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Highlights 

• Mitigating aerosol/particulate pollution in a Nigerian city. 
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• Significant relationship between GPSPWV and aerosols/particulates. 

• New mechanism for GPSPWV- PM10 relationship. 

 

Abstract 

In 2016, three Nigerian cities were listed amongst the World’s most polluted in terms of 

particulate matter (PM). Acknowledging Nigeria’s limited resources for outdoor air pollution 

monitoring, this study attempts to investigate the effects on atmospheric aerosol optical depth and 

ground PM on GPS derived-precipitable water vapour estimates. The study utilized available GPS-

derived precipitable water vapour (GPSPWV), the moderate resolution imaging spectroradiometer 

aerosol optical depth (MODISAOD) and the ground level particulate matter of less than 10 microns 

(GPM) datasets for December 2015 – November 2016. All the datasets were tested for normality. To 

evaluate the atmospheric aerosol properties, the MODISPWV estimates were pre-validated using the 

GPSPWV measurements. The results revealed GPSPWV-MODISPWV agreement (R = 0.964; RMSE = 

3.810 mm). The GPSPWV-MODISAOD analysis showed relationship (R ≤ -0.636; RMSE ≤ 0.563) for the 

atmospheric aerosol experiment, while the collocating GPSPWV-GPM seasonal analysis also revealed 

significant correlation (R < -0.660). The correlation of combined seasonal datasets for the GPSPWV-

MODISAOD and GPSPWV-GPM relationships showed high negative correlation values of 0.79 and 0.68 

respectively. The findings of this study is in agreement with similar related studies, as well as serve as 

future position accuracy for similar related studies. 
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1. Introduction 

Atmospheric water vapour plays a crucial role in the Earth’s climate system as well as the monitoring 

of aerosols/particulate properties (Solomon et al., 2010; Zhang et al., 2017). Despite its importance to 

a wide range of spatial and temporal atmospheric processes, it is one of the poorly understood 

components of the Earth’s atmosphere (Boutiouta and Lahcene, 2013). Observational studies have 
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reported that the intensity of aerosol particles contributes to climatic variables such as precipitation of 

liquid water and electrification of thunderstorms (Middey and Chaudhuri, 2013; Zhao et al., 2016). The 

significance of atmospheric studies for aerosol/water vapour projections has attracted earth observation 

satellites and global positioning system (GPS) approaches (Nordio et al., 2013; Ortiz de Galisteo et al., 

2014). 

 

Scientists have since embraced the concept of GPS meteorology as it provides the ability to 

measure atmospheric water vapour content for application in diverse topics such as atmospheric 

chemistry and global climate change (Bevis et al., 1992). GPS offers consistent and precise atmospheric 

information for precise-point positioning (PPP), ionospheric/tropospheric studies and general 

environmental assessments that can be used for sensing atmospheric water vapour contents (Zumberge 

et al., 1997). The GPS signals recorded using ground level continuous operating reference station 

(CORS), are usually subjected to various attenuations such as, multipath, ionosphere/troposphere delay 

and signal strength fluctuations. Some of these signal attenuations are presently being assimilated into 

models for aerosol evaluation. 

 

Since the introduction of the space-based pollution monitoring instruments in the mid-90s, the 

instruments have continued to display increased user-friendly proficiency for atmospheric processes 

estimations in 4-dimensional resolution (Duncan et al., 2014; Tsay et al., 2016). Aerosols (particulates) 

are a composite combination of suspended solid and liquid elements (excluding cloud units) that are 

being monitored using satellite-based instruments (Gupta et al., 2006). They are an essential component 

of the climate system and a major concern of the earth’s existing anthropogenic radiative force. To 

minimize these concerns, precise and regular appraisal of these aerosols distributions are necessary so 

as to regulate its negative impact on man’s environment. Accurate monitoring of atmospheric processes 

such as aerosols and trace gases, are also vital for developing efficient local, regional or global climate 

models (Madrigano et al., 2013; Chew et al., 2016).  

