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ABSTRACT 

Wargames are an essential tool for education, training, and formulation of strategy. They 

are especially important in the evaluation of threats from, and strategies against, trained 

adversaries who present significant risk to friendly forces. We proposed to develop a wargame 

adversary trained to defeat the current strategy of friendly forces, allowing the evaluation of 

alternate strategies against an intelligent, simulated opponent. This research sought to evaluate 

the ability of different deep neural network algorithms to train an enemy red team against a 

friendly blue team with an existing strategy, in terms of both efficacy and efficiency, and the 

resiliency of the trained red team to subsequent changes in blue team strategy. 

A simulated combat environment was created in which a blue team was first trained using 

deep reinforcement learning to defeat a stationary opponent in an open battlefield, establishing a 

baseline blue strategy. The red team was then trained, again with deep reinforcement learning, to 

defeat this blue team, after which the blue team’s strategy was altered, and the two teams were 

allowed to engage in combat again. During this experiment, the time required to train the red 

team and the proportion of combat outcomes that red won were calculated and later analyzed 

using linear models. Several important variables were identified, from both the combat 

environment and the algorithms employed to train each team, that significantly affected the time 

required to train the red team and the red team’s subsequent ability to win against an opponent 

with an altered strategy. Additionally, it was determined that while there was no significant 

difference between the algorithms in the mean time required for red team training, the choice of 

algorithm had a significant effect on the red team’s subsequent ability to win against an opponent 

whose strategy differs from the one against it was trained. 
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I. INTRODUCTION 

A. ROLE AND DESIGN OF WARGAMES 

“The core attribute of a good wargame is an adversarial environment…” 

(Pournelle, 2017, p.51). 

A wargame is simulated combat in an artificial environment in which players take 

actions and then observe the consequences of their actions. In that sense, wargames are 

an important tool for military forces to evaluate current or potential strategies and 

capabilities in a risk-free environment. Simulations such as wargames provide a window 

into the interaction of opposing systems and are useful for deriving insight into how 

decisions are made in the face of uncertainty (Pournelle, 2017).  

These simulations have historically been conducted by assembling a group of 

subject matter experts to play as blue (friendly) and red (enemy) agents. Each agent takes 

an action – moving forces, firing on the enemy’s forces, etc. – and the consequences of 

that action are determined – forces are successfully moved, enemy forces lose 10% 

combat strength, etc. The method of determining the consequences might be agreement 

among players, decision of a subject matter expert, correlation, or interpolation of 

historical trends (Wade, 2018). 

According to (Wade, 2018), “wargames are best used for unstructured problems 

where human decision making is central to the issue being addressed” and “a wargame is 

effective because it focuses on human decision making in a competitive sequential 

environment”. While it is true that wargaming has heretofore been a human endeavor, 

artificial intelligence (AI) has begun to take its own role in wargaming. 

  

B. DEEP REINFORCEMENT LEARNING 

At its simplest, reinforcement learning involves a trial-and-error approach in 

which an artificial agent takes an action under uncertainty given its understanding of its 

environment (the “state”), and receives a reward, possibly negative. The agent learns 

whether the action was good or bad according to the reward received and updates its 

understanding of the environmental state accordingly before taking another action and 

repeating the cycle until a pre-specified goal is achieved. The agent’s primary objective is 
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to maximize the sum of these rewards, thus learning the “best” means of achieving its 

goal. 

In a discrete environment, there are m possible states and n possible actions. Q-

Learning (Watkins, 1989) populates a m x n “Q table” containing the maximum expected 

future reward for each possible combination of states and actions in the environment. At 

some time t, the environment will be in state 𝑠𝑡 and the agent may take action 𝑎𝑡. If so, 

the expected future reward for all subsequent actions can be found using the Bellman 

equation, Q(𝑠𝑡, 𝑎𝑡) = E[𝑅𝑡+1 + γ ∗ 𝑅𝑡+2 + γ2 ∗ 𝑅𝑡+3 + …] , where 𝑅𝑡  is the reward at 

time t after taking action 𝑎𝑡 from state 𝑠𝑡, 𝑅𝑡+1 is the reward after the subsequent step, 

and so on, and γ is the discount rate applied to the reward. The discount rate is an 

adjustable parameter that signals to the agent how to value rewards over time. Higher 

values of γ indicate to the agent that long-term rewards are more important when 

selecting actions while smaller values place more importance on short-term rewards.  

The Q table is initialized with random values, the agent selects the action that 

currently yields the maximum expected reward from the current state, 𝑅(𝑠, 𝑎). The 

algorithm then updates the expected future reward for that state and action using this 

equation: 

Updated Q(𝑠, 𝑎) = Q(𝑠, 𝑎) + α * [𝑅(𝑠, 𝑎) + γ ∗ max{𝑄′(𝑠′, 𝑎′)] - Q(𝑠, 𝑎)}], 

where max[𝑄′(𝑠′, 𝑎′)] is the maximum expected future reward among all other possible 

states and actions and α is an adjustable learning rate that controls how quickly the agent 

will explore the environment. This process repeats until a pre-specified goal is achieved 

or some stopping criteria is met. 

After population, the Q table will yield a clear “policy” that tells the agent which 

action will yield the highest expected future reward from a given state. However, this 

method faces two major challenges. First, the table must contain all possible states and 

actions that can exist within the environment. An exhaustive list of environmental states 

quickly becomes prohibitive as the dimensions of the environment grows large. Second, 

as the number of possible states grows large, the number of state/action combination 

which an agent might be expected to actually encounter grows small. Thus, the Q table 

will be sparsely populated with rewards and therefore ineffective. 
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Q-Learning experienced a breakthrough when DeepMind introduced Deep Q-

Network (DQN) in 2015 (Mnih et al, 2015). DQN combines Q-learning with a deep 

neural network (DNN) to learn a low-dimensional representation of a high-dimensional 

environment. In DQN, a neural network (NN) with multiple layers between the input and 

output layers - a “deep” neural network - is created with randomly assigned parameters θ. 

The inputs to the network are the states of the environment and the outputs of the network 

are probabilities assigned to each possible action from that state. When the agent 

encounters a given state, it will select the action with the highest associated probability. 

However, with randomly initialized parameters, the network will not be very accurate at 

first and tends to recommend actions that lead to sub-optimal rewards. This error can be 

quantified in a loss function: 

Loss = [𝑅(𝑠, 𝑎)  +  𝛾 ∗  {Q′(𝑠′, 𝑎′)]  −  Q(𝑠, 𝑎)}]2 

If the reward from the action taken is close to the maximum possible reward 

obtainable from the optimal action, the loss will be small. If the network recommends an 

action that is significantly less rewarding than the optimal action’s reward, the loss will 

be large. Therefore, a reasonable strategy to identify optimal actions is to constrain the 

network to recommend actions that result in minimal loss. This is done by using a 

technique called “back propagation” where the gradient of the loss function ∇Loss(θ) is 

calculated with respect to each parameter in the network using the chain rule from 

calculus. The parameters of the networks are then updated as: 

New θ = θ - α * ∇Loss(θ) 

With parameters updated, the DQN model then recommends the next action for 

the agent to take and repeats the process. Thus, as the agent explores the environment, the 

DNN incrementally improves its ability to predict which action is best in a given 

situation.    

This approach is particularly suitable to simulations. Given a goal, an agent may 

be allowed to play in a simulated environment many, many times until the model 

develops a sense of which actions are best. In fact, DQN and later evolutions of DQN 

have learned to play some games well beyond human capabilities against both computer 

and human competitors, such as Atari (Mnih et al, 2013), Chess (Silver et al, 2018) and 

mass multiplayer online games Dota2 (Berner et al, 2019) and StarCraft II (Vinyals et al, 
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2019). According to (Wade, 2018), the four critical parts of a military wargame are the 

players, the scenario, the rule set, and the adjudication method. Additionally, a well-

designed wargame should include uncertainty, fair competitive environment, adjudication 

of and consequences for actions, and iterations (Pournelle, 2017). Therefore, it is natural 

that DRL would be applied when developing artificially intelligent agents for use in 

wargames as the DRL agents themselves learn to operate in a defined environment with 

pre-specified goals, competitive players, actions decided under uncertainty and 

consequences for those actions. 

Further, there is an international effort to apply AI in general, and DRL in 

particular, to military wargames. In Australia, (Moy and Shekh, 2019) investigated the 

ability of combining AlphaZero deep reinforcement learning and supervised learning to 

automatically learn to play wargames. In China, (Wang et al, 2020) investigated the 

large-scale use of DRL in wargames. (Zhang and Xue, 2020) proposed an actor-critic 

framework for AI decision making using Convolutional Neural Networks. In the UK, 

researchers proposed decision-making software that uses AI to allocate “forces in space 

and time in order to achieve a particular objective, in a situation of partial knowledge and 

where the enemy is also planning and reacting” (Lucek and Collander-Brown, 2017) and 

wrote a comprehensive reference paper detailing the use of AI in military wargames 

(Goodman, Sebastian and Lucas, 2020). The US Army has developed prototype 

wargaming software that uses AI to recommend Course of Actions improvements to 

commanders and staff (Schwartz et al, 2020), while US Navy researchers have conducted 

simulations to test various DRL algorithms’ ability to train red team agents (Boron and 

Darken, 2020). In (Boron and Darken, 2020)’s experiment, a small group of mobile red 

team agents was allowed to learn attacking behavior using DRL against stationary blue 

team agents. 

 

C. ALTERNATIVE APPROACHES 

However, DRL is not the only option for developing intelligent wargaming 

agents. Evolutionary algorithms (EA), for example, begin with a (potentially random) 

selection of possible solutions and mutate the best solutions from that set in some fashion 

to form a new set of solutions. This process is repeated until a good solution, even if sub-
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optimal, is obtained.  EAs are capable of moving in large random steps through the set of 

potential solutions and so are less prone to getting trapped in local optima than DNNs, 

which rely on derivatives and back-propagation. Genetic algorithms, simulated annealing, 

and CMA-ES (Hansen and Ostermeier, 2001) are examples of evolutionary algorithms. 

As the number of possible actions in an environment grow larger, evaluating 

every possible solution quickly becomes infeasible. Statistical Forward Planning (SFP) 

(Perez, Samothrakis, Lucas and Rohlfshagen, 2013) is group of stochastic AI algorithms 

that do not require training.  Instead, they use “Forward Models” to simulate possible 

outcomes from the current state and assign a value to the proposed action. While they do 

not require training data in advance, the computational burden of simulating possible 

outcomes every time a decision is required is expensive. Examples of SFPs are Monte 

Carlo Tree Search (MCTS) and Rolling Horizon Evolutionary Algorithms (RHEA). 

MCTS creates a tree of possible actions and calculates expected rewards at each action 

node in the current level, and then further expands the nodes with the highest expected 

reward to include subsequent action nodes. This process is continued until a solution is 

found. RHEA, on the other hand, uses EAs to generate a series of actions at each step of 

the simulation, and then takes the first action of the best series found as the next game 

step (Perez-Liebana et al, 2019).  

Hybrid models also exist. Expert Iteration, for example, uses SFP to generate 

training data which is in turn used by supervised RL models to learn optimal policies 

(Anthony, Tian, and Barber, 2017). (Stanescu, Barriga, Hess and Buro, 2016) used 

Convolutional Neural Networks to evaluate sequences of actions during MCTS. 

(Khadkha and Tumer, 2018) proposed Evolutionary Reinforcement Learning as a hybrid 

algorithm that uses the population from EA to train a RL agent and then periodically 

reinserts the RL agent back into the EA population as a means of introducing gradient 

information back to the EA. 

While DRL algorithms have achieved super-human performance in many games, 

they frequently exhibit non-human behavior. That is, taking actions that are counter-

intuitive or actions that no rational human would choose in a given scenario. However, 

some algorithms have been developed in an attempt to inject a human-like quality into 

their behavior.  Examples of such algorithms are training racing games to imitate human 
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driving style (Muñoz, Gutierrez, and Sanchis, 2012) and Inverse Reinforcement Learning 

(Ng and Russell, 2000). Algorithms mimicking human behavior generally train a policy 

using supervised learning based on actual human gameplay. The goal of the algorithms is 

to minimize the error between a model’s predicted actions and the actions actually taken 

by humans. Inverse Reinforcement Learning also uses human-generated data but rather 

than attempting to learn a policy directly from the data, it attempts to learn the reward 

function for the task that generated the data. Once the reward function has been learned, 

standard RL methods can then be used to learn a suitable policy for the agent to use. 

