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ABSTRACT Adaptive beamsteering cognitive radar (AB-CRr) systems seek to improve detection and
tracking performance by formulating a beam placement strategy adapted to their environment. AB-CRr
builds a probabilistic model of the target environment that enables it to more efficiently employ its
limited resources to locate and track targets. In this work, we investigate methods for adapting the AB-
CRr framework to detect and track large target swarms. This is achieved by integrating the properties of
correlated-motion swarms into both the radar tracking model and AB-CRr’s underlying dynamic probability
model. As a result, a list of newly CRr-integrated contributions are enumerated: a) improved uncertainty
function design, b) incorporates Mahalanobis nearest neighbors multi-target association methodology into
AB-CRr, c) introduces a novel Kalman-based consolidated swarm tracking methodology with a common
velocity state vector that frames targets as a correlated collection of swarm members, d) introduces an
improved uncertainty growth model for updating environment probability map, e) introduces a method
for incorporating estimated swarm structure and behavior into the uncertainty update model referred to as
"track hinting", and f) introduces new metrics for swarm search/detection and tracking called swarm centroid
track error and swarm tracking dwell ratio. The results demonstrate that AB-CRr is capable of adapting its
beamsteering strategy to efficiently perform resource balancing between target search and swarm tracking
applications, while taking advantage of group structure and intra-swarm target correlation to resist large
swarms overloading available resources.

INDEX TERMS cognitive radar, adaptive beamsteering, swarm tracking, swarm detection

I. INTRODUCTION
Unlike a traditional radar system, cognitive radar (CRr) em-
ploys a real-time transmit-receive feedback loop to adapt its
resource allocation strategy to a dynamic target environment
[1] [2] [3] [4]. As such, much of the activity for the last
decade has been on adaptive transmit waveform design cou-
pled with receive filter for CRr. Clearly, at this point, we
cannot possibly list all the contributions in CRr waveform
design but we listed a good sampling here for the interested
reader [5] - [19] and these works contain several references.
Additionally, a good introduction to the subject of CRr for
target classification is [20] and plenty of references are listed
there. Our interest in this paper however is not transmit
waveform design nor classification. Our interest in this paper
is the application of cognitive radar to adaptive beamsteering,
in which a radar system develops a beam placement strategy
based on prior measurements of the scene.

In applications where a radar system does not illuminate

the entire search scene with a single beam for spatial reso-
lution requirements, beam illumination of each region in the
scene becomes a constrained resource in terms of temporal
efficiency. Traditional beam rasterization schemes allocate
an equal number of beam illuminations to each region in
the search space, but depending on the application, this
methodology can be far from optimal. Adaptive beamsteering
cognitive radar can significantly improve both target search
and tracking performance in scenarios where some prior
information of the target environment is known [21] [22].

Adaptive beamsteering cognitive radar (AB-CRr) systems
are well suited for applications where beamforming re-
sources must be balanced between detection and tracking
requirements [23] [24]. Prior art [25] introduces a weighted
sum of target uncertainty in the scene and active track un-
certainty via binary entropy. The work in [24] develops a
parameterized cost function that similarly performs resource
balancing between the resource competing applications. The
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work in [26] introduces a third resource balancing method-
ology that modulates search versus tracking application re-
source allocation via uncertainty function design.

AB-CRr forms a probabilistic model of the radar channel
[27]. This probabilistic model is leveraged to form a dynamic
beamsteering strategy. As successive measurements of the
target environment provide revision of the target probability
model, the beamsteering strategy changes to match the new
conditions. Both works in [25] and [28] present a frame-
work for networked radar systems employing a cooperative
beamsteering strategy. In comparison, our work in this paper
investigates a single AB-CRr radar system with incomplete
target state measurements (i.e. the single radar cannot di-
rectly measure target motion perpendicular to the receiver).

A methodology for selecting the next radar beam shape
based on the underlying probability model is presented in
[21]. This methodology relies on the information-theoretic
binary entropy function to assign priority to regions of the
probability model. In comparison, [26] introduces uncer-
tainty functions as a generalized approach to translating the
target probability model to a beamsteering strategy. The work
in this paper extends upon [26] by investigating the impact of
uncertainty functions on target tracking performance when
integrated with Kalman filter tracking.

A novel and promising use case for adaptive beamsteering
cognitive radar (AB-CRr) is swarm target detection and
tracking. In this paper, we assume that swarm targets are
distinguished from the more general multi-target case in that
members of swarm share behavior characteristics (such as
velocity). While a large number of targets can overwhelm
traditional radar systems, a CRr can leverage probabilistic
information about the search scene to improve performance
in a saturated target environment. We note that tracking
has a long history of contributions beyond Kalman includ-
ing extended Kalman, particle filter theory, random matrix,
Gaussian mixture and the like. It will be difficult to list all the
contributions but we refer to recent works on advanced object
tracking [29] - [34] and the related extended object tracking
techniques cited in those articles. One possible issue with
the use Mahalonobis (statistical) distance is it may be prone
to erroneous target estimates, i.e. cardinality estimation [35]
where some techniques like optimal sub-pattern assignment
[36] may actually mitigate the issue.

This work makes the following contributions to the field of
cognitive radar adaptive beamsteering:
• Develop a much improved uncertainty function that

results in resource balancing behavior appropriate for
the problem of swarm search/detection and tracking
applications introduced in this paper

• Integrate a Mahalanobis nearest neighbors multi-target
measurement association methodology with the AB-
CRr architecture

• Introduces a novel Kalman-based consolidated swarm
tracking methodology for AB-CRr with a common ve-
locity state vector that frames targets as a correlated
collection of swarm members, which results in new

swarm state estimation techniques and associated multi-
target tracking procedures

• Introduce an improved uncertainty growth model for
updating the target environment probability map

• Introduce a method for incorporating estimated swarm
structure and behavior into the uncertainty update model
of the AB-CRr algorithm based on a collective swarm
target model, referred to as "track hinting"

• Introduce quantitative and qualitative performance met-
rics for swarm target search/detection and tracking:
swarm state estimation, swarm centroid track error, and
swarm tracking dwell ratio

This work investigates the performance of an AB-CRr
system in a simulated channel environment. Section II sum-
marizes the channel and target environment model. Section
III presents the adaptive beamsteering methodology em-
ployed in simulation. Section IV presents the swarm dy-
namics model. Section V presents the results of simulated
radar performance with various swarm configurations. We
summarize and conclude in section VI.