 

Air pollution remains a serious environmental challenge in many developing countries (Lau and 

He, 2017). Nigeria accommodates Africa’s largest sophisticated population, many of whom continue 

to migrate to the high-density settlements that surround the urban cities. Three of its developing cities 

(Onitsha, Kaduna and Aba) were listed amongst the World’s top ten most polluted cities (Figure 1), in 

terms of particulate matter of less than 10 microns (WHO, 2016). Nigeria is reported to have five air 

monitoring stations established by the Nigerian Meteorological Agency (NiMET) (UNEP, 2015), their 

operational status remains sceptical as the review of literature showed that there is no record of their 

data being utilized.  
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Figure 1. The World’s 10 most polluted cities in terms of particulates less than 10 microns, modified after the 

(WHO, 2016). Shaded column highlight the Nigerian cities. 

 

Satellite-based observations provide a comprehensive view of the earth’s atmosphere (Streets et 

al., 2013) and serves as a practical means for the retrieval of both water vapour and aerosol estimates 

in a limited resources environment like Nigeria. If the precision and legitimacy of satellite-based 

estimates are to be verified, the availability of ground-based pollution network/dataset is crucial. 

Ground-based GNSS operates a meteorological technique whereby its signal delays can be used to 

derive PWV estimates (Boutiouta and Lahcene, 2013). GNSS remote sensing is becoming necessary 

due to the technical improvements applied to their inexpensive processing and easy-access of weather 

insensitive signals (Bonafoni and Biondi, 2016). 

 

It is important for a country like Nigeria to exploit available resources for mitigating particulate 

air pollution. It is on this basis that this study utilizes seasonal variability of input parameters; GPS-

derived precipitable water vapour, MODIS AOD estimates and ground PM measurements, to appraise 

the effect of atmospheric aerosols and ground particulates concentrations on GPS derived PWV 

estimates. This study plans to direct a latent position for Nigeria, on the practicability of its existing 

Nigerian global navigational satellite system reference network (NIGNET) for ground particulates and 

atmospheric aerosols monitoring. The data processing techniques are described as follows. 

 

2. Methodology 

2.1 Study Area 

Nigeria established a GNSS Reference Network (NIGNET) through a joint collaboration between 

Nigeria’s Office of the Surveyor General of the Federation (OSGOF) and the Africa Reference Frame 

(AFREF) programme (Ayorinde et al., 2016). The ABUZ station was utilized for the extraction of the 

GPS PWV estimates (Figure 2). The ABUZ station is hosted in the main campus of the Ahmadu Bello 

University Zaria, northern Nigeria. The climate within the study area is categorized into dry (October–
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May) and wet (June–September) seasons. It is further characterized by the peak low temperature (14.1 

°C) during the harmattan in January and the peak high temperature (35.2 °C) in April. The ABUZ 

Continuous Operating Reference Station (CORS) is a Trimble NETR8 receiver type with antenna 

TRM59800.00. The system(s) of observations are GPS and GLONASS. The vertical antenna height 

specification is 0.17m. The ABUZ station utilized in this study was adopted for two reasons. First, it is 

the only study location with collocating time-series atmospheric and ground particulates (aerosols) 

measurements, to achieve the study objectives. Secondly, Abbasy et al., (2017) have endorsed the 

practicability of utilizing a single GPS station for meteorological studies. The meteorological 

parameters (surface temperature and pressure) required for the ABUZ GPS derived PWV estimates 

were synchronized with an existing automatic weather observing station (AWOS). The derived PWV 

were extracted from GPS data obtained in Receiver Independent Exchange (RINEX) format. The 

ABUZ RINEX observation sampling frequency is 30 secs, and was accessed via NIGNET portal 

(http://www.nignet.net/data/RINEX).  

