0.03581 0.0233 0.015697 0.024628 0.527 -0.03171 0.022076 0.1558

Delta

0.020586 0.021736 0.3472

Map Width*Delta 0.018033 0.021587 0.4066

Red Team Size*Delta 0.03352 0.022058 0.1335

Blue Team Size*Delta -0.04153 0.022056 0.0643

Training Duration*Delta 0.002567 0.020707 0.9017

Learning Factor*Delta -0.03006 0.019951 0.1368

Learning Rate*Delta 0.009657 0.020164 0.6336

Blue Alpha*Delta -0.01192 0.02038 0.5606

Delta*NN Structure[(32,)] -0.02173 0.019845 0.2777

Delta*Combat Model[Deterministic] 0.01796 0.020908 0.3936

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

LIST OF REFERENCES

Anaconda, Retrieved January 3, 2021, from

https://www.anaconda.com/products/individual

Anthony, T., Tian, Z., Barber, D. (2017). Citation: Thinking fast and slow with

deep learning and tree search. Proceedings of the 31st International Conference

on Neural Information Processing Systems (NIPS'17). Curran Associates Inc.,

Red Hook, NY, USA, pp. 5366-5376.

Berner, C. Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C. Farhi,

et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint

arXiv:1912.06680

Boron, J. (2020). Developing Combat Behavior Through Reinforcement Learning

(MS thesis). Available from Calhoun database,

https://calhoun.nps.edu/handle/10945/65414

Boron, J., Darken, C. (2020). Developing Combat Behavior through

Reinforcement Learning in Wargames and Simulations. 2020 IEEE Conference

on Games (CoG), Osaka, Japan, pp. 728-731,

https://doi.org/10.1109/CoG47356.2020.9231609

Goodman, J., Sebastian, R., Lucas, S. (2020). AI and Wargaming. arXiv:

2009.08922 [cs.AI]

Gym, Retrieved January 3, 2021, from https://gym.openai.com/docs/

Hansen, N. Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in

Evolution Strategies. Evol Comput 1, 9 (2), pp. 159-195,

https://doi.org/10.1162/106365601750190398

Hoffman, M., Shahriari, B., Aslanides, J., Barth-Maron, G., Behbahani, F.,

Norman, T., et al. (2020). Acme: A Research Framework for Distributed

Reinforcement Learning. arXiv: 2006.00979 [cs.LG]

JMP, Retrieved January 3, 2021, from https://www.jmp.com/en_us/home.html

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., et al. (2018).

Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation.

Proceedings of The 2nd Conference on Robot Learning, vol. 87, pp. 651-673

Khadka, S., Tumer, K. (2018). Evolution-Guided Policy Gradient in

Reinforcement Learning. Proceedings of the 32nd International Conference on

https://www.anaconda.com/products/individual
https://calhoun.nps.edu/handle/10945/65414
https://doi.org/10.1109/CoG47356.2020.9231609
https://gym.openai.com/docs/
https://doi.org/10.1162/106365601750190398
https://www.jmp.com/en_us/home.html

 42

Neural Information Processing Systems, pp. 1196-1208,

https://doi.org/10.5555/3326943.3327053

Lucek, S., Collander-Brown, S. (2017). Using Artificial Intelligence Algorithms

for High Level Tactical Wargames and New Approaches to Wargame Simulation.

Journal of Applied Operational Research, vol. 9, no. 1, pp. 11-26

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. et

al. (2013). Playing Atari with Deep Reinforcement Learning. arXiv: 1312.5602

[cs.LG]

Mnih, V., Kavukcuoglu, V., Silver, C., Rusu, A., Veness, J., Bellemare, M., et al.

(2015). Human-level control through deep reinforcement learning. Nature, vol.

518, issue 7540, pp. 529-533

Moy G., Shekh S. (2019) The Application of AlphaZero to Wargaming. AI 2019:

Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science,

vol 11919. Springer. https://doi.org/10.1007/978-3-030-35288-2_1

Muñoz, J., Gutierrez, G., Sanchis, A. (2012). Towards imitation of human driving

style in car racing games. Believable Bots, pp. 289-313, Springer

Ng, A., Russell, S. (2000). Algorithms for Inverse Reinforcement Learning.