 

D. SCALING ISSUES  

Scalability refers to extending the use of an algorithm to an increasingly large 

environment with a larger number of agents, and potentially to a larger variety of agent 

types and possible actions from which agents can select.  This is not a trivial extension as 

there is a combinatorial explosion of possible agent/action combinations in the larger 

environment. Assume that we have four homogeneous agents who can select from four 

possible actions. There are 256 possible agent/action combinations. If we extend the 

example to ten agents with ten possible actions, then there are 10 billion possible 

agent/action combinations to manage.  

QT-Opt (Kalashnikov et al, 2018) uses a derivate-free optimization algorithm 

called the cross-entropy method to identify the action that maximizes a DNN’s output. 

The algorithm maintains a buffer of labelled agent experiences from which in-training 

agents can sample. Thus, a large number of agents can be trained asynchronously by 

sampling from, and contributing to, this experience buffer. 

(Salimans, Ho, Chen, Sidor and Sutskever, 2017) explored the use of natural 

evolution strategies (NES) as an alternative to RL-based techniques. NES works by using 

a statistical distribution to select possible solutions, which are in turn evaluated by a 

fitness function. NES then takes a step, based on the natural gradient, in the direction 

with the highest expected fitness value. The process repeats until some stopping criteria is 

met. While requiring more data than RL-based methods, NES was observed to require 

significantly less computing power since they lack value functions and do not perform 
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back-propagation. Further, multiple agents can be deployed in parallel with little 

dependence, making the process extremely scalable. 

By adding heuristic/expert knowledge to the AlphaZero RL framework, (Moy and 

Shekh, 2019) was able to both train a DRL model that could outperform the heuristics 

used to train it and realized significant computational savings over using MCTS alone.  

Another potential avenue for increased scalability is hierarchical models. (Wang 

et al, 2020) proposed a hierarchical RL algorithm. The higher-level network selects 

actions (move, fire, etc.) while the lower-level network chooses the direction. In the 

authors’ determination, the lower-lever policies for agents are relatively independent and 

cooperation is more a function of the higher-level network decisions. Therefore, once a 

lower-level network solution is found for one agent, it can be freely copied to other 

agents. Alternatively, the lower-level network can simply be replaced with heuristic 

methods or models learned offline. 

(Pentreath, 2020) presented four opportunities to improve scalability: developing 

innovate computing architecture for low-resource environments, model compression 

techniques such as quantization where model parameters, etc. are stored in a lower bit 

state, making models smaller by removing weights that have little impact on prediction, 

and model distillation in which smaller neural networks are taught by a larger neural 

network to behave like the larger neural network.    

Open source distributed computing libraries, such as Uber’s Fiber (Zhi, Wang, 

Clune and Stanley, 2020) and DeepMind’s Acme (Hoffman et al, 2020), have been 

developed to facilitate distributed reinforcement learning. Solutions such as these allow 

developers to dynamically scale up algorithms to meeting existing available resources 

with limited coding overhead. 
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II. OBJECTIVES 

This research intends to evaluate the viability of using reinforcement learning to 

train competent adversarial forces. We will seek to answer the following questions: 

 

• Is there a significant, quantifiable difference in the various reinforcement learning 

algorithms’ abilities to train adversaries capable of defeating friendly forces? 

 

• Is there a quantifiable tradeoff between a reinforcement learning algorithm’s 

ability to train adversaries capable of defeating friendly forces, and the 

time/resources required to train the adversary? 

 

• Given an adversary that has been reinforcement learning-trained to defeat friendly 

forces, how sensitive are the adversary’s capabilities to subsequent changes in 

friendly force strategy and/or simulation environment? 

 

• How do the answers to the above questions affect the ability to scale the 

simulations? 
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III. METHODOLOGY 

A. EXPERIMENT DESIGN  

“Good wargames are small and have an aggressive and dynamic red team.” 

(Pournelle, 2017, p.52) 

The goal of this experiment is to identify the effect the changes in simulation 

environment and other training-specific variables have on the time required to train a red 

team to defeat a blue team and to test the resiliency of the trained red team by 

subsequently modifying wargame conditions. To accomplish this, the experiment was 

conducted in three stages.  

1. Stage 1 

A mobile blue team is trained to defeat a stationary red team, similar to the 

experiment conducted by (Boron, 2020). This learned blue strategy serves as a 

proxy for a real-world combat strategy for which we want to develop a red team 

capable of defeating. 

2. Stage 2 

The wargame is reinitialized with the blue team’s strategy fixed at that 

learned in Stage 1 and the red team is trained to defeat the blue team in the current 

stage. The red team is now capable of defeating blue under its current strategy. 

Information on the time required to train the red team to defeat a blue team using 

a fixed strategy is collected here. 

3. Stage 3 

Having trained a competent red team in Stage 2, the resiliency of the 

trained red team is tested in the current stage by injecting random movement into 

the blue team’s previous strategy. 100 simulated battles were conducted between 

the trained red team and the blue team with a modified strategy, and information 

on the proportion of wargames in which the red team was able to defeat the blue 

team is collected here. 
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In each stage, the blue and red team began on opposing ends of a hexagonal map, as 

illustrated in Figure 1. 

 

Figure 1. Example environment with opposing red and blue agents 

 

 

B. EXPERIMENT VARIABLES 

The following variables are set at the start of Stage 1 and remain constant through 

the subsequent stages. This experiment was developed as a screening design using (JMP, 

n.d.), designed to test the effects of up to two-way interactions. Further, the experiment 

was repeated for each of three RL algorithms described below, and two repetitions were 

taken at each combination of variable settings. When possible, variable names and 

settings were selected to remain consistent with previous research (Boron, 2020) and 

such that the experiment could be completed within the time allotted for this research. 

Evaluated settings are shown in brackets. 

1. Map Width: {10, 15} 

Each simulation was completed on a map of n x n hexagons. Red and blue 

teams were placed in a row on opposite ends of the map at the start of each 

simulation, with each individual agent of the team occupying its own hexagon. 

Agents can move in any of six directions from a given hexagon but are not 

allowed to move outside a map’s boundaries. 
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2. Red Team Size: {2, 5} 

The number of red team agents at the start of the simulation. Each 

individual agent was identical in capabilities, namely, to move from hexagon to 

hexagon in permitted directions, to opt to remain in place, and to attack enemy 

agents when in range. 

3. Blue Team Size: {2, 5} 

The number of blue team agents at the start of the simulation. Each 

individual agent was identical in capabilities, namely, to move from hexagon to 

hexagon in permitted directions, to opt to remain in place, and to attack enemy 

agents when in range. 

4. Training Duration: {50, 250} 

The number of epochs. Equivalent to the number of policy updates. 

5. Learning Factor: {0.965, 0.995} 

The discount factor. Determines the timeframe over which agents place 

most value when evaluating potential moves. Larger learning factors place a 

greater value on long-term gains while smaller learning factors place a greater 

value on short-term gains.  

6. Learning Rate: {0.0001, 0.01} 

The learning rate for the optimization algorithm. Larger learning rates 

allow for larger changes in the DRL network’s parameters at each update and 

thereby more opportunity to explore vastly different solutions. Smaller learning 

rates restrict the amount by which the parameters can be changed at each update, 

allowing the algorithm more time to linger in and exploit areas in which 

potentially superior solutions may exist. 

7. Blue Alpha: {0.25, 0.75} 

The probability of a blue team agent making a uniformly random-selected 

move in Stage 3. Conversely, the blue team agents select moves according to the 

strategy learned in Stage 1 with probability (1 – Blue Alpha). 
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8. NN Structure: {(32,), (96,96)} 

The structure of the neural network to be optimized through simulation. 

Networks consisted of either a single 32-node hidden layer or two 96-node hidden 

layers. All networks were fully connected and used Rectified Linear Units (ReLu) 

activation functions.  

9. Combat Model: {Deterministic, Stochastic}  

The method of adjudicating damage from combat between two opposing 

agents. The amount of damage an attacking force could deliver was calculated as: 

Deterministic Lanchester: combat efficiency * attacking force size 

Stochastic Lanchester: combat efficiency * attacking force size * RAND, 

where RAND is a random float selected uniformly from the (0, 1) interval. 

Both sides started with a force size of 150, intended to simulate a 

company-sized unit. Combat efficiency was set at 0.1. See (Boron, 2020, pp.26-

28) for details on how combat is adjudicated using these equations. 

10. Delta: {0.001, 0.05} 

This variable was only applicable to TRPO and limits the difference 

between the current policy and a new candidate policy selected by the optimizer. 

Smaller values constrain the algorithm to focus on candidate policies that are 

similar to the current solution policy, while larger values allow the algorithm to 

test candidate policies that are more dissimilar to the current solution. 

 

Any variables not included here remained at their default settings available at 

(Spinning Up, n.d.).  

 

C. CODE AND ALGORITHMS 

The experiment was created using Python3 in (Anaconda, n.d.), with particular 

use of the (Gym, n.d.) and (Spinning Up, n.d.) packages. The code was based on that 

developed for, and generously shared by, (Boron, 2020) and (Boron and Darken, 2020). 

Gym is a toolkit for developing and testing reinforcement learning algorithms. 

SpinningUp provides a framework for developing custom reinforcement learning 

environments and experiments. SpinningUp also provides several off-the-shelf DRL 
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algorithms for use in experimentation, as well as tools for recording key training data and 

outputting visual results. The algorithms tested in this experiment, described below, were 

selected because they were readily available in SpinningUp, with minimum modification 

required, and represent an evolution in the development of RL algorithms (SpinningUp, 

Why These Algorithms? n.d.). Further, these algorithms were used in previous research in 

a similar application (Boron, 2020). Descriptions and quoted text are taken from 

(Spinning Up, n.d.). and detailed information can be found there: 

1. Vanilla Policy Gradient (VPG) 

An “on-policy algorithm”, VPG updates policy parameters via stochastic 

gradient ascent in an attempt to maximize the finite-horizon return of the policy. 

“It explores by sampling actions according to the latest version of its stochastic 

policy…Over the course of training, the policy typically becomes progressively 

less random, as the update rule encourages it to exploit rewards that it has already 

found” (Spinning Up, n.d.). Probabilities of actions that lead to higher returns are 

pushed up and probabilities of actions that lead to lower return are pushed down 

until you arrive at the optimal policy. 

2. Trust Region Policy Optimization (TRPO) 

In normal policy gradient algorithms, such as VPG, changes are made to 

the policy parameters such that old and new policies do not diverge greatly over a 

single update. TRPO, however, “updates policies by taking the largest step 

possible to improve performance, while satisfying a special constraint on how 

close the new and old policies are allowed to be” (Spinning Up, n.d.).  

3. Proximal Policy Optimization (PPO) 

Like TRPO, PPO seeks to take the biggest possible step to improve policy, 

“without stepping so far that we accidentally cause performance collapse” 

(Spinning Up, n.d.). PPO employs first-order methods, while TRPO’s methods 

are second-order, making PPO simpler to implement.  
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D. ANALYSIS 

Once each simulation was completed, the total time, measured in seconds, 

required to train the red team in Stage 2 (“Training Time”) and the proportion of 

simulations in which the red team was able to completely eliminate the blue team in 

Stage 3 (“Win Rate”) were calculated. First the data for Training Time and Win Rate was 

analyzed to get a sense of the distribution and any possible relationships of note. Then, 

linear models were built to identify any variables and their interactions that may have a 

significant effect on Training Time and/or Win Rate.  Models were built and analyzed 

from both with and without respect to individual DRL algorithm.  

1. Descriptive Statistics 

TRPO required the most time to train the red team, on average, of any 

algorithm. TRPO also had the smallest standard error due to the presence of the 

additional Delta variable requiring more simulations in the screening design. 

