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A B S T R A C T

In comparison to the conventional approach of using Cartesian coordinates to describe spacecraft relative
motion, the relative orbit description using Keplerian orbital elements provides a better visualization of the
relative motion due to the benefit of having only one term (anomaly) that changes with time out of the six
orbital elements leading to the reduction of the number of terms to be tracked from six, as in the case of
Hill coordinates, to one. In this paper, under certain assumptions and transformations, the spacecraft relative
equations of motion, in terms of orbital element differences, is approximated into the nonlinear first kind
Abel-type and Riccati-type differential equations. Furthermore, we present methodologies for the formulation
of the close form analytical solutions of the approximated equations. As shown by the numerical simulations,
the closed form solutions and the nonlinear equations are in conformity with Riccati-type equations having
higher errors than the Abel-type equations. This shows that the Abel-type equation, a third order polynomial,
approximated the relative motion better than the Riccati-type equation, a second order polynomial. The
resulting new analytical solutions gave better insight into the relative motion dynamics and can be used for
the analysis of spacecraft formation flying, proximity and rendezvous operations.
1. Introduction

Over many decades, the linearized time-invariant Hill–Clohessy–
Wiltshire (HCW) [1,2] equations have been used to describe relative
motion of deputy spacecraft with respect to the chief spacecraft in cir-
cular orbit. Examples of the usage of this model in spacecraft formation
flying, proximity and rendezvous operations can be found in [3–11].
Similarly, the linearized Tschauner–Hempel [12–14] equations are used
to describe the motion with chief in elliptical orbit. The equations were
derived with the assumptions that the spacecraft are in close proximity,
the Earth is spherical and by neglecting the nonlinear terms. The
Hill frame coordinates have the disadvantages that their differential
equations must be solved before the relative orbit geometry can be
obtained and the HCW equations are initial condition dependent valid
only if the relative orbit dimension is small in comparison to the chief
orbit radius. Unlike in the case of Hill frame coordinates, using orbit
element differences offers the advantage of better visualization of the
relative orbit and slow variation because only one parameter (anomaly)
has to be tracked instead of tracking six parameters of position and
velocity.

✩ This paper is the results of the Ph.D. dissertation undertaken at Auburn University, Aabama, USA. It is also an improved version of the conference paper
AAS 17-791 presented at the 2017 AAS/AIAA Astrodynamics Specialist Conference.
∗ Corresponding author.

Recently, due to the benefits offered by using orbital elements to
describe the relative motion dynamics over the conventional approach
of using Cartesian coordinates of the Hill frame, researchers have
published several papers to show its effectiveness and simplicity [2,15–
18]. The convenience of using orbit element differences to describe and
control the desired relative orbit geometry is demonstrated in many
papers. A direct linear mapping between the local Cartesian coordinates
and the corresponding orbit element differences is given in [16]. The
mapping was used in the construction of a hybrid continuous feedback
control law. Schaub and Alfriend presented a method to establish J2
invariant relative orbits for spacecraft formation flying applications.
The desired relative orbit geometry is designed using differences in
mean orbit elements [19]. An algorithm for relating the orbital element
changes to the relative motion variables was developed by [15]. This
algorithm is used in the development of a state transition matrix that
includes the effects of the chief satellite orbit eccentricity and the
gravitational perturbations. The state transition matrix was developed
by considering the geometry of the problem, not by solving the dif-
ferential equations. In 2017, a portion of this paper was presented at
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the AAS/AIAA Astrodynamics Specialist Conference which took place
in Stevenson [18].

The equation of motion of the orbital element differences is nonlin-
ear in the variation of the true of latitude rate. The evolution nonlinear
equation can be approximated into second, third and higher orders.
The third order corresponds to the Abel-type equation while the second
order corresponds to the Riccati type equation. Over several decades,
researchers have published books and presented papers on the methods
for the solution of Abel and Riccati equations under certain conditions
and assumptions [20–28]. The book by [21] contains several methods
which can be applied to certain Abel and Riccati equations.

In this paper, we present the construction and closed form analytical
solutions of first kind nonlinear Abel-type and Riccati-type spacecraft
relative equations of motion from the original nonlinear equation of the
variation of the true of latitude. Also, two models of third-order (cor-
responding to Abel-type equation) and second-order (corresponding to
the Riccati-type equation) nonlinear differential equations describing
the relative motion dynamics are developed. Using well known tech-
niques and methods, we developed analytical solutions of the Abel-type
and Riccati-type spacecraft nonlinear equations of motion of the first
kind. To the best knowledge of the authors, this is the first time that this
approach is applied to solve spacecraft relative motion. The significant
contributions of this work are that new and improved models of the rel-
ative motion, in terms of the orbital element differences, are developed
and their corresponding closed form solutions are also obtained.

The paper is organized as follows. In Section 2, the review of nonlin-
ear spacecraft relative motion in terms of orbital element differences,
nonlinear Abel-type and Riccati-type first order differential equations
are presented. Two models of orbital element differences approximated
into cubic polynomial form (Abel-type) and quadratic polynomial form
(Riccati-type) are derived in Section 3. Sections 4 and 5 gave the detail
on the development of close form solutions of the Abel-type and Riccati
type nonlinear spacecraft relative equations of motion. In Section 6, the
nonlinear and approximated equations are compared numerically. The
conclusion is given in Section 7.

2. Nonlinear spacecraft relative motion in terms of orbital-
element differences

Recently, to gain a better insight into the relative motion dynamics
attention is shifted to the use of orbital element differences. Using Hill
coordinate frames the relative orbit is determined with the Cartesian
coordinates

𝐗 =
[

𝑥 𝑦 𝑧 𝑥̇ 𝑦̇ 𝑧̇
]𝑇 (1)

where 𝑥, 𝑦, 𝑧 and 𝑥̇, 𝑦̇, 𝑧̇ are the position and velocity components. All
the six variables, which vary with time per the Hill–Clohessy–Wiltshire
(HCW) second order differential equations that govern relative mo-
tion [2], must be determined to be able to track where the deputy
spacecraft would be at a point in time. Rather than tracking all six
variables continuously the dynamics is simplified by astrodynamics
using Keplerian elements. This has advantage of having five constant
orbital elements and one time-varying. Therefore, only one term (true
anomaly) which is time varying must be tracked over time. The orbit
description is simplified using orbit elements which vary slowly with
the presence of perturbation forces such as third body perturbation,
atmospheric and solar drag. The dynamics of the relative motion can
also be described using the following six orbital element set

𝐞 =
[

𝑎 𝜃 𝑖 𝑞1 𝑞2 𝛺
]𝑇 (2)

where, 𝑎 is the semi-major axis, 𝑒 is the eccentricity, 𝑖 is the inclination,
is the longitude of the ascending node, 𝜔 is the argument of periapse,

nd 𝜃 = 𝜔 + 𝑓 is the true latitude, 𝑞1 = 𝑒 cos𝜔 and 𝑞2 = 𝑒 sin𝜔. The
elative motion between the deputy and chief can be represented using
he orbit element different vector as

[ ]𝑇
734

𝐞 = 𝐞𝑑 − 𝐞𝑐 = 𝛿𝑎 𝛿𝜃 𝛿𝑖 𝛿𝑞1 𝛿𝑞2 𝛿𝛺 (3)
ere, 𝐞𝑑 and 𝐞𝑐 are the deputy and chief spacecraft orbit element
ector. Taking the orbital element set in Eq. (2) as the chief spacecraft
lements then the deputy spacecraft elements are 𝑎 + 𝛿𝑎, 𝜃 + 𝛿𝜃, 𝑖 + 𝛿𝑖,
1 + 𝛿𝑞1, 𝑞2 + 𝛿𝑞2, and 𝛺 + 𝛿𝛺. The linear mapping between the Hill
rame coordinates and the orbit element differences is presented in
efs. [2,15]. Using the orbit elements, the orbit radius can be expressed
s

=
𝑎
(

1 − 𝑞21 − 𝑞22
)