A. BOTTOM LINE UP FRONT (BLUF) RESULTS
A simulated video of our AB-CRr system in action searching,
detecting, and ultimately tracking a ground-based swarm is
shown here: https://youtu.be/hjcsKA2vtKg. The right panel
shows adaptive beamsteering illumination of the scene while
the left panel shows a swarm of target moving through the
target scene as the AB-CRr system is used for detection and
tracking.

II. CHANNEL MODEL
The adaptive beamsteering cognitive radar (AB-CRr) archi-
tecture investigated in this work employs a discrete search-
space probabilistic model to describe its environment. For
the benefit of the reader, some of the modeling concepts from
[25] will be briefly reviewed presently.

Adaptive beamsteering cognitive radar can potentially be
adapted to any radar system that employs steerable direc-
tional radar beams to probe a scene. An illustrative example
is shown in Fig. 1, where the radar illuminator is assumed
to be airborne, scanning the ground plane below it. Another
example would simply be a stationary radar illuminating a
large swath of ground or air space.

In both ground or airborne ground-search radar scenario, it
is assumed that ground clutter is the dominant noise source.
The radar system is also assumed to have an electronically
steerable radar beam that can be controlled along two de-
grees of freedom: elevation and azimuth. When the radar
beam is projected along the ground plane, this corresponds
to Cartesian coordinates relative to the ground position of
the airborne radar. Additionally, the radar system is able
to measure Doppler frequency shift with the exception of
tangential velocity when the beam is perpendicular to a target
motion.

Further, it is assumed that there are multiple ground targets
in the scene of interest moving in swarm formations. A
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FIGURE 1. Scenario of operation: Airborne radar illuminating ground targets

FIGURE 2. Azimuth-elevation angular measurements of a radar system
projected onto a Cartesian plane

swarm formation is defined as a collection of targets with
correlated motion and arbitrary, potentially dynamic, relative
spatial orientation.

A. DISCRETE TARGET SPACE MODEL
The geometry considered is a 2-dimensional spatial region
upon which the radar beam can be trained. Beam location in
this 2-dimensional region from the polar coordinate system
(elevation and azimuth) is easily translated to a discrete
Cartesian grid representation (i.e. range and cross-range rep-
resentation). The search space plane is divided into rectangu-
lar cells that each correspond to a subset of x-y measurements
as depicted in Fig. 2. Each discrete cell in the grid has the
Boolean attribute of “containing a target” or “not containing
a target” within the continuous region of space it encloses.

The spatial search grid is composed of Mx cells and My

cells corresponding to the azimuth and elevation angular cells
of the search space. The Doppler shift is represented in the
discrete grid by Ny Doppler cells. The resultant discrete

FIGURE 3. The search space is represented as a 3D matrix of Boolean values

search space is a matrix of size {Mx,My, Ny}, correspond-
ing to x-axis position, y-axis position, and target velocity
(Fig. 3).

B. RADAR CHANNEL MODEL
Referring to Fig. 2, the portion of the search space that is
impinged upon by a radar beam at a given time is considered
to be illuminated and the region not covered by the beam is
considered to be unilluminated. The radar system measures
the the amplitude of the backscatter from the illuminated
region as well as its Doppler shift.

1) Phased Array Beamsteering
Phased array beamforming can be represented via a Kro-
necker product to produce a beamsteering matrix [25]

V = a⊗ by ⊗ c, (1)

where a and c are normalized spatial manifolds of the illu-
minated region and by is the temporal manifold that captures
the discrete Doppler states of each spatial cell and are given
by:

a =
1√
Mx

exp (j2πkx[0...Mx − 1]T )

by =
1√
Ny

exp (j2πdy[0...Ny − 1]T )

c =
1√
My

exp (j2πky[0...My − 1]T ),

(2)

where kx and ky are wave numbers, which are normalized (-
0.5, 0.5) to correspond to the spatial region of the radar beam
and dy is the normalized range of Doppler frequencies [28].

Assuming that the power of beam energy is a constant
value Ps along its aperture, the signal received from a beam
illumination is represented by

s =
√
PsVx + n, (3)
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where s is the received signal, x is a Boolean vector that
represents the ground truth of true target locations in the cells
illuminated by the beam, and n is noise. The vector x has
a number of elements equal to the number of spatial cells
illuminated by the beam multiplied by the number of discrete
Doppler cells modelled in the discrete search space.

2) Environment Noise Model
Return measurement noise is the sum of both environmental
noise e and receiver noise ω,

n = e+ ω, (4)

where e is modelled as zero-mean Gaussian with covariance
Ce and ω is zero-mean Gaussian with covariance matrix Cω .

For simulation purposes, environmental clutter is initially
modelled in the frequency domain [37]. In simulations for
this work, the power spectral density (PSD) of environmental
clutter is modelled by a Hamming window centered at zero
frequency and spanning 0.67 of the normalized frequency
range. Clutter return power is assumed to be 20 dB greater
than thermal noise power for all JNR conditions investigated.

As is usual, the covariance of the thermal noise in the
receiver is simply Cω = PωI, where I is the identity matrix
and thus the total clutter and noise covariance is given by

Cn = Ce + PωI. (5)

C. TARGET SPACE PROBABILITY MODEL
Each discrete cell of the search space 3D matrix in Fig. 3 is
assigned a probability of target presence, and each iteration
of the beamsteering algorithm updates the probability of each
cell according to both the return signal, prior cell probability,
and underlying assumptions about the target environment.

1) Probability Update Methodology
a: Illuminated Region Update Method
This section summarizes the recursive Bayesian probability
update methodology described in [26] and implemented in
this AB-CRr framework. Current and past radar measure-
ments of a discrete target state are used to recursively update
the probability of target presence via Bayes Theorem [21],

P (Hi|zk) =
P (Hi|zk−1)p(zk|Hi)

p(zk)
. (6)

The sensor measurement zk is for iteration or transmission
k. Hypothesis Hi is a member of the set of possible permu-
tations of targets in the cells under illumination. Assuming
that a maximum of one target is present in each cell, then
there are 2M such hypothesis permutations, where M is the
total number of cells illuminated by the radar beam. M is
equivalent to the number of spatial cells encompassed by the
radar beam multiplied by the number of Doppler frequency
cells in the scene.