VPG, on the other hand required the least amount of time and had the smallest 

standard error. 

 

 

 

 

 

Table 1. Training Time (seconds) 

 
 

ALL PPO TRPO VPG 

Mean 577.1841 567.6558 603.0471 552.9781 

Std Dev 393.2262 383.2536 412.856 378.8281 

Std Err Mean 22.55307 39.95695 37.68843 39.49556 

Upper 95% Mean 621.5646 647.0254 677.6739 631.4312 

Lower 95% Mean 532.8036 488.2862 528.4202 474.5251 

N 304 92 120 92 
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Figure 2. Histograms of training time (in seconds) 

 

As can be seen from Figure 2, Training Times were bimodal whether 

considered together or on a by-algorithm basis. In either case, nearly 50% of 

simulations were concluded within 300 seconds. With the exception of VPG, the 

remaining simulation Training Times were distributed approximately 

symmetrically in a bell-shape around a mean ranging from 900 to 1000 seconds.  

 

Table 2. Win Rate 

 
 

All PPO TRPO VPG 

Mean 0.321149 0.300066 0.412328 0.223302 

Std Dev 0.431033 0.433981 0.452628 0.375869 

Std Err Mean 0.024721 0.045246 0.041319 0.039187 

Upper 95% Mean 0.369796 0.389941 0.494144 0.301142 

Lower 95% Mean 0.272501 0.210191 0.330512 0.145462 
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N 304 92 120 92 

N Zero 180 57 59 64 

Proportion of simulations which 

neither side won 

0.592105 0.619565 0.491667 0.695652 

 

 

 

 
ALL  PPO 

 

 

 
TRPO  VPG 

 

Figure 3. Histograms of win rate 

 

Figure 3 indicates that Win Rate is also bimodal, with a minority of 

outcomes disperses between the two extremes. In every case, the majority of 

simulations ended with no wins, meaning that neither side was completely able to 

eliminate the other. The specific rate of no wins ranged from 59% to 70% as show 

in Table 2. The percentage of simulations ending in wins ranged from 15% to 

28%, with the remaining outcomes distributed in an approximate bell-shape 

between the two extremes. 

Full Correlation Matrices are Available in Table 12 of the Appendix. 

Training Time was strongly positively correlated with Training Duration when 
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evaluating all algorithms together or separately. The correlation coefficient ranged 

from 0.94 to 0.97, each with an associated p-value of <0.0001 [Table 13 of the 

Appendix]. Training Time in PPO and VPG had smaller, but statistically 

significant, correlations with Blue Team Size of 0.23 and 0.25, and p-values of 

0.03 and 0.02, respectively. 

Win Rate was strongly negatively correlated with Blue Team Size when 

evaluating all algorithms together or separately. The correlation coefficient ranged 

from -0.56 to -0.815, each with an associated p-value of <0.0001. Win Rate in 

PPO and VPG had smaller, but statistically significant, correlations with Map 

Width of -0.26 and -0.25, and p-values of 0.01 and 0.02, respectively. TRPO’s 

Win Rate had a moderate positive correlation of 0.27 with Red Team Size and p-

value of 0.003.  

 

Linear models were built to evaluate the effects of the previously 

enumerated experiment variables on Training Time and Win Rate. The models 

evaluated took the form: 

𝑌𝑖 =  𝛽0 + ∑ 𝛽𝑗

𝑚

𝑗=1

𝑋𝑖𝑗 + ∑ ∑ 𝛽𝑗𝑘𝑋𝑖𝑗𝑋𝑖𝑘

𝑚

𝑘≠𝑗

𝑚

𝑗=1

+ 𝜀𝑖,    𝑖 = 1, … , 𝑛 

where  𝑌𝑖 is the predicted value at the ith observation of the 𝑚 variables 

 𝑋𝑖𝑗 is ith observation of the jth variable 

 𝛽0 is the intercept term 

 𝛽𝑗 is the coefficient for the jth variable 

 𝛽𝑗𝑘 is the coefficient for the interaction between the jth and kth variables 

𝜀𝑖 is the random error term, assumed to be Normally distributed with a 

mean of zero and constant variance 

𝑛 is the total number of observations 

 

2. Training Time 

First a linear model that did not consider a difference in algorithm was 

evaluated. That is, the data from all three algorithms were treated as if they had 
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been generated from a single source. However, since the Delta variable is only 

used in the TRPO algorithm, this model was evaluated using all variables except 

Delta. The variable Blue Alpha was also not considered in any Training Time 

model since Training Time is calculated in Stage 2 and Blue Alpha is only 

relevant to Stage 3.  

The model was significant (p=0.0001) and is included in Table 3. All 

individual variables had a significant effect on Training Time, with the exceptions 

of Learning Factor and Combat Model. The effects of individual variables on 

Training Time were all positive, except for Learning Rate and NN Structure. 

Training Duration had the largest positive effect on Training Time, far eclipsing 

the effect of other individual variables. This is expected as it is reasonable for 

Training Time to increase along with the number of simulations. The next largest 

positive significant effect came from Blue Team Size, much larger than the 

remaining individual variables. This is also reasonable as it will take the red team 

longer to learn how to defeat an increasingly larger blue team.  

NN Structure and Learning Rate were the only variables with significant 

negative effect on Training Time. Learning Rate’s negative effect is not surprising 

as a larger Learning Rate allows the optimizer to search for a broader range of 

solutions. Not all of these solutions will be good and so it can take longer for the 

optimizer to home in on a promising set of solutions. The negative effect of NN 

Structure, however, is surprising. The experiment design does not allow 

differentiation between the effects of increased number of nodes and increased 

number of layers. However, as both of these numbers increase, the overall 

Training Time decreased significantly. Perhaps there is an efficiency gained by 

using a larger network structure, in terms of the time required to reach a solution, 

that outpaces the increased time required for the optimizer to train the increased 

number of parameters in a larger network. While more research would be needed 

to reach a definitive conclusion, it is not reasonable to expect increasingly larger 

networks to have a continuing negative effect on Training Time. The increased 

number of parameters requiring training would likely cause NN Structure to have 
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a positive effective on Training Time once the network has reached a critical size, 

in terms of the number of hidden layers and/or the number of nodes. 

Several two-way interactions were also significant, but most of these were 

in line with expectations given the effects of individual variables. One notable 

exception was the interaction between Training Duration and NN Structure, 

which was negative.  Individually, Training Duration had a very large positive 

effect on Training Time while NN Structure had a smaller negative effect. A 

simultaneous increase in both of these variables however has an overall negative 

effect, lending credence to the previous suggestion of efficiency gains from a 

larger NN Structure. However, the same caveat from earlier applies. It is unlikely 

that indefinite increases in NN Structure, paired with increasing long Training 

Durations, will continues to have a negative effect on Training Time.  

The interaction between Red and Blue Team Sizes was also negative. 

While these might seem counter-intuitive at first glance given that both of the 

individual variables had positive effects, we hypothesize that simultaneously 

increasing both variables also makes it easier for opposing agents to find each 

other on the simulated battlefield and engage in combat, thus reducing the overall 

Training Time. 

 

Table 3. Training Time ALL Model 

 

Term Estimate Std Error Prob>|t| Significance 

Intercept 566.7882 3.549825 <.0001 *** 

Map Width 19.30811 3.64956 <.0001 *** 

Red Team Size 18.79764 3.735498 <.0001 *** 

Blue Team Size 73.10628 3.67727 <.0001 *** 

Training Duration 375.7265 3.804612 <.0001 *** 

Learning Factor 3.079145 3.725537 0.4093 
 

Learning Rate -6.64219 3.745186 0.0773 * 

NN Structure[(32,)] -21.8369 3.687565 <.0001 *** 

Combat Model[Deterministic] 1.928856 3.778603 0.6101 
 

Map Width*Red Team Size -3.58364 3.689783 0.3323 
 

Map Width*Blue Team Size -5.32753 3.623559 0.1427 
 

Map Width*Training Duration 13.12429 3.681089 0.0004 *** 

Map Width*Learning Factor 2.092978 3.795309 0.5818 
 

Map Width*Learning Rate -4.33738 3.826685 0.258 
 

Map Width*NN Structure[(32,)] -2.70593 3.723258 0.468 
 

Map Width*Combat Model[Deterministic] 0.981867 3.880303 0.8004 
 

Red Team Size*Blue Team Size -11.968 3.695362 0.0014 *** 

Red Team Size*Training Duration 10.7236 3.724014 0.0043 *** 

Red Team Size*Learning Factor -4.39013 3.719705 0.239 
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Red Team Size*Learning Rate -5.50414 3.627005 0.1303 
 

Red Team Size*NN Structure[(32,)] 3.495108 3.755447 0.3529 
 

Red Team Size*Combat Model[Deterministic] -1.08664 3.78111 0.774 
 

Blue Team Size*Training Duration 48.45899 3.711667 <.0001 *** 

Blue Team Size*Learning Factor 4.646716 3.690479 0.2091 
 

Blue Team Size*Learning Rate -2.24097 3.657138 0.5406 
 

Blue Team Size*NN Structure[(32,)] -6.03209 3.762882 0.1101 
 

Blue Team Size*Combat Model[Deterministic] 2.160163 3.695079 0.5593 
 

Training Duration*Learning Factor 5.959679 3.750948 0.1133 
 

Training Duration*Learning Rate -5.3535 3.798781 0.1599 
 

Training Duration*NN Structure[(32,)] -19.3901 3.763516 <.0001 *** 

Training Duration*Combat Model[Deterministic] 1.383407 3.794258 0.7157 
 

Learning Factor*Learning Rate 0.155986 3.947207 0.9685 
 

Learning Factor*NN Structure[(32,)] 0.789762 3.663633 0.8295 
 

Learning Factor*Combat Model[Deterministic] 2.497323 3.905414 0.5231 
 

Learning Rate*NN Structure[(32,)] -2.64627 3.732624 0.479 
 

Learning Rate*Combat Model[Deterministic] -4.13691 3.931581 0.2936 
 

NN Structure[(32,)]*Combat Model[Deterministic] -1.8863 3.785331 0.6187 
 

(Significance: *** < 0.01, **<.05, *<.10) 

 

Next, Linear models were built for each of the three algorithms evaluated. It is 

instructive to observe which variables, if any, have significant effects across all three 

algorithms and which differ depending on the algorithm selected. The full results are too 

large to include here but are available in the Appendix. Table 4 summarizes the single 

variables and two-way interactions that had significant effects on Training Time. 

Some variables consistently affected Training Time regardless of algorithm such 

as Map Width, Blue Team Size and Training Duration, while others were algorithm 

specific. NN Structure’s effect on Training Time, for example, was significant but only 

when using PPO and VPG, not for TRPO. An increase in Red Team only increased 

Training Time in the TRPO algorithm and had little effect on the other algorithms. 

Similar to the model where all algorithms are considered together, increased Learning 

Rate had a negative effect on Training Time but only for the PPO algorithm. And Combat 

Model, which was not significant when all algorithms were considered together, had a 

significant effect on the Training Time required for the PPO algorithm but not for TRPO 

and VPG. 

The interactions of Map Width and Training Duration, and Blue Team Size and 

Training Duration, were significantly positive across all three algorithms. Several 

interactions were significant across only two algorithms. Training Duration and NN 

Structure had a significantly negative effect on Training Time in PPO and VPG but did 

not have a significant effect under TRPO. This is consistent with the significances 
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observed in these two individual variables among the three algorithms. The interaction of 

Red and Blue Team sizes was significantly negative for PPO and VPG, much like the 

combined model, but not significant under TRPO. While there were interactions that 

were significant for both TRPO and VPG, such as Red Team Size and Training Duration, 

there were no two-way interactions that were significant for both PPO and TRPO but not 

VPG. 

 

Table 4. Training Time Models By-Algorithm 

 
 

PPO 
 

VPG 
 

TRPO 
 

Term Est. Sig. Est. Sig. Est. Sig. 