(

1 + 𝑞1 cos 𝜃 + 𝑞2 sin 𝜃
) (4)

with the variation

𝛿𝑟 = 𝑟
𝑎
𝛿𝑎 +

𝑉𝑟
𝑉𝑡

𝑟𝛿𝜃 − 𝑟
𝑝
(

2𝑎𝑞1 + 𝑟 cos 𝜃
)

𝛿𝑞1

− 𝑟
𝑝
(

2𝑎𝑞2 + 𝑟 sin 𝜃
)

𝛿𝑞2 (5)

The chief radial and transverse velocity components are defined by

𝑉𝑟 = 𝑟̇ = ℎ
𝑝

(

𝑞1 sin 𝜃 − 𝑞2 cos 𝜃
)

𝑉𝑡 = 𝑟𝜃̇ = ℎ
𝑝

(

1 + 𝑞1 cos 𝜃 + 𝑞2 sin 𝜃
) (6)

In terms of the orbit element differences [15,16], the Cartesian coordi-
nate relative position vector components are expressed as

𝑥 = 𝛿𝑟
𝑦 = 𝑟 (𝛿𝜃 + cos 𝑖𝛿𝛺)
= 𝑟 (sin 𝜃𝛿𝑖 − cos 𝜃𝑠𝑖𝑛𝑖𝛿𝛺)

(7)

hile the relative velocity components are expressed as

̇ = −
𝑉𝑟
2𝑎

𝛿𝑎 +
(

1
𝑟
− 1

𝑝

)

ℎ𝛿𝜃 +
(

𝑉𝑟𝑎𝑞1 + ℎ sin 𝜃
) 𝛿𝑞1

𝑝

+
(

𝑉𝑟𝑎𝑞2 − ℎ cos 𝜃
) 𝛿𝑞2

𝑝

𝑦̇ = −
3𝑉𝑡
2𝑎

𝛿𝑎 − 𝑉𝑟𝛿𝜃 +
(

3𝑉𝑡𝑎𝑞1 + 2ℎ cos 𝜃
) 𝛿𝑞1

𝑝
(8)

+
(

3𝑉𝑡𝑎𝑞2 + 2ℎ sin 𝜃
) 𝛿𝑞2

𝑝
+ 𝑉𝑟 cos 𝑖𝛿𝛺

𝑧̇ =
(

𝑉𝑡 cos 𝜃 + 𝑉𝑟 sin 𝜃
)

𝛿𝑖

+
(

𝑉𝑡 sin 𝜃 − 𝑉𝑟 cos 𝜃
)

𝑠𝑖𝑛𝑖𝛿𝛺

Since 𝛿𝜃 is the only time-varying parameter in Eq. (3) then the rate
of change of the orbit element differences vector, 𝛿𝐞, is

𝛿𝐞̇ =
[

0 𝛿𝜃̇ 0 0 0 0
]𝑇 (9)

This gives equations of relative motion of deputy with respect to the
chief in terms of the orbital element differences. The true latitude rate
𝜃̇, using the principle of the conservation of angular momentum ℎ can
be expressed as

𝜃̇ = ℎ
𝑟2

(10)

Using Eq. (4) and the fact that ℎ =
√

𝜇𝑝 then the difference between
the deputy and chief true latitude rate is

𝛿𝜃̇ =

⎛

⎜

⎜

⎜

⎜

⎝

√ 𝜇
[

(𝑎+𝛿𝑎)
{

1−(𝑞1+𝛿𝑞1)2−(𝑞2+𝛿𝑞2)2
}]3

{

1 +
(

𝑞1 + 𝛿𝑞1
)

cos (𝜃 + 𝛿𝜃)
+
(

𝑞2 + 𝛿𝑞2
)

sin (𝜃 + 𝛿𝜃)

}2

⎞

⎟

⎟

⎟

⎟

⎠

(11)

−
√

𝜇
{

𝑎
(

1 − 𝑞21 − 𝑞22
)}3

(

1 + 𝑞1 cos 𝜃 + 𝑞2 sin 𝜃
)2

Eq. (11) is the nonlinear equations of motion of the difference of
latitude rate as a function of 𝛿𝑎, 𝛿𝜃, 𝛿𝑞1 and 𝛿𝑞2. The variation of
Eq. (10) is

𝛿𝜃̇ = ℎ
𝑟2

(

𝛿𝑝
2𝑝

− 2 𝛿𝑟
𝑟

)

(12)

here,

𝑝 =
𝑝
𝛿𝑎 − 2𝑎

(

𝑞 𝛿𝑞 + 𝑞 𝛿𝑞
)

(13)

𝑎 1 1 2 2
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Using Eq. (12), Schaub and Junkins [2] approximated 𝛿𝜃̇ as a linear
expression of 𝛿𝐞 as

𝛿𝜃̇ = − 3ℎ
2𝑎𝑟2

𝛿𝑎 −
2ℎ𝑉𝑟
𝑟2𝑉𝑡

𝛿𝜃 +
(

3ℎ𝑎𝑞1
𝑝𝑟2

+ 2ℎ
𝑝𝑟

cos 𝜃
)

𝛿𝑞1

+
(

3ℎ𝑎𝑞2
𝑝𝑟2

+ 2ℎ
𝑝𝑟

sin 𝜃
)

𝛿𝑞2 (14)

or a better accuracy than the linear model in Eq. (14), the nonlinear
quation can be approximated into third order polynomial correspond-
ng to Abel-type first order equation. If the expansion is done to second
rder only we have a Riccati-type equation.

.1. Nonlinear Abel-type first-order differential equation

The nonlinear Abel-type first-order differential equation of first kind
s one of the most known nonlinear ODEs generally used to describe
ajority of mathematical physics and nonlinear mechanics dynamics
roblems [26,27,29,30]. It has the general form
′
𝑥 = 𝑓3(𝑥)𝑦3 + 𝑓2(𝑥)𝑦2 + 𝑓1(𝑥)𝑦 + 𝑓0(𝑥) (15)

Notation 𝑑()∕𝑑𝑥 = ()′𝑥 denotes total derivative. If 𝑓3(𝑥) = 0 one
obtains Riccati-type ODE, if 𝑓3(𝑥) = 𝑓2(𝑥) = 0 one obtains a first
order linear ODE, and if 𝑓3(𝑥) = 𝑓0(𝑥) = 0 one obtains Bernoulli
equation. Intensive investigations of Eq. (15) have been carried out
by researchers and these can be found in literatures and technical
publications [21,26,31–33]. In terms of known (tabulated) functions,
Eq. (15) does not admit general exact solutions. However, under certain
restrictions and assumptions that may impose both quantitative and
qualitative biases closed form analytical solutions can be obtained.
Applying the admissible functional transformations

𝜉 = ∫ 𝑓3𝐸2𝑑𝑥, 𝑢 =
(

𝑦 + 𝑓2
𝑓3

)

𝐸−1

= exp
[

∫
(

𝑓1 −
𝑓2
2

3𝑓3

)

𝑑𝑥
] (16)

o the general form (15) yields the canonical normal form
′
𝜉 = 𝑢3 +𝛷(𝜉) (17)

here,

(𝜉) = 1
𝑓3𝐸3

[

𝑓0 +
1
3

𝑑
𝑑𝑥

(

𝑓2
𝑓3

)

−
𝑓1𝑓2
3𝑓3

+
2𝑓 3

2

27𝑓 2
3

]

(18)

Solving Equation (15) an analytical solution is (Polyanin and Zaitsev
2002 [21])

𝑦(𝑥) = 𝐸
(

𝐶 − 2∫ 𝑓3𝐸
2𝑑𝑥

)−1∕2
−

𝑓2
3𝑓3

(19)

A two-dimensional dynamical system associated with Abel’s non-
linear equation was analyzed by [31]. Mak and Harko (2013) [34]
presented new method for generating a general solution of the non-
linear first kind Abel-type differential equation from a particular one.
Polyanin and Zaitsev (2002) [21], Mancas and Rosu (2013) [35] em-
phasized two connections between the dissipative nonlinear second
order differential equations and the Abel equations which in its first
kind form have only cubic and quadratic terms. They show how to
obtain Abel solutions directly from the factorization of second-order
nonlinear equations. Different types of Abel differential equations are
presented in the mathematical handbook of exact solutions for ordinary
differential [21].