Thus each return measurement hypothesis can be formed
as

H0 : z = n

H1 : z = s1 + n

H2 : z = s2 + n

H3 : z = s1 + s2 + n

...
H2M−1 : z = s1 + s2 + ...+ sM + n,

(7)

where si is the return signal anticipated from the ith cell
illuminated by the beam. The number of permutations grows
exponentially with the number of target state cells encom-
passed by the beam. If the number of targets that can appear
in the illuminated region is limited to r, however, then the
number of hypotheses that must be computed is reduced to
[27]

N =

r∑
k=0

(
M

k

)
. (8)

Note that when the maximum number of targets r is equal
to M (the total number of cells illuminated by the beam), Eq.
(8) becomes a special case of the binomial series [38],

N =
M∑
k=0

(
M

k

)
=

M∑
k=0

(
M

k

)
1k = 2M , (9)

and the total number of possible permutations matches the
number listed in Eq. (7).

Considering that received signal zk is a jointly Gaussian
noisy signal with covariance matrix Cz, the conditional joint
probability distribution is given by

p(zk|Hi) =
1

πl|Cz|
exp (si − zk)HC−1z (si − zk), (10)

where l is the number of elements in the received signal
vector zk. The prior probability of a target hypothesis can
be computed from cell target probabilities via

P (zk−1|Hi) =
M∏
c=1

(Pc,k−1)bc(1− Pc,k−1)1−bc , (11)

where bc is either 1 or 0 corresponding to whether hypothesis
Hi includes a target present in cell c. P (zk|Hi) and P (zk)
do not have to be directly computed, rather, the ratio of the
two values can be computed via

P (zk|Hi)

P (zk)
= K−1 exp (si − zk)HC−1z (si − zk), (12)

where K is a normalization factor equal to the sum of each
hypothesis joint probability:

K = P (zk) =
2M−1∑
i=0

P (zk|Hi). (13)
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FIGURE 4. Non-uniform uncertainty growth model. Source: [25].

The updated cell probabilities can be computed by summing
each hypothesis that includes a target present in the cell c,

P =
M∑
c=1

bcP (zk|Hi). (14)

b: Unilluminated Region Update Method
With each illumination of the radar system, time elapses and
the majority of cells in the search grid are not illuminated.
Therefore, the uncertainty of these unilluminated cells grows
during the period of non-observation. As the system pro-
gresses through iterations, the uncertainty of unilluminated
cells grows until the adaptive beamsteering algorithm illu-
minates that cell and updates its corresponding uncertainty
value.

One of the greatest advantages of a cognitive radar ap-
proach towards search optimization is that prior knowledge
of the target environment can be readily integrated into the
scenario, impacting the beamsteering behavior of the radar
accordingly. In a simple radar search scenario, for exam-
ple, it may be reasonable to assume that targets are most
likely to enter into the search space from the edges of the
grid. Translated into terms of search grid uncertainty: with
each successive time step, the chance that a target appears
or disappears from the edges of the map is greater than
anywhere else, as was utilized in [25] as shown here in
Fig. 4 for the benefit of the reader. This assumption about
target behavior can be integrated into the cognitive radar
probability model by implementing non-uniform uncertainty
growth across the probability cells of the search grid. For
example, the uncertainty increment value used on a given cell
can be defined in relation to the Euclidean distance of spatial
position of a cell to the center of the search grid.

c: Improved Update Methodology
One problem with this methodology is that there is no un-
certainty growth at the center of the search grid and thus

can be restrictive. To overcome these limitations and greatly
improve upon this model, a generalized probability update
increment is introduced in this work:

∆Ui,j,k = α
(

1 +
√

2β d(i, j)
)
, (15)

where ∆Ui,j,k is the uncertainty increment for a given cell,
α is a coefficient that defines the overall rate of uncertainty
growth, and β relates the relative significance of Euclidean
distance from the center of the search space to the baseline
growth rate. The distance of a discrete cell from the center of
the search space is given by the equation d(i, j):

d(i, j) =

√(
i− Mx − 1

2

)2
+
(
j − My − 1

2

)2
(16)

Because the normalized spatial ranges of the search scene
are (-0.5, 0.5), the maximum normalized distance from the
center is 0.5

√
2. When β = 0, uncertainty growth is uniform

across all cells. When β >> 1, uncertainty growth behaves
as described in Fig. 4.

2) Probability Map Initialization
There are multiple possible models for how to initialize the
3-dimensional probability map of the cognitive radar system.
One initialization technique is to assume that no targets
exist in the search space at the onset of operation. There
is a problem with this approach. The approach initializes
the scene with zero uncertainty across the search space
and leaves the cognitive radar beam selection algorithm to
initially illuminate at some arbitrary beam area. Although
the probabilities will increase at the unilluminated areas,
they may not translate to high uncertainty and such areas
may be left unilluminated until probabilities reach favorable
uncertainty values.

A second option is to assume that a finite number of
targets already exist in the search space, and distribute the
cell probabilities uniformly based on this assumption. For
example, if one target is assumed to be present in the search
area and there are 100 cells, each cell might be assigned an
initial probability of 0.01, such that the sum of all the cells
equals 1, as suggested in [21]. If some prior knowledge of
the environment is assumed, then it can be applied to provide
greater initial probability to cells that are known to be more
likely to initially contain a target (such as the edges of a
map). However, if the number of cells is truly significant then
the initial probability will be very low, which may not be
practical for a given target scenario.

A third option is to arbitrarily initialize the probability of
each cell to 0.5 if the entropy function is used as suggested
in [25]. As a result, at the start of operation, the cognitive
radar assigns a high uncertainty value to each unilluminated
cell. As such, the initial behavior of the system is biased
towards illuminating each cell at least once before settling
into some kind of steady state search behavior. The utility of
this approach is that it can easily be modified for different
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uncertainty functions by placing the probability correspond-
ing to the highest uncertainty in each cell as we preliminary
illustrated in [26]. Because of the impractical issues of the
first two initialization methods, in this implementation, the
third option is selected. It is also desirable that every cell in
the search scene is illuminated at the onset of the simulation
run to identify any targets already in the scene. This approach
is named the uncertainty function-based (UFB) probability
map initialization. Unlike the purely entropy-based function,
this approach can accommodate any uncertainty function.