Intercept 548.63 *** 535.88 *** 604.27 *** 

Map Width 27.35 *** 17.13 *** 16.24 *** 

Red Team Size 4.90 
 

2.50 
 

36.19 *** 

Blue Team Size 75.93 *** 88.67 *** 62.77 *** 

Training Duration 358.36 *** 352.08 *** 398.52 *** 

Learning Rate -15.09 ** -0.66 
 

-1.26 
 

NN Structure[(32,)] -26.78 *** -35.61 *** -3.74 
 

Combat Model[Deterministic] 12.00 * -0.87 
 

2.66 
 

Map Width*Training Duration 20.68 *** 8.59 *** 13.82 *** 

Map Width*Learning Rate -9.93 
 

-10.80 *** 3.73 
 

Map Width*NN Structure[(32,)] 7.50 
 

4.60 ** -2.09 
 

Map Width*Combat Model[Deterministic] -2.20 
 

-7.36 *** -4.93 * 

Red Team Size*Blue Team Size -12.10 * -20.00 *** -1.71 
 

Red Team Size*Training Duration 3.31 
 

5.18 ** 20.81 *** 

Red Team Size*NN Structure[(32,)] 7.28 
 

5.59 *** -3.13 
 

Red Team Size*Combat Model[Deterministic] -1.09 
 

4.64 ** 1.74 
 

Blue Team Size*Training Duration 52.27 *** 60.64 *** 42.17 *** 

Blue Team Size*Learning Rate -6.40 
 

3.95 ** -0.88 
 

Blue Team Size*NN Structure[(32,)] -6.05 
 

-9.25 *** 0.05 
 

Blue Team Size*Combat Model[Deterministic] -1.58 
 

-1.71 
 

5.13 * 

Training Duration*Learning Factor 15.04 ** 1.94 
 

1.85 
 

Training Duration*NN Structure[(32,)] -18.76 *** -22.82 *** 1.57 
 

Training Duration*Combat Model[Deterministic] 13.87 ** 3.46 * 1.80 
 

Learning Factor*Learning Rate -2.32 
 

-5.34 ** -7.66 ** 

Learning Factor*Combat Model[Deterministic] 1.36 
 

-5.22 ** 4.05 
 

Learning Rate*NN Structure[(32,)] 2.26 
 

-9.18 *** -1.65 
 

Learning Rate*Combat Model[Deterministic] 6.04 
 

6.09 *** -4.75 * 

NN Structure[(32,)]*Combat Model[Deterministic] -6.14 
 

-1.43 
 

0.54 
 

Red Team Size*Delta 
    

-5.31 ** 

Delta*NN Structure[(32,)] 
    

-4.86 * 

(Significance: *** < 0.01, **<.05, *<.10) 

 

3. Win Rate 

As with Training Time, a model that did not consider a difference in algorithm 

was first evaluated on Win Rate, excluding the variable Delta. Unlike the Training Time 
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models however, the variable Blue Alpha was considered in all Win Rate models since it 

was a factor in Stage 3 where Win Rate was calculated.  

The constructed model was significant (p=0.0001) and is included in Table 5. 

Map Width and Combat Model had a significant effect on Win Rate, while Training 

Duration did not. Both Map Width and Combat Model both have a negative effect on 

Win Rate, albeit minor. As before, Red and Blue Team Sizes were both significant, with 

larger Red Team Size contributing to a higher Win Rate and larger Blue Team Size 

contributing to a lower Win Rate. 

There were several significant interactions but most of these did not have large 

effects. Of note, there are several significant interactions including Learning Factor that 

had a significant effect on Win Rate, whereas none had an effect on Training Time. Two 

of these newly significant interactions were between Learning Factor and Blue Alpha, 

and Learning Factor and Learning Rate. While none of the factors in these combinations 

were significant on their own, combined they had a significant effect on Win Rate. 

 

Table 5. Win Rate ALL Model 

 

Term Estimate Std Error Prob>|t| Significance 

Intercept 0.312439 0.016375 <.0001 *** 

Map Width -0.06522 0.016916 0.0001 *** 

Red Team Size 0.054481 0.017522 0.0021 *** 

Blue Team Size -0.32224 0.017574 <.0001 *** 

Training Duration 0.008892 0.01831 0.6276 
 

Learning Factor -0.00781 0.017368 0.6534 
 

Learning Rate 0.001881 0.017385 0.9139 
 

Blue Alpha -0.00826 0.017463 0.6368 
 

NN Structure[(32,)] 0.019773 0.01772 0.2655 
 

Combat Model[Deterministic] -0.03641 0.017847 0.0424 ** 

Map Width*Red Team Size 0.015809 0.017673 0.3719 
 

Map Width*Blue Team Size 0.0603 0.017239 0.0006 *** 

Map Width*Training Duration 0.062047 0.01767 0.0005 *** 

Map Width*Learning Factor -0.01491 0.018047 0.4096 
 

Map Width*Learning Rate 0.040192 0.017989 0.0263 ** 

Map Width*Blue Alpha 0.00621 0.017712 0.7262 
 

Map Width*NN Structure[(32,)] -0.00441 0.017355 0.7994 
 

Map Width*Combat Model[Deterministic] -0.03803 0.01822 0.0379 ** 

Red Team Size*Blue Team Size -0.06306 0.017466 0.0004 *** 

Red Team Size*Training Duration 0.010771 0.017885 0.5476 
 

Red Team Size*Learning Factor -0.03011 0.018059 0.0966 * 

Red Team Size*Learning Rate -0.02336 0.01703 0.1713 
 

Red Team Size*Blue Alpha -0.02627 0.017627 0.1373 
 

Red Team Size*NN Structure[(32,)] 0.057643 0.017418 0.0011 *** 

Red Team Size*Combat Model[Deterministic] -0.00242 0.017789 0.8917 
 

Blue Team Size*Training Duration -0.00653 0.017359 0.7073 
 

Blue Team Size*Learning Factor 0.014409 0.017476 0.4104 
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Blue Team Size*Learning Rate 0.020102 0.017189 0.2433 
 

Blue Team Size*Blue Alpha -0.01322 0.017794 0.4583 
 

Blue Team Size*NN Structure[(32,)] -0.01682 0.017909 0.3485 
 

Blue Team Size*Combat Model[Deterministic] 0.010371 0.017095 0.5446 
 

Training Duration*Learning Factor -0.02321 0.017799 0.1935 
 

Training Duration*Learning Rate -0.01467 0.017791 0.4104 
 

Training Duration*Blue Alpha 0.004449 0.01824 0.8075 
 

Training Duration*NN Structure[(32,)] 0.024922 0.017495 0.1555 
 

Training Duration*Combat Model[Deterministic] 0.031311 0.018055 0.0841 * 

Learning Factor*Learning Rate -0.03466 0.018188 0.0578 * 

Learning Factor*Blue Alpha 0.03702 0.017539 0.0358 ** 

Learning Factor*NN Structure -0.00755 0.016976 0.6567 
 

Learning Factor*Combat Model[Deterministic] 0.033734 0.018199 0.0649 * 

Learning Rate*Blue Alpha 0.001714 0.017195 0.9207 
 

Learning Rate*NN Structure[(32,)] 0.016066 0.017308 0.3542 
 

Learning Rate*Combat Model[Deterministic] -0.01599 0.018593 0.3906 
 

Blue Alpha*NN Structure[(32,)] 0.00554 0.017149 0.7469 
 

Blue Alpha*Combat Model[Deterministic] -0.01329 0.017121 0.4382 
 

NN Structure[(32,)]*Combat Model[Deterministic] 0.026434 0.017553 0.1333 
 

(Significance: *** < 0.01, **<.05, *<.10) 

 

As with Training Time, we also built linear models to evaluate the effect of 

individual variables and their interactions on win rate by algorithm. Table 6 presents a 

summary of these results with the full output available in the Appendix. Surprisingly, 

Training Duration was the only single variable to be significant across all three 

algorithms, although the signs of the effects differed. Combat Model was significant with 

large positive effects under PPO and VPG but otherwise, none of the single variables 

were significant in more than one algorithm. Red Team Size and Blue Team Size only 

had a significant effect on the Win Rate when using the TRPO algorithm, while Map 

Width, Blue Alpha and NN Structure only affected Win Rate under PPO. However, the 

effect size of these variables under PPO was relatively large. 

Of the two-way interactions, only Map Width and Blue Team Size, and Training 

Duration and Combat Model, had a significant effect on Win Rate over all three 

algorithms. While Learning Rate was only significant in VPG, Learning Rate had 

significant interactions with several variables common to VPG and TRPO. Namely, Map 

Width, Red Team Size and Learning Factor. Combat Model, on the other hand, had two 

significant, large interaction effects with two variables common to PPO and VPG: 

Learning Factor and Learning Rate.  

 

Table 6. Win Rate Models By-Algorithm 
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PPO 

 
VPG 

 
TRPO 

 

Term Est. Sig. Est. Sig. Est. Sig. 

Intercept -0.18 
 

-0.17 
 

0.38 *** 

Map Width 0.44 ** 0.10 
 

-0.03 
 

Red Team Size 0.14 
 

0.19 
 

0.11 *** 

Blue Team Size 0.02 
 

-0.19 
 

-0.39 *** 

Training Duration -0.20 ** -0.17 *** 0.08 *** 

Learning Factor -0.27 
 

0.06 
 

0.01 
 

Learning Rate 0.08 
 

-0.24 * 0.02 
 

Blue Alpha -0.73 *** 0.05 
 

-0.02 
 

NN Structure[(32,)] 0.58 *** 0.08 
 

-0.03 
 

Combat Model[Deterministic] 0.48 ** 0.31 ** -0.03 
 

Map Width*Red Team Size 0.02 
 

-0.03 
 

0.00 
 

Map Width*Blue Team Size 0.10 *** 0.13 *** 0.04 * 

Map Width*Training Duration 0.22 ** 0.07 
 

0.09 *** 

Map Width*Learning Factor 0.04 
 

-0.02 
 

-0.02 
 

Map Width*Learning Rate -0.01 
 

0.16 *** 0.06 ** 

Map Width*Blue Alpha 0.01 
 

-0.04 
 

0.01 
 

Map Width*NN Structure[(32,)] 0.10 *** -0.01 
 

0.00 
 

Map Width*Combat Model[Deterministic] -0.10 ** 0.03 
 

-0.05 ** 

Red Team Size*Blue Team Size -0.08 ** -0.03 
 

-0.06 ** 

Red Team Size*Training Duration 0.08 
 

0.05 
 

0.02 
 

Red Team Size*Learning Factor -0.04 
 

0.02 
 

-0.03 
 

Red Team Size*Learning Rate -0.03 
 

-0.05 ** 0.05 ** 

Red Team Size*Blue Alpha -0.05 
 

0.01 
 

-0.04 
 

Red Team Size*NN Structure[(32,)] 0.02 
 

0.13 *** 0.02 
 

Red Team Size*Combat Model[Deterministic] 0.05 
 

0.03 
 

-0.01 
 

Blue Team Size*Training Duration 0.15 * 0.03 
 

-0.05 ** 

Blue Team Size*Learning Factor 0.00 
 

0.01 
 

-0.02 
 

Blue Team Size*Learning Rate 0.04 
 

-0.03 
 

0.00 
 

Blue Team Size*Blue Alpha -0.01 
 

0.04 
 

0.01 
 

Blue Team Size*NN Structure[(32,)] 0.01 
 

-0.07 ** 0.01 
 

Blue Team Size*Combat Model[Deterministic] 0.03 
 

0.00 
 

0.01 
 

Training Duration*Learning Factor -0.12 
 

0.05 
 

-0.03 
 

Training Duration*Learning Rate 0.06 
 

-0.11 * -0.03 
 

Training Duration*Blue Alpha -0.30 *** 0.03 
 

0.02 
 

Training Duration*NN Structure[(32,)] 0.23 *** 0.00 
 

0.05 ** 

Training Duration*Combat Model[Deterministic] 0.19 ** 0.16 ** 0.06 *** 

Learning Factor*Learning Rate -0.02 
 

-0.07 ** -0.06 *** 

Learning Factor*Blue Alpha 0.03 
 

0.07 *** 0.00 
 

Learning Factor*NN Structure[(32,)] -0.03 
 

0.03 
 

0.01 
 

Learning Factor*Combat Model[Deterministic] 0.11 *** 0.06 ** 0.03 
 

Learning Rate*Blue Alpha 0.03 
 

-0.04 
 

0.02 
 

Learning Rate*NN Structure[(32,)] -0.02 
 

0.08 *** 0.04 
 

Learning Rate*Combat Model[Deterministic] 0.12 *** -0.08 ** 0.02 
 

Blue Alpha*NN Structure[(32,)] 0.03 
 

-0.01 
 

0.02 
 

Blue Alpha*Combat Model[Deterministic] -0.06 * 0.00 
 

0.00 
 

NN Structure[(32,)]*Combat Model[Deterministic] 0.08 ** 0.02 
 

-0.03 
 

Delta 
    

0.02 
 

Map Width*Delta 
    

0.02 
 

Red Team Size*Delta 
    

0.03 
 

Blue Team Size*Delta 
    

-0.04 * 

Training Duration*Delta 
    

0.00 
 

Learning Factor*Delta 
    

-0.03 
 

Learning Rate*Delta 
    

0.01 
 

Blue Alpha*Delta 
    

-0.01 
 

Delta*NN Structure[(32,)] 
    

