
    

 

CHAOTIC OSCILLATIONS OF A SINGLE CAVITATING BUBBLE IMMERSED IN A 

MAXWELL LIQUID 

 

 
C. Yepes

a
, J. Naude

a*
, F. Méndez

a
, M. Navarrete

b
.  

*Author for correspondence 

a Departamento de Termofluidos, Facultad de Ingeniería, UNAM,  04510, CDMex 

b Instituto de Ingeniería, UNAM, 04510, CDMex 

E-mail: jorge_naude@comunidad.unam.mx 

 

 
ABSTRACT 

In the present work we develop a mathematical model for a 

bubble immersed in a Maxwell fluid insonified by an ultrasonic 

field. As in previous works we wanted to see the effect of the 

viscoelasiticy in the overall behavior of the bubble in time. 

With a modified Rayleigh-Plesset equation we obtain the 

evolution of radius in time, for different Deborah and Reynolds 

Numbers. Of interest the phase space graphs that show the 

chaotic oscillations for different values of the parameters, and 

how these parameters can be used as controllers of the 

oscillations. For a more complete analysis we perform a 

Perturbation Multiple Scale technique to get a frequency 

analysis, which can demonstrate how the parameters might 

modulate the resonance. 

. 

 

INTRODUCTION 
With increasing engineering applications that use inertial 

cavitation, new kinds of fluids are needed to fulfill the 

properties required. Thus experiments with polymeric liquids in 

[1], showed the necessity of rheological models that focused on 

the elasticity properties. In [2] the elasticity in the liquid delay 

the collapse of the bubble and in [3] the rheological parameters 

are fundamental for the oscillations and collapse of bubbles. In 

[4] display the frequency response curves as function of the 

maximum pressures and the initial radiuses of bubbles. In [5] 

taking into account the compressibility of the bulk liquid 

together the viscoelastic properties of the liquid, new regimes 

of oscillations are found for low Reynolds numbers. The works 

[6, 7] show two viscoelastic models for the oscillations of a 

bubble with the Maxwell and Jeffries liquids, they provide a 

perturbation analysis obtaining the frequency response curves. 

First in [8] for an Oldroyd viscoelastic model and then in [9] 

for an Upper Convective Maxwell model, chaotic oscillations 

are present for Deborah numbers higher than 4, regardless of 

the damping factors.  A complete account of all the previous 

works and applications can be found in [7]. 

With this background we propose a modified Rayleigh-Plesset 

equation for a single bubble immersed in a simple Maxwell 

fluid. This model can be set for different Deborah and Reynolds 

Numbers to first obtain the evolution of radius and its chaotic 

oscillations numerically and second to find the frequency 

response curves using the Multiple Scale Analysis. 

NOMENCLATURE 
 
a [-] Non dimensional amplitude 
a* [-] Real part in perturbation analysis 

A [-] Constant for the solution proposed 

De [-] Deborah Number 
f [-] Non dimensional frequency 

pl [N/m] Liquid pressure 

pA [N/m] Driving pressure  

𝑝∞ [N/m] Ambient pressure 

pg [N/m] Gas pressure inside the bubble 

pg0 [N/m] Initial gas pressure inside the bubble 

PA [-] Non dimensional driving pressure 
R [m] Bubble radius 

r [m] Radial coordinate 

Re [-] Reynolds Number 

𝑅̅ [-] Non dimensional bubble radius 

s [-] Non dimensional spatial integral over radial  stress  

S [Pa/m2 ] Spatial integral over radial  stress 
t [s] time 

Tn [s] Characteristic time 

u [-] Time scales 
u´ [-] Perturbation variable 

We [m] Weber number 

x [-] Relative amplitude in perturbation analysis 
 

Special 

characters 

  

 