Proceedings of the Seventeenth International Conference on Machine Learning

(ICML '00). pp. 663-670, Morgan Kaufmann Publishers Inc.

Spinning Up, Retrieved January 3, 2021, from

https://spinningup.openai.com/en/latest/

Spinning Up, Why These Algorithms? Retrieved January 3, 2021, from

https://spinningup.openai.com/en/latest/user/algorithms.html#why-these-

algorithms

Pentreath, N. (June 22-26, 2020). Scaling up Deep Learning by Scaling Down.

SPARK+AI Summit 2020, virtual event, url:

https://databricks.com/session_na20/scaling-up-deep-learning-by-scaling-down

Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P. (2013). Rolling horizon

evolution versus tree search for navigation in single-player real-time games.

Proceedings of the 15th annual conference on Genetic and evolutionary

computation (GECCO '13). Association for Computing Machinery, pp. 351-358.

https://doi.org/10.1145/2463372.2463413

Perez-Liebana, D., Gaina, R. D., Drageset, O., İlhan, E., Balla, M., & Lucas, S.

M. (2019). Analysis of Statistical Forward Planning Methods in Pommerman.

https://doi.org/10.5555/3326943.3327053
https://doi.org/10.1007/978-3-030-35288-2_1
https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/user/algorithms.html#why-these-algorithms
https://spinningup.openai.com/en/latest/user/algorithms.html#why-these-algorithms
https://databricks.com/session_na20/scaling-up-deep-learning-by-scaling-down
https://doi.org/10.1145/2463372.2463413

 43

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, 15(1), pp. 66-72.

Pournelle, P. (2017). Designing Wargames for the Analytic Purpose. Phalanx, vol.

50, no. 2, pp. 48-53. JSTOR

Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I. (2017). Evolution

Strategies as a Scalable Alternative to Reinforcement Learning. arXiv:

1703.03864 [stat.ML]

Schwartz, P., O’Neill, D., Bentz, M., Brown, A., Doyle, B., Liepa, O., et al.

(2020). AI-enabled Wargaming in the Military Decision Making Process.

Artificial Intelligence and Machine Learning for Multi-Domain Operations

Applications II, vol. 11413, pp. 118-134, https://doi.org/10.1117/12.2560494

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al.

(2018). A general reinforcement learning algorithm that masters chess, shogi,

and Go through self-play. Science, vol. 362, nbr. 6419, pp. 1140-1144,

https://doi.org/10.1126/science.aar6404

Stanescu, M., Barriga, N., Hess, A., Buro, M. (2016). Evaluating real-time

strategy game states using convolutional neural networks. 2016 IEEE Conference

on Computational Intelligence and Games (CIG), pp. 1-7,

https://doi.org/10.1109/CIG.2016.7860439

Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J.,

et al. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement

learning. Nature, vol. 575, issue 7782, pp. 350-354.

Wade, B. (2018). The Four Critical Elements of Analytic Wargame Design.

Phalanx, vol. 51, no. 4, pp. 18-23. JSTOR

Wang, H., Tang, H., Hao, J., Hao, X., Fu, Y., Ma, Y. (2020). Large Scale Deep

Reinforcement Learning in War-games. 2020 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), Seoul, Korea (South), pp. 1693-1699.

https://doi.org/10.1109/BIBM49941.2020.9313387

Watkins, C. (1989). “Learning from Delayed Rewards,” (Ph.D. thesis),

Cambridge University

Zhang, J., Xue, Q. (2020). Actor–critic-based decision-making method for the

artificial intelligence commander in tactical wargames. The Journal of Defense

Modeling and Simulation. https://doi.org/10.1177/1548512920954542

https://doi.org/10.1117/12.2560494
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1109/CIG.2016.7860439
https://doi.org/10.1109/BIBM49941.2020.9313387
https://doi.org/10.1177/1548512920954542

 44

Zhi, J., Wang, R., Clune, J., Stanley, K. (June 30, 2020), Fiber: Distributed

Computing for AI Made Simple. Retrieved January 3, 2021, from

https://eng.uber.com/fiberdistributed/

https://eng.uber.com/fiberdistributed/