-0.02 
 

Delta*Combat Model[Deterministic] 
    

0.02 
 

(Significance: *** < 0.01, **<.05, *<.10) 
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4. Difference in Means 

Next, we examine whether the algorithm used had a significant effect on the mean 

Training Time and/or Win Rate and if so, were there significant differences in the 

performance of the individual algorithms. To do this, we performed an ANOVA test on 

the algorithms against Training Time and Win Rate. If the ANOVA results were found to 

be significant, we followed up by simultaneously testing pairs of algorithms to determine 

if the mean performance of one was better than others. A straightforward t-test of 

significance between each pair of algorithms would inflate the risk of a type 1 error, or 

mistakenly concluding a significant difference exists when there is none. To counter this, 

we employ Tukey’s Honest Significant Difference Test to test for significant differences 

in performance between pairs of algorithms. We also use a Tukey-Kramer adjustment to 

account for the different sample sizes between algorithms. 

 

Table 7. ANOVA for Training Time Model 

 

Source DF 
Sum of 
Squares 

Mean 
Square F Ratio 

Model 2 142525 71263 0.4592 

Error 301 46709413 155181 Prob > F 

C. Total 303 46851938   0.6322 

 

The p-value of 0.6322 indicates that there is no significant difference in the mean 

Training Time between the algorithms examined here. Therefore, we do not conduct any 

follow-up tests. 

 

Table 8. ANOVA for Win Rate Model 

 

Source DF 
Sum of 
Squares 

Mean 
Square F Ratio 

Model 2 1.919339 0.959669 5.3124 

Error 301 54.374916 0.180648 Prob > F 

C. Total 303 56.294255   0.0054 

 



 26 

In contrast to Training Time, the p-value of 0.0054 indicates a strong likelihood that their 

does exist a difference in mean Win Rate between the algorithms examined here. Next, 

we use Tukey’s Test to examine differences in the algorithms mean effect on Win Rate 

on a pair-wise basis. 

 

 

 

Table 9. Tukey’s Test for Win Rate Model 

 

Algorithm 1  Algorithm 2 Difference Std Error 
t 
Ratio Prob>|t| 

Lower 
95% 

Upper 
95% 

PPO TRPO -0.112262 0.058898 -1.91 0.1387 -0.250992 0.0264684 

PPO VPG 0.076764 0.062667 1.22 0.4394 -0.070844 0.2243719 

TRPO VPG 0.189026 0.058898 3.21 0.0042 0.050296 0.3277564 

Quantile = 1.96788 DF = 301.0  

 

The test indicates that there is no significant difference in the mean Win Rate between 

PPO and TRPO, nor between PPO and VPG. However, the p-value of 0.0042 indicates 

that there is a statistically significant difference in the mean Win Rates of TRPO and 

VPG. It can be observed from Table 2 that the mean Win Rate of TRPO is 0.4123. 

Compared to the mean Win Rates of PPO and VPG, 0.3000 and 0.2233 respectively, we 

can conclude that TRPO produces, on average, higher win rates than PPO or VPG. 

 

5. Relationship Between Training Time and Win Rate 

We have thus far examined the relationship between several independent 

variables and the dependent variables Training Time and Win Rate. Finally, we examine 

the relationship between the two dependent variables. The following correlations are 

extracted from Table 12 and Table 13: 

 

Table 10. Pearson Correlation Between Training Time and Win Rate 

 

 Correlation p-value 

Combined -0.080 0.1650 

PPO -0.209 0.0457 
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TRPO 0.025 0.7850 

VPG -0.156 0.1383 

 

 

 

The correlation coefficients generally indicate a negative relationship between Training 

Time and Win Rate. While this is also supported by the previous general observations 

made under the full and by-algorithm linear models that Win Rate tends to decrease as 

Training Duration increases, with the exception of TRPO, the significances of the 

correlations are weak. The correlation p-values in Table 10 are also the significance 

values for simple linear regression models relating Training Time to Win Rate. The 

regression output for PPO, the only significant algorithm, is presented in Table 11. 

 

Table 11. Simple Linear Regression Relating Training Time and Win Rate under 

PPO 

 

Term Estimate Std Error Prob>|t| 

Intercept 0.4343085 0.079814 <.0001 

Training Time  -0.000236 0.000117 0.0457 

 

Although Training Time does have a statistically significant effect on Win Rate when 

training under the PPO algorithm, the actual effect -0.000236 is very small.  
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IV. DISCUSSION 

It would be ideal to identify variables that simultaneously reduce training time 

and increase win rate, or at least improve one without worsening the other. It would also 

be useful to know which variables, if any, cause both metrics to worsen. In the following 

sub-sections, variables are analyzed for their effect on Training Time and Win Rate based 

upon their role in the experiment. Analysis below is separated based on whether the 

variable is an input to a DRL algorithm, a characteristic of the environment, or other. 

“Combined” and “overall” analysis refer to models built without regard to DRL 

algorithm. 

 

1. Algorithm-Related Variables 

Learning Rate and NN Structure demonstrated desirable behavior with 

respect to Training Time. Overall, increasing Learning Rate (-6.642, p=0.0773) 

and/or NN Structure (-21.836, p<0.0001) significantly reduced Training Time. 

When evaluated on a by-algorithm basis, increasing Learning Rate significantly 

reduced Training Time under PPO (-15.09, p=0.0184), but had no effect under 

VPG or TRPO. Increased NN Structure significantly reduced Training Time 

under PPO (-26.777, p=0.0001) and VPG (-35.612, p<0.0001), but had no effect 

under TRPO.  

Overall, neither Learning Rate nor NN Structure had a significant effect 

on Win Rate. However, when analyzed by-algorithm, increases in Learning Rate 

had a large negative effect on Win Rate under VPG (-0.239, p=0.0997), while NN 

Structure had a large positive effect on Win Rate under PPO (0.584, p=0.0042). 

Therefore, it is generally advisable to increase both of these variables during 

training – subject to the previous caveat on NN Structure – but changes to 

Learning Rate may require extra consideration when using VPG.  

When the data was combined, Changing Combat Model from 

Deterministic to Stochastic had a significant effect on Training Time under PPO 

(11.999, p=0.0619). Changing Combat Model had an overall negative effect (-

0.036, p=0.0424) on Win Rate but extremely large positive effects under PPO 
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(0.477, p=0.0265) and VPG (0.306, p=0.0377). These results indicate that a 

mixed approach to Combat Model may be appropriate, i.e., training agents using a 

Deterministic model while employing them in an environment where a Stochastic 

model is used to adjudicate combat. For PPO, this was also accompanied by a 

marginal increase in training time (11.999, p=0.0619) but should still be 

considered as a potential tool for improving outcomes. 

Training Duration is the most significant driver behind training time in all 

cases (Combined: 375.726, p<0.0001, PPO: 358.36, p<0.0001, VPG: 352.081, 

p<0.0001, TRPO: 398.524, p<0.0001). The effect of Training Duration on Win 

Rate was mixed. Win Rate increased under TRPO (0.075, p=0.00019) when 

Training Duration was increased but decreased at a substantially larger rate under 

PPO (-0.203, p=0.0329) and VPG (-0.171, p=0.0097). Generally, Training 

Duration can be decreased to reduce training time with little negative effect on 

Win Rate. However, under TRPO, Training Duration can be increased to increase 

Win Rate at the expense of higher Training Time. 

Learning Factor and Delta had no effect on Training Time or Win Rate, 

whether looking at the combined data or on a by-algorithm basis. Therefore, these 

variables can be set to a convenient value. 

 

2. Environment-Related Variables 

In all cases, increasing Map Width resulted in increased Training Time 

(Combined: 19.308, p<0.0001, PPO: 27.353, p<0.0001, VPG: 17.13, p<0.0001, 

TRPO: 16.244, p<0.0001). As this experimented pitted two teams of opposing 

agents on a featureless battlefield, this result is reasonable. Excess Map Width 

presents opportunities for agents to wander without engaging their opponents. 

Reducing excess space on the map should reduce this wandering so that agents 

will require less Training Time. 

The effect of increasing Map Width on Win Rate was more complicated. 

With combined data, this reduced (-0.065, p=0.0001) the Win Rate. By-algorithm, 

increasing Map Width increased the Win Rate under PPO (0.44, p=0.0412) but 

had no significant effect under VPG and TRPO. Based on these results, the 
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existence of a relationship between Map Width and Win Rate cannot be 

conclusively determined and may warrant further testing. 

Red Team Size requires a tradeoff. Increasing the number of red team 

agents tends to increase Win Rate (Combined: 0.04, p=0.0021, TRPO: 0.114, 

p=0.0209) but also requires more Training Time (Combined: 18.797, p<0.0001, 

TRPO 36.193, p<0.0001). Red Team Size had no effect on Training Time or Win 

Rate under PPO or VPG. Generally, we can expect a decrease in Training Time 

by decreasing the Red Team size, but at a cost of a lower Win Rate. Conversely, 

increasing Red Team Size should lead to higher Win Rate at the expense of higher 

Training Time.  

When combined, increasing Blue Team Size increased Training Time 

(Blue Team Size: 73.106, p<0.0001) and decreased Win Rate (Blue Team Size: -

0.3222, p<0.0001). Similar effect sizes and significance were observed for 

Training Time on a by-algorithm basis. However, Blue Team Size only had an 

algorithm-specific significant effect on Win Rate when using TRPO (-0.386, 

p<0.0001). The conclusion is that Blue Team Size should be reduced in order to 

reduce Training Time and increase Win Rate. 

 

3. Other 

Blue Alpha only affected Win Rate, and then only when using the PPO 

algorithm. This effect was quite large (-0.727, p=0.0008) though and so can’t be 

easily overlooked. Overall and under other algorithms, changes in Blue Alpha had 

no effect on Training Time or Win Rate. However, if an AI red team is being 

trained to address a specific blue team strategy, then it may be worthwhile to 

decrease Blue Alpha in order to maximize the subsequent Win Rate. If the goal is 

to develop a generalizable red team though, then it may be necessary to accept the 

reduction in Win Rate that (potentially) accompanies an increase in Blue Alpha. 

 

4. Training Time and Win Rate 

With the exception of PPO, the effect of Training Time on Win Rate was 

not significant and even under PPO, was so small as to be negligible. This is a 
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surprising result as an agent begins with no knowledge of how to defeat an enemy 

and should reasonably be expected to gain that knowledge as the time spent 

training increases. However, we present two possible explanations for this 

apparent contradiction.  

The first is that additional Training Time does not equal additional time in 

combat with enemy agents. As previously mentioned, with no communications 

between the red team agents as to the location of any blue team agent, there was 

significant opportunity for the red team agents to individually wander in search of 

enemy. Even if the red team manages to defeat the blue team and increase its win 

count by one, time spend wandering during training would disproportionally 

increase its Training Time.  

The second possible explanation is that the red team may have been 

overtrained. Given the particular variable settings of an individual match, there is 

a point beyond which additional training will not significantly increase the red 

team’s ability to win. While this is similar to the above explanation in that 

Training Time increases with no corresponding increase in Win Rate, the cause is 

a matter of failing to end training once learning plateaus as opposed to agents 

wandering about unable to find an opponent to fight. 