 

 

Figure 2. The ABUZ NIGNET station situated within the Ahmadu Bello University Main Campus, Zaria – 

Nigeria from which precipitable water vapor (PWV) will be extracted for this study 

 

2.2 GPS PWV Estimates 

To extract the PWV estimates for precise-point positioning (PPP), the GPS RINEX observation 

data was processed using WaSoft GNSS software designed by Wanninger (2000) and validated by 

Schröder et al. (2017). We utilized International GNSS service (IGS) final paths and earth revolution 
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parameters for tropospheric delay derivation and antenna phase centre offsets. Satellite elevation mask 

of 10 degrees was adopted (Kouba, 2009). The Saastamoinen model (1972) plus random-walk 

mechanism from meteorologically sourced global pressure and temperature (GPT) model was 

employed as a priori tropospheric model while the zenith delay was processed via the Vienna mapping 

function (VMF) (Boehm et al., 2006). The WaSoft software is capable of determining the three 

dimensional data as well as tropospheric factors, which incorporates the Zenith Tropospheric Delay 

(ZTD).  

 

We transferred atmospheric temperature and pressure to the ABUZ station from the nearby 

meteorological (AWOS) station using Equation [1] (Bai and Feng, 2003; Musa et al., 2011). We took 

into consideration the horizontal distance and observation height between the GPS and AWOS station 

(Table 1). 

 
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0.0065
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1 0.0000226
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Where TGNSS; PGNSS are the respective reduced temperature and pressure at the ABUZ station of interest, 

TMSL; PMSL are the respective temperature and pressure values at the automatic weather observing station 

(AWOS) mean seal level. The Equation (1) takes into consideration, possible variability in the 

sensitivity of temperature and pressure at the GNSS antenna height, HGNSS.  

 

Table 1. Properties of the ABUZ station and the matching AWOS station from which meteorological parameters 

were interpolated to the actual station level (modified after Isioye et al., 2017) 

 

GNSS 

Station 

GNSS station 

coordinate AWOS 

station 

AWOS station 

coordinate Horizontal 

distance 

(m) 

Station height 

(m) 

Longitude 

(deg.) 

Latitude 

(deg.) 

Longitude 

(deg.) 

Latitude 

(deg.) 
GNSS AWOS 

ABUZ 7.65 11.15 Zaria 7.68 11.10 6855.03 705.05 655.00 

 

To apply GNSS for meteorological purposes, it is necessary to scale down the Zenith 

Tropospheric Delay (ZTD) into its constituent fractions; the zenith hydrostatic delay (ZHD) and zenith 

wet delay (ZWD). The ZHD is majorly accountable for the ZTD (~ 90% using experimental models 

with given surface temperature and pressure). The ZWD is of meteorological importance, due to its 

significant relationship with humidity changes both spatially and temporally. The PWV can be derived 

from ZWD as described by Bevis et al. (1994) in Equation [2]. 
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ρw - water density; Rw - water vapour specific gas constant {461.525 ± 0.003 [J kg-1 K-1]}; k’2 and k3 -  

[refraction constants in K mb-1 (22.1 ± 2.2 K mb-1 and 373900 ± 0.012)]; Tm - weighted mean 

temperature in troposphere gauged in Kelvin; PWV - precipitable water vapour 

 

The mean temperature (Tm) utilized for the extraction of the PWV estimate is described in 

Equation [3] below. 
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To, β and λ are meteorological parameters; H – orthometric height in metres; λ’=λ+1 (unit less); R is 

the gas constant for dry air (287.054Jkg-1K-1); gm – gravity acceleration at the atmospheric column 

centroid in ms-2. 