2.2. Nonlinear Riccati-type first-order differential equation

In many areas of engineering and science, especially in control,
optimization and systems theory, the nonlinear Riccati-type equation
play a key role. The term ‘‘Riccati equation’’ refers to matrix equations
735
with an analogous quadratic term in both continuous and discrete-time
systems [36–39]. The general form of a first order Riccati ODE is
𝑑𝑦
𝑑𝑥

= 𝑓2(𝑥)𝑦2 + 𝑓1(𝑥)𝑦 + 𝑓0(𝑥) (20)

where, if 𝑓2(𝑥) = 0, one obtains a first order linear ODE, while if 𝑓0(𝑥) =
, one derives a first order Bernoulli equation. Riccati equation is one
f the most studied first order nonlinear differential equations that
rises in different fields of mathematics and physics [21–24,40] named
fter the Italian mathematician Jacopo Francesco Riccati (1724). It
as the form which can be considered as the lowest order nonlinear
pproximation to the derivative of a function in terms of the function
tself. For 𝑓2 ≡ 0, we obtain a linear equation and for 𝑓0 ≡ 0 we have
he Bernoulli equation [21].

Generally, it is well-known that only special cases can be treated
ecause solutions to the general Riccati equation are not available. To
ind the general solution one needs only a particular solution. Given

particular solution 𝑦𝑝 = 𝑦𝑝(𝑥) of the Riccati equation, the general
olution of the Riccati equation can be written as [21–23,40]

[

𝑓2(𝑥), 𝑓1(𝑥), 𝑦𝑝(𝑥)
]

= 𝑦𝑝(𝑥) +𝛷(𝑥)
[

𝐶 − ∫ 𝛷(𝑥)𝑓2(𝑥)𝑑𝑥
]−1

(21)

here C is an arbitrary constant of integration and

(𝑥) = exp
{

∫
[

2𝑓2(𝑥)𝑦𝑝(𝑥) + 𝑓1(𝑥)𝑦
]

𝑑𝑥
}

(22)

The particular solution of the Riccati equation satisfies
𝑑𝑦𝑝
𝑑𝑥

= 𝑓2(𝑥)𝑦2𝑝 + 𝑓1(𝑥)𝑦𝑝 + 𝑓0(𝑥) (23)

he substitution 𝑢(𝑥) = exp
(

− ∫ 𝑓2(𝑥)𝑦𝑑𝑥
)

reduces the general Riccati
quation to a second order linear equation

𝑑2𝑢
𝑑𝑥

−
[

1
𝑓2(𝑥)

𝑑𝑓2(𝑥)
𝑑𝑥

+ 𝑓1(𝑥)
]

𝑑𝑢
𝑑𝑥

+ 𝑓0(𝑥)𝑓2(𝑥) = 0 (24)

If a particular solution is not known and the coefficients of the
iccati equation satisfy the following specific condition

2(𝑥) + 𝑓1(𝑥) + 𝑓0(𝑥) = 0 (25)

he Riccati equation will have the solution

=
𝐾 + ∫

[

𝑓2(𝑥) − 𝑓0(𝑥)
]

𝐸(𝑥)𝑑𝑥 − 𝐸(𝑥)

𝐾 + ∫
[

𝑓2(𝑥) + 𝑓0(𝑥)
]

𝐸(𝑥)𝑑𝑥 + 𝐸(𝑥)
(26)

here 𝐾 is an arbitrary constant of integration. If 𝑓2(𝑥) ≡ 1, and the
unctions 𝑓1(𝑥) and 𝑓0(𝑥) are polynomials satisfying the condition [21,
3]

= 𝑓 2
1 (𝑥) − 2

𝑑𝑓1(𝑥)
𝑑𝑥

− 4𝑓0(𝑥) ≡ constant (27)

then

𝑦±(𝑥) = −1
2

[

𝑓1(𝑥) ±
√

𝛥
]

(28)

are both solutions of the Riccati Eq. (15).

3. Approximation of orbital-element differences equations of mo-
tion

In this section, two approximation models of the nonlinear equation
of motion of orbital element differences are presented.

3.1. Construction of Abel-type nonlinear relative motion

Here, the construction of Abel-type equations is done by approxi-
mating the nonlinear equation of motion as a third-order function of
four parameters and one parameter respectively [41].
(a) Approximation as a Third-Order Function of Four Parameters

In the development of the first model of Abel-type relative equations
of motion it is assumed that, in Eq. (11), 𝛿𝜃̇ is a nonlinear function of all
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the four parameters 𝛿𝑎, 𝛿𝜃, 𝛿𝑞1 and 𝛿𝑞2 using Taylor series expansion.
sing the mean motion 𝑛 =

√

𝜇∕𝑎3 it can be written as

𝛿𝜃̇ = 𝑛
(

1 + 𝛿𝑎
𝑎

)−3∕2
𝑓
(

𝛿𝑞1, 𝛿𝑞2, 𝛿𝜃
)

𝑛
(

1 + 𝑞1 cos 𝜃 + 𝑞2 sin 𝜃
)2(1 − 𝑞21 − 𝑞22

)−3∕2
(29)

here,

(

𝛿𝑞1, 𝛿𝑞2, 𝛿𝜃
)

=

⎡

⎢

⎢

⎢

⎣

(

1 +
(

𝑞1 + 𝛿𝑞1
)

cos (𝜃 + 𝛿𝜃)
+
(

𝑞2 + 𝛿𝑞2
)

sin (𝜃 + 𝛿𝜃)

)2

(

1 −
(

𝑞1 + 𝛿𝑞1
)2 −

(

𝑞2 + 𝛿𝑞2
)2
)−3∕2

⎤

⎥

⎥

⎥

⎦

(30)

sing Binomial series expansion we have

1 + 𝛿𝑎
𝑎

)−3∕2
= 1 − 3

2𝑎
(𝛿𝑎) + 15

8𝑎2
(𝛿𝑎)2 − 35

16𝑎3
(𝛿𝑎)3... (31)

Applying Taylor series at the origin (0, 0, 0) to 𝑓
(

𝛿𝑞1, 𝛿𝑞2, 𝛿𝜃
)

and
substituting the result and Eq. (31) into Eq. (29) yields a special type
of Abel-type equation of first kind as

𝛿𝜃̇ = 𝑝3(𝜃)(𝛿𝜃)3 + 𝑝2(𝜃)(𝛿𝜃)2 + 𝑝1(𝜃)𝛿𝜃 + 𝑝0(𝜃) (32)

Eq. (32) is the first model of the third-order approximation of the rate of
change of the true-anomaly. The expressions for 𝑝3(𝜃), 𝑝2(𝜃), 𝑝1(𝜃), 𝑝0(𝜃)
are provided in Appendix A.
(b) Approximation as a Third-Order Function of One Parameter

Here, 𝛿𝜃̇ is approximated as a third order function of only one
time-varying parameter, true of latitude difference. The other three
parameters, 𝛿𝑎, 𝛿𝑞1, 𝛿𝑞2, are constants. Using series expansion technique
and eliminating higher order terms above the cubic, we have the
following trigonometric functions

cos (𝜃 + 𝛿𝜃) ≈ 1
6
sin 𝜃(𝛿𝜃)3 − 1

2
cos 𝜃(𝛿𝜃)2

− sin 𝜃𝛿𝜃 + cos 𝜃

sin (𝜃 + 𝛿𝜃) ≈ −1
6
cos 𝜃(𝛿𝜃)3 − 1

2
sin 𝜃(𝛿𝜃)2

+ cos 𝜃𝛿𝜃 + sin 𝜃 (33)

cos 2 (𝜃 + 𝛿𝜃) ≈ 4
3
sin 2𝜃(𝛿𝜃)3 − 2 cos 2𝜃(𝛿𝜃)2

−2 sin 2𝜃 (𝛿𝜃) + cos 2𝜃

sin 2 (𝜃 + 𝛿𝜃) ≈ −4
3
cos 2𝜃(𝛿𝜃)3 − 2 sin 2𝜃(𝛿𝜃)2

+2 cos 2𝜃 (𝛿𝜃) + sin 2𝜃

Defining 𝑀𝐷 and 𝑀𝐶 as

𝑀𝐷 =
√ 𝜇

[

(𝑎+𝛿𝑎)
{

1−(𝑞1+𝛿𝑞1)2−(𝑞2+𝛿𝑞2)2
}]3

𝑀𝐶 =
√ 𝜇

{

𝑎
(

1−𝑞21−𝑞
2
2

)}3

(34)

nd using the identities in Eq. (33) simplifies Eq. (11) to the second
odel of special form of Abel-type equation of first kind as

𝜃̇ = 𝑘3(𝜃)(𝛿𝜃)3 + 𝑘2(𝜃)(𝛿𝜃)2 + 𝑘1(𝜃)𝛿𝜃 + 𝑘0(𝜃) (35)

he coefficients 𝑘3, 𝑘2 and 𝑘0 are shown in Appendix B.

