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ABSTRACT 

 The objective of this study is to design a field-programmable gate array (FPGA) 

implementation of a cognitive radar (CRr) target recognition system for electronic 

warfare applications. This thesis expands on the closed-loop adaptive matched waveform 

transmission technique called probability of weighted energy (PWE). This work also 

investigates the feasibility of applying the PWE technique in a functional digital 

hardware realization. Initially, a PWE Monte Carlo simulation model is developed in the 

Verilog hardware description language that is simulated in the Xilinx Vivado 

environment. The Verilog module components developed in the Monte Carlo model are 

then incorporated into a CRr target recognition system experiment utilizing the Xilinx 

VCU118 Evaluation Board. The VCU118 features the Virtex UltraScale+ 

high-performance FPGA to accomplish CRr adaptive waveform generation and 

transmission, digital signal processing requirements, and target classification. The Rohde 

& Schwarz SMW200A Vector Signal Generator and FSW Signal & Spectrum Analyzer 

function as the radar system transmitter and receiver, respectively, while the FPGA 

implementation enables the closed feedback loop used by the CRr. 
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CHAPTER 1:
Introduction

Joint military target identification and tracking systems require a high degree of confidence
and reliability when maneuvering across the volatile electromagnetic spectrum (EMS). In
Joint Publication 3-85 [1], the framework for Joint Electromagnetic Spectrum Operations
(JEMSO) is established as an integrated necessity to achieve and maintain battlespace
awareness within the operational environment in support of force protection, intelligence,
and military objectives, as well as deconfliction and coordination efforts during peacetime
operations. Specifically, electronic support (ES), a division of electronic warfare (EW), is
delivered through radar system capabilities enabling target detection within the EMS “for
the purpose of immediate threat recognition, targeting, planning” and execution of joint and
combined military operations [1].

Challenges resulting from the increasing demand of conventional radar employment in the
congested electromagnetic (EM) maneuver spaces, however, have led to the emergence of
cognitive radar (CRr) research [2]. Interest in CRr systems has gained attention in modern
radar development over the past 15 years [2] due to its fully adaptive, dynamic closed-
loop capabilities that enable real-time decision-making within its environment through
the employment of the cognitive remote sensing perception-action cycle [3]. In the recent
North Atlantic Treaty Organization (NATO) technical study on CRr systems [4], the NATO
Sensor Electronics Technology Task Group further validates the integration of cognitive
radar sensing applications in military and peacekeeping missions as a solution to improve
existing radar technology, as well as fostering new development of ES-related capabilities.

In this thesis, we expand on the CRr research developments conducted in [5]–[14] and
focus on a hardware realization of a CRr target classification system and its proposed
implementation into ES operations. Specifically, we incorporate the real-time adaptive
matched waveform transmission technique, which is termed as probability of weighted
energy (PWE), through the implementation of a high-performance field-programmable
gate array (FPGA) system design.
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1.1 Thesis Objective
The objective of this study is to design an FPGA implementation of a CRr target recognition
system utilizing the PWE adaptive waveform transmission technique developed in [5], [8],
[14].

This proof-of-concept study investigates the feasibility of incorporating PWE adaptive
matched waveform theory into a real-time hardware application that is accomplished in two
parts. In the first part of this study, a PWE Monte Carlo model consisting of 15,000 trials
is developed, synthesized, and simulated in the Xilinx Vivado [15] environment using the
Verilog hardware description language. This model incorporates a previously developed
PWE MATLAB simulation [16] as a benchmark that is realized into a digital logic design.

In the second part of this study, a functional digital hardware implementation of the CRr
target recognition system is demonstrated with the Xilinx VCU118 Evaluation Board and
incorporates the Verilog module designs developed in the PWE Monte Carlo simulation
model. The VCU118, featuring the Virtex UltraScale+ high-performance FPGA, is used to
accomplish CRr adaptive waveform generation, digital signal processing requirements, and
target classification. The Rohde & Schwarz (R&S) SMW200AVector Signal Generator and
FSW Signal & Spectrum Analyzer function as the radar system transmitter and receiver,
respectively. Together, with the custom FPGA hardware design and R&S radio frequency
(RF) equipment, a hardware-in-the-loop emulation of a CRr system with automatic target
recognition is presented.

1.2 Thesis Organization
We first provide a conceptual background on cognitive radar systems and discuss the PWE
adaptive matched waveform theory in Chapter 2. In Chapter 3, we describe the PWE
Verilog-based Monte Carlo design process and summarize the Vivado simulation results.
The CRr hardware implementation is then covered in Chapter 4, where we begin with a
hardware and equipment overview.We later present the FPGA-based Verilog design process
and functional proof-of-concept demonstration. At the end of Chapter 4, we report the
target classification functionally of the CRr hardware design and experimental observations.
Finally, in Chapter 5, we complete this body of work with a thesis summary, conclusion,
and recommendations for future work.
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CHAPTER 2:
Cognitive Radar for Target Recognition

2.1 Cognitive Radar Overview
In [3], the concept of a CRr is formally defined as a radar system comprised of the following
attributes: (1) intelligent signal processing that “builds on learning through integration of
the radar with the surrounding environment”; (2) feedback from the receiver to facilitate
intelligence; and (3) preservation of received radar return information. While conventional
radar systems may feature the limited ability to adapt to its changing environment based
on processed received radar returns, the CRr dynamically incorporates the transmitter into
a fully adaptive, closed feedback loop perception-action cycle, allowing the radar to: a)
learn from return signal interaction with the EM environment and b) update the transmitted
radar signal with respect to Bayesian decision inference and prior knowledge [3], [17], [18].
Shown in Figure 2.1 is a block diagram representation of the CRr perception-action cycle
from [2].

Figure 2.1. Block Diagram of the Cognitive Radar Perception-Action Cycle.
Source: [2].
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Fundamental components required to realize the CRr model include: (1) digital signal
processing (DSP) capabilities with the real-time computational ability to measure and
process environmental data; (2) digital memory to store and retrieve new observations
and prior knowledge; and (3) radar transmitter/receiver hardware to support the adaptively
reconfigured waveform synthesis and interaction process within the EMS [18], as depicted
in Figure 2.2. Supporting hardware requirements include, but are not limited to, digital-to-
analog converters (DACs) and analog-to-digital converters (ADCs) for data/RF translation,
as well as other radar-based communication system components.

Figure 2.2. Basic Hardware Block Diagram of Perception-Action Cycle
Model. Source: [18].

2.2 Probability of Weighted Energy Theory
The target recognition framework introduced by Goodman et al in [17] utilizes eigen-based
adaptive waveform transmissions with sequential multiple hypothesis testing to facilitate
confidence-based decisions. These concepts were further developed in [5]–[14], where one
of the techniques was an improved signal-to-noise ratio (SNR)-based matched waveform
technique called “probability of weighted energy” (PWE). Prior work demonstrates the
PWE technique to be an effective target classification method, reducing latency, minimizing
computational complexity, and eliminating search algorithms used in previously developed
methods [5].
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Also referred to as “probability of weighted eigenwaveforms” [11], the notion of PWE is
derived in [5], [8], [14] and is summarized here for convenience. PWE facilitates target
recognition through a sequence of multiple radar transmissions generated from the sum-
mation of known matched optimal waveforms under SNR (eigenwaveforms), |->?C

8
( 5 ) |2,

that correspond to stored target responses [5]. Each eigenwaveform is individually weighted
proportionally by their respective hypothesis probability, %8. In the frequency domain, this
transmit waveform is represented as |-) ( 5 ) |2, which is depicted in Figure 2.3 and is

|-) ( 5 ) |2 =

"∑
8=1

%8 |->?C8
( 5 ) |2. (2.1)

Figure 2.3. PWE Adaptive Matched Waveform Transmission Block Diagram.
Source: [5].