III. ADAPTIVE BEAMSTEERING COGNITIVE RADAR
The cognitive radar system employs the probability model
translated to an uncertainty map to iteratively select its next
beam placement, which in turn drives future beamsteering
behavior.

A. UNCERTAINTY MAPPING OF PROBABILITY MODEL
In order for the 3-dimensional probability model to be em-
ployed in a beam selection strategy, probability values are
mapped to uncertainty values. In [25], a binary entropy func-
tion is used which maps 0.5 to have the maximum uncertainty
and beam priority is placed on cells around this probability.
However, such action can actually impede detection of cells
containing targets where probabilities are already close to
some required threshold. In [26], we proposed uncertainty to
be a cost metric which describes the significance of a given
cell probability to the cognitive radar overall assessment of
performance (i.e. some probability threshold for detection).
The adaptive beamsteering algorithm seeks to minimize the
cumulative uncertainty metric of the entire scene model, so
the selection of an uncertainty metric drives the overarching
behavior of the cognitive radar beamsteering strategy.

1) Uncertainty Metric
The 3-dimensional matrix is composed of probabilities rang-
ing from 0 to 1, where 1 is a 100% probability of target
presence in a cell. An uncertainty function maps probability
values to uncertainty values between 0 and 1. An uncertainty
value of 0 contributes no cost to the cumulative uncertainty of
the system, while an uncertainty value of 1 is the maximum
contribution a cell can contribute.

2) The Need for Better Uncertainty Function Design
Provided that a AB-CRr beamsteering strategy seeks to min-
imize the cumulative uncertainty of the search scene over
time, a series of inferences can be made about the impact
of an uncertainty function on the resultant beamsteering
strategy.

First, the beam selection algorithm will orient its next
beam at the spatial region associated with the highest contri-
bution of uncertainty. It is intuitive that illuminating the beam
area with the highest cumulative uncertainty will reduce the
overall uncertainty of the scene during that observation. Of
course, a well formed uncertainty function should output an
uncertainty of 0 at input probabilities 0 and 1. This is satisfied

FIGURE 5. Chi-squared uncertainty function

by the binary entropy function, but may not necessarily be
optimal for the search function.

Second, if illuminating a cell results in an increase in
the corresponding uncertainty value for the cell, the beam
selection algorithm will continue to illuminate that cell until
the uncertainty begins to drop. This observation assumes
that the cell in question is illuminated because its region
contributed the most uncertainty in the scene and that the
unilluminated region uncertainty growth is much slower than
the illuminated region uncertainty change. As a consequence,
the beam selection algorithm can be expected to continue
to illuminate a cell as long as the derivative of the un-
certainty function at its instantaneous probability value is
positive. Therefore, if the desired beam selection behavior is
to continue to illuminate an uncertain true-target cell until a
threshold probability for decision is reached, then the global
maximum of the uncertainty function should be placed at or
near the desired or required probability of detection.

Prior art [25] used the binary entropy function in the role
of an uncertainty function, while this meets the criterion of
an uncertainty function as it is described above, the binary
entropy function has a maximum value at P = 0.5. In
practice, this results in beamsteering behavior that illumi-
nates potential targets until it reaches a 50% probability of
target presence and then moves to a different region without
further investigation. Instead, a Chi-squared inspired uncer-
tainty function is selected for its balanced performance with
integrated search and track applications based on results from
our preliminary work in [26]:

S(P ) =

{
0 P = 0
1−P
1−α exp

(
P−α
1−α ,

)
P 6= 0

. (17)

Equation 17 is a reversed Chi-squared distribution with
4 degrees of freedom scaled to a maximum value of one.
The variable α indicates the probability value at which the
uncertainty function has its local maximum. Figure 5 shows
the Chi-squared uncertainty function with α = 0.90.
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3) Target Scene to Beamsteering Scene Mapping
Upon transforming the target probability matrix into uncer-
tainty values, the next beam location is selected by locating
the beam position that encompasses the greatest cumulative
amount of cell uncertainty. Note that the uncertainty matrixU
has dimensionsMx×My×Ny while the beamsteering search
plane has dimensions Mx ×My . The uncertainty matrix can
be projected toMx×My by computing the mean uncertainty
value of Doppler cells at each spatial index of U . Thus the 2-
dimensional uncertainty matrix is given by,

Qj,k =
1

Ny

Ny−1∑
l=0

Uj,k,l, (18)

where Q is the Mx ×My projection of U , Ny is the number
of Doppler cells over which the mean is taken, and l is the
Doppler cell index.

B. ADAPTIVE BEAMSTEERING OPTIMIZATION
A cognitive radar beamsteering strategy will seek to mini-
mize the cumulative value of the matrixQ. A simple method-
ology for minimizing the cumulative value of Q is to select a
beam at each iteration of radar illumination that is anticipated
to reduce the cumulative uncertainty more than any other
beam configuration. It is assumed that the cognitive radar
operates at a reasonable SNR such that the uncertainty of
any cell illuminated by the radar beam is reduced. Then, the
condition for the optimal next beam is

(Uk+1|B∗k) ≥ (Uk+1|Bk), (19)

where k is the illuminating iteration number, B∗ is the
optimal beam selection and B is the set of all possible beam
configurations in the search scene.

If the shape of the beam is assumed to be rectangular and
smaller than the search scene, then the optimal next beam can
be easily found via a 2-dimensional convolution (∗∗):

< i, j >B∗= arg maxi,j B̃ ∗ ∗Q, (20)

where < i, j > are the x and y discrete cell indices of the
lower corner of the optimal beam, B̃ is a matrix of ones
with the dimensions of the radar beam, and Q is the spatial
uncertainty matrix.

IV. SWARM DYNAMICS AND TRACKING
The AB-CRr system uses a Kalman filter to track a detected
target or target swarm through the search scene. The Kalman
filter estimates the constant motion state of a target and is
represented by the state vector

x̂ =


x
vx
y
vy

 . (21)

Target measurements by the cognitive radar are discrete
space, while the Kalman filter estimates the target space in

continuous space. This is accounted for in the design of
Kalman filter parameters.