.2. Construction of Riccati-type nonlinear relative motion

In a manner similar to the approach in Section 3.1, Riccati-type
rbital-element differences equations of motion are developed as func-
ions of all the four parameters 𝛿𝑎, 𝛿𝜃, 𝛿𝑞1 and 𝛿𝑞2 and as functions of
nly the parameter 𝛿𝜃. Using Taylor series expansion with (𝑥, 𝑦, 𝑧) =
𝛿𝑞1, 𝛿𝑞2, 𝛿𝜃

)

and
(

𝑥0, 𝑦0, 𝑧0
)

= (0, 0, 0), truncation after quadratic terms
gives the first model of a Riccati-type second-order approximation of
orbital element differences equations of motion as a function of all the
four parameters as

̇ 2
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𝛿𝜃 = 𝑠2(𝜃)(𝛿𝜃) + 𝑠1(𝜃)𝛿𝜃 + 𝑠0(𝜃) (36)
where,

𝑠0(𝜃) =
1
2 𝑛𝛿𝑞1𝛿𝑞2𝑓𝛿𝑞1𝛿𝑞2

|

|

|

(0,0,0)

+ 1
2 𝑛𝛿𝑞2𝛿𝑞1𝑓𝛿𝑞2𝛿𝑞1

|

|

|

(0,0,0)

− 3𝑛
2𝑎 𝛿𝑎𝛿𝑞1𝑓𝛿𝑞1

|

|

|

(0,0,0) −
3𝑛
2𝑎 𝛿𝑎𝛿𝑞2𝑓𝛿𝑞2

|

|

|

(0,0,0)

+ 15𝑛
8𝑎2 (𝛿𝑎)

2𝑓 |

|

|

(0,0,0) +
1
2 𝑛

(

𝛿𝑞1
)2𝑓𝛿𝑞1𝛿𝑞1

|

|

|

(0,0,0)

+ 1
2 𝑛

(

𝛿𝑞2
)2𝑓𝛿𝑞2𝛿𝑞2

|

|

|

(0,0,0)

− 3𝑛
2𝑎𝑓

|

|

|

(0,0,0) 𝛿𝑎 + 𝑛𝑓𝛿𝑞1
|

|

|

(0,0,0) 𝛿𝑞1

+𝑛𝑓𝛿𝑞2
|

|

|

(0,0,0) 𝛿𝑞2

𝑠1(𝜃) = 𝑛𝑓𝛿𝜃
|

|

|

(0,0,0) +
1
2 𝑛𝛿𝑞1𝑓𝛿𝑞1𝛿𝜃

|

|

|

(0,0,0)

+ 1
2 𝑛𝛿𝑞2𝑓𝛿𝑞2𝛿𝜃

|

|

|

(0,0,0) +
1
2 𝑛𝛿𝑞1𝑓𝛿𝜃𝛿𝑞1

|

|

|

(0,0,0)

+ 1
2 𝑛𝛿𝑞2𝑓𝛿𝜃𝛿𝑞2

|

|

|

(0,0,0) −
3𝑛
2𝑎 𝛿𝑎𝑓𝛿𝜃

|

|

|

(0,0,0)

𝑠2(𝜃) =
1
2 𝑛𝑓𝛿𝜃𝛿𝜃

|

|

|

(0,0,0)

(37)

From Eq. (35), the second model of the Riccati-type second order
approximation of orbital-element differences equations of motion as a
function of only one parameter is obtained, taking 𝑘3(𝜃) = 0, as

𝛿𝜃̇ = 𝑘2(𝜃)(𝛿𝜃)2 + 𝑘1(𝜃)𝛿𝜃 + 𝑘0(𝜃) (38)

his is made possible because the approximation is done with respect
o only one varying parameter.

.3. Construction of linearized relative motion

Using Taylor series expansion we have the first order approximation
f Eq. (29) as

𝜃̇ = −3𝑛
2𝑎

𝑓 |

|

|

(0,0,0) 𝛿𝑎 + 𝑛𝑓𝛿𝜃
|

|

|

(0,0,0) 𝛿𝜃

+ 𝑛𝑓𝛿𝑞1
|

|

|

(0,0,0) 𝛿𝑞1 + 𝑛𝑓𝛿𝑞2
|

|

|

(0,0,0) 𝛿𝑞2 (39)

his simplifies to

𝜃̇ = 𝑝11(𝜃)𝛿𝜃 + 𝑝10(𝜃) (40)

where,

𝑝10(𝜃) = − 3𝑛
2𝑎

⎧

⎪

⎨

⎪

⎩

(

1 + 𝑞1 cos 𝜃
+𝑞2 sin 𝜃

)2(
1 − 𝑞21
−𝑞22

)−3∕2⎫
⎪

⎬

⎪

⎭

𝛿𝑎

+𝑛

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 cos 𝜃

(

1 + 𝑞1 cos 𝜃
+𝑞2 sin 𝜃

)(

1 − 𝑞21
−𝑞22

)−3∕2

+3𝑞1

(

1 − 𝑞21
−𝑞22

)−5∕2(
1 + 𝑞1 cos 𝜃
+𝑞2 sin 𝜃

)2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝛿𝑞1

+𝑛

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 sin 𝜃

(

1 + 𝑞1 cos 𝜃
+𝑞2 sin 𝜃

)(

1 − 𝑞21
−𝑞22

)−3∕2

+3𝑞2

(

1 − 𝑞21
−𝑞22

)−5∕2(
1 + 𝑞1 cos 𝜃
+𝑞2 sin 𝜃

)2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝛿𝑞2

(41)

and

𝑝11(𝜃) = 2𝑛

⎧

⎪

⎪

⎨

⎪

⎪

(

−𝑞1 sin 𝜃
+𝑞2 cos 𝜃

)⎛

⎜

⎜

⎜

⎝

1
+𝑞1 cos 𝜃
+𝑞2 sin 𝜃

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
−𝑞21
−𝑞22

⎞

⎟

⎟

⎟

⎠

−3∕2⎫
⎪

⎪

⎬

⎪

⎪

(42)
⎩ ⎭
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Eq. (40) is the first model, linearized spacecraft relative equation of
motion and it has the same form as in the linear Equation (14).
Considering the first order approximation only, Eq. (35) becomes

𝛿𝜃̇ = 𝑘1(𝜃)𝛿𝜃 + 𝑘0(𝜃) (43)

Eq. (43) is the second model of linearized equation.