Applying Saastamoinen (1972) model for the ZHD constituent and meteorologically sourced 

global pressure temperature (GPT) model, a simplified PWV (mm) relationship to ZWD is described 

in Equation [4] as follows: 
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ZWD = zenith wet delay; Ts - surface temperature measured in Kelvin 

 

2.3 Atmospheric Aerosol Estimates 

MODIS is the most appropriate atmospheric satellite information for investigating aerosols with 

proficiency for local, regional and global scale air pollution monitoring (Ali et al., 2017). It comprises 

of 36 spectral bands for precise observation of atmospheric heat and humidity, as well as its constituents 

which include aerosols and trace gases (Misra et al., 2015). The algorithm for the MODIS aerosol 

optical depth (AOD) retrieval is centred on the theory of recording aerosol reflectance from reflectance 

at atmospheric top using Rayleigh path radiance and surface reflectance. This is expressed by Wong et 

al. (2008) using Equation [5]. 
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θo - peak slant of sun; θs - peak slant of satellite; ϕ – clockwise horizontal slant from meridian; ρ(θ) - 

phase function (angular dispersal of scattered light); ρATM - atmospheric path reflectance; g - asymmetry 

parameter;  τHem (τTot, g) - hemispheric reflectance; ωo – single scattering albedo; τTot (mo) - total 

transmittance; ρSurf (θo,θs) - surface reflectance; τAer, τRay and τTot - aerosol optical thickness, Rayleigh 

optical thickness, and overall optical thickness respectively. 

 

The Rayleigh path radiance is obtained from Equation [6] by computing its spectral requirements 

and phase function, as described by Bucholtz (1995). 

 

 

-( / ) ( )
( )      [6]Q R S

Ray

o

p z
P

p

         

where P, Q, R, S are the standard atmospheric aggregate of Rayleigh scattering cross-section plus 

volume scattering coefficients while p(h), the appropriate height pressure is defined in Equation [7]. 
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Where h – altitude from digital elevation model; g – acceleration due to gravity and Ts – surface 

temperature 

 

For the MODIS aerosol estimates, the deep blue level 3 version 5.1 aerosol products 

(http://disc.sci.gsfc.nasa.gov/SSW/#keywords=MYD08_D3 5.1) was adopted for its geophysical 

parameter, averaged into (-90.0° to +90.0°) latitude and (-180.0° to +180.0°) longitude grid cells (Tian 

et al., 2014). The variable [Deep_Blue_Aerosol_Optical_Depth_Land_Mean] takes convenience of the 

dark-exterior attributes at 0.47 μm blue wavelengths and frail dust penetration at 0.65 μm red 

wavelength (Shi et al., 2013; Misra et al., 2015). The downloaded MODIS precipitable water vapour 

variable (IR retrieval) datasets were accessed using Panoply software (Vollmer, 2010). The subset 

MODISAOD and MODISPWV estimates were then collocated over the ABUZ station using the Kriging 

interpolation mechanism (Araki et al., 2015; Li et al., 2016).  

 

2.4 Ground Particulate Measurements 

The use of efficient portable sensors for particulate matter (PM10) measurements is getting major 

attention across the globe (Liu et al., 2014; Li and Biswas, 2017). The study utilized the validated 

Chinaway CW-HAT200 particulate counter, to obtain ground samples measurements for PM10 in 

(microgram per meter cube, µg m-3) using the laser diode principle. The sample measurements were 

collected for the duration of 1 year (1 December 2015 – 30 November 2016) and collocated with the 
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available daytime averaged ABUZ GPSPWV and MODISAOD estimates. Instrument background and 

pump flow was also examined prior to conducting each measurement session. The portable PM10 

instrument were validated using the WHO air filter sampling technique, described in Efe and Efe (2008). 

The validation results are displayed in Figure 3. 