Unfortunately, data was not collected during the experiments that would 

determine the exact cause of, or potential solutions for, the lack of expected 

relationship between Training Time and Win rate. Further research is suggested to 

either refute these results or if confirmed, determine causes and solutions. 
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V. SUMMARY 

In this work, we sought to determine how changes in scale and other training-

specific variables might affect time required to train AI agents and their ability to win in 

combat, as measured by Training Time and Win Rate respectively, within a simulated 

wargame environment. A three-stage framework was developed in which a red team of 

agents learned to defeat a pre-trained blue team of agents and were then evaluated on 

how well they were able to overcome subsequent changes to the blue team’s strategy. 

Here we summarize the findings with respect to the research objectives first listed 

in section II OBJECTIVES.  

 

• Is there a significant, quantifiable difference in the various reinforcement learning 

algorithms’ abilities to train adversaries capable of defeating friendly forces? 

 

We found that while there was no difference in mean Training Time 

between the algorithms examined in this experiment, TRPO produced 

significantly higher Win Rates on average than PPO or VPG. This confirms that 

the choice of training algorithm can be a significant factor in the AI red team 

agent’s ability to win in subsequent matches, particularly against a blue team 

whose strategy may be changing. 

 

• Is there a quantifiable tradeoff between a reinforcement learning algorithm’s 

ability to train adversaries capable of defeating friendly forces, and the 

time/resources required to train the adversary? 

 

We were unable to find any significant relationship between the red 

team’s Training Time and the red team’s Win Rate in subsequent matches against 

a blue team with an altered strategy. However, we have outlined some potential 

reasons for this phenomenon and suggest additional research. 
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• Given an adversary that has been reinforcement learning-trained to defeat friendly 

forces, how sensitive are the adversary’s capabilities to subsequent changes in 

friendly force strategy and/or simulation environment? 

 

Generally, the red team’s ability to win matches was not affected by 

changes in the blue team’s strategy. Changes in blue team strategy negatively 

affected the red team’s ability to win only when the red team was trained using 

the PPO algorithm. This effect was quite large though and so can’t be easily 

overlooked.  

Training the red team using a deterministic model for adjudicating combat 

also tends to significantly increase the Win Rate in subsequent matches, whether 

those matches are adjudicated with a deterministic or stochastic model, with little 

effect on Training Time. The red team’s ability to win in subsequent matches was 

also positively affected by a larger Red Team Size and negatively affected by a 

larger Blue Team Size or Map Width. 

Overall, we found the AI red team to be fairly resistant to changes in blue 

team strategy but highly sensitive to changes in the simulation environment. 

 

• How do the answers to the above questions affect the ability to scale the 

simulations? 

 

All of the environment-specific variables considered would have a 

significant effect on the time required to train the red team and the ability of the 

red team to win against a changing blue team strategy if the scale of the 

simulation were changed. Increasing the Red Team Size tends to lengthen 

Training Time but improves the Win Rate. Increasing the Blue Team Size also 

increases Training Time but leads to a lower Win Rate. Likewise, increasing the 

size of the simulation map, Map Width, increases Training Time and lowers the 

red team’s subsequent Win Rate. 

Although not simulation environment-related, we also found several 

algorithm-specific variables that had significant effects on the red team’s Training 
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Time and subsequent Win Rate. Decreasing Training Duration, increasing 

Learning Rate and/or increasing the size of the NN Structure was observed to lead 

to decreased Training Time with minimal effect on Win Rate. Training the red 

team using a deterministic model for adjudicating combat also tends to increase 

the red team’s Win Rate in subsequent matches, whether those matches are 

adjudicated with a deterministic or stochastic model, with little effect on the red 

team’s Training Time. Some algorithm or experiment-specific variables, such as 

Blue Alpha, Learning Factor and Delta, did not have a significant effect on either 

Training Time or Win Rate. 

 

This research was conducted on a simulated, open battlefield with identical agents 

on both teams seeking only to destroy the other team. Popular, off-the-shelf, well-

supported DRL algorithms were selected for the experiment. Additionally, DRL neural 

networks can be much larger than the two-hidden layers of 96 nodes considered in this 

work, with much more complicated architectures connecting the nodes between layers. 

Therefore, this work should not be considered a definitive answer as to which variables 

can be changed to improve outcomes in all solutions, nor which algorithms are best, but 

rather a baseline from which to conduct further work in which environments and agents 

have more sophisticated characteristics and goals, alternative algorithms are employed, 

and/or the networks used to train the agents take on more sophisticated architectures. 
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APPENDIX 

Table 12. Correlation Matrices 

 
ALL 

          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width 1.000 -0.041 0.041 0.012 0.041 0.040 0.002 -0.006 0.086 -0.159 

Red Team 

Size 

-0.041 1.000 -0.078 -0.001 -0.026 0.053 -0.012 -0.056 0.042 0.177 

Blue Team 

Size 

0.041 -0.078 1.000 0.001 -0.001 -0.026 0.012 0.125 0.200 -0.697 

Training 

Duration 

0.012 -0.001 0.001 1.000 0.027 -0.026 -0.012 -0.062 0.952 0.039 

Learning 

Factor 

0.041 -0.026 -0.001 0.027 1.000 -0.026 0.012 0.035 0.048 -0.008 

Learning Rate 0.040 0.053 -0.026 -0.026 -0.026 1.000 0.040 -0.036 -0.040 0.028 

Blue Alpha 0.002 -0.012 0.012 -0.012 0.012 0.040 1.000 -0.003 0.001 -0.010 

Delta -0.006 -0.056 0.125 -0.062 0.035 -0.036 -0.003 1.000 0.011 0.117 

Training Time 0.086 0.042 0.200 0.952 0.048 -0.040 0.001 0.011 1.000 -0.080 

Win Rate -0.159 0.177 -0.697 0.039 -0.008 0.028 -0.010 0.117 -0.080 1.000 

PPO 
          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width 1.000 -0.046 0.087 0.042 0.046 0.000 0.004  0.150 -0.255 

Red Team 

Size 

-0.046 1.000 -0.087 -0.046 -0.042 0.087 0.004  -0.039 0.081 

Blue Team 

Size 

0.087 -0.087 1.000 0.000 0.000 -0.044 0.044  0.226 -0.686 

Training 

Duration 

0.042 -0.046 0.000 1.000 0.046 0.000 0.004  0.944 -0.058 

Learning 

Factor 

0.046 -0.042 0.000 0.046 1.000 0.000 -0.004  0.081 -0.017 

Learning Rate 0.000 0.087 -0.044 0.000 0.000 1.000 0.044  -0.030 -0.020 

Blue Alpha 0.004 0.004 0.044 0.004 -0.004 0.044 1.000  0.051 0.041 

Delta           

Training Time 0.150 -0.039 0.226 0.944 0.081 -0.030 0.051  1.000 -0.209 

Win Rate -0.255 0.081 -0.686 -0.058 -0.017 -0.020 0.041  -0.209 1.000 

TRPO 
          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width 1.000 -0.033 -0.031 -0.033 0.033 0.100 -0.001 0.001 0.012 -0.038 

Red Team 

Size 

-0.033 1.000 -0.067 0.067 0.000 0.000 -0.033 0.033 0.154 0.269 

Blue Team 

Size 

-0.031 -0.067 1.000 0.000 0.000 0.000 -0.031 0.031 0.154 -0.815 

Training 

Duration 

-0.033 0.067 0.000 1.000 0.000 -0.067 -0.033 0.033 0.973 0.147 

Learning 

Factor 

0.033 0.000 0.000 0.000 1.000 -0.067 0.033 0.033 0.020 -0.013 

Learning Rate 0.100 0.000 0.000 -0.067 -0.067 1.000 0.033 -0.033 -0.087 0.028 

Blue Alpha -0.001 -0.033 -0.031 -0.033 0.033 0.033 1.000 -0.066 -0.060 -0.053 

Delta 0.001 0.033 0.031 0.033 0.033 -0.033 -0.066 1.000 0.053 0.095 

Training Time 0.012 0.154 0.154 0.973 0.020 -0.087 -0.060 0.053 1.000 0.025 

Win Rate -0.038 0.269 -0.815 0.147 -0.013 0.028 -0.053 0.095 0.025 1.000 

VPG 
          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width 1.000 -0.046 0.087 0.042 0.046 0.000 0.004  0.128 -0.249 

Red Team 

Size 

-0.046 1.000 -0.087 -0.046 -0.042 0.087 0.004  -0.032 0.172 

Blue Team 

Size 

0.087 -0.087 1.000 0.000 0.000 -0.044 0.044  0.246 -0.557 

Training 

Duration 

0.042 -0.046 0.000 1.000 0.046 0.000 0.004  0.942 -0.001 

Learning 

Factor 

0.046 -0.042 0.000 0.046 1.000 0.000 -0.004  0.050 -0.006 

Learning Rate 0.000 0.087 -0.044 0.000 0.000 1.000 0.044  0.019 0.085 

Blue Alpha 0.004 0.004 0.044 0.004 -0.004 0.044 1.000  0.029 -0.040 

Delta           

Training Time 0.128 -0.032 0.246 0.942 0.050 0.019 0.029  1.000 -0.156 

Win Rate -0.249 0.172 -0.557 -0.001 -0.006 0.085 -0.040  -0.156 1.000 
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Table 13. P-Values for Correlation Significant Tests 

 
All 

          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width <.0001 0.481 0.481 0.833 0.481 0.493 0.978 0.950 0.136 0.005 

Red Team Size 0.481 <.0001 0.173 0.990 0.656 0.360 0.833 0.553 0.469 0.002 

Blue Team 

Size 

0.481 0.173 <.0001 0.990 0.990 0.648 0.833 0.185 0.001 <.0001 

Training 

Duration 

0.833 0.990 0.990 <.0001 0.639 0.648 0.833 0.511 <.0001 0.496 

Learning 

Factor 

0.481 0.656 0.990 0.639 <.0001 0.648 0.833 0.710 0.409 0.889 

Learning Rate 0.493 0.360 0.648 0.648 0.648 <.0001 0.493 0.704 0.493 0.627 

Blue Alpha 0.978 0.833 0.833 0.833 0.833 0.493 <.0001 0.979 0.981 0.863 

Delta 0.950 0.553 0.185 0.511 0.710 0.704 0.979 <.0001 0.909 0.213 

Training Time 0.136 0.469 0.001 <.0001 0.409 0.493 0.981 0.909 <.0001 0.165 

Win Rate 0.005 0.002 <.0001 0.496 0.889 0.627 0.863 0.213 0.165 <.0001 

PPO 
          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width <.0001 0.667 0.409 0.693 0.667 1.000 0.971  0.153 0.014 

Red Team Size 0.667 <.0001 0.409 0.667 0.693 0.409 0.971  0.710 0.446 

Blue Team 

Size 

0.409 0.409 <.0001 1.000 1.000 0.681 0.680  0.031 <.0001 

Training 

Duration 

0.693 0.667 1.000 <.0001 0.667 1.000 0.971  <.0001 0.584 

Learning 

Factor 

0.667 0.693 1.000 0.667 <.0001 1.000 0.971  0.444 0.876 

Learning Rate 1.000 0.409 0.681 1.000 1.000 <.0001 0.680  0.775 0.853 

Blue Alpha 0.971 0.971 0.680 0.971 0.971 0.680 <.0001  0.632 0.699 

Delta           

Training Time 0.153 0.710 0.031 <.0001 0.444 0.775 0.632  <.0001 0.046 

Win Rate 0.014 0.446 <.0001 0.584 0.876 0.853 0.699  0.046 <.0001 

TRPO 
          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width <.0001 0.718 0.735 0.718 0.718 0.277 0.990 0.990 0.901 0.680 