The initial transmission waveform, assuming equal prior probabilities, consists of eigen-
waveforms equally scaled by the probabilities %1 = %2 = %2... = %" = 1/" , where " rep-
resents the total number of stored target responses. Probability updates are calculated using
Bayesian principles based on the observed interaction with the interrogated target via the
radar return signal. The subsequent waveform is then recalculated, generated, and then
re-transmitted. This process is repeated for multiple iterations that is pre-defined in the
system. Upon processing the last radar return received signal, the CRr target recognition
system classifies the interrogated target based on the most likely hypothesis dictated by the
last probability update through maximum a posteriori (MAP) decision [5].
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The PWE CRr closed feedback loop block diagram is depicted in Figure 2.4. Assuming
normalized sampling time, let x represent the complex-valued adaptive transmit waveform,
y be the received target return signal, h be the target response, and * be the convolution
operation. The target return signal with additive Gaussian noise, w, is

y = h ∗ x + w. (2.2)

Figure 2.4. Cognitive Radar Closed Feedback Loop Block Diagram Using
PWE. Source: [9].

From theCRr adaptivewaveformgenerator of Figure 2.4, each optimal target eigenwaveform
is derived from the autocorrelation, RH, of the target response convolution matrix, H, with
respect to the known target response, h. The autocorrelation is

RH = H�H, (2.3)

where � denotes the Hermitian operation and H is

H =


h 0 0 0
· h 0 0
· · ·· ··
· h


. (2.4)

The target eigenwaveform produced from Equations 2.3 and 2.4 is represented as q̄<0G [8].

6



Using q̄8,<0G , where 8 = 1, 2, 3..." , corresponding to the " target hypotheses, the initial
transmit waveform of Equation 2.1 can be expressed in the discrete time domain as

xpwe =

"∑
8=1

√
%8q̄8,max. (2.5)

This summation of individual eigenwaveforms is then normalized in relation to its energy,
�xpwe . To incorporate any transmit energy, �G , the transmit waveform becomes

x =
√
�G

xpwe√
�Gpwe

. (2.6)

Referring to the received target return signal, y, of Figure 2.4, each individual target hy-
pothesis,H , is expressed as

H1 : y = x ∗ h1 + w = H1x + w

H2 : y = x ∗ h2 + w = H2x + w

H3 : y = x ∗ h3 + w = H3x + w

· ·
H" : y = x ∗ h" + w = H"x + w.

(2.7)

Probability updates are determined from the probability density function (PDF) corre-
sponding with previous probability calculations, %8,: , which are then used to generate the
subsequent transmit waveform. The probability update is given by

%8,:+1 = V?
(
y:+1 |H8

)
%8,: , (2.8)

where : represents the waveform iteration count, y:+1 is the most recent target return signal,
and V ensures unit total probability [14]. Per Figure 2.4, when the last target return signal
is received, target classification is determined through a MAP algorithm. In previous PWE
works, 4 or more iterations have been used to perform target classification.
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CHAPTER 3:
Verilog Modeling and Design Simulation

3.1 Verilog Model Overview
In this chapter, we build upon the PWE concepts introduced in Chapter 2. Prior to realizing
the CRr target recognition system design in hardware, we develop, synthesize, and simulate
a PWEMonte Carlomodel in theXilinxVivadoDesign Suite using theVerilog hardware de-
scription language. This Monte Carlo simulation model, consisting of 15,000 trials, utilizes
a previously developed PWE simulation implemented in MATLAB [16] as a benchmark
and translates its algorithms into a digital system logic design.

In the first part of this chapter, we focus on the Verilog design parameters, high-level archi-
tecture, and finite state machine (FSM) algorithm. Individual Verilog module components
are further detailed later in Section 3.2, as well as a description and derivation of the target
hypothesis parameters. At the end of this chapter, we present the simulated Vivado results
in Section 3.3. In this model development, we not only examine the PWE digital hard-
ware logic design feasibility, but we also provide the Verilog building blocks for the FPGA
implementation and hardware system integration, which is presented in Chapter 4.

3.2 Verilog Model Design Description

3.2.1 Performance Factors and Data Handling
Several device performance factors are considered early in this Monte Carlo Verilog model
development to facilitate the ultimate hardware design implementation objective. Device
performance factors include: (1) data size andmemory constraints; (2) timing-related limita-
tions and latency; (3) hardware real estate and internal routing considerations; and (4) device
capabilities. Specifically, this Verilog model incorporates the Xilinx VCU118 Evaluation
Board parameters inVivado based on its hardware performance, features, and test equipment
compatibility that will be further detailed in Chapter 4.
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Of the performance factors listed, data size is a major design consideration, serving as a
critical standard that is incorporated into all Verilog modules. One of the challenges with
adapting a hardware design from a computer-generated simulation modeled in a high-level
programming language, such as MATLAB, is achieving the required precision and range
with respect to data size. With MATLAB, the default data type is 64-bit, double-precision
floating-point values ranging from −2.22507×10308 to 1.79769×10308 with 2.2204×10−16

accuracy [19]. In this hardware design, a 32-bit, signed fixed-point representation is selected
to meet data precision requirements with the VCU118 and to interface with Rohde &
Schwarz intellectual property (IP) core and proprietary data bus formats.

Using the signed 32-bit Q15.16 format [20], which is shown in the example of Figure 3.1, the
sign of a generic fixed-point value, G[31:0], is represented at the most significant bit (bit 31).
Bits 0 through 15 represent the fractional portion, with the implied radix point set between
bits 15 and 16. The integer portion is represented in bits 16 through 30. This data format
provides a range from -32,768 to approximately 32,767.999985, with 0.000015 (2−16)
precision. Overflow and underflow handling is considered and incorporated throughout the
design process. The appropriate scaling factors andVerilog code to generate a printed output
in the Vivado Tool Command Language (TCL) Console is demonstrated at the bottom of
Figure 3.1.

Figure 3.1. Q15.16, 32-bit Signed Fixed-Point Representation in Verilog
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Another data processing consideration related to hardware logic designs adapted from high-
level programming language models is the action of performing fundamental mathematical
functions, such as multiplication, division, square root, and exponential expressions. Al-
though Vivado IP cores can be used to perform such tasks, in this project, we design a set
of mathematical Verilog modules from the bottom-up to control proper 32-bit Q15.16 data
handling between Verilog instances to allow flexibility for design-specific functions. These
Verilog modules will be discussed later in Section 3.2.4.

The process depicted in Figure 3.2 is performed for all 32-bit fixed-point multiplication
expressions in this design. As illustrated, the product of two 32-bit values, which is gen-
eralized in this example as -1[31:0] and -2[31:0], yields a 64-bit result that is stored in
a temporary register. To properly represent the product, this temporary value is shifted to
the right by 16 bits and then stored into a 32-bit final product register, which is generalized
here as . [31:0]. This method provides an adequate approximation suitable for the accuracy
requirements of this design. For designs requiring higher accuracy, an 8-bit shift can be
performed on both the multiplicand and multiplier with rounding-error logic incorporated
into the algorithm.

Figure 3.2. Q15.16, 32-bit Signed Fixed-Point Multiplication in Verilog
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Note for all division functions where the divisor is constant, such as G/4 where G is a
generic variable, fractional multiplication is incorporated for latency and hardware routing
considerations, as well as simplicity. In such situations, fractional parameters are defined
as constants in Verilog and implemented as multiplication functions, such as 0.25G. The
division module, to be discussed later, uses Euclidean iterative algorithms [21], which can
be costly and generally less accurate in comparison to multiplying by known fractional
constants.

3.2.2 Top Level Design Description
The system diagram shown in Figure 3.3 features the top level Monte Carlo simula-
tion Verilog module, )0A�4C_'42>�=8C8>=.{, which is instantiated under the testbench,
)0A�4C_'42>�=8C8>=.C1. The testbench delivers the clock, reset signal, and a 32-bit test
input parameter to the target recognition module. )0A�4C_'42>�=8C8>=.{ processes and
generates eight 32-bit output values to the testbench that are defined as test points in Fig-
ure 3.3. All output values are translated in the testbench module and printed to the tool
command language (TCL) console in Vivado for observation.