(a) 

 

(b) 

 

  

Figure 3. Agreement and linear regression plots showing the bias and coefficient of determination between the 

TSP and the CW-HAT200 particulate monitor samples at two sample sites (a) control site, (b) dense activity site 

(modified after Aliyu and Botai, 2018) 

 

2.5 Data Analysis Approach 

The study is interested in evaluating the effects of atmospheric aerosols and ground particulates 

concentrations on GPSPWV estimates. Figure 4 highlights the flowchart which describes the steps taken 

to achieve this study. The datasets utilized in this study covered a duration of 1-year (December 2015 

– November 2016).  
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Figure 4. Flowchart of the data analysis steps 

 

 The assimilation process for aerosol estimation using GPS-derived PWV estimates involves 

three empirical steps (Equation 1 – 3). First, we determined the ZTD. It is the GNSS signal attenuation 

primarily responsible for indicating precipitable water vapour contents (Bevis et al., 1994; Rohm et al., 

2014). Second, we utilized the GPS meteorology concept. This extracts the precipitable water vapour 

(PWV) from the GPS–ZTD estimates given that the atmospheric temperature and pressure at the ABUZ 

station is known (Isioye et al., 2017). Finally, we utilized literatures which indicated that water vapour 

takes out aerosol from the atmosphere that usually occur as a result of particulate matter (PM) floating 

in the air/gas or dissolved in water. PM are a major contributor of aerosol constituents in the troposphere 

from which the PWV is derived using the GPS ZTD signal (Lau and He, 2017). It has been established 

that PWV and particulates (aerosols) have a significant inverse relationship (Gui et al., 2017a). 

Furthermore, the degree of relationship between the PM and AOD quantities have established by 

literature. Their relationship can be determined using their level of correlation (Schäfer et al., 2008; 
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Yap and Hashim, 2013). This practical approach is acknowledged for examining PM concentration 

from satellite remote sensing AOD data. A full data processing technique for relating PM with AOD is 

discussed in Filip and Stefan (2011).  

 

To ensure reliability of our results, we adopted four performance indicators to evaluate the GPS-

derived PWV estimates for aerosol monitoring. The indicators include: alpha data reliability (Le 

Boennec and Salladarré, 2017), correlation coefficient (R) (Murphy, 1988) and root mean square error 

(RMSE) (Chai and Draxler, 2014). They are represented mathematically in Equations [8 – 10]. The 

alpha data reliability index computes the average factor by which observed measurements of interest 

differ from one another. The correlation (R) weighs the level of variability in the actual values that is 

explained by the model. RMSE expresses the difference between observations predicted by a model. 
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where N is the sample size, c is average covariance between the GPSPWV estimates (Oi) and the 

predicting MODISPWV and MODISAOD estimates (Pi), ϑ is the average variance, Oi is time series of 

reference GPSPWV estimates, Pi, is the time series of predicted MODISPWV and MODISAOD models, O

andP  denotes the averages of the reference and predicted model values; N indicates number of 

observation samples. 

 

3. Results and Discussion  

The distribution of the GPS-derived PWV (GPSPWV) estimates over the ABUZ station was 

analysed for skewness and kurtosis. The GPSPWV data revealed a skewness value (- 0.256) and kurtosis 

value (-1.509). The standard error across the GPSPWV variables is 1.240 mm. This indicated that the 

GPS-derived PWV estimates were normal distributed with the 95% confidence interval. To further 

certify the assumption of normality, the Shapiro-Wilk’s test based on an empirical standardization of 

the GPSPWV observation residuals, was conducted. The test displayed a value of 0.890. For the 

MODISPWV, the value for skewness and kurtosis is -0.312 and -1.426 respectively. The Shapiro-Wilk’s 
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test of the MODISPWV observation residuals is 0.882. These results did conclude that the GPSPWV 

observations are normally distributed. Figure 5 illustrates the time-series data of the collocating average 

PWV estimates from the ABUZ and MODIS instruments for the time interval (1300 – 1415 h). The 

time series data revealed varying data breaches for the collocating observations. While the data gap for 

the ABUZ station is restricted to hardware issues, he MODIS breaches is as a result of the Lance-

MODIS latency plus hardware issues. 