Red Team Size 0.718 <.0001 0.468 0.469 1.000 1.000 0.718 0.718 0.093 0.003 

Blue Team 

Size 

0.735 0.468 <.0001 1.000 1.000 1.000 0.735 0.735 0.093 <.0001 

Training 

Duration 

0.718 0.469 1.000 <.0001 1.000 0.469 0.718 0.718 <.0001 0.111 

Learning 

Factor 

0.718 1.000 1.000 1.000 <.0001 0.469 0.718 0.718 0.827 0.892 

Learning Rate 0.277 1.000 1.000 0.469 0.469 <.0001 0.718 0.718 0.344 0.758 

Blue Alpha 0.990 0.718 0.735 0.718 0.718 0.718 <.0001 0.476 0.513 0.565 

Delta 0.990 0.718 0.735 0.718 0.718 0.718 0.476 <.0001 0.566 0.304 

Training Time 0.901 0.093 0.093 <.0001 0.827 0.344 0.513 0.566 <.0001 0.785 

Win Rate 0.680 0.003 <.0001 0.111 0.892 0.758 0.565 0.304 0.785 <.0001 

VPG 
          

 
Map 

Width 

Red Team 

Size 

Blue Team 

Size 

Training 

Duration 

Learning 

Factor 

Learning 

Rate 

Blue 

Alpha 

Delta Training 

Time 

Win 

Rate 

Map Width <.0001 0.667 0.409 0.693 0.667 1.000 0.971  0.224 0.017 

Red Team Size 0.667 <.0001 0.409 0.667 0.693 0.409 0.971  0.760 0.102 

Blue Team 

Size 

0.409 0.409 <.0001 1.000 1.000 0.681 0.680  0.018 <.0001 

Training 

Duration 

0.693 0.667 1.000 <.0001 0.667 1.000 0.971  <.0001 0.995 

Learning 

Factor 

0.667 0.693 1.000 0.667 <.0001 1.000 0.971  0.639 0.957 

Learning Rate 1.000 0.409 0.681 1.000 1.000 <.0001 0.680  0.859 0.423 

Blue Alpha 0.971 0.971 0.680 0.971 0.971 0.680 <.0001  0.785 0.706 

Delta           

Training Time 0.224 0.760 0.018 <.0001 0.639 0.859 0.785  <.0001 0.138 

Win Rate 0.017 0.102 <.0001 0.995 0.957 0.423 0.706  0.138 <.0001 
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Table 14. Training Time Full Models 

 
 

PPO 
  

VPG 
  

TRPO 
  

Term Estimate Std Error Prob>|t| Estimate Std Error Prob>|t| Estimate Std Error Prob>|t| 

Intercept 548.6348 5.545927 <.0001 535.8835 1.77972 <.0001 604.2748 2.423381 <.0001 

Map Width 27.35314 6.038547 <.0001 17.13074 1.937804 <.0001 16.24479 2.8734 <.0001 

Red Team Size 4.899031 6.469421 0.4521 2.497753 2.076074 0.2341 36.19321 2.709249 <.0001 

Blue Team Size 75.93179 6.207401 <.0001 88.67028 1.991991 <.0001 62.77187 2.708236 <.0001 

Training Duration 358.3601 6.452641 <.0001 352.081 2.07069 <.0001 398.5247 3.01018 <.0001 

Learning Factor 8.483058 6.035747 0.1655 2.644132 1.936906 0.1778 1.286219 2.731853 0.6392 

Learning Rate -15.0902 6.208844 0.0184 -0.66188 1.992454 0.741 -1.26363 2.991701 0.674 

NN Structure[(32,)] -26.7777 6.412599 0.0001 -35.6128 2.05784 <.0001 -3.73703 2.685317 0.1682 

Combat Model[Deterministic] 11.99971 6.295859 0.0619 -0.87162 2.020377 0.6679 2.658324 2.718474 0.3313 

Map Width*Red Team Size -5.40421 6.421072 0.4036 0.091665 2.060559 0.9647 -1.03166 2.731597 0.7068 

Map Width*Blue Team Size -3.2446 6.042021 0.5934 1.165569 1.938919 0.5502 0.024626 2.839157 0.9931 

Map Width*Training Duration 20.68412 6.196748 0.0015 8.590916 1.988572 <.0001 13.8153 2.925329 <.0001 

Map Width*Learning Factor 2.518827 6.733354 0.7098 0.496616 2.160772 0.8191 -1.35846 2.713347 0.6181 

Map Width*Learning Rate -9.93395 6.621622 0.1393 -10.8015 2.124917 <.0001 3.732275 2.8628 0.1964 

Map Width*NN Structure[(32,)] 7.502948 6.210004 0.2321 4.596851 1.992826 0.0249 -2.08838 2.804146 0.4588 

Map Width*Combat 

Model[Deterministic] 

-2.20454 7.032468 0.7551 -7.36413 2.256759 0.0019 -4.92959 2.875065 0.0906 

Red Team Size*Blue Team Size -12.1037 6.212309 0.0565 -20.0027 1.993566 <.0001 -1.70504 2.940993 0.5638 

Red Team Size*Training Duration 3.310198 6.734553 0.625 5.178245 2.161157 0.02 20.80863 2.610506 <.0001 

Red Team Size*Learning Factor -2.18472 6.629732 0.743 -0.79604 2.127519 0.7097 -0.6067 2.579504 0.8147 

Red Team Size*Learning Rate -7.80731 6.285777 0.2195 -1.80216 2.017142 0.3755 1.22402 2.703799 0.6521 

Red Team Size*NN Structure[(32,)] 7.279009 6.352063 0.2568 5.585089 2.038414 0.0083 -3.1341 2.776934 0.2627 

Red Team Size*Combat 

Model[Deterministic] 

-1.09236 6.852069 0.8739 4.642191 2.198868 0.0393 1.736773 2.674099 0.518 

Blue Team Size*Training Duration 52.27482 6.334985 <.0001 60.64408 2.032933 <.0001 42.16584 2.737776 <.0001 

Blue Team Size*Learning Factor 0.259294 6.804479 0.9697 -3.3163 2.183597 0.1346 3.621512 2.707331 0.1851 

Blue Team Size*Learning Rate -6.40015 6.041812 0.2941 3.949734 1.938852 0.0465 -0.87854 2.763715 0.7515 

Blue Team Size*NN Structure[(32,)] -6.04938 6.849894 0.381 -9.25246 2.198171 <.0001 0.051518 2.70511 0.9849 

Blue Team Size*Combat 

Model[Deterministic] 

-1.5758 6.284491 0.8029 -1.71191 2.016729 0.3996 5.131846 2.697466 0.061 

Training Duration*Learning Factor 15.03796 6.792483 0.031 1.939009 2.179747 0.3776 1.850441 2.705869 0.4962 

Training Duration*Learning Rate -9.32837 6.679837 0.1682 3.298389 2.143598 0.1296 -3.72915 3.018345 0.2206 

Training Duration*NN Structure[(32,)] -18.7598 6.060126 0.0031 -22.8196 1.944729 <.0001 1.568932 3.006856 0.6034 

Training Duration*Combat 

Model[Deterministic] 

13.8654 6.422075 0.0352 3.461028 2.060881 0.0987 1.799215 2.724545 0.5111 

Learning Factor*Learning Rate -2.32152 7.375998 0.7541 -5.3448 2.367 0.0279 -7.65803 2.908909 0.0103 

Learning Factor*NN Structure[(32,)] -6.76477 6.404735 0.2955 -0.72207 2.055316 0.7267 2.324519 2.863308 0.4195 

Learning Factor*Combat 

Model[Deterministic] 

1.360818 6.810728 0.8424 -5.22316 2.185602 0.0203 4.047957 2.802279 0.1528 

Learning Rate*NN Structure[(32,)] 2.264058 6.066338 0.7104 -9.17811 1.946723 <.0001 -1.64697 3.202701 0.6086 

Learning Rate*Combat Model 6.043313 7.053572 0.3953 6.090063 2.263532 0.0094 -4.74998 2.844956 0.0992 

NN Structure[(32,)]*Combat 

Model[Deterministic] 

-6.1425 6.810749 0.3711 -1.43182 2.185608 0.5151 0.536576 2.934393 0.8554 

Delta 
 

-4.76304 2.868742 0.1011 

Map Width*Delta -0.14907 2.92661 0.9595 

Red Team Size*Delta -5.30897 2.662556 0.0498 

Blue Team Size*Delta -0.07895 2.735208 0.9771 

Training Duration*Delta 2.443057 2.736432 0.3749 

Learning Factor*Delta 1.888187 2.65155 0.4786 

Learning Rate*Delta 0.966764 2.687959 0.7201 

Delta*NN Structure[(32,)] -4.85847 2.694638 0.0755 

Delta*Combat Model[Deterministic] -2.57005 2.747315 0.3526 
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Table 15. Win Rate Full Models 

 
 

PPO 
  

VPG 
  

TRPO 
  

Term Estimate Std Error Prob>|t| Estimate Std Error Prob>|t| Estimate Std Error Prob>|t| 

Intercept -0.18185 0.220112 0.413 -0.17372 0.151377 0.2571 0.378161 0.017411 <.0001 

Map Width 0.440362 0.209687 0.0412 0.104951 0.144208 0.4704 -0.03416 0.022415 0.1325 

Red Team Size 0.14089 0.216302 0.5181 0.191228 0.148757 0.2051 0.114016 0.020959 <.0001 

Blue Team Size 0.01714 0.205085 0.9338 -0.19424 0.141043 0.1751 -0.38685 0.021274 <.0001 

Training Duration -0.20358 0.092561 0.0329 -0.17182 0.063657 0.0097 0.075317 0.023189 0.0019 

Learning Factor -0.27369 0.209748 0.1984 0.061167 0.14425 0.6735 0.011119 0.020593 0.5911 

Learning Rate 0.082023 0.207489 0.6944 -0.23979 0.142696 0.0997 0.020739 0.022275 0.3553 

Blue Alpha -0.7278 0.203044 0.0008 0.048448 0.139639 0.7302 -0.01531 0.020941 0.4673 

NN Structure[(32,)] 0.584996 0.194276 0.0042 0.076377 0.133609 0.5703 -0.03007 0.020713 0.1514 

Combat Model[Deterministic] 0.477403 0.208236 0.0265 0.306491 0.14321 0.0377 -0.03281 0.022844 0.1558 

Map Width*Red Team Size 0.018411 0.034341 0.5945 -0.0294 0.023618 0.2195 0.001391 0.022538 0.951 

Map Width*Blue Team Size 0.103232 0.032588 0.0027 0.131454 0.022412 <.0001 0.043654 0.023333 0.0659 

Map Width*Training Duration 0.223569 0.084661 0.0113 0.072715 0.058224 0.218 0.094036 0.023039 0.0001 

Map Width*Learning Factor 0.037652 0.038231 0.3299 -0.01888 0.026293 0.4764 -0.01656 0.021731 0.449 

Map Width*Learning Rate -0.00971 0.03852 0.8022 0.157698 0.026492 <.0001 0.055175 0.02328 0.0208 

Map Width*Blue Alpha 0.008389 0.036106 0.8173 -0.0374 0.024831 0.1389 0.007708 0.025192 0.7606 

Map Width*NN Structure[(32,)] 0.103558 0.033599 0.0035 -0.01349 0.023107 0.5622 -0.00135 0.020971 0.9491 

Map Width*Combat 

Model[Deterministic] 

-0.097 0.039448 0.0178 0.030852 0.02713 0.2613 -0.04532 0.0226 0.0492 

Red Team Size*Blue Team Size -0.08434 0.0339 0.0165 -0.02753 0.023314 0.2437 -0.05795 0.022621 0.0128 

Red Team Size*Training Duration 0.076576 0.090922 0.404 0.048792 0.06253 0.4392 0.017937 0.022486 0.428 

Red Team Size*Learning Factor -0.04092 0.03479 0.2455 0.024808 0.023926 0.3052 -0.02952 0.020903 0.1628 

Red Team Size*Learning Rate -0.03404 0.034198 0.3248 -0.0511 0.023519 0.035 0.053072 0.02141 0.0158 

Red Team Size*Blue Alpha -0.05309 0.034014 0.1254 0.014709 0.023392 0.5326 -0.03683 0.023625 0.124 