)0A�4C_'42>�=8C8>=.{manages all behavioral logic, data processing, and input/output (IO)
handling through the FSM algorithm, which is further described in Section 3.2.3. As
depicted in Figure 3.3, a total of 10 Verilog modules (8=BC2 − 8=BC11) are instantiated
under )0A�4C_'42>�=8C8>=.{ to support all processing requirements. The main support-
ing modules featured are �8{8B8>=.{ (8=BC2, 8=BC12), (@D0A4A>>C.{ (8=BC3, 8=BC8 − 8=BC11),
'0=3><_#D<14A_�4=4A0C>A.{ (8=BC4), �G?>=4=C80;.{ (8=BC5), -%,�.{ (8=BC6), and
��'_�8;C4A.{ (8=BC7). All modules are further detailed in Sections 3.2.4 through 3.2.8.
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Figure 3.3. Top Level Block Diagram of PWE Target Recognition Monte
Carlo Design in Verilog
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As an overview, �8{8B8>=.{ provides 32-bit fixed-point division and fractional results using
Euclidean iterative methods [21]. (@D0A4A>>C.{ provides a 32-bit fixed-point square root
approximation using an iterative algorithm involving calculating the nearest square [21].
'0=3><_#D<14A_�4=4A0C>A.{ is comprised of a 3-bit linear-feedback shift register
(LFSR) to generate a random number to select a target hypothesis (in a Monte Carlo trial)
and twenty 19-bit LFSRs to approximate and simulate in-phase and quadrature Gaussian
noise using the Central Limit Theorem. �G?>=4=C80;.{ makes use of an elaborate look-
up table (LUT) to quickly determine exponential functions. The PWE adaptive transmit
waveform, x, is generated in the -%,�.{ module, which holds the stored target hypothesis
eigenwaveforms. Finally, the finite impulse response (FIR) module, ��'_�8;C4A.{, uti-
lizes multiply-and-accumulate techniques to preform convolution functions. The four target
responses are stored in this module.

3.2.3 Finite State Machine Description
Shown in Figure 3.4, the FSM incorporates the PWE classification technique into a Monte
Carlo procedure. The system initially generates a PWE adaptive matched waveform, x,
which is transmitted at a set transmit energy, �G . In a separate process, a simulated target
return waveform, y, is generated based on a randomly selected target response at the
beginning of each Monte Carlo trial (as mentioned previously). After each transmission, the
probability corresponding to each target hypothesis is calculated. The subsequent adaptive
waveform is generated using the updated probabilities. This process is repeated for 4
adaptive transmissions. After processing the last target return, a MAP decision determines
the target classification, which is then compared with the target that was selected in the first
trial (purely for the purposes of evaluating classification performance). The probability of
correct classification, %22, is calculated after 1,000 Monte Carlo trials for each increasing
transmit energy, �G . The transmit energy ranges from -30 dB units up to 10 dB units and is
incremented into 15 levels for a total of 15,000 trials.
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Figure 3.4. Finite State Machine Behavioral Algorithm for Monte Carlo
Model in Verilog
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The FSM in Figure 3.4 is comprised of 22 states. In State 0, following system initialization,
the target recognition module receives the transmit energy value from the testbench input
and stores the value in a designated register defined in Verilog as :B. The value of :B is then
associated with the corresponding energy scaling value,

√
�G from Equation 2.5, which is

determined by a LUT in State 1. Note that (@D0A4A>>C.{ (8=BC3) was originally designed
to perform this function, however, utilizing a LUT to represent

√
�G constants is not only

faster, but yields greater accuracy in the overall performance.

In State 2,
√
�G and the probability update values, which are designated by %8 and

?Cℎ4C0[0:3] in Verilog, are sent to the -%,�.{ module to generate the adaptive transmit
waveform, x. Note that during this first transmission, each probability value is initialized as
?Cℎ4C0[0:3] = 1/4. The FSM then transitions to State 3, where it remains until -%,�.{
returns the complex-valued transmit waveform result, x, which is defined in Verilog as
registers B[30:0] and B_ 9[30:0].

In a parallel process, '0=3><_#D<14A_�4=4A0C>A.{ generates both in-phase and quadra-
ture Gaussian noise values and a 2-bit pseudo-random number with every clock cycle. In
State 4, the 2-bit output provides C0A�4C_A42>�=8C8>=.{ with a random target selection
value, C0A�4C_B4;, associated with a target hypothesis response, h. This C0A�4C_B4; value
is sent to ��'_�8;C4A.{ in State 5, where the convolved result, s� = x∗h, is stored into an
array represented by 61 registers. The FSM subsequently transitions to and remains in State
6 until s� is ready. The simulated Gaussian noise from '0=3><_#D<14A_�4=4A0C>A.{ is
then added to s� in State 7 to generate a simulated complex-valued target return waveform,
y, represented in Verilog as ~~[60:0] = B�[60:0] + #>8B4[60:0] and ~~_ 9[60:0] = B�_ 9[60:0]
+ #>8B4_ 9[60:0], in accordance with Equation 2.7.

For iteration count, 8;[0:3], the complex-valued adaptive transmit waveform, which is rep-
resented in Verilog as B[30:0] and B_ 9[30:0], is convolved with each stored target response,
ℎℎ[0:3][30:0], in States 8 and 9, and thus resulting in ([0:3][60:0] and (_ 9[0:3][60:0].
Using these outputs and the simulated complex-valued target response, the likelihood value
is calculated in States 10 through 13 by evaluating each target hypothesis PDF, as depicted
in Figure 3.4 and dictated in Equation 2.8 in Chapter 2. �G?>=4=C80;.{ is called in State 13
to generate the likelihood value and update ?Cℎ4C0[0:3] in State 14.
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In States 15 and 16, the adaptive waveform, x, is re-calculated and transmitted via -%,�.{
using the updated ?Cℎ4C0[0:3] values. This process is repeated in States 5 through 16 for
4 iterations, as monitored by the iteration counter, 8C4A . The FSM then transitions into
State 17 after the last target return waveform is processed.

In State 17, target classification is determined by the system from the final ?Cℎ4C0[0:3]
values and then compared against C0A�4C_B4; that was randomly selected in State 4. The
error counter, 4AA, is incremented for every incorrect target classification result. States 4
through 18 are repeated for 1000 trials before transitioning to State 19 to calculate %22, where
%22 = 1 − (4AA/1000). States 1 through 19 are repeated until 15 �G levels are complete.
State 20 increments and evaluates the �G levels to be used, until all of the 15,000 trials are
simulated. The transition into State 21 marks the conclusion of the Monte Carlo simulation.
%22 and target classification errors for each �G level are printed out onto the Vivado TCL
Console.

3.2.4 Verilog Module Description: Mathematical Functions
As mentioned previously in Section 3.2.1, division, square root, and exponential math
functions are developed in this project to support signed 32-bit fixed-point operations
while preserving Q15.16 data formatting between modules. Figures 3.5 and 3.6 provide
detailed representations of the Verilog modules as schematic diagrams, which are depicted
as �8{8B8>=.{, (@D0A4A>>C.{, and �G?>=4=C80;.{.

Note that the inter-module communication standard applied throughout this project in-
corporates a device 4=01;4 signal originating from the module requesting service that is
accompanied by input data. A device 2><?;4C4 signal and the processed output data are
then returned to the originator from the service-providing module upon process completion.
The requesting module sets the 4=01;4 signal for the duration of the process and then sub-
sequently de-asserts the 4=01;4 signal upon acknowledging receipt of the 2><?;4C4 signal.
Specific to the math modules shown in Figures 3.5 and 3.6, the 4=01;4 ports are represented
as 38{8B8>=_4=, B@AC_4=, and 4G?>=4=C80;_4=. The device 2><?;4C4 ports are depicted
as 38{8B8>=_2><?;4C4, B@AC_2><?;4C4, and 4G?>=4=C80;_4=. All modules operate with
respect to the rising edge of the clock input.
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Figure 3.5. Schematic Diagram of Division and Square Root Verilog Modules
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Figure 3.6. Exponential Verilog Module Schematic Diagram

Shown at the top right portion of Figure 3.5, the 38{8B8>=.{ module receives 38{834=3 and
38{8B>A input values as signed 32-bit data and outputs a signed 32-bit @D>C84=C up to three
decimal places. The division procedure incorporates Euclidean iterative processes to approx-
imate integer and fractional calculations [21]. The division module returns @D>C84=C = 0 for
all cases where either the 38{834=3 = 0 or the fraction is less than 0.001. If the 38{8B>A = 0
or is less than or equal to 3.0518× 10−5, the division module returns the maximum Q15.16
system value, approximately 32,767.999985, to represent infinity. This module is primarily
used to calculate probability updates and -%,�.{ scaling.