 

 

 

Figure 5. Time series of collocating average PWV from the ABUZ station and MODIS instrument for the study 

period (available sample days’ equals 232) 

 

3.1 Effects of MODISAOD concentrations on GPSPWV 

Prior to the GPSPWV-MODISAOD investigation, we conducted a pre-validation of the MODIS 

instrument (MODISPWV) using the GPSPWV measurements. The MODISPWV estimates were extracted 

from the MODIS MYD08_D3 5.1 IR retrieval variable. We utilized available GPSPWV data for the study 

period. The available datasets were categorized the data across seasons; December-January-February 

(DJF), March-April-May (MAM), June-July-August (JJA) and September-October-November (SON). 

The time-analysis in Figure 5 showed that MODISPWV recorded good correlating estimates when 

compared to the GPSPWV estimates over the ABUZ station. Figure 6 displays the Bland-Altman 

agreement plot, linear regression and boxplots of the compared PWV residuals. The daily average PWV 

(mm) recorded across the collocated stations ranged from (4.60 – 49.66) and (2.25 – 45.09) for GPS 

and MODIS instrument respectively (Figure 6b).  
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(a) 

 

 

 
(b) 

 

 

 

Figure 6. (a) Difference - linear regression plot of the GPSPWV and MODISPWV estimates (b) Boxplots showing 

the range of PWV values 

 

The GPS data acquisition process revealed that there were no available datasets for SON season. 

From the Figure 5 and 6, we can see that the MODISPWV estimates showed a good linear agreement 

with GPSPWV estimates. Table 2 illustrates the GPSPWV-MODISPWV validation results. The descriptive 

revealed good GPSPWV-MODISPWV agreement at surface level (R = 0.96; RMSE = 3.81). This 

MODISPWV validation is within the range of acceptable results, when compared to similar research 

findings on PWV validation (Tsidu et al., 2015; Gui et al., 2017b) but slightly lower than Ningombam 

et al., (2016). From Table 2, we can also conclude that the computed alpha reliability, correlation 

coefficient, root mean square error and bias, were within the range of PWV estimation with GPS 

positioning. 

 

Table 2. Performance statistics between GPSPWV and MODISPWV retrievals estimates  

 GPS station Season α R RMSE (mm) Bias (mm) 

ABUZ 

DJF 0.98 0.77 1.03 5.46 

MAM 0.99 0.93 3.42 2.94 

JJA 0.98 0.79 3.95 6.49 

Combined 0.97 0.96 3.81 4.41 
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To determine the effect of MODISAOD concentrations on GPSPWV estimates, MODISAOD 

estimates was collected over the ABUZ station collocating with the GPSPWV estimates for the study 

period. The MODISAOD measurement over the ABUZ station, was obtained after the initial spatial 

boundary box sub-setting and subsequent Kriging interpolation described in Aliyu and Botai (2018). 

The descriptive statistics of the MODISAOD estimates over the ABUZ station showed that the standard 

error of mean ranged from 0.04. The standard error of skewedness and kurtosis were computed as 0.17 

and 0.34 respectively. The Shapiro-Wilk’s test of normality (0.83) also indicated that the estimates are 

normally distributed over the ABUZ station. All the collocating data observations (GPSPWV and 

MODISAOD) indicated strong reliability (α > 0.90) over the ABUZ station. Figure 7 displays the time-

series of the MODISAOD measurements against the GPSPWV estimates. 

 

 

Figure 7. Time-series of the collocating averaged GPSPWV estimates and MODISAOD measurements 

 

The GPSPWV and MODISAOD measurements were significant (p < 0.05). The GPSPWV and 

MODISAOD analysis showed good correlation performance (R ≤ -0.64) with the JJA season recorded 

the better performance (R = -0.79; α = 0.999; RMSE = 0.46). Our finding for the GPSPWV - MODISAOD 

analysis does agree with Gui et al. (2017a) that evaluated atmospheric aerosol (AOD) with PWV 

estimates from radiosondes and weather stations. 