4. Closed form solution of Abel-type nonlinear relative motion

The development of general solutions of Abel-Type nonlinear rela-
tive equation of motion is carried out using approach in the Refs. [21,
34,42]. Substituting the transformation 𝛿𝜃 = 𝛿𝜃𝑝+𝑢(𝜃)𝐸(𝜃) into Eq. (32)
we have the form

𝑢′ = 𝐸2𝑝3
[

𝑢3 + 1
𝐸𝑝3

(

3𝑝3𝛿𝜃𝑝 + 𝑝2
)

𝑢2

+ 1
𝐸2𝑝3

{

3𝑝3
(

𝛿𝜃𝑝
)2 + 2𝑝2𝛿𝜃𝑝 + 𝑝1 −

𝐸′

𝐸

}

𝑢

+ 1
𝐸3𝑝3

{

𝑝0 − 𝛿𝜃′𝑝 + 𝑝3
(

𝛿𝜃𝑝
)3 + 𝑝2

(

𝛿𝜃𝑝
)2 + 𝑝1

(

𝛿𝜃𝑝
)

}]

(44)

where,

𝑢′ = 𝑑𝑢
𝑑𝜃

, 𝐸′ = 𝑑𝐸
𝑑𝜃

, 𝛿𝜃′𝑝 =
𝑑
(

𝛿𝜃𝑝
)

𝑑𝜃
(45)

t is assumed that the following is satisfied
1

𝐸𝑝3

(

3𝑝3𝛿𝜃𝑝 + 𝑝2
)

= 𝛽1(𝜃)
1

𝐸2𝑝3

{

3𝑝3
(

𝛿𝜃𝑝
)2 + 2𝑝2𝛿𝜃𝑝 + 𝑝1 −

𝐸′

𝐸

}

= 𝛽2(𝜃)

1
𝐸3𝑝3

{

𝑝0 − 𝛿𝜃′𝑝 + 𝑝3
(

𝛿𝜃𝑝
)3

+𝑝2
(

𝛿𝜃𝑝
)2 + 𝑝1

(

𝛿𝜃𝑝
)

}

= 𝛽3(𝜃)

(46)

Considering the case in which the system (46) satisfies 𝛽1(𝜃) = 𝛽2(𝜃) = 0
nd 𝛽3(𝜃) = 𝛷(𝜃) we have the corresponding system
1

𝐸𝑝3

(

3𝑝3𝛿𝜃𝑝 + 𝑝2
)

= 0
1

𝐸2𝑝3

{

3𝑝3
(

𝛿𝜃𝑝
)2 + 2𝑝2𝛿𝜃𝑝 + 𝑝1 −

𝐸′

𝐸

}

= 0

1
𝐸3𝑝3

{

𝑝0 − 𝛿𝜃′𝑝 + 𝑝3
(

𝛿𝜃𝑝
)3

+𝑝2
(

𝛿𝜃𝑝
)2 + 𝑝1

(

𝛿𝜃𝑝
)

}

= 𝛷(𝜃)

(47)

Solving for 𝛿𝜃𝑝 in the first part of Eq. (47) and substituting on the
second and third part of Eq. (47) the above system reduces to

𝛿𝜃𝑝 = − 𝑝2
3𝑝3

𝑝22
3𝑝3

+ 𝑝1 −
𝐸′

𝐸 = 0

1
𝐸3𝑝3

{

𝑝0 −
𝑝1𝑝2
3𝑝3

+
2𝑝32
3𝑝23

+ 1
3

(

𝑝2
𝑝3

)′
}

= 𝛷(𝜃)

(48)

rom second part of Eq. (48), 𝐸 is obtained as

(𝜃) = exp

[

∫

(

𝑝1 −
𝑝22
3𝑝3

)

𝜕𝜃

]

(49)

The condition 𝛽1(𝜃) = 𝛽2(𝜃) = 0 and 𝛽3(𝜃) = 𝛷(𝜃) reduces Eq. (44) to
the well-known canonical form of Abel equation of first kind

𝑢′𝜉 = 𝑢3(𝜉) +𝛷(𝜉), 𝜉 = ∫ 𝐸2𝑝3𝜕𝜃 (50)

Expressing the canonical form as

𝑢′𝜉 − 𝑢3(𝜉) − 𝜆𝑢3(𝜉) = −𝜆𝑢3(𝜉) +𝛷(𝜉) (51)

and imposing the right-hand side to be zero we have the system of
equations

𝑢′𝜉 − 𝑢3(𝜉) − 𝜆𝑢3(𝜉) = 0
−𝜆𝑢3(𝜉) +𝛷(𝜉) = 0

(52)

Eq. (52) has solution

𝑢(𝜉) = 1
√

, 𝛷(𝜉) = 𝜆
[

𝐶 − 2 ∫ (1 + 𝜆) 𝑑𝜉
]2∕3

(53)
737

𝐶 − 2 ∫ (1 + 𝜆) 𝑑𝜉
herefore, the general solution 𝛿𝜃 = 𝛿𝜃𝑝 + 𝑢(𝜃)𝐸(𝜃) can be written as

𝛿𝜃]Abel−Model1 =
𝐸(𝜃)

√

𝐶 − 2 ∫ (1 + 𝜆) 𝑑𝜉
−

𝑝2
3𝑝3

(54)

and

𝛷(𝜉) = 𝜆
[𝐶−2 ∫ (1+𝜆)𝑑𝜉]2∕3

= 1
𝐸3𝑝3

{

𝑝0 −
𝑝1𝑝2
3𝑝3

+
2𝑝32
3𝑝23

+ 1
3

𝑑
𝑑𝜃

(

𝑝2
𝑝3

)

} (55)

Two cases of analytic solutions considered are shown below:
(a) Case 1: 𝜆(𝜉) = 0

Taking 𝜆(𝜉) = 0 reduces Eq. (54) to

[𝛿𝜃]Abel−Model1 =
𝐸(𝜃)

√

𝐶 − 2 ∫ 𝑝3𝐸2(𝜃)𝑑𝜃
−

𝑝2
3𝑝3

(56)

b) Case 2: 𝜆(𝜉) = 𝜉
Taking 𝜆(𝜉) = 𝜉 reduces Eq. (54) to

[𝛿𝜃]Abel−Model1
= 𝐸(𝜃)

√

𝐶−2 ∫ 𝑝3𝐸2(𝜃)𝑑𝜃−
[

∫ 𝑝3𝐸2(𝜃)𝑑𝜃
]2

− 𝑝2
3𝑝3

(57)

Using integrating factor method, the linear equation in Eq. (40) has the
solution

[𝛿𝜃]Model1(linear) = 𝑒𝐺
(

𝑐1 + ∫ 𝑒−𝐺𝑝10(𝜃)𝑑𝜃
)

(58)

where 𝐺 = ∫ 𝑝11(𝜃)𝑑𝜃. Expanding the exponential functions in a series
ields

𝛿𝜃(𝜃)]Model1(linear) =

⎧

⎪

⎨

⎪

⎩

1 +
(

∫ 𝑝11(𝜃)𝑑𝜃
)

+ 1
2

(

∫ 𝑝11(𝜃)𝑑𝜃
)2

+ 1
6

(

∫ 𝑝11(𝜃)𝑑𝜃
)3 +⋯

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

𝑐1 + ∫
⎛

⎜

⎜

⎜

⎝

1 −
(

∫ 𝑝11(𝜃)𝑑𝜃
)

+ 1
2

(

∫ 𝑝11(𝜃)𝑑𝜃
)2

− 1
6

(

∫ 𝑝11(𝜃)𝑑𝜃
)3 +⋯

⎞

⎟

⎟

⎟

⎠

𝑝10(𝜃)𝑑𝜃

⎫

⎪

⎬

⎪

⎭

(59)

For the second Abel-Type equation model (35), using the same ap-
proach as above, substituting the transformation 𝛿𝜃 = 𝛿𝜃𝑝 + 𝑧(𝜃)𝑉 (𝜃)
we have the form

𝑧′ = 𝑉 2𝑘3
[

𝑧3 + 1
𝑉 𝑘3

(

3𝑘3𝛿𝜃𝑝 + 𝑘2
)

𝑧2

+ 1
𝑉 2𝑘3

{

3𝑘3
(

𝛿𝜃𝑝
)2 + 2𝑘2𝛿𝜃𝑝 + 𝑘1 −

𝑉 ′

𝑉

}

𝑧

+ 1
𝑉 3𝑘3

{

𝑘0 − 𝛿𝜃′𝑝 + 𝑘3
(

𝛿𝜃𝑝
)3 + 𝑘2

(

𝛿𝜃𝑝
)2 + 𝑘1

(

𝛿𝜃𝑝
)

}]

(60)

with the canonical form

𝑧′𝜉 = 𝑧3(𝜁 ) + 𝛹 (𝜁 ) (61)

where,

𝜁 = ∫ 𝑉 2𝑘3𝑑𝜃, 𝑉 (𝜃) = exp

[

∫

(

𝑘1 −
𝑘22
3𝑘3

)

𝑑𝜃

]

(62)

The canonical form can be written as

𝑧′𝜁 − 𝑧3(𝜁 ) − 𝜂𝑧3(𝜁 ) = −𝜂𝑧3(𝜁 ) + 𝛹 (𝜁 ) (63)

and imposing the right-hand side to be zero we have the system of
equations

𝑧′𝜁 − 𝑧3(𝜁 ) − 𝜂𝑧3(𝜁 ) = 0,−𝜂𝑧3(𝜁 ) + 𝛹 (𝜁 ) = 0 (64)

These equations have the solutions

𝑧(𝜁 ) = 1
√

, 𝛹 (𝜁 ) =
𝜂

[

𝐶 − 2 ∫ (1 + 𝜂) 𝑑𝜁
]2∕3

(65)

𝐶 − 2 ∫ (1 + 𝜂) 𝑑𝜁
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T

[

a
𝛹

=

T
(

[

(

[
=

Table 1
Chief and deputy spacecraft orbital elements for Cases A, B, C and D.