In the square root process, shown at the bottom right of Figure 3.5, a simple counter and
iterative multiplication approach are used to estimate the square root of the data input
received, B@AC_8=?DC, by calculating the nearest square [21]. As the iteration counter, : ,
increments, the square of : , denoted as :_?A>3D2C, is calculated and compared to the input
value. The scaled resulting output, B@AC_A4BD;C, is generated if :_?A>3D2C is greater than
or equal to the input. Module inputs less than or equal to zero are designed to return a zero
value, as (@D0A4A>>C.{ does not support calculating imaginary outputs. This function is
incorporated in -%,�.{ for calculating the probability update scaling, per Equation 2.5.
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The square root module outputs an approximation, accepting inputs up to 31-bits where
each : count used to determine the nearest square rounds to increments of 2−16. The average
percent error is approximately 5%, which of course should be dictated by practical system
requirements. We deem this error acceptable in this work. For higher value inputs, such as√

10, errors are observed to be approximately 0.06%, while smaller input values, such as√
0.001, yield approximately 11.25% error. Although the algorithm is simple to implement,

the associated latency costs accumulated is a drawback. Future work requiring greater
precision at increased speed can incorporate algorithms, such as the “Babylonian Method.”
This would require designing a more precise division algorithm.

As illustrated in the schematic of Figure 3.6, 4G?>=4=C80;.{ receives a signed 32-bit input,
4G?>=4=C80;_8=?DC and delivers the 32-bit output, 4G?>=4=C80;_A4BD;C. The output is
generalized by the function 4G , where the variable G is again used to describe a generic input
value. This method uses two sets of LUTs to handle positive and negative input values that
are 665 and 709 elements wide, respectively. A MATLAB algorithm was developed offline
to determine required values stored in the LUTs. Because of the risk of data overflow or
underflow related to signed 32-bit ranges, input values G ≥ 10.39063 yield output 4G =

32, 553.00621. For values G ≤ -11.078, the module outputs 1.54465 × 10−5. These ranges
and approximations are deemed acceptable for the performance in this design application,
which typically results in less than 1% error. The exponential module is used to calculate
the likelihood value in probability update calculations, as shown in Equation 2.8.

Despite the speed, simplicity, and acceptable accuracy of incorporating a LUTmethod, cost
considerations related to the circuitry and/or memory expended may be a factor for more
complex designs. To free up register usage, simple case statements are utilized to develop
the LUTs. For future work, it is recommended to implement the “Coordinate Rotation
Digital Computer” (CORDIC) algorithm for increased performance, accuracy, and design
efficiency [21].
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3.2.5 Verilog Module Description: Random Number Generator
The pseudo-random number generator is depicted in the schematic diagram shown in
Figure 3.7. Two different LFSR designs are implemented to generate the randomly se-
lected target and complex-valued noise that were previously described in Section 3.2.3.
'0=3><_#D<14A_�4=4A0C>A.{ runs independently from the FSM and generates a 2-
bit pseudo-random output, A0=3><, and two 32-bit pseudo-Gaussian outputs, =>8B4 and
=>8B4_ 9 , at each rising clock edge input.

Figure 3.7. Pseudo-Random Number Generator Verilog Module Schematic

Figure 3.8 illustrates a simple 3-bit LFSR design inspired by [22], which generates a
pseudo-random counting sequence by feeding bits 0 and 2 of the 3-bit input register into
an Exclusive OR gate that is routed to bit 1 of the 3-bit output register. As shown in the
diagram, bits 2 and 1 of the input register are assigned directly to bits 2 and 0 of the 3-bit
output, respectively. A second Exclusive OR gate with inputs originating from bits 2 and 0
of the 3-bit output register is then routed to bit 0 of the 2-bit output register. The output of
the first Exclusive OR gate from the 3-bit input register provides the assignment for bit 1 of
the 2-bit output register.

Upon system initialization, the 3-bit input register is loaded with a seeded value and the
counter updates with respect to the clock. The 2-bit pseudo-random register is routed to
the '0=3><_#D<14A_�4=4A0C>A.{ output, A0=3><, which is fed directly into the target
recognition top-level model. This output is only read, however, during State 4 of the FSM
shown in Figure 3.4 and detailed in Section 3.2.3.
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Figure 3.8. 2-bit and 3-bit Pseudo-Random Number Generator, Verilog
Schematic Representation

Using the concepts from the 3-bit pseudo-random number generator design of Figure 3.8,
the 19-bit LFSR of Figure 3.9 is developed to achieve the desired range. In this design,
bits 0 through 17 of the initially seeded 19-bit input register are assigned to bits 1 through
18 of the 19-bit pseudo-random output register. Bits 18 and 16 of the input register are fed
into an Exclusive OR gate, in which its output is routed to bit 0.

Figure 3.9. 19-bit Pseudo-Random Number Generator, Verilog Schematic
Representation
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To simulate complex-valued Gaussian noise, this 19-bit model is duplicated 20 times, each
seeded with different input values. A set of 10 LFSRs is assigned to both the in-phase noise
generator and quadrature system, modeled in Figure 3.10. Using the Central Limit Theorem
to estimate a Gaussian distribution, the 10 LFSR inputs are accumulated in a summation
block, then averaged and scaled, as represented in the diagram with 1/10

√
2. The mean of

this distribution is observed to be approximately 2.8 V. As shown in Figure 3.10, this mean
value is subtracted from the summation block output to center the Gaussian distribution at
0 V.

Figure 3.10. Pseudo-Gaussian Noise Generator Performed in Verilog Using
10 19-bit Pseudo-Random Number Generators

Figure 3.11 depicts a histogram of the pseudo-random noise sample generated. As described
in the FSM algorithm detailed in Figure 3.4 and Section 3.2.3, the simulated noise outputs
are only recorded by the system in State 7, when the simulated complex-valued target return
waveform, y, is produced.
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Figure 3.11. (a) Histogram of Gaussian Noise Model Using Verilog Noise
Generator (b) Gaussian Noise Generation Over 10,000 Samples

3.2.6 Verilog Module Description: Transmit Waveform Generator
The adaptive matched transmit waveform generator, -%,�.{, is described in Figure 3.12.
This module receives updated probability values from the main target recognition module,
?Cℎ4C00, ?Cℎ4C01, ?Cℎ4C02, ?Cℎ4C03, and B@D0A4A>>C_�B_8=?DC as signed 32-bit Q15.16
formatted data.
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Figure 3.12. Transmit Waveform Generator Verilog Module Schematic

Using the stored eigenwaveforms, a division module, and 4 square root modules, -%,�.{
performs the calculations for x from Equations 2.5 and 2.6. -%,�.{ is used during the
initial waveform transmission in State 2 and updated waveform transmission in State 15,
as described previously in Figure 3.4. The in-phase and quadrature results are returned
to C0A�4C_A42>�=8C8>=.{ as signed 32-bit values represented by signal outputs B0 − B30
and B_ 90 − B_ 930, respectively. This module processes the calculation for x into separate
steps through its own 10-state FSM, as detailed in Figure 3.13. Note that the stored target
eigenwaveform parameters will be discussed later in Section 3.2.8.
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Figure 3.13. Transmit Waveform Generator Finite State Machine Behavioral
Process of -%,�.{

3.2.7 Verilog Module Description: Finite Impulse Response Filter
All convolution calculations, which are described in Equations 2.2 and 2.7 of Chapter 2 and
are performed during States 5 and 8 of the FSM depicted in Figure 3.4, are processed by the
finite impulse response filter module, ��'_�8;C4A.{, shown in Figure 3.14. The FIR filter
conducts multiply-and-accumulate functions corresponding to the target response selection,
C[0:3], as indicated by the B4; signal and signed 32-bit complex-valued inputs received from
the target recognition module, G[30:0] and G_ 9[30:0]. The convolved results are returned
to the target recognition module as ~[60:0] and ~_ 9[60:0]. This module is used to calculate
the values s� of State 5 and S of State 8, as described previously in Section 3.2.3. Details
regarding the four stored target responses, ℎ[0:3], are further discussed in Section 3.2.8.
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Figure 3.14. Finite Impulse Response Filter Verilog Module Schematic, FIR.v