Red Team Size*NN Structure[(32,)] 0.024776 0.035582 0.4897 0.127293 0.024471 <.0001 0.01587 0.021991 0.4731 

Red Team Size*Combat 

Model[Deterministic] 

0.054574 0.038603 0.1642 0.03375 0.026548 0.21 -0.01107 0.020591 0.5926 

Blue Team Size*Training Duration 0.14567 0.083537 0.0879 0.028826 0.057451 0.6182 -0.05446 0.021495 0.0137 

Blue Team Size*Learning Factor 0.000103 0.038307 0.9979 0.009858 0.026345 0.71 -0.02442 0.020346 0.2345 

Blue Team Size*Learning Rate 0.043232 0.032196 0.1859 -0.02848 0.022142 0.2047 0.004736 0.020483 0.8179 

Blue Team Size*Blue Alpha -0.0121 0.037053 0.7456 0.039903 0.025483 0.1242 0.007799 0.021784 0.7215 

Blue Team Size*NN Structure[(32,)] 0.011092 0.035783 0.758 -0.06509 0.024609 0.0111 0.011997 0.020075 0.5522 

Blue Team Size*Combat 

Model[Deterministic] 

0.030911 0.033389 0.3594 0.003507 0.022963 0.8793 0.010459 0.020187 0.6062 

Training Duration*Learning Factor -0.11864 0.08745 0.1815 0.047184 0.060142 0.4367 -0.02956 0.021076 0.1656 

Training Duration*Learning Rate 0.059995 0.089333 0.5052 -0.11271 0.061437 0.073 -0.02602 0.023857 0.2795 

Training Duration*Blue Alpha -0.29796 0.084129 0.0009 0.030995 0.057858 0.5947 0.018489 0.023025 0.425 

Training Duration*NN Structure[(32,)] 0.226641 0.079577 0.0066 -0.00372 0.054727 0.9462 0.052431 0.022345 0.0221 

Training Duration*Combat 

Model[Deterministic] 

0.192259 0.087181 0.0325 0.159777 0.059957 0.0106 0.057971 0.020314 0.0058 

Learning Factor*Learning Rate -0.022 0.038836 0.5739 -0.06579 0.026709 0.0176 -0.0633 0.023435 0.0088 

Learning Factor*Blue Alpha 0.030898 0.03287 0.3521 0.072939 0.022606 0.0023 0.004734 0.021889 0.8295 

Learning Factor*NN Structure[(32,)] -0.0309 0.035614 0.3901 0.026675 0.024493 0.2818 0.00555 0.021332 0.7956 

Learning Factor*Combat 

Model[Deterministic] 

0.10891 0.035913 0.004 0.064146 0.024698 0.0126 0.025529 0.021065 0.23 

Learning Rate*Blue Alpha 0.025575 0.034892 0.4673 -0.03664 0.023996 0.1336 0.016592 0.021457 0.4422 

Learning Rate*NN Structure[(32,)] -0.01713 0.032695 0.6029 0.082273 0.022485 0.0007 0.036128 0.024448 0.1444 

Learning Rate*Combat 

Model[Deterministic] 

0.118453 0.041899 0.0069 -0.07536 0.028815 0.012 0.019567 0.02089 0.3525 

Blue Alpha*NN Structure[(32,)] 0.027043 0.032801 0.4139 -0.0084 0.022559 0.7114 0.017357 0.018416 0.3495 

Blue Alpha*Combat 

Model[Deterministic] 

-0.06454 0.034391 0.0669 0.001891 0.023652 0.9366 -0.00035 0.019831 0.9859 

NN Structure*Combat 

Model[Deterministic] 

0.08405 0.03581 0.0233 0.015697 0.024628 0.527 -0.03171 0.022076 0.1558 

Delta 
 

0.020586 0.021736 0.3472 

Map Width*Delta 0.018033 0.021587 0.4066 

Red Team Size*Delta 0.03352 0.022058 0.1335 

Blue Team Size*Delta -0.04153 0.022056 0.0643 

Training Duration*Delta 0.002567 0.020707 0.9017 

Learning Factor*Delta -0.03006 0.019951 0.1368 

Learning Rate*Delta 0.009657 0.020164 0.6336 

Blue Alpha*Delta -0.01192 0.02038 0.5606 

Delta*NN Structure[(32,)] -0.02173 0.019845 0.2777 

Delta*Combat Model[Deterministic] 0.01796 0.020908 0.3936 

 

 

 

 

  

  

 

 

 



 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK  



 41 

LIST OF REFERENCES 

Anaconda, Retrieved January 3, 2021, from 

https://www.anaconda.com/products/individual 

 

Anthony, T., Tian, Z., Barber, D. (2017). Citation: Thinking fast and slow with 

deep learning and tree search. Proceedings of the 31st International Conference 

on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., 

Red Hook, NY, USA, pp. 5366-5376. 

 

Berner, C. Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C. Farhi, 

et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint 

arXiv:1912.06680 

 

Boron, J. (2020). Developing Combat Behavior Through Reinforcement Learning 

(MS thesis). Available from Calhoun database, 

https://calhoun.nps.edu/handle/10945/65414 

 

Boron, J., Darken, C. (2020). Developing Combat Behavior through 

Reinforcement Learning in Wargames and Simulations. 2020 IEEE Conference 

on Games (CoG), Osaka, Japan, pp. 728-731, 

https://doi.org/10.1109/CoG47356.2020.9231609 

 

Goodman, J., Sebastian, R., Lucas, S. (2020). AI and Wargaming. arXiv: 

2009.08922 [cs.AI] 

 

Gym, Retrieved January 3, 2021, from https://gym.openai.com/docs/ 

 

Hansen, N. Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in 

Evolution Strategies. Evol Comput 1, 9 (2), pp. 159-195, 

https://doi.org/10.1162/106365601750190398 

 

Hoffman, M., Shahriari, B., Aslanides, J., Barth-Maron, G., Behbahani, F., 

Norman, T., et al. (2020). Acme: A Research Framework for Distributed 

Reinforcement Learning. arXiv: 2006.00979 [cs.LG] 

 

JMP, Retrieved January 3, 2021, from https://www.jmp.com/en_us/home.html 

 

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., et al. (2018). 

Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. 

Proceedings of The 2nd Conference on Robot Learning, vol. 87, pp. 651-673 

 

Khadka, S., Tumer, K. (2018). Evolution-Guided Policy Gradient in 

Reinforcement Learning. Proceedings of the 32nd International Conference on 

https://www.anaconda.com/products/individual
https://calhoun.nps.edu/handle/10945/65414
https://doi.org/10.1109/CoG47356.2020.9231609
https://gym.openai.com/docs/
https://doi.org/10.1162/106365601750190398
https://www.jmp.com/en_us/home.html


 42 

Neural Information Processing Systems, pp. 1196-1208, 

https://doi.org/10.5555/3326943.3327053 

 

Lucek, S., Collander-Brown, S. (2017). Using Artificial Intelligence Algorithms 

for High Level Tactical Wargames and New Approaches to Wargame Simulation. 

Journal of Applied Operational Research, vol. 9, no. 1, pp. 11-26  

 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. et 

al. (2013). Playing Atari with Deep Reinforcement Learning. arXiv: 1312.5602 

[cs.LG] 

 

Mnih, V., Kavukcuoglu, V., Silver, C., Rusu, A., Veness, J., Bellemare, M., et al. 

(2015). Human-level control through deep reinforcement learning. Nature, vol. 

518, issue 7540, pp. 529-533 

 

Moy G., Shekh S. (2019) The Application of AlphaZero to Wargaming. AI 2019: 

Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science, 

vol 11919. Springer. https://doi.org/10.1007/978-3-030-35288-2_1 

 

Muñoz, J., Gutierrez, G., Sanchis, A. (2012). Towards imitation of human driving 

style in car racing games. Believable Bots, pp. 289-313, Springer 

 

Ng, A., Russell, S. (2000). Algorithms for Inverse Reinforcement Learning. 

Proceedings of the Seventeenth International Conference on Machine Learning 

(ICML '00). pp. 663-670, Morgan Kaufmann Publishers Inc. 

 

Spinning Up, Retrieved January 3, 2021, from 

https://spinningup.openai.com/en/latest/ 

 

Spinning Up, Why These Algorithms? Retrieved January 3, 2021, from 

https://spinningup.openai.com/en/latest/user/algorithms.html#why-these-

algorithms 

 

Pentreath, N. (June 22-26, 2020). Scaling up Deep Learning by Scaling Down. 

SPARK+AI Summit 2020, virtual event, url: 

https://databricks.com/session_na20/scaling-up-deep-learning-by-scaling-down 

 

Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P. (2013). Rolling horizon 

evolution versus tree search for navigation in single-player real-time games. 

Proceedings of the 15th annual conference on Genetic and evolutionary 

computation (GECCO '13). Association for Computing Machinery, pp. 351-358. 

https://doi.org/10.1145/2463372.2463413 

 

Perez-Liebana, D., Gaina, R. D., Drageset, O., İlhan, E., Balla, M., & Lucas, S. 

M. (2019). Analysis of Statistical Forward Planning Methods in Pommerman. 

https://doi.org/10.5555/3326943.3327053
https://doi.org/10.1007/978-3-030-35288-2_1
https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/user/algorithms.html#why-these-algorithms
https://spinningup.openai.com/en/latest/user/algorithms.html#why-these-algorithms
https://databricks.com/session_na20/scaling-up-deep-learning-by-scaling-down
https://doi.org/10.1145/2463372.2463413


 43 

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive 

Digital Entertainment, 15(1), pp. 66-72.  

 

Pournelle, P. (2017). Designing Wargames for the Analytic Purpose. Phalanx, vol. 

50, no. 2, pp. 48-53. JSTOR 

 

Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I. (2017). Evolution 

Strategies as a Scalable Alternative to Reinforcement Learning. arXiv: 

1703.03864 [stat.ML] 

 

Schwartz, P., O’Neill, D., Bentz, M., Brown, A., Doyle, B., Liepa, O., et al. 

(2020). AI-enabled Wargaming in the Military Decision Making Process. 

Artificial Intelligence and Machine Learning for Multi-Domain Operations 

Applications II, vol. 11413, pp. 118-134, https://doi.org/10.1117/12.2560494 

 

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. 

(2018). A general reinforcement learning algorithm that masters chess, shogi, 

and Go through self-play. Science, vol. 362, nbr. 6419, pp. 1140-1144, 

https://doi.org/10.1126/science.aar6404 

 

Stanescu, M., Barriga, N., Hess, A., Buro, M. (2016). Evaluating real-time 

strategy game states using convolutional neural networks. 2016 IEEE Conference 

on Computational Intelligence and Games (CIG), pp. 1-7, 

https://doi.org/10.1109/CIG.2016.7860439 

 

Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J., 

et al. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement 

learning. Nature, vol. 575, issue 7782, pp. 350-354. 

 

Wade, B. (2018). The Four Critical Elements of Analytic Wargame Design. 

Phalanx, vol. 51, no. 4, pp. 18-23. JSTOR 

 

Wang, H., Tang, H., Hao, J., Hao, X., Fu, Y., Ma, Y. (2020). Large Scale Deep 

Reinforcement Learning in War-games. 2020 IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM), Seoul, Korea (South), pp. 1693-1699. 

https://doi.org/10.1109/BIBM49941.2020.9313387 

 

Watkins, C. (1989). “Learning from Delayed Rewards,” (Ph.D. thesis), 

Cambridge University 

 

Zhang, J., Xue, Q. (2020). Actor–critic-based decision-making method for the 

artificial intelligence commander in tactical wargames. The Journal of Defense 

Modeling and Simulation. https://doi.org/10.1177/1548512920954542 

 

https://doi.org/10.1117/12.2560494
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1109/CIG.2016.7860439
https://doi.org/10.1109/BIBM49941.2020.9313387
https://doi.org/10.1177/1548512920954542


 44 

Zhi, J., Wang, R., Clune, J., Stanley, K. (June 30, 2020), Fiber: Distributed 

Computing for AI Made Simple. Retrieved January 3, 2021, from 

https://eng.uber.com/fiberdistributed/ 

 

 

 

  

https://eng.uber.com/fiberdistributed/