A. INITIALIZING KALMAN MODEL
The Kalman filter is initialized by the first measurement
of a detected cell. Estimate covariance and measurement
covariance are approximated to account for the error incurred
by discrete measurements of the target state. In this section,
variables Q and K have different meanings than the same
variable names discussed previously and pertain specifically
to the development of the Kalman filter.

1) Initial State
A target is said to be “detected” when a cell of the search
space exceeds a threshold probability of target presence.
In the single target case, the first cell to reach this target
probability immediately after illumination by a beam is used
to initialize the target state estimate. Each cell in the search
scene corresponds to a measurement ẑ, which represents the
measured target state at the center of the discrete region. As
the search scene has three dimensions, the detected target cell
map measurement of continuous space-related parameters is
given by

ẑ =

 xy
vy

 . (22)

As the initial measurement contains no information about
the x-axis velocity of the detected target, it is initially as-
sumed to be zero and the target state estimate is initialized
as

x̂i =


xi
0
yi
vyi

 . (23)

2) Measurement Covariance
The dominant factor in measurement error is assumed to
be quantization error of the search space. If the x-axis of
the search space has a normalized range of (−0.5, 0.5) and
there are N discrete values that are evenly spaced, then
each discrete cell encloses a continuous range of normalized
values 1

N wide. Given that a target exists within a detected
cell, the probability of the true target parameter in this range
is uniformly distributed. However, the Kalman filter assumes
that the measurement noise is normally distributed. As an
approximation, the standard deviation of each measurement
axis is said to be equal to the quantization error of the discrete
model. Each axis is said to be independent of the other axis,
yielding a measurement covariance matrix

R =


1
M2

x
0 0

0 1
M2

y
0

0 0 1
N2

y

 . (24)
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3) Target Covariance
The target is assumed to be maneuvering with a stochastic
motion model. Only constant motion is modelled in the
target state, but acceleration is modelled with white Gaussian
variance in the target velocity. This is represented with the
target state covariance matrix

Q =


0 0 0 0
0 σ2

a 0 0
0 0 0 0
0 0 0 σ2

a

 . (25)

4) State Estimate Covariance
The initial state estimate covariance is initialized as

P =


1
M2

x
0 0 0

0 1 0 0
0 0 1

M2
y

0

0 0 0 1
N2

y

 . (26)

Given that x-axis velocity can range from -0.5 to 0.5 in
the normalized range, the normal approximation variance of
x-axis measurement is therefore initialized with a value of 1.

5) Track Update
Using the probabilistic model, a target detection is defined as
any cell whose target probability crosses above the detection
threshold in a given illumination iteration. In the single target
case, it is assumed that every target detection associates with
the active target track. Therefore, for every iteration of beam
selection with a valid target detection, the standard Kalman
update procedure is applied with a constant observation ma-
trix

H =

1 0 0 0
0 0 1 0
0 0 0 1

 . (27)

In the case where there is no target detection over one
radar illumination cycle, the observation matrix is null, and
only state vector and estimate covariance prediction are per-
formed.

B. MULTI-TARGET TRACK ASSOCIATION
The most direct approach to multiple target tracking is to
assign each target in the scene its own Kalman track file. To
accomplish this, detected target measurements must be asso-
ciated with their corresponding tracks at each measurement
interval.

1) Nearest Neighbors Measurement Association
When a target is detected, it is first tested against each
existing target track in the swarm model via a Chi-squared
test. The Mahalanobis distance between each track in the
beam scene and each target detection is computed via:

di = (zk−Hx̂k)T (R+HiPk|k−1H
T
i )−1(zk−Hx̂k) (28)

FIGURE 6. Track-to-measurement association table (Mahalanobis nearest
neighbors method)

where di is the Mahalanobis distance between detected target
and track i, Hi is the observation matrix that corresponds to
that association, and zk is the measurement vector.

For improved computational efficiency given that mea-
surement covariance R is constant across iterations, the
Woodbury matrix identity is preferable, yielding:

yk = zk −Hx̂k

di = yTkR
−1yk − yTkR

−1Hi(Pk|k−1

+HT
i R
−1Hi)

−1HiR
−1yk.

(29)

The detected target is then associated with the target
track with the smallest Mahalanobis distance from itself.
If each track exceeds a threshold Chi-squared association
value (not to be confused with and unrelated to the Chi-
squared inspired uncertainty function previously introduced),
then the detected target is assumed to be a new (previously
unobserved) target and is added to the swarm model.

2) Multiple Measurements Nearest Neighbors Association
In the event that multiple targets are detected in a single beam
illumination, the nearest neighbors model is easily extended
to manage track associations. First, an association table is
generated for all measurements and target tracks (Fig. 6).
Next, each target detection is compared against candidate
target tracks. If one or more target tracks meet the Chi-
squared criterion for association, the nearest target track is
updated with that target measurement. If none of the tracks
associate with a detection, this detection is considered a new
target. If a target track is illuminated by the beam but does
not associate with any measurements, it is assumed to be a
deprecated track and is removed from the swarm model. This
target association and management algorithm is summarized
in Fig. 7.

C. CONSOLIDATED SWARM KALMAN TRACKING
The Kalman tracking problem for correlated velocity swarm
targets can be simplified by assuming that all the members
of a swarm have the same mean velocity such that the

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3069350, IEEE Access

FIGURE 7. Track-to-measurment association flow diagram

swarm formation is maintained. When this is the case, each
target track can be represented in a single state vector. Each
observation of a target in the swarm updates the velocity
state estimate of the entire swarm, increasing the number of
velocity measurements for the Kalman tracker. The new state
model for a two target swarm can be expressed as:

x̂ =


v̄x
v̄y
x1
y1
x2
y2

 (30)

Note that instead of tracking each target separately, all of
the member targets of a swarm are represented in a single
state vector. The transition matrix for the consolidated swarm
state vector is given as:

F =


1 0 0 0 0 0
0 1 0 0 0 0
∆ 0 1 0 0 0
0 ∆ 0 1 0 0
∆ 0 0 0 1 0
0 ∆ 0 0 0 1

 (31)

where ∆ is the time step between iterations. Future values of
the state estimate vector can be computed at discrete times
t = ñ∆ via:

x̂[Ñ + ñ] = F ñx̂[Ñ ]. (32)

where ñ is the discrete time index.
Because the radar system is limited to only measuring

targets enclosed within its beam for a given iteration, the
system will not always measure each member of a swarm in

a single iteration. Therefore, the observation matrix changes
with each iteration of measurement. If no targets are mea-
sured by a beam illumination, the observation matrix is null
and no Kalman update occurs. If the first target member
of a swarm is detected in a beam illumination, then the
observation matrix is formed:

H1,0 =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 (33)

Similarly, if the second member of a swarm track is de-
tected, the observation matrix is formed:

H0,1 =

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (34)

Here H1,0 corresponds to the case where only the first target
associates, whileH0,1 corresponds to the case where only the
second target associates with the measurement. If multiple
targets are observed in a single beam, the update procedure is
performed multiple times, once for each associated track in
the swarm.

The subsequent Kalman update procedure for each itera-
tion updates the state estimate of each target in the swarm
even if only one of the targets is directly observed via

K = Pk+1|kH
T
k (HkPk+1|kH

T
k +Rk)

Pk+1|k+1 = (I −KHk)Pk+1|k

x̂k+1|k+1 = x̂k+1|k +K(zk −Hkx̂k)

(35)

where K is the Kalman gain matrix, P is the state estimate
covariance matrix, and k is the iteration index of the Kalman
filter.

D. ASSOCIATING TARGETS TO CONSOLIDATED TRACK
Measurement-to-track association for a consolidated swarm
track follows the same procedure as the multiple track file
method presented previously. The only modification for the
consolidated tracking system is that the observation matrix
Hi in Eq. (29) becomes the consolidated state vector observa-
tion matrix corresponding to its associated track (H0,1, H1,0,
etc.).

E. INITIALIZING AND REMOVING TARGETS FROM THE
SWARM MODEL
1) Initializing Newly Detected Targets
In our implementation, if the Mahalanobis distance between
a measurement and each active track exceeds the 95% Chi
squared association test, it is assumed to be a newly observed
target. New target tracks are appended to the existing con-
solidated state estimate and estimate covariance matrix. The
state vector is updated with the measured spatial coordinates
of the new target:
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x̂k+1|k =

x̂k|kzx,k
zy,k

 (36)

and the estimate covariance matrix is updated with the spatial
covariance sub-matrix of the associated measurement:

Pk+1|k =

Pk|k 0 0
0 1

M2
x

0

0 0 1
M2

y

 . (37)

2) Removing Dead Tracks
A mechanism for removing old or inaccurate target tracks
is also necessary for dense swarm formations. In this work,
if the position of an active target track is illuminated by
a beam and fails to associate at a 99% level with any of
the subsequent detection measurements, it is presumed to
be a bad track and is marked for removal. The procedure
for removing the first target from a two-target consolidated
track begins by forming a selection matrix for the spatial sub-
matrix of the first target:

Y =

[
I2 0 0
0 0 I2

]
(38)

.
where I2 is the 2-by-2 identity matrix. The state matrix is
then updated via:

x̂k+1|k = Y x̂k|k (39)

and the estimate covariance matrix is updated with:

Pk+1|k = Y TPk|kY. (40)

Note that the swarm velocity estimate is unaffected by the
removal of a target track. The swarm velocity estimate is
assumed to converge to the mean velocity of all of the targets
in the consolidated tracking model.

F. SWARM STATE ESTIMATION
When considering targets as members of a swarm, it is
often more useful to describe characteristics of the swarm
in aggregate, rather than the characteristics of each of its
component parts. In this section, methods of describing the
state and behavior of swarms are discussed. These metrics
will serve as the basis of performance estimation for swarm
detection and tracking in the following chapter.

1) Swarm Centroid Estimate
The centroid of a point cloud is defined as the mean value
along each coordinate axis. For the individual target track
methodology, the centroid of the swarm is defined as

x̂c =
1

Ntgt

Ntgt∑
n=1

x̂n, (41)

FIGURE 8. Swarm region estimate in discrete space

where x̂c is the state vector of the swarm centroid estimate,
x̂n is the state vector of the nth track, and Ntgt is the
total number of target tracks in the swarm model. For the
consolidated swarm tracking model, the centroid estimate is
similarly computed as

x̂c =


0 0 1

Ntgt
0 1

Ntgt
0 ...

1 0 0 0 0 0 ...
0 0 0 1

Ntgt
0 1

Ntgt
...

0 1 0 0 0 0 ...

 x̂ (42)

where x̂ is the consolidated swarm state vector.

G. SWARM SPATIAL REGION ESTIMATE
In some cases, it may be useful to estimate the region of
space that a target swarm resides in. This can be achieved
by forming a polygon that encapsulates each target track in
the swarm model. First, regarding the swarm as a point cloud
of spatial coordinates, we solve the convex hull problem to
generate the boundary points of a polygon [39]. This polygon
is subsequently discretized back into the probability model
grid to form a subset of probability cells in which the swarm
is said to reside. Fig. 8 is a 2-dimensional visualization of this
process, where black points are the continuous state estimates
of swarm targets, the dark green polygon is the convex hull
of the target point cloud, and yellow cells are the discrete
cells of the probability model that are said to be members
of the swarm region. The red star corresponds to the spatial
centroid of the target swarm. As implied in Fig. 8, we assume
that cells are configured such that one target occupies one cell
at a time.

H. ADAPTIVE BEAMSTEERING TRACK FEEDBACK
As in the single target case, multi-target track information
can be used as feedback into the uncertainty model that
drives adaptive beamsteering. There are numerous possible
feedback models that can be employed, but in this work,
the uncertainty of the swarm estimate region naturally grows
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FIGURE 9. Adaptive beamsteering cognitive radar algorithm

with each time interval (iteration). As a result, adaptive
beamsteering behavior is induced in such a way that not only
increases dwell time on known swarm targets, but allocates
more beam time to the detection and tracking of potential
interior members of the target swarm.