Figure 3.15 depicts a high-level representation of the FIR Filter behavioral design in Verilog.
The process initializes upon receiving the enable signal from the target recognition module.
An internal LUT is implemented to access one of the four stored target responses indicated
by the 2-bit B4; input. The 32-bit filter input data are then read and stored in a 31-element
register array that is used to update a 31-element shifting system. This shifting system is
designed to operate similar to a shift register on a larger scale, as shown in the diagram as
the “FIR Filter Input Buffer.”
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Figure 3.15. Finite Impulse Response Filter Block Diagram in Verilog

Each element of the shifting input buffer is cleared upon initialization. A counter, 5 8A_2>D=C,
is utilized to manage the FIR Filter Input Buffer load and right-shift function. A single input
value is retrieved with every clock cycle for the length of the array, starting from G [0] to
G [30]. When the counter is greater than 30, zeros are introduced and shifted to the right with
each cycle until the count reaches 60. The resulting convolution is stored and forwarded via
~[60:0] and ~_ 9[60:0].
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Figure 3.16. (a) In-Phase and (b) Quadrature FIR Filter Output Performed
in Verilog

This design-specific module consists of four FIR filter blocks that are divided into two pairs
dedicated to the in-phase filter and quadrature IO, as depicted in Figure 3.16. All four blocks
execute the convolution process described in Figure 3.15 concurrently to optimize data
parallelism, although additional hardware and routing are required. The overall performance
of this module is observed to meet project design standards, yielding acceptable error levels
when compared to MATLAB modeling, which is further discussed in Section 3.3.
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3.2.8 Target Response and Eigenwaveform Parameters
In this design, four complex-valued target responses (h0,h1,h2,h3), each of which has
31 samples, are defined in Verilog and stored in the FIR filter module. Figure 3.17 depicts
the in-phase/quadrature (IQ) and magnitude of each target response, derived from the data
points listed in Table 1. Both the in-phase and quadrature components in each target response
are accessed separately via a LUT configured in an 8 x 31 matrix.

Target responses, h1-h3, were arbitrary responses originating from a the MATLAB PWE
Monte Carlo benchmark [16]. The target response for h0, however, was derived from
measurements collected from an actual 1.090 GHz bandpass, narrowband filter with a
14 MHz bandwidth. This bandpass filter, shown in Figure 3.20, is used to emulate a target
response in the hardware application design setup discussed later in Chapter 4.

Figure 3.17. (a) In-Phase, (b) Quadrature, and (c) Magnitude Target Re-
sponses Stored in System
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Table 3.1. Stored Target Responses

h0 h1 h2 h3
0 0.0020 + j0.0115 0.0000 + j0.0000 0.0000 + j0.0000 0.0000 + j0.0000
1 0.0006 + j0.0142 0.0371 + j0.0371 0.0000 + j0.0000 0.0000 + j0.0000
2 0.0027 + j0.0502 0.0741 + j0.0741 -0.0203 + j0.0203 0.0000 + j0.0000
3 0.1098 + j0.0744 0.1112 + j0.1112 -0.1135 + j0.1135 0.0000 + j0.0000
4 0.2859 - j0.1496 0.1482 + j0.1482 -0.2725 + j0.2725 0.0000 + j0.0000
5 -0.0721 - j0.4514 0.1112 + j0.1112 -0.3585 + j0.3585 -0.1379 - j0.1379
6 -0.4617 - j0.2633 0.0741 + j0.0741 -0.2725 + j0.2725 -0.1444 - j0.1444
7 -0.5567 + j0.1626 0.0371 + j0.0371 -0.1135 + j0.1135 -0.1466 - j0.1466
8 -0.3389 + j0.4667 0.0000 + j0.0000 -0.0203 + j0.0203 -0.1444 - j0.1444
9 -0.0558 + j0.5810 0.0000 + j0.0000 0.0000 + j0.0000 -0.1379 - j0.1379
10 0.2417 + j0.5690 0.0000 + j0.0000 0.0087 - j0.0087 0.0000 + j0.0000
11 0.5255 + j0.3984 -0.2965 - j0.2965 0.0539 - j0.0539 0.0000 + j0.0000
12 0.6672 + j0.0769 0.0000 + j0.0000 0.1492 - j0.1492 0.0000 + j0.0000
13 0.6049 - j0.2468 0.0000 + j0.0000 0.2390 - j0.2390 0.0000 + j0.0000
14 0.4191 - j0.4728 0.0000 + j0.0000 0.2390 - j0.2390 0.0000 + j0.0000
15 0.1749 - j0.6004 0.2224 + j0.2224 0.1492 - j0.1492 0.1379 + j0.1379
16 -0.1114 - j0.6198 0.4447 + j0.4447 0.0539 - j0.0539 0.1466 + j0.1466
17 -0.3892 - j0.4989 0.2224 + j0.2224 0.0087 - j0.0087 0.1379 + j0.1379
18 -0.5729 - j0.2440 0.0000 + j0.0000 0.0000 + j0.0000 0.0000 + j0.0000
19 -0.6031 + j0.0715 0.0000 + j0.0000 0.0000 + j0.0000 0.0000 + j0.0000
20 -0.4607 + j0.3572 0.0000 + j0.0000 0.0000 + j0.0000 0.0000 + j0.0000
21 -0.1833 + j0.5212 -0.0741 - j0.0741 0.0000 + j0.0000 -0.1379 - j0.1379
22 0.1508 + j0.4876 -0.1482 - j0.1482 0.0000 + j0.0000 -0.1444 - j0.1444
23 0.3671 + j0.2286 -0.0741 - j0.0741 0.0000 + j0.0000 -0.1466 - j0.1466
24 0.3037 - j0.0641 0.0000 + j0.0000 0.0000 + j0.0000 -0.1444 - j0.1444
25 0.1125 - j0.1411 0.0000 + j0.0000 0.0000 + j0.0000 -0.1379 - j0.1379
26 0.0146 - j0.0922 0.0000 + j0.0000 0.0000 + j0.0000 0.0000 + j0.0000
27 -0.0085 - j0.0467 0.0000 + j0.0000 -0.0399 + j0.0399 0.0000 + j0.0000
28 -0.0099 - j0.0224 0.0000 + j0.0000 -0.1195 + j0.1195 0.2757 + j0.2757
29 -0.0069 - j0.0111 0.1482 + j0.1482 -0.1195 + j0.1195 0.2932 + j0.2932
30 -0.0043 - j0.0056 0.0000 + j0.0000 -0.0399 + j0.0399 0.2757 + j0.2757

31



To obtain the bandpass filter response for h0, a vector network generator (VNA) was
utilized and swept from 1.07 GHz to 1.13 GHz, as shown in the equipment screen capture
of Figure 3.18. The S21 magnitude and phase measurements captured in the frequency
domain ()A4 and )A7) were used to obtain the baseband time domain representation, shown
in Figure 3.19. This signal was then down-sampled to 31 samples, listed previously in
Table 3.1.

Figure 3.18. Vector Network Analyzer Measurements: Magnitude and Phase
of a 1.090 GHz Narrowband Bandpass Filter in the Frequency Domain
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Figure 3.19. Baseband: (a) In-Phase, (b) Quadrature, and (c) Magnitude
Derived from 1.090 GHz Bandpass Filter Measurements from VNA

33



Figure 3.20 and Table 3.2 depict the complex-valued eigenwaveforms accessed via a LUT
within the adaptive waveform generator module. This LUT is constructed similarly to
the target response vectors defined previously. Using Equations 2.3 and 2.4 introduced in
Chapter 2, eigenwaveforms, q̄8,<0G , represented in Verilog as registers se0, se1, se2, se3,
were calculated offline in MATLAB corresponding to a priori knowledge of the 4 target
responses, (h0, h1, h2, h3). Since the eigenwaveforms may be pre-calculated (assuming
known targets), generating a matrix convolution algorithm in the digital design is not
required, thus saving memory and hardware logic resources. Any future additions of target
possibilities, of course, require calculating the eigenwaveforms offline.

Note in Figure 3.20 that the quadrature component of eigenwaveforms se1-se3 are null.
Unlike the actual response from the filter, h1-h3 have similar in-phase and quadrature
responses thereby yielding zero-quadrature responses. Such coincidence does not affect
implementation of CRr PWE technique in our work herein.