Case A Case B Case C Case D

Chief Deputy Chief Deputy Chief Deputy Chief Deputy

𝑎 (km) 7500 7500 7500 7510 9500 9500 10 500 10 500
𝑒 0 0.1 0 0.12 0.01 0.0309556 0.010105 0.10215
𝑖 (deg) 30 30.97 0 1.97 45 45.155 15 15.055
𝛺 (deg) 45 45.5097 75 75.98 30 30.5 10.002 10.005
𝜔 (deg) 60 60.5 30 30.5 275 275.55 5.05 5.105
𝑓 (deg) 0 0 0 0 320 320.5 0 0.005
Fig. 1. Case A trajectories.
S
s
[
𝐸

w
n

5
t

herefore, the general solution is

𝛿𝜃]Abel−Model2 =
𝑉 (𝜃)

√

𝐶 − 2 ∫ (1 + 𝜂) 𝜕𝜁
−

𝑘2
3𝑘3

(66)

nd
(𝜁 ) = 𝜂

[𝐶−2 ∫ (1+𝜂)𝜕𝜁]2∕3

1
𝑉 3𝑘3

{

𝑘0 −
𝑘1𝑘2
3𝑘3

+
2𝑘32
3𝑘23

+ 1
3

(

𝑘2
𝑘3

)′
} (67)

wo cases of analytic solutions considered are shown below:
a) Case 1: 𝜂(𝜁 ) = 0

Taking 𝜂(𝜁 ) = 0 reduces Eq. (66) to

𝛿𝜃]Abel−Model2 =
𝑉 (𝜃)

√

𝐶 − 2 ∫ 𝑘3𝑉 2(𝜃)𝑑𝜃
−

𝑘2
3𝑘3

(68)

b) Case 2: 𝜂(𝜁 ) = 𝜁
Taking 𝜂(𝜁 ) = 𝜁 reduces Eq. (66) to

𝛿𝜃]Abel−Model2
𝑉 (𝜃)

√

[ ]2
− 𝑘2

3𝑘
(69)
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𝐶−2 ∫ 𝑘3𝑉 2(𝜃)𝑑𝜃− ∫ 𝑘3𝑉 2(𝜃)𝑑𝜃 3 [
imilarly, using integrating factor method, the linear equation has the
olution
𝛿𝜃]Model2(linear) = 𝑒𝐸

(

𝑐2 + ∫ 𝑒−𝐸𝑘0(𝜃)𝑑𝜃
)

= ∫ 𝑘1(𝜃)𝑑𝜃
(70)

here, 𝑐2 is an arbitrary constant of integration. Expanding the expo-
ential functions in a series gives

[𝛿𝜃]Model2(linear)

=

{

1 +
(

∫ 𝑘1(𝜃)𝑑𝜃
)

+ 1
2

(

∫ 𝑘1(𝜃)𝑑𝜃
)2

+ 1
6

(

∫ 𝑘1(𝜃)𝑑𝜃
)3 +⋯

}

⎧

⎪

⎨

⎪

⎩

𝑐2 + ∫
⎛

⎜

⎜

⎜

⎝

1 −
(

∫ 𝑘1(𝜃)𝑑𝜃
)

+ 1
2

(

∫ 𝑘1(𝜃)𝑑𝜃
)2

− 1
6

(

∫ 𝑘1(𝜃)𝑑𝜃
)3 +⋯

⎞

⎟

⎟

⎟

⎠

𝑘0(𝜃)𝑑𝜃

⎫

⎪

⎬

⎪

⎭

(71)

. Closed form solution of Riccati-type nonlinear spacecraft rela-
ive equation of motion

The approach in Polyanin and Zaitsev [21], and Haaheim and Stein
40] is followed for the formulation of the general solution of the
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Riccati Equation. It is a well-known fact that once a particular solution
𝛿𝜃𝑝 = 𝛿𝜃𝑝(𝜃) of the Riccati equation (36) is known then the general
solution of the equation can be written as

𝛿𝜃 = 𝛿𝜃𝑝(𝜃) +
1

𝑧(𝜃)
(72)

Upon substitution of Eq. (72) into Eq. (36) we have linear differential
equation
𝑑𝑧
𝑑𝜃

+
{

𝑠1(𝜃) + 2𝑠2(𝜃)𝛿𝜃𝑝
}

𝑧 + 𝑠2(𝜃) = 0 (73)

with the solution

𝑧(𝜃) = 𝑧0𝑒
−𝛹 (𝜃) − 𝑒−𝛹 (𝜃)

∫

𝛿𝜃

𝛿𝜃0
𝑠2(𝜃)𝑒𝛹 (𝜃)𝑑𝜃 (74)

where

𝛹 (𝜃) = ∫

𝛿𝜃

𝛿𝜃0

[

𝑠1(𝜃) + 2𝑠2(𝜃)𝛿𝜃𝑝
]

𝑑𝜃, 𝑧0 =
1

𝛿𝜃0 − 𝛿𝜃𝑠0
(75)

Therefore, the general solution can be expressed as

𝛿𝜃
(

𝑠2(𝜃), 𝑠1(𝜃), 𝛿𝜃𝑝
)

Riccati−Model1

= 𝛿𝜃𝑝 + 𝑒𝛹 (𝜃)
[

1
𝛿𝜃0−𝛿𝜃𝑠0

− ∫ 𝛿𝜃
𝛿𝜃0

𝑒𝛹 (𝜃)𝑠2(𝜃)𝑑𝜃
]−1 (76)

Expanding the general solutions in a series gives

𝛿𝜃
(

𝑠2(𝜃), 𝑠1(𝜃), 𝛿𝜃𝑝
)

Riccati−Model1 = 𝛿𝜃𝑝

+𝑒𝛹 (𝜃)
(

𝛿𝜃0 − 𝛿𝜃𝑝0
) [

1 +
(

𝛿𝜃0 − 𝛿𝜃𝑝0
)

∫ 𝛿𝜃
𝛿𝜃0

𝑒𝛹 (𝜃)𝑠2(𝜃)𝜕𝜃

+
(

𝛿𝜃0 − 𝛿𝜃𝑝0
)2(

∫ 𝛿𝜃
𝛿𝜃0

𝑒𝛹 (𝜃)𝑠2(𝜃)𝜕𝜃
)2

+
(

𝛿𝜃0 − 𝛿𝜃𝑝
)3(

∫ 𝛿𝜃 𝑒𝛹 (𝜃)𝑠2(𝜃)𝜕𝜃
)3

+⋯
]

(77)
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0 𝛿𝜃0
where

𝑒𝛹 (𝜃) = 1 + 𝛹 (𝜃) +
𝛹 (𝜃)2

2
+

𝛹 (𝜃)3

6
+⋯ (78)

The general solution of the model 2 of Riccati equation in Eq. (38) is
found in a similar manner to the approach in Model 1. Let the general
solution be represented as

𝛿𝜃 = 𝛿𝜃𝑝(𝜃) +
1

𝑤(𝜃)
(79)

Substituting Eq. (79) into Eq. (38) gives differential equation

𝑑𝑤
𝑑𝜃

+
{

𝑘1(𝜃) + 2𝑘2(𝜃)𝛿𝜃𝑝
}

𝑤 + 𝑘2(𝜃) = 0 (80)