The target track state estimate can be used as feedback
into the adaptive beamsteering uncertainty model in order to
improve tracking performance. After updating the probability
map (3-D matrix) following a beam illumination and com-
puting its associated uncertainty matrix, a small uncertainty
value γ is incremented to the cell corresponding to the target
state estimate. Over numerous iterations, the uncertainty
value of the cell associated with the estimated state of the
target (x̂) grows faster than the rest of the map and causes the
adaptive beamsteering algorithm to illuminate the estimated
position, effectively verifying the estimate of the Kalman
filter with an observation. In this way, track hinting (in Figure
9) can inject prioritization to target tracking into the adaptive
beamsteering algorithm. Fig. 9 illustrates the integration of
track feedback into the AB-CRr framework.

Extending AB-CRr target detection and tracking to mul-
tiple targets can be achieved by introducing a Kalman track
file for each newly detected target. However, as the number
of targets in the scene grows large, the tracking resources of
a cognitive radar, like a traditional radar system, will become
overwhelmed, lacking the resources to maintain each individ-
ual target track. Consolidated state vector Kalman tracking
promises better performance with large target swarms, pro-
vided that the swarm targets move in a cooperative fashion

(e.g. correlated velocity). This significant benefit will be
illustrated in the next section.

V. SIMULATION AND PERFORMANCE
The integrated search-and-track performance of an AB-CRr
system is modelled in simulation for swarm target scenarios.
The impact of two proposed swarm tracking models are
compared via Monte Carlo simulation. The focus of these
simulations is to evaluate relative performance of the models
and not their computational complexity. Design considera-
tions, including uncertainty function design and track feed-
back hinting that are weighed in single target scenarios are
integrated into the swarm tracking case. Each swarm scenario
in this section employs a Chi-squared uncertainty function
and target track uncertainty feedback as described in section
IV.

A. PERFORMANCE METRICS

As in the single target case, target swarm search-and-track
performance can be quantified in numerous ways. This sec-
tion presents the performance metrics used to assess the ef-
fectiveness of AB-CRr against various swarm configurations.

1) Swarm Velocity Estimation

One of the core capabilities of swarm target tracking is swarm
velocity estimation. In this work, mean swarm velocity es-
timation is complicated by the radar geometry under inves-
tigation. Radar return measurements provide target velocity
information relative to the radar receiver (y-axis of the spatial
grid), but target motion perpendicular to (x-axis of the spatial
grid) the receiver must be estimated from target position
history. The responsiveness of swarm tracking models to
individual target measurements can be visualized by plotting
the mean swarm velocity estimates over time.

2) Swarm Centroid Cost Function

A single target tracking performance cost function can be
expressed as

εc =
1

Ni

(
βk0 +

Ni−1∑
k=k0

||xk − x̂k||2
)
, (43)

.
where N is the total number of beam iterations by the radar
system, k0 is the first beam iteration after a target track
file has been initialized, and β is a user defined coefficient
that weighs the relative contribution of detection latency
compared to mean track error. In the swarm tracking case, a
tracking cost function can be defined based on the parameters
of the target swarm we wish to estimate. Our cost function
will seek to minimize the Euclidean distance between the
true and estimated swarm mean velocity and spatial centroid,
defined previously by the state vector:
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FIGURE 10. Two target swarm mean velocity estimates using separate target
track files.

x̂c =


µx
µy
µvx
µvy

 . (44)

The swarm cost function, or composite centroid error, can
then be defined analogously with the single target case:

εs =
1

Ni

(
βk0 +

Ni−1∑
k=k0

||x̄c,k − x̂c,k||2
)
. (45)

In this work, β is assumed to be equal to 2.

B. SWARM DETECTION AND TRACKING
PERFORMANCE
Two swarm tracking methodologies are compared in this
work: using separate individual target track files and a con-
solidated swarm state vector approach. In this section, we
investigate the relative performance of the two methodolo-
gies in estimating the mean position and velocity of a target
swarm (swarm centroid). All simulations and trials presented
are performed via MATLAB with discrete scene dimensions
Mx = My = 30 and Ny = 9, for a total of 8100
discrete measurement states. Targets move with a constant
average velocity such that they would travel from one edge
of the scene to the other edge over the course of 500 radar
illuminations. In practice, the actual path of the targets are a
variety of diagonal paths, so the targets remain in the scene
longer than 500 iterations. However, large deviations to this
direction had been tried and were tracked successfully.

1) Two Target Swarm Performance
First, we investigate behavior in a trivial swarm composed
of two targets. The mean swarm velocity estimate over the
course of a simulation is shown in Fig. 10. In this scenario,

FIGURE 11. Two target swarm mean velocity estimates using a consolidated
swarm state vector.

a swarm of 2 targets move across the radar search scene in a
loose formation with constant mean velocity. The two targets
are tracked using separate track files as described in Section
IV. The swarm y-axis velocity measurement error is low from
the onset of detecting the first target in the swarm. This is
expected as y-axis velocity is directly measured by the radar
system. The swarm x-axis velocity estimate converges on the
swarm true mean velocity more slowly, as the radar system
requires multiple track associations to estimate target motion
perpendicular to the observer. In the simulation presented,
the velocity estimate using the separate track file approach
converges to true swarm x-axis velocity in approximately 180
iterations of beam selection (this count is the total number of
beam iterations, including iterations that do not illuminate
any targets).

Simulating the same scenario with a consolidated swarm
track file approach (Fig. 11), we observe a reduction in
the number of iterations required for the x-axis velocity
estimate to converge on true swarm motion. The consolidated
tracking methodology intercepts true swarm x-axis velocity
in approximately 100 iterations, compared to 180 iterations
with the separate target tracking method. The consolidated
track file method outperforms the separate track method in
this case because each target association directly updates
the velocity estimate, while with the separate target tracking
methodology, each individual target track must reach a steady
state velocity estimate before the swarm velocity estimate
can reach steady state. Additionally, the consolidated swarm
tracking model encapsulates targets’ spatial correlation in its
state estimate covariance matrix P.

Generalizing these observations, the composite swarm
tracking error for a two target swarm is estimated via Monte
Carlo simulation for both the separate and consolidated track-
ing models over a range of SNR values. The mean swarm
tracking error of 500 iterations of a two target constant
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FIGURE 12. Monte Carlo simulation of swarm tracking error for a two target
swarm.