Figure 3.20. Baseband: (a) In-Phase, and (b) Quadrature Target Eigenwave-
forms Stored in the System
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Table 3.2. Stored Eigenwaveforms

se0 se1 se2 se3
0 0.0495 + j0.0939 0.1723 0.0795 0.1872
1 0.1011 + j0.0603 0.1579 0.1297 0.1978
2 0.1292 - j0.0015 0.0899 0.1746 0.1673
3 0.1191 - j0.0745 -0.01 0.2081 0.0971
4 0.0679 - j0.1353 -0.1184 0.2255 0.0016
5 -0.0130 - j0.1614 -0.2089 0.2238 -0.1024
6 -0.1005 - j0.1393 -0.2476 0.2015 -0.1915
7 -0.1667 - j0.0708 -0.2177 0.1592 -0.248
8 -0.1877 + j0.0268 -0.1242 0.0998 -0.2595
9 -0.1528 + j0.1249 0.0085 0.0284 -0.223
10 -0.0685 + j0.1923 0.1455 -0.0482 -0.1444
11 0.0420 + j0.2057 0.2504 -0.1229 -0.0387
12 0.1456 + j0.1576 0.2917 -0.1888 0.0761
13 0.2095 + j0.0603 0.2538 -0.2402 0.1802
14 0.2124 - j0.0576 0.1482 -0.2727 0.2521
15 0.1522 - j0.1598 0 -0.2839 0.2776
16 0.0472 - j0.2149 -0.1482 -0.2727 0.2521
17 -0.0704 - j0.2063 -0.2538 -0.2402 0.1802
18 -0.1646 - j0.1378 -0.2917 -0.1888 0.0761
19 -0.2075 - j0.0319 -0.2504 -0.1229 -0.0387
20 -0.1887 + j0.0778 -0.1455 -0.0482 -0.1444
21 -0.1172 + j0.1587 -0.0085 0.0284 -0.223
22 -0.0176 + j0.1888 0.1242 0.0998 -0.2595
23 0.0789 + j0.1630 0.2177 0.1592 -0.248
24 0.1441 + j0.0936 0.2476 0.2015 -0.1915
25 0.1618 + j0.0051 0.2089 0.2238 -0.1024
26 0.1318 - j0.0744 0.1184 0.2255 0.0016
27 0.0686 - j0.1226 0.01 0.2081 0.0971
28 -0.0048 - j0.1291 -0.0899 0.1746 0.1673
29 -0.0651 - j0.0981 -0.1579 0.1297 0.1978
30 -0.0962 - j0.0448 -0.1723 0.0795 0.1872
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3.3 Verilog Model Results
This section presents the resulting data output generated from the stand-alone Monte Carlo
simulation model. All data points are collected from virtual test points defined in the Verilog
testbenchmodule and printed onto the TCL console inVivado. In this section, the data points
are compared to the MATLAB benchmark [16]. The functionality of the PWE algorithm in
this design demonstrates the feasibility of implementing this target recognition technique
into digital logic hardware.

3.3.1 Vivado Output
Figure 3.21 lists the Vivado simulation printout from the TCL console from theMonte Carlo
trials. Per the FSM algorithm presented in Section 3.2.1, the system transmits 4 adaptive
waveform iterations based on a randomly selected target response (C0A�4C_B4;) at the
beginning of each Monte Carlo trial. After processing the last target return, the system
arrives at a target classification decision by selecting the target hypothesis associated with
the highest probability.

Figure 3.21. Monte Carlo Output from Vivado Simulation
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As shown in the Vivado printout, the system performs 1000 classification experiments at
each transmit energy starting from -30 dB units (iteration counter :B = 0) up to 10 dB units
(iteration :B = 14). For the purposes of quantifying classification performance, the error
counter is incremented if the decision happens to be incorrect, as shown in Figure 3.21 as
4AA . After 1000 trials at each transmit energy level, the probability of correct classification
(?2[:B] = 1− (4AA/1000)) is determined and printed in Vivado. As the transmitted energy
and SNR increase, the probability of correct classification increases. The %22 at transmit
energy levels greater -5 dB units (:B = 9) ranges from 0.955841 to 1, as demonstrated in
Figure 3.21.

Figure 3.22 depicts a graphical representation of a Vivado capture further describing the
adaptive waveform transmission, x, for �G = -10 dB units and C0A�4C_B4; = C0A�4C0.
Notice that the summation of ?Cℎ4C00 through ?Cℎ4C03 values must equal 1. When the
highest probability value corresponds to the randomly selected target, C0A�4C_B4;, the
system correctly classifies the target. Otherwise, an error is assigned.
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Figure 3.22. Adaptive Waveform Transmission from Vivado Simulation,
where �G = -10 dB units, the Randomly Selected Target is C0A�4C0, and
the Correct Classification is h0

38



3.3.2 Results Analysis and Observations
In Figure 3.23, the complex-valued adaptive transmit waveform from the Verilog model
is plotted with the transmit waveform from the MATLAB benchmark [16], as denoted in
red and blue respectively. This adaptive waveform capture represents the initial transmitted
signal at the lower end of the simulation where the transmit energy �G = -30 dB units to
highlight compounded effects of data precision and limitations using 32-bit signed fixed-
point values (in addition to approximation errors from the division and square rootmodules).
Note with 32-bit multiplication, some precision is lost since we shift 16 bits to the right, as
discussed in Section 3.2.

By inspection, the Verilog waveform amplitude samples are closely aligned with the MAT-
LAB waveform samples, but yield an average percent deviation of 6.32%.

Figure 3.23. (a) In-Phase and (b) Quadrature Adaptive Transmit Waveform,
x, �G = -30 dB units: Verilog Model vs. MATLAB Model
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Figure 3.24 shows the in-phase and quadrature output captured from the FIR filter module.
This is the convolution of the adaptive transmit waveform, x, and the baseband filter
response, h0. Similar to the adaptive waveform diagram of Figure 3.23, the Verilog FIR
filter output is closely aligned with the MATLAB output [16]. On average, the percent
deviation is similar to the transmit waveform Verilog output.

Figure 3.24. (a) In-Phase and (b) Quadrature FIR Filter Output, S = x∗h0,
�G = -30 dB units: Verilog Model vs. MATLAB Model
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To quantify the performance of the Verilog implementation compared to MATLAB im-
plementation, the Verilog %22 is compared with MATLAB %22. As expected, there is a
performance degradation with hardware implementation which is greater for lower transmit
energy compared to higher transmit energy. A percent deviation averaging 10% is present
in the lower transmit energy ranges starting from -30 dB units to -10 dB units.

Figure 3.25. Monte Carlo Simulation Results: Verilog Implementation vs.
MATLAB Implementation

The performance degradation is due to issues discussed earlier including, data precision
limitations, bit rounding errors, custommath functions performed in Verilog (divide, square
root, exponential), and/or errors related to multiplication. Additionally, the Gaussian noise
distribution of the MATLAB simulation which is more truly random (i.e. uncorrelated
samples) in comparison to the pseudo-random LFSR is a contributing factor. Understanding
that the feasibility of implementing the PWE algorithm into a digital logic system in Verilog
is more paramount than error minimization, the performance degradation is expected.
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3.4 Chapter Summary
In this chapter we defined the 32-bit Q15.16 signed fixed-point data structure within the
VerilogMonte Carlo Design architectures. We then illustrated the Top Level design descrip-
tion, examined the FSM algorithm, and described each custom Verilog design component
within the system. Additionally, stored target response and eigenwaveform parameters were
presented, as well as a description of the Vector Network Analyzer procedure used to de-
termine a target filter response, from an actual hardware filter. Finally, we examined the
Verilog output and compared it to the original MATLAB PWE benchmark. We concluded
that digital hardware implementation of the PWE technique in Verilog is feasible, while at
the same time verifying that the Verilog components are functional.