Eq. (80) has the solution

𝑤(𝜃) = 𝑤0𝑒
−𝛽(𝜃) − 𝑒−𝛽(𝜃) ∫

𝛿𝜃

𝛿𝜃0
𝑘2(𝜃)𝑒𝛽(𝜃)𝑑𝜃 (81)

where

𝛽(𝜃) = ∫

𝛿𝜃

𝛿𝜃0

[

𝑘1(𝜃) + 2𝑘2(𝜃)𝛿𝜃𝑝
]

𝑑𝜃,𝑤0 =
1

𝛿𝜃0 − 𝛿𝜃𝑝0
(82)

Therefore, the general solution can be expressed as

𝛿𝜃
(

𝑘2(𝜃), 𝑘1(𝜃), 𝛿𝜃𝑝
)

Model2(Riccati)

= 𝛿𝜃𝑝 + 𝑒𝛽(𝜃)
[

1 − ∫ 𝛿𝜃 𝑒𝛽(𝜃)𝑘2(𝜃)𝑑𝜃
]−1 (83)
𝛿𝜃0−𝛿𝜃𝑝0
𝛿𝜃0
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Fig. 3. Case C trajectories.
In series form, Eq. (83) becomes

𝛿𝜃
(

𝑘2(𝜃), 𝑘1(𝜃), 𝛿𝜃𝑝
)

Model2(Riccati) = 𝛿𝜃𝑝

+𝑒𝛽(𝜃)
(

𝛿𝜃0 − 𝛿𝜃𝑝0
) [

1 +
(

𝛿𝜃0 − 𝛿𝜃𝑝0
)

∫ 𝛿𝜃
𝛿𝜃0

𝑒𝛽(𝜃)𝑘2(𝜃)𝑑𝜃

+
(

𝛿𝜃0 − 𝛿𝜃𝑝0
)2(

∫ 𝛿𝜃
𝛿𝜃0

𝑒𝛽(𝜃)𝑘2(𝜃)𝑑𝜃
)2

+
(

𝛿𝜃0 − 𝛿𝜃𝑝0
)3(

∫ 𝛿𝜃
𝛿𝜃0

𝑒𝛽(𝜃)𝑘2(𝜃)𝑑𝜃
)3

+⋯
]

(84)

where,

𝑒𝛽(𝜃) = 1 + 𝛽(𝜃) +
𝛽(𝜃)2

2
+

𝛽(𝜃)3

6
+⋯ (85)

6. Numerical simulations

The nonlinear, Abel-type, Riccati-type and linear models of space-
craft relative motion are compared numerically using four different
cases A, B, C and D shown in Table 1. The orbital elements semi-
major axis, 𝑎, eccentricity, 𝑒, inclination, 𝑖, right ascension of ascending
node, 𝛺, argument of perigee, 𝜔 and true anomaly, 𝑓 of the Chief and
Deputy spacecraft are shown in the table. For the (𝑥, 𝑦, 𝑧) plots the linear
mapping between Hill frame coordinates and orbit element differences
given by Schaub and Junkins [2]

𝐗 = [𝐀 (𝐞)] 𝛿𝐞 (86)

was used.
Cases A and B show special scenario where chief spacecraft is

positioned in the circular orbit with zero eccentricity. Cases C and D
show a scenario where chief is positioned in elliptical orbit. In the plots,
the linear model 1 which corresponds to the Schaub and Junkins [2]
derivation is referred to as Schaub–Junkins model. As shown in all the
740
Cases, the Abel-type model gave the best representation of the relative
motion based on the fact that it has more terms than both the Riccati
and linear model. The Schaub–Junkins model has the largest error than
all the other models. This can be attributed to the presence of more
constant terms which led to the drifting of the motion (see Figs. 1–4).

7. Conclusion

This paper has shown two approximated models of Abel-type (third-
order polynomial) and Riccati-type (second-order polynomial) space-
craft equations of relative motion. Also, using standard transformation
techniques, we developed closed form solutions of the models using
well-known approaches of finding the solution of Abel and Riccati
equations. Using both Models the relative motion of the deputy space-
craft with respect to the chief spacecraft are described for both elliptical
and circular chief orbits. The models, which have only true-of latitude
as time-varying, captured the dynamics better than using position and
velocity in which all the six parameters vary with time. These Models
can be used for spacecraft control, analysis and maneuver planning.
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Fig. 4. Case D trajectories.
Appendix A. Coefficients of first model of Abel-type equation

The coefficients of first model of Abel-type equation are

𝑝0(𝜃) = − 3𝑛
2𝑎 𝛿𝑎𝛿𝑞1𝑓𝛿𝑞1

|

|

|

(0,0,0) −
3𝑛
2𝑎 𝛿𝑎𝛿𝑞2𝑓𝛿𝑞2

|

|

|

(0,0,0)

+ 𝑛
2 𝛿𝑞1𝛿𝑞2𝑓𝛿𝑞1𝛿𝑞2

|

|

|

(0,0,0) +
𝑛
2 𝛿𝑞2𝛿𝑞1𝑓𝛿𝑞2𝛿𝑞1

|

|

|

(0,0,0)

+ 15𝑛
8𝑎2 (𝛿𝑎)

2𝑓 |

|

|

(0,0,0) +
𝑛
2

(

𝛿𝑞1
)2𝑓𝛿𝑞1𝛿𝑞1

|

|

|

(0,0,0)

+ 𝑛
2

(

𝛿𝑞2
)2𝑓𝛿𝑞2𝛿𝑞2

|

|

|

(0,0,0) −
3𝑛
4𝑎 𝛿𝑎

(

𝛿𝑞1
)2𝑓𝛿𝑞1𝛿𝑞1

|

|

|

(0,0,0)

− 3𝑛
4𝑎 𝛿𝑎𝛿𝑞1𝛿𝑞2𝑓𝛿𝑞1𝛿𝑞2

|

|

|

(0,0,0) −
3𝑛
4𝑎 𝛿𝑎𝛿𝑞2𝛿𝑞1𝑓𝛿𝑞2𝛿𝑞1

|

|

|

(0,0,0)

− 3𝑛
4𝑎 𝛿𝑎

(

𝛿𝑞2
)2𝑓𝛿𝑞2𝛿𝑞2

|

|

|

(0,0,0) +
15𝑛
8𝑎2 (𝛿𝑎)

2𝛿𝑞1𝑓𝛿𝑞1
|

|

|

(0,0,0)

+ 15𝑛
8𝑎2 (𝛿𝑎)

2𝛿𝑞2𝑓𝛿𝑞2
|

|

|

(0,0,0) −
35𝑛
16𝑎3 (𝛿𝑎)

3𝑓 |

|

|

(0,0,0)

+ 𝑛
6

{

(

𝛿𝑞1
)3𝑓𝛿𝑞1𝛿𝑞1𝛿𝑞1

|

|

|

(0,0,0)

+
(

𝛿𝑞1
)2 (𝛿𝑞2

)

𝑓𝛿𝑞1𝛿𝑞1𝛿𝑞2
|

|

|

(0,0,0)

+
(

𝛿𝑞1
)2 (𝛿𝑞2

)

𝑓𝛿𝑞1𝛿𝑞2𝛿𝑞1
|

|

|

(0,0,0)

+
(

𝛿𝑞1
) (

𝛿𝑞2
)2𝑓𝛿𝑞1𝛿𝑞2𝛿𝑞2

|

|

|

(0,0,0)

+
(

𝛿𝑞2
) (

𝛿𝑞1
)2𝑓𝛿𝑞2𝛿𝑞1𝛿𝑞1

|

|

|

(0,0,0)

+
(

𝛿𝑞2
)2 (𝛿𝑞1

)

𝑓𝛿𝑞2𝛿𝑞1𝛿𝑞2
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)2 (𝛿𝑞1

)

𝑓𝛿𝑞2𝛿𝑞2𝛿𝑞1
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)3𝑓𝛿𝑞2𝛿𝑞2𝛿𝑞2

|

|

|

(0,0,0)