FIGURE 13. Seven target swarm mean velocity estimates using separate
target track files.

velocity swarm moving through the search scene is presented
in Fig. 12. Note that composite track error (Equation 45)
for both a consolidated and separate track methodologies are
comparable up to about 16 dB SNR, after which consolidated
swarm tracking outperforms individual target track files (we
simulated up to 30 dB SNR). At 25 dB SNR, the consolidated
tracking method exhibits 38% lower tracking error than the
separate tracking counterpart. Therefore, in the trivial two
target swarm scenario, consolidated tracking outperforms the
individual target tracking method.

2) Seven Target Swarm Performance
Next, we investigate how both swarm tracking methodologies
perform when the number of targets in the swarm is in-
creased. Larger swarms present a unique tracking challenge,
as beamforming resources are divided among an increasingly

FIGURE 14. Seven target swarm mean velocity estimates using a
consolidated swarm state vector.

larger number of target tracks. As a consequence, we expect
the swarm tracking error to be higher for a given SNR than
in the 2 target case, as beamsteering resources allocated to
target tracking will be strained by the large number of targets
in the swarm.

Repeating the simulation scenario for Fig. 10 with a seven
target swarm and separate target tracking, we see that the
swarm x-axis velocity estimate converges slowly towards a
steady-state velocity estimate and has a tendency to deviate
from the steady state (i.e. an inconsistent estimate). Com-
pared to the two target scenario, which took 100 beam it-
erations to converge on an x-axis velocity estimate, the seven
target scenario estimate (Fig. 13) incrementally reaches true
swarm motion but does not maintain that estimate consis-
tently. The AB-CRr system in this scenario is overwhelmed
by the number of target tracks to maintain, and poor indi-
vidual track estimates result in an inconsistent mean swarm
velocity estimate.

In comparison, the same seven target swarm scenario
tracked with a consolidated swarm state vector achieves
much more stable velocity estimates (Fig. 14). This simulated
scenario converges to the swarm true x-axis velocity estimate
in approximately 100 beam selection iterations. This is sim-
ilar to the delay of 2 target swarm with consolidated state
tracking. As a result, we would expect consolidated swarm
tracking to be more robust to large target swarms than the
separate target tracking methodology.

The composite swarm tracking error for the seven target
swarm is again estimated via Monte Carlo simulation for
both the separate and consolidated tracking approaches over a
range of SNR, as with the two target scenario. Our results are
based on 500 Monte Carlo trials for each environmental noise
and tracking method case and are summarized in Fig. 15.
Consolidated swarm tracking and individual target tracking
have comparable tracking error up to about 18 dB SNR,
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FIGURE 15. Monte Carlo simulation of swarm tracking error for a seven target
swarm.

after which the consolidated tracking model outperforms
the separate target tracks. Both tracking methodologies ap-
proach an asymptotic track error between 25 and 30 dB
SNR, where composite tracking maintains approximately
34% lower track error than the individual target tracking
method.

C. SWARM TARGET SEARCH/TRACKING RESOURCE
ALLOCATION
The percentage of time that the radar directs its beam onto
active target tracks is referred to here as the dwell ratio,
and serves as a metric of detection or search versus tracking
resource balancing. A comparison of swarm target tracking
dwell ratios for both the consolidated and separate track
approaches indicates that the consolidated swarm tracking
method does not compromise search/detection performance
for its relative improvement in target tracking. Fig. 16 plots
the track dwell ratio across a range of SNR for both the 2
target and 7 target swarm scenarios. The consolidated swarm
tracking and separate target tracking approaches maintain
similar dwell ratios for a given swarm size, indicating that
the two methods allocate approximately the same degree of
beamsteering resources to swarm tracking.

Therefore, we conclude that consolidated swarm tracking
is a more efficient methodology for tracking correlated veloc-
ity target swarms than an individual target tracking approach
in terms of beamsteering resources.

VI. SUMMARY AND CONCLUSIONS
In this work, we introduced the problem of integrated
detection-and-tracking of swarm targets using adaptive
beamsteering cognitive radar (AB-CRr) and made multiple
contributions which we summarize here. We examined de-
sign considerations of a cognitive radar system and how
they pertain to beamsteering behavior against groups of

FIGURE 16. Monte Carlo simulation of swarm tracking dwell ratio for various
swarm configurations.

targets with correlated motion. Following from prior art,
we implemented beamsteering resource allocation between
integrated search and tracking applications via a parameter-
ized uncertainty function, settling on a modified Chi-squared
uncertainty function for swarm search/detection and tracking.
We also introduced an improved uncertainty growth model
for updating the target environment probability map com-
pared to prior work. Additionally, this work introduced tar-
get track uncertainty feedback and an improved uncertainty
growth model into the AB-CRr framework to complement
uncertainty function design in modulating beam allocation
behavior. As a result, we demonstrated improved beamsteer-
ing resource efficiency for search and tracking applications
compared to prior AB-CRr configurations.

The use of AB-CRr was then extended to multiple target
swarm scenarios. Target swarms were defined as groups of
targets with correlated motion. Mahalanobis distance nearest
neighbors track association was employed in the swarm tar-
get scenario to integrate with Kalman tracking information.
Two methodologies were proposed for swarm tracking appli-
cations. The first method established an individual Kalman
track file for each detected member target of the swarm
in the search scene. The second method assumed that each
swarm member had the same mean velocity and tracks each
member target within the same consolidated swarm state
vector. The second methodology took advantage of state
correlation between each member target of the swarm.

The performance of both the separate target tracking and
consolidated swarm tracking methodologies were evaluated
via Monte Carlo simulation. The consolidated swarm track-
ing methodology outperformed the separate track methodol-
ogy across a range of SNR and swarm sizes. When target
swarms were large, the separate target tracking method ex-
hibited signs of target saturation and resource overloading,
while the consolidated swarm tracking method maintained up
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to 34% lower composite swarm tracking error in high SNR
conditions.

Overall, AB-CRr presents a promising approach to im-
proving beamsteering resource efficiency in the presence of
large swarm targets. An AB-CRr framework tailored to ro-
bust tracking of a large number of swarm targets is presented
in this work, employing a parameterized uncertainty func-
tion, swarm target feedback to the beamsteering uncertainty
model, and a consolidated swarm state vector approach to
Kalman filter target tracking.
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