In Chapter 4, we move onto hardware applications and incorporate the proven Verilog
modules developed in this chapter into an FPGA-based CRr target recognition system
design. We introduce the Xilinx VCU118 Evaluation Board and its integration as a device-
in-the-loop processor with Rohde & Schwarz RF equipment.
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CHAPTER 4:
Hardware Design and RF Implementation

4.1 Hardware Implementation Overview
In this chapter, we demonstrate the feasibility of implementing the PWE CRr target recog-
nition technique into a functional, real-time hardware application. Specifically, we design a
system that incorporates an FPGA-based controller that is integrated with Rohde& Schwarz
(R&S) RF equipment as radar transceiver elements. In other words, we actually have to up-
convert the adaptive waveform to an RF frequency, transmit to a target (the bandpass filter),
receive with the spectrum analyzer, and use the FPGA to perform receive processing and
the generation of the next transmit waveform for CRr closed-loop feedback. The Verilog
modules that we developed for the Monte Carlo simulation model in Chapter 3 serve as the
foundation of the FPGA controller and processing algorithms.

The first part of this chapter begins with an overview of the system hardware compo-
nents, equipment configuration, and IO interconnections. A system-level functional design
description is then presented. We will describe the mixed-language architecture that is
nested within the proprietary R&S Very High-Speed Integrated Circuit Hardware Descrip-
tion Language (VHDL) wrapper and IP core [23]. Finally, we close this chapter with a
proof-of-concept system design demonstration and provide observations.

4.2 Closed-loop Radar Configuration
The CRr target recognition system design is controlled by a Virtex UltraScale+ FPGA
featured on the Xilinx VCU118 Evaluation Board. The VCU118 is configured as a device
in-the-loop to accomplish digital signal processing, decision-making requirements, and
inter-hardware communications. As depicted in Figure 4.1, the R&S SMW200A Vector
Signal Generator and FSW Signal & Spectrum Analyzer function as the CRr Closed-loop
Radar Configuration transmitter and receiver.
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Digital data communication exchange between the VCU118 and R&S equipment is es-
tablished through dedicated Quad Small Form-Factor Pluggable+ (QSFP+) interfaces. In
this experimental closed-loop radar setup, the target, C0A�4C0, is emulated as a 1.090 GHz
narrow-band bandpass filter with a 14MHz bandwidth, as described previously in Chapter 3.

Figure 4.1. Closed-loop RF System Diagram of the Cognitive Radar Tar-
get Recognition System Experiment. Processor: VCU118, Transmitter:
SMW200A, Receiver: FSW

Upon initialization, the FPGA-generated PWE adaptive transmit waveform, x, is transmitted
from the VCU118 in a proprietary R&S high-speed digital IQ (HS DIG IQ) data format over
the 56 Gb/s QSFP+ active optical cable to the R&S SMW200A Vector Signal Generator.
Serving as the CRr RF transmitter, the SMW200A Vector Signal Generator converts the
HS DIG IQ baseband input data into RF that is sent using a set carrier frequency matching
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the target center frequency (1.090 GHz). The interaction between transmit waveform and
the target response of the bandpass filter results in the RF return waveform that is captured
by the FSW Signal & Spectrum Analyzer. Used as the CRr receiver, the FSW converts the
received RF return signal into HS DIG IQ format, which is then fed back to the VCU118
through the second QSFP+ optical interface for processing.

4.2.1 Cognitive Radar: FPGA-in-the-Loop
The Xilinx VCU118 Evaluation Board is selected for its high-capacity, high-performance
characteristics that are compatible with R&S equipment and proprietary Vivado IP core.
In general, this evaluation board provides the hardware systems developer with the ability
to implement the Virtex UltraScale+ XCVU9P-L2FLGA2104E FPGA device into digital
signal processing and logic designs [24]. As shown in Figure 4.2, multiple general purpose
onboard resources integrated into the evaluation board enable hardware prototyping, test-
ing, and concept realization. Specifically, this project utilizes the FPGA General Purpose
Input/Output (GPIO) pins accessed through the Xilinx standard peripheral modular inter-
face (PMOD) interfaces, Universal Asynchronous Receiver/Transmitter (UART), onboard
general purpose switches, light emitting diodes (LEDs), and QSFP+ ports. Note that this
evaluation board also features the Xilinx Zinq 7000 System-on-Chip (SoC) XC7Z101-based
controller [24], however, this device, as well as other features such as onboard memory and
PCI bus interconnections, are not used in this hardware design.
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Figure 4.2. Xilinx VCU118 Evaluation Board Featuring the Virtex Ultra-
Scale+ XCVU9P-L2FLGA2104E FPGA. Adapted from [23]

The Virtex UltraScale+ XCVU9P-L2FLGA2104E FPGA featured on the VCU118 is
packaged as a 47.5 mm x 47.5 mm fine pitch ball grid array (FBGA) with 832 IO
pins of its total 2,104 pins [24]. This device is comprised of 2,586,150 logic elements,
2,364,480 configurable logic block (CLB) flip-flops, 1,182,240 CLB LUTs, and 6,840 DSP
slices [24]. Additionally, the XCVU9P-L2FLGA2104E FPGA features 345.9Mb of volatile
memory and 120 GTY 32.75 Gb/s transceivers [24]. Further VCU118 features and IO in-
terconnections within the CRr target recognition system experiment will be described later
in Section 4.2.3.

4.2.2 Cognitive Radar: RF Transmitter and Receiver
The R&S SMW200A Vector Signal Generator and FSW Signal & Spectrum Analyzer,
shown in the equipment setup of Figure 4.3, function as RF transmitter and receiver in this
FPGA-in-the-loop CRr target recognition system experiment. These equipment are selected
for their highly accurate RF capabilities. They are compatible with the R&S IP core that
is readily available for VCU118-based radar design applications. In both R&S systems, the
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HS DIG IQ interface is used for data exchange between the VCU118 and equipment via the
QSFP+ optical cable connections through a proprietary R&S data bus protocol. Figure 4.4
shows the QSFP+ equipment connections to the VCU118. To establish communications, a
PC-based R&S equipment initialization software delivers setup commands to the VCU118
via the Silicon Labs serial USBUART connection. Additionally, remote network operations
are used in this project to view and control the equipment over LAN connections during
testing.

Figure 4.3. Cognitive Radar Target Recognition System Equipment Setup
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Figure 4.4. VCU118 QSFP+ Connections to Rohde & Schwarz Equipment
and PC

R&S equipment synchronization is established through a shared 10 MHz reference fre-
quency sourced from the FSW. The RF carrier frequency is set to 1.090 GHz center
frequency of the bandpass filter, C0A�4C0. On the transmitter side, Figure 4.5 shows the
signal flow block diagram of the SMW200A Vector Signal Generator. Note the active input
modules within the RF path highlighted in blue. The baseband input, �� �=?DC, represents
the HS DIG IQ data from the VCU118 that undergoes IQ Modulation, via �/&">3,. This
IQ modulated baseband signal is then upconverted when the '� block is activated. A con-
figurable additive white Gaussian noise generator, shown as the �,�#� block within the
signal flow path, provides the option of adding adjustable noise into the receiver that can
be greatly higher than the thermal noise floor when selected [25]. The �,�#� output
bandwidth is set to 14 MHz and the SNR setting [25] is adjustable ranging from -30 dB
to 45 dB. We set the transmit output power to 15 dBmW. On the receiver side, the FSW is
configured with a low noise amplifier (preamp). When the preamp is used, the noise figure
provided by the manufacturer is approximately � = 2 dB units. The estimated thermal noise
power, %= = :)0��, is approximately -100.5 dBmW, where : is the Boltzmann’s constant
and )0 = 29 K, Additional system losses are present due to the bandpass filter, cable length,
and FPGA.
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Figure 4.5. SMW200A Signal Flow Block Diagram Configuration: Baseband
High Speed Digital IQ with Optional Additive White Gaussian Noise

4.2.3 System IO
The Xilinx VCU118 system IO in this design is represented in Figures 4.6 and 4.7. Internal
components include the USB JTAG interface for device configuration, system clocks, and
onboard reset circuitry. For simplicity, non-volatile memory featured on the VCU118 is not
used in this demonstration, but is available to provide design portability.