}

3𝑛 | | |

(87)
741

− 2𝑎𝑓 |

|

(0,0,0)𝛿𝑎 + 𝑛𝑓𝛿𝑞1 |
|

(0,0,0) 𝛿𝑞1 + 𝑛𝑓𝛿𝑞2 |
|

(0,0,0) 𝛿𝑞2
𝑝1(𝜃) = 𝑛𝑓𝛿𝜃
|

|

|

(0,0,0) −
3𝑛
2𝑎 𝛿𝑎𝑓𝛿𝜃

|

|

|

(0,0,0) +
𝑛
2 𝛿𝑞1𝑓𝛿𝑞1𝛿𝜃

|

|

|

(0,0,0)

+ 𝑛
2 𝛿𝑞1𝑓𝛿𝜃𝛿𝑞1

|

|

|

(0,0,0) +
𝑛
2 𝛿𝑞2𝑓𝛿𝑞2𝛿𝜃

|

|

|

(0,0,0)

+ 𝑛
2 𝛿𝑞2𝑓𝛿𝜃𝛿𝑞2

|

|

|

(0,0,0) −
3𝑛
4𝑎 𝛿𝑎𝛿𝑞1𝑓𝛿𝑞1𝛿𝜃

|

|

|

(0,0,0)

− 3𝑛
4𝑎 𝛿𝑎𝛿𝑞2𝑓𝛿𝑞2𝛿𝜃

|

|

|

(0,0,0) −
3𝑛
4𝑎 𝛿𝑎𝛿𝑞1𝑓𝛿𝜃𝛿𝑞1

|

|

|

(0,0,0)

− 3𝑛
4𝑎 𝛿𝑎𝛿𝑞2𝑓𝛿𝜃𝛿𝑞2

|

|

|

(0,0,0) +
15𝑛
8𝑎2 (𝛿𝑎)

2𝑓𝛿𝜃
|

|

|

(0,0,0)

+
(

𝛿𝑞1
)2𝑓𝛿𝑞1𝛿𝑞1𝛿𝜃

|

|

|

(0,0,0) +
(

𝛿𝑞1
) (

𝛿𝑞2
)

𝑓𝛿𝑞1𝛿𝑞2𝛿𝜃
|

|

|

(0,0,0)

+
(

𝛿𝑞1
)2𝑓𝛿𝑞1𝛿𝜃𝛿𝑞1

|

|

|

(0,0,0) +
(

𝛿𝑞1
) (

𝛿𝑞2
)

𝑓𝛿𝑞1𝛿𝜃𝛿𝑞2
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)2𝑓𝛿𝑞2𝛿𝑞2𝛿𝜃

|

|

|

(0,0,0) +
(

𝛿𝑞2
) (

𝛿𝑞1
)

𝑓𝛿𝑞2𝛿𝜃𝛿𝑞1
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)2𝑓𝛿𝑞2𝛿𝜃𝛿𝑞2

|

|

|

(0,0,0) +
(

𝛿𝑞1
)2𝑓𝛿𝜃𝛿𝑞1𝛿𝑞1

|

|

|

(0,0,0)

+
(

𝛿𝑞1
) (

𝛿𝑞2
)

𝑓𝛿𝜃𝛿𝑞1𝛿𝑞2
|

|

|

(0,0,0) +
(

𝛿𝑞2
) (

𝛿𝑞1
)

𝑓𝛿𝜃𝛿𝑞2𝛿𝑞1
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)2𝑓𝛿𝜃𝛿𝑞2𝛿𝑞2

|

|

|

(0,0,0) +
(

𝛿𝑞2
) (

𝛿𝑞1
)

𝑓𝛿𝑞2𝛿𝑞1𝛿𝜃
|

|

|

(0,0,0)
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𝑝2(𝜃) =
𝑛
2𝑓𝛿𝜃𝛿𝜃

|

|

|

(0,0,0) −
3𝑛
4𝑎 𝛿𝑎𝑓𝛿𝜃𝛿𝜃

|

|

|

(0,0,0)

+ 𝑛
6

{

(

𝛿𝑞1
)

𝑓𝛿𝑞1𝛿𝜃𝛿𝜃
|

|

|

(0,0,0) +
(

𝛿𝑞2
)

𝑓𝛿𝑞2𝛿𝜃𝛿𝜃
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)

𝑓𝛿𝜃𝛿𝑞2𝛿𝜃
|

|

|

(0,0,0) +
(

𝛿𝑞1
)

𝑓𝛿𝜃𝛿𝑞1𝛿𝜃
|

|

|

(0,0,0)

+
(

𝛿𝑞2
)

𝑓𝛿𝜃𝛿𝜃𝛿𝑞2
|

|

|

(0,0,0) +
(

𝛿𝑞1
)

𝑓𝛿𝜃𝛿𝜃𝛿𝑞1
|

|

|

(0,0,0)

}

𝑝3(𝜃) = 𝑓𝛿𝜃𝛿𝜃𝛿𝜃
|

|

|

(0,0,0)

(89)



Acta Astronautica 178 (2021) 733–742A.D. Ogundele et al.
Appendix B. Coefficients of second model of Abel-type equation

𝑘0(𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝐷

(

1 + 1
2

(

𝑞1 + 𝛿𝑞1
)2 + 1

2

(

𝑞2 + 𝛿𝑞2
)2
)

−𝑀𝐶

(

1 + 1
2 𝑞

2
1 +

1
2 𝑞

2
2

)

+

⎧

⎪

⎨

⎪

⎩

1
2𝑀𝐷

(

(

𝑞1 + 𝛿𝑞1
)2 −

(

𝑞2 + 𝛿𝑞2
)2
)

−𝑀𝐶

(

1
2 𝑞

2
1 −

1
2 𝑞

2
2

)

⎫

⎪

⎬

⎪

⎭

cos 2𝜃

+
{

𝑀𝐷
(

𝑞1 + 𝛿𝑞1
) (

𝑞2 + 𝛿𝑞2
)

−𝑀𝐶𝑞1𝑞2
}

sin 2𝜃

+
{

2𝑀𝐷
(

𝑞1 + 𝛿𝑞1
)

− 2𝑀𝐶𝑞1
}

cos 𝜃

+
{

2𝑀𝐷
(

𝑞2 + 𝛿𝑞2
)

− 2𝑀𝐶𝑞2
}

sin 𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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and

𝑘1(𝜃) = 𝑀𝐷

⎧

⎪

⎨

⎪

⎩

2
(

𝑞1 + 𝛿𝑞1
) (

𝑞2 + 𝛿𝑞2
)

cos 2𝜃
+
(

−
(

𝑞1 + 𝛿𝑞1
)2 +

(

𝑞2 + 𝛿𝑞2
)2
)

sin 2𝜃
+2

(

𝑞2 + 𝛿𝑞2
)

cos 𝜃 − 2
(

𝑞1 + 𝛿𝑞1
)

sin 𝜃

⎫

⎪

⎬

⎪

⎭

𝑘2(𝜃) = 𝑀𝐷

⎧

⎪

⎨

⎪

⎩

(

−
(

𝑞1 + 𝛿𝑞1
)2 +

(

𝑞2 + 𝛿𝑞2
)2
)

cos 2𝜃
−2

(

𝑞1 + 𝛿𝑞1
) (

𝑞2 + 𝛿𝑞2
)

sin 2𝜃
−
(

𝑞1 + 𝛿𝑞1
)

cos 𝜃 −
(

𝑞2 + 𝛿𝑞2
)

sin 𝜃

⎫

⎪

⎬

⎪

⎭

𝑘3(𝜃) =
1
3𝑀𝐷

⎧

⎪

⎨

⎪

⎩

−4
(

𝑞1 + 𝛿𝑞1
) (

𝑞2 + 𝛿𝑞2
)

cos 2𝜃
+2

(

(

𝑞1 + 𝛿𝑞1
)2 −

(

𝑞2 + 𝛿𝑞2
)2
)

sin 2𝜃

−
(

𝑞2 + 𝛿𝑞2
)

cos 𝜃 +
(

𝑞1 + 𝛿𝑞1
)

sin 𝜃

⎫

⎪

⎬

⎪

⎭
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