 

 3.2 Effects of GPM Concentrations on GPSPWV 

Secondly, we evaluated the applicability of the GPSPWV estimates derived from the ABUZ station 

for monitoring ground particulate matter (GPM) measurements. We utilized the available collocating 

GPM time-series data. The linear relationship of the GPSPWV and GPM measurement is illustrated in 

Figure 8. Table 3 also displays the descriptive statistics of the collocating GPM measurements. 
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Figure 8. Time-series of the daily averaged GPSPWV estimates and GPM measurements 

 

In Table 3, we can see that the probabilities of datasets normality are greater than 0.05, thus the 

null hypothesis (H0) is accepted. This indicates that the datasets are normal distributed as well as within 

satisfactory skewness and kurtosis. Also, the MAM and JJA season recorded higher GPM 

concentrations. This could be attributed to the massive construction activities that commenced within 

the study area.  

 

Table 3. Descriptive statistics of collocating GPM measurements 

Season DJF MAM JJA 

Mean (µg m-3) 309.08 300.94 224.01 

SE of mean 12.24 10.99 9.71 

SD 127.25 114.30 100.90 

Skewness 1.12 0.49 0.167 

Kurtosis 1.28 -0.12 -1.01 

Shapiro-Wilk’s Test 0.92 0.97 0.97 

 

For the comparative results of the GPM concentrations against the GPSPWV estimates. The 

GPSPWV and GPM measurements were significant (p < 0.05). Similarly, the GPSPWV and GPM analysis 

showed good correlation (R) range of values (-0.66, -0.67 and -0.79) for the DJF, MAM and JJA 

seasons. The GPSPWV-GPM recorded the better relationship (R = -0.79; α = 0.99; RMSE = 2.39) in the 

JJA season. This is also similar to the GPSPWV-MODISAOD comparison. This indicated that the presence 

of ground level particulates resulting from anthropogenic activities contributes significantly, to 

atmospheric aerosol concentration within the study area. There are very limited studies that analysed 

the GPSPWV-GPM analysis. However, this correlation coefficient was satisfactory, if compared to AOD 

– PM10 study (R = -0.70) reported by Filip and Stefan (2011). Furthermore, the GPSPWV-GPM 

investigation can contribute to the position accuracy for similar related studies in the future. 
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     From the above-described results, we can conclude that the prediction of MODIS AOD and 

particulate matter, PM10 from GPSPWV estimations, does provide convincing argument for the study 

location. The better performance of the GPSPWV-GPM to the GPSPWV-MODISAOD can also attributed to 

the alternating humidity and cloud across the study seasons, as it may impact negatively on the MODIS 

retrievals thus responsible for observation variations.  

 

4.   Conclusions 

With the World Health Organization reporting alarming particulate pollution level across 

Nigerian cities, this paper presents seasonal variability of the input parameters; GPS-derived 

precipitable water vapour, MODIS AOD estimates and ground PM measurements over Zaria, Nigeria 

for December 2015 - November 2016. We examined the effect of atmospheric aerosols and ground 

particulate matter concentrations on GPS derived precipitable water estimates. The collocating datasets 

utilized for this study revealed satisfactory results for skewness and normality. The MODIS-GPS pre-

validation procedure results showed good agreement for GPSPWV-MODISPWV across the instruments. 

The analysis the GPSPWV-MODISAOD and the GPMPWV-GPM measurements revealed promising 

relationships which were similar to related studies. The spatial variability of particulates/aerosols 

concentration within the Nigerian territory cannot be ignored, thus the need to explore available 

operational techniques for efficient pollution monitoring. Our study introduced a novel physical 

mechanism of the GPS PWV-PM relationship that can be utilized for future position accuracy. The 

incorporation of our findings will provide a basis for the improved analysis of the aerosol/particulates 

processes. These findings present an applicability of the Nigerian GNSS Reference Network (NIGNET) 

for monitoring ground particulates and satellite aerosol measurements. Thus, the Nigerian air pollution 

planners can begin to consider its NIGNET stations for aerosol monitoring, taking into consideration 

its limited air pollution monitoring capabilities. 
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