 [-] Non dimensional thermal penetration length 

 [-] Shift in time 

𝛾̇   

 [-] Adiabatic index 

𝛾̅ [-] Detuned frequency 

 [N/m] Surface tension 

𝜎̅ [-] Detuning parameter  

 [-] Non dimensional time 

rr [N/m2] Radial stress component 

 [N/m2] Angular stress component 

 [-] Relaxation time 

 [kg/m3] Liquid density 

 [-] Non dimensional thermal ratio 

 [-] Perturbation variable 

 [s-1] Driving Frequency  

 [-] Non dimensional natural frequency 

 [Pas] Liquid viscosity 

A [-] Non dimensional driving pressure 

 

Subscripts 

  

  Initial 

g  Gas 

go  Gas initial 
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THEORETICAL MODEL 
Consider a single spherical bubble immersed in an infinite 

non-Newtonian liquid described as a Maxwell rheological 

model. In this model the surface stresses in the bubble are 

substantially modified, therefore the Rayleigh-Plesset equation 

is modified. The detailed derivation of this model can be traced 

in [6], [8], [9] and [11]. 
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In the above equation,
gp represents the pressure of the gas 

inside the bubble, the driving pressure  Ap can be defined as a 

factor of the ambient pressure A p  ,  the equilibrium radius of 

the bubble 0R  is determined by 0 02 /gp p R   and the last 

term S on the right-hand side represents the integral 

contribution of the non-Newtonian stress defined by 
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For spherical symmetry all the components outside the main 

diagonal are zero and the deviatoric condition states

0rr        and also by symmetry / 2rr     

these stresses must satisfy the Maxwell relations  
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These last three equations represent an integro-differential 

problem, following the articles [6-8] and a methodology well 

described in [9] for an Upper convective Maxwell, the present 

article can be a particular case of a more general such as that 

described in [9]. Under the aid of the Leibniz Rule described in 

[11], the integral function (2) of the stress taking into account 

(3) and the respective considerations in the stresses can be 

written as 
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  Considering the model of Prosperetti [12] for the pressure 

of gas inside the bubble, in which an almost a quasi-isothermal 

compression is assumed during the collapse  
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where   represents the adiabatic index. In addition, eqs. (1) 

and (4) must satisfy the following initial conditions, 

0(0)      ,     0     and     (0) 0   
dR

R R S
dt

                (6) 

 

 The last set of equations can be written in dimensionless 

form, introducing the characteristic scales respect to time and 

radius we have 
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therefore Eq. (1) takes non-dimensional form 
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 while Eq. (4) is given by, 
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With the following set of non-dimensional numbers: 

0
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First the leading parameter for the Maxwell fluid should be 

the Deborah Number, which typically represents the ratio of the 

relaxation time to the characteristic time both govern the 

phenomenon, second the Reynolds Number defined using 

dynamical parameters. The Weber number taken as a damping 

parameter for the oscillations and  A  that represents the 

forcing amplitude times the equilibrium pressure. Finally the 

compression model ( )F   that represents the gas inside the 

bubble  
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While   01 /R    is another parameter that consider the 

quasi isothermal compression.  
The initial conditions in non-dimensional form can be written 

as, 

   
0

0 1   ,     0   and  0 0   .
dR

R s
d





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Perturbation Method            

In previous works [6] and [13-16] the linearization of eqs. 

(8)-(9) gives us an expression to obtain the natural frequency 

and the role of many damping parameters as a function of  

frequency. In [6], [14], [17] and [18] the frequency resonance 

curves for the involved parameters, using multiple scale 

analysis was obtained.  

In this work following the references [20] and [21] we 

develop an analysis to obtain the frequency response involving 

all of the damping and driving parameters. For small 

oscillations around of an equilibrium radius we have 

1R x           (13) 

Expanding up to third order and substituting in (14), (15) and 

(17), we obtain the following equations 
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For equations with cubic nonlinearities [19] the forcing, 

damping and the nonlinearity must appear at the same order, 

therefore we define in terms of the small parameter   
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The same takes for the derivatives with more detail in [6], 

taking these expansions to eqs. (14) and (15) gives a system of 

equations for different powers of  we have  
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Where the linear natural frequency is 
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In eq. (18) we need to have 
0 0S   because the MSA requires 

the damping to be of higher order. 