Onboard VCU118 general purpose input ports include the�%�$_(,_� momentary push-
button to initiate the PWE transmit waveform and the 4-bit �%�$_��%_(, ports used
for system testing. The peripheral modular interface ports, %"$�0 and %"$�1, are
configured to observe data over a logic analyzer and target classification decision through
a simple active-low configured LED circuit. Sections 4.2.4 through 4.2.7 will provide a
schematic level overview of each IO feature described.
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Figure 4.6. Xilinx VCU118 Block Diagram and Hardware System IO
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Figure 4.7. Hardware System IO Configuration

4.2.4 System IO: Clock Signals
The VCU118 is clocked by a 125 MHz system clock, generated by the onboard Sili-
con Labs Si55335A 1.8 V low-voltage differential signaling (LVDS) clock generator de-
vice (U122) [24]. Additionally, the programmable user clocks: Silicon Labs Si570 (U32)
and Si53340 clock buffer (U104), provide the designer with the option of generating an
application-specific clock signal ranging from 10 MHz to 810 MHz [24]. For this design,
the QSFP+ clock is defined in the constraints file to support HS DIG IQ data transmis-
sion synchronization between the VCU118 and RF equipment. All QSFP+ data handling is
configured within the proprietary R&S VHDL wrapper. Finally, the QSFP+ Jitter attenu-
ated clocks are supplied to the system by the Silicon Labs Si5328B LVDS precision clock
(U5) [24].
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4.2.5 System IO: GPIO Input Switches
Figures 4.8 and 4.9 are images and schematic diagrams [24] of the onboardGPIOmomentary
pushbutton switch andGPIOduel inline package (DIP) switches, respectively. InVerilog, the
normally-open pushbutton actuation is captured using a switch debouncing algorithm. An
alternative and more effective method of achieving switch debouncing incorporates cross-
coupled NAND gates, however, this involves modifying existing hardware. This pushbutton
switch is used to trigger the initial transmit signal, x, upon system initialization, which is
discussed later in Section 4.2.8. The 4-bit GPIO DIP switch input is used for system-level
testing and development purposes.

Figure 4.8. (a) Xilinx VCU118 Evaluation Board GPIO Momentary Pushbut-
ton Input, SW7: Adaptive Waveform Trigger. (b) SW7 Schematic Diagram.
Source [23]
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Figure 4.9. (a) Xilinx VCU118 Evaluation Board GPIO DIP Switch Input.
(b) SW12 Schematic Diagram. Source: [23]
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4.2.6 System IO: GPIO Status LEDs
The GPIO Status LEDs, featured in Figure 4.10, are used as system and communication
status indicators. !��0-!��3 illuminate when the system is properly programmed and
configured by the R&S equipment initialization software. !��4 and !��7 strobe when
QSFP+ data communications are established. These functions are governed by the R&S IP
core and VHDL wrapper.

Figure 4.10. Xilinx VCU118 Evaluation Board GPIO Status LEDs.

4.2.7 System IO: PMOD Output Configuration
Figures 4.11 and 4.12 depict the two PMOD ports, %"$�0 and %"$�1. The PMOD
pinout standard is generally used forXilinx-based, application-specific hardware peripherals
that can be purchased as modules, however, these ports can also be accessed and configured
as custom IO in Verilog with respect to constraints file definitions. In this project, eight
%"$�0 pins are assigned as test point that are accessed and interpreted by a PC-Based,
500 MHz Digital Logic Analyzer, shown in Figure 4.11. %"$�0_0−%"$�0_2 are ded-
icated for 3-wire serial peripheral interface (SPI) signals used to display Q15.16 formatted
data. %"$�_3 − %"$�_7 are used for signal and timing analysis.
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Figure 4.11. (a) Xilinx VCU118 Evaluation Board PMOD0 Right Angle
Header Female Receptacle. (b) Output Test Signals to Logic Analyzer.
Source: [23]
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Shown in Figure 4.12, the %"$�1 port is used to display the target classification output
decided by the system. %"$�1_0 − %"$�1_3 are devised in a simple active low LED
schematic configuration. !��1 − !��4 correspond with C0A�4C0 − C0A�4C3 indicators.

Figure 4.12. (a) Xilinx VCU118 Evaluation Board PMOD1 Male Pin Header
Output Signals. (b) Target Classification Indicator LEDs. Source: [23]
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The complete VCU118 %"$�0 and %"$�1 connections and corresponding circuitry
configuration described in Figures 4.11 and 4.12 are captured in Figure 4.13. Note that only
eight channels of the 34 channel Digital Logic Analyzer are accessed. A standard 4 channel
200 MHz oscilloscope is also used during development to read PMOD outputs.

Figure 4.13. Xilinx VCU118 Evaluation Board, PMOD0 and PMOD1 Con-
nections

4.3 Functional Design Description and Demonstration
In this section, we provide a functional design description and demonstration of the CRr
target recognition system, beginning with the top level Verilog design that is instantiated
within the R&S VHDL wrapper. We first present an overview of the system level FSM
and characterize the real-time sequential execution of the PWE algorithm in hardware.
The Verilog modules that were developed in the Monte Carlo simulation model design
are reused and modified. Modifications to the Verilog architecture include replacing the
simulated Monte Carlo simulation model signals and test IO with the hardware system
interconnections described in Section 4.2. We verify system functionality through target
recognition status LEDs, the FSW and SMA200A graphical user interface displays, and
VCU118 PMOD test points that are interpreted by the PC-based digital logic analyzer.
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4.3.1 Top Level System Design Description
The mixed-language system architecture is illustrated in Figure 4.14 as a top level block
diagram. The CRr target recognition system processor Verilog module is comprised of
the division (8=BC2), exponential (8=BC3), XPWE (8=BC4), FIR filter (8=BC5), and square root
(8=BC6 − 8=BC9) modules described in Chapter 3. The SPI data handling module (8=BC1),
adapted from [20], is added to provide the capability of viewing stored data and register
states via the standard 3-wire, SPI data-write protocol. This custom module accepts a 32-bit
Q15.16 formatted parallel input and streams a 32-bit serial data output (<>B8) with respect
to a 244 kHz clock signal (B2:) and select signal (/BB). Additionally, the simulated pseudo-
random noise generator of the Monte Carlo design is removed to allow the effective receiver
noise (resulting from the spectrum analyzer and FPGA being used as a receiver) with the
option of adding higher noise power with the �,�#� generator well above the effective
receiver thermal noise floor of the spectrum analyzer. The square root and division instances
that were used to scale and normalize the adaptive transmit waveform, x, in the original
design are also omitted, as the SMW200A Signal Generator RF level is used to manually
adjust the transmission power level.

The CRr target recognition system processor hardware module IO definitions are listed
in Figure 4.14. All GPIO switch inputs and PMOD output pins are directly routed to
the VCU118 per the standard constraints file definitions. The R&S equipment transceiver
data passed through the CRr target recognition system processor module, '-_��)� and
)-_��)�, are managed by the R&S VHDL wrapper and IP core, in addition to the serial
USB communication to the PC-based R&S equipment initialization software.
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Figure 4.14. Top Level Block Diagram of the CRr Target Recognition System
design in Verilog Instanced in a VHDL Wrapper
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4.3.2 FSM, Synchronization Issues, and Functional Demonstration
The system FSM described in Figure 4.15 modifies the initial Monte Carlo simulation
model by removing Monte Carlo-related iterative loops and incorporating '-_��)� and
)-_��)� and other related system hardware IO into the algorithm. The FSM behavioral
algorithm is defined within )0A�4C_'42>�=8C8>=.{ and is comprised of 13 states.

Figure 4.15. CRr Finite State Machine in Verilog
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During the idle state, State 0, the system scans for the asynchronous input trigger (SW7) and
captures the DIP switch settings (SW12). Using a Verilog defined debouncing algorithm,
the state machine transitions to State 1 when SW7 is depressed. The initial complex-
valued adaptive transmit signal, x, is then generated in the XPWE module using the stored
eigenwaveforms and initial probability values, where registers ?Cℎ4C0[0:3] are set to 0.25.

In State 2, the data received from the XPWE module are translated in accordance to the
R&S standard HS DIG IQ data bus format and sent to the QSFP2 output via the R&S
VHDL wrapper. The HS DIG IQ baseband data are received by the SMW200A Vector
Signal Generator, and then then transmitted as IQ modulated RF. Figure 4.16a shows the
initial adaptive waveform, x, displayed on the IQ diagram of the SMW200A graphical
user interface. The transmitter power level is set to 15 dBmW with a carrier frequency of
1.090 GHz.

Note that the Vivado implementation in Chapter 3 assumes full synchronization of the
MATLAB implementation of the PWE. For the FPGA-in-the-loop in an RF setting, discrete
time synchronization of the FPGA with the