The following ordering equations can be expressed as 
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For the second order equation we have    
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We define a complex solution and the dimensionless detuning 

frequency 
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Where the last term represents the complex conjugate, A 

represents an unknown complex function that should be 

evaluated by substituting in eq. (22) 
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Here the symbol “~” denotes the complex conjugate and the 

c.c. represents all the complex conjugate terms generated by the 

solution and that might give a redundant solution. As in 

reference [19] the secular terms are the solution of the 

homogeneous equation, in this case the first term on the right 

hand side of eq. (24) is equal to zero, and implies that  
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In this scheme we propose the solution of (24) as 
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For (24) the solution might be 
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ED stands for the exponentially decaying terms that depend on 

the initial conditions and does not contribute to the steady-state 

state analysis. The constant C can be written in its real and 

imaginary components as 
2
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As indicated in [6] the real part is related to the viscous 

damping and the imaginary represent the elastic component of 

the liquid. For Newtonian fluids 0 De  , there is only one 

viscous loss term proportional to its natural frequency. 
Using (23), (27), (29) and (30) we can solve the second order 

equation (22) 
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Disregarding the non-secular terms nst and the c.c. ones and 

equating the secular terms to zero one obtains the proposed 

solution as: 
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And a set of equations separating the real and imaginary part as 
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With 
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Finally for the solution for the steady-state response is: 
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Taking squares and adding (36) and (37) 
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       (38) 

RESULTS AND DISCUSSION 
For the system (8), (9), (11) and (12) we propose a Runge 

Kutta fourth order with typical values taken from references 

[20] and [21] where the ultrasonic bandwidth involves medical 

applications, therefore the values of the parameters are around 

the same order of magnitude.  

In Figs.1 and 2 the radius versus time for different Weber 

and Deborah numbers. The Weber number is a clear damping 

for the amplitude while the Deborah slightly promotes bigger 

radiuses. In Fig. 3 all parameters fixated except the amplitude, 

we thought Deborah might be a parameter that showed the 

nonlinearity and chaos beyond the value of 4. But with these 

examples it is shown that the increase in the driving amplitude 

leads to chaos as shown in Fig. 4, and also the elastic part of the 

Maxwell model dominates increasing dramatically the 

amplitude of oscillation that was not seen in the previous cases. 

For the Reynolds number its influence is marginal we didn´t 

included the charts here. 
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Figure 1 Radius versus time for different Weber numbers 

and De=4, all the rest fixated. 
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Figure 2 Radius versus time for different Weber numbers 

and De=10, all the rest fixated. 
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Figure 3 Radius versus time for different driving 

amplitudes and De=4, all the rest fixed. 
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Figure 4 Phase space for fig. 3 largest forcing amplitude, 

chaotic oscillation.  

 

Fig. 5 shows equation (38) for different Deborah numbers 

and Re 1f   , this frequency response curves show that the 

damping effects do not allow the system to resonate but shows 

as expected that for the increasing Deborah the amplitude also 

increases, but also show a clear shift of phase. This shift of 

phase is more evident in the backbone curves in fig. 5, the shift 

of phase occurs since the very start. 
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Figure 5 Frequency response curves for different Deborah 

numbers. 
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Figure 1   Back bone curves for fig. 5 showing different 

Deborah numbers. 

CONCLUSION  
 

For the numerical results of the differential equations 

system we can conclude that the Weber number can be a 

damping parameter that modulates the oscillation. The 

influence of an increasing Deborah numbers might result in 

larger radiuses because the cumulative effect of the viscoelastic 

nonlinear oscillations. In fig. 3 for small driving amplitude the 

oscillations keep monotonous and around moderate values, 

with all other values different from the unity the chaotic 

behaviour is evident and larges radiuses can always be expected 

with increasing time. This is a combination of different effects 

that need more study for each and every case; the nonlinear 

oscillations can be modulated with the damping parameters. 

This is shown in the frequency response curves that detune the 

oscillation, and show how these damping parameters can 

modulate the amplitude and the phase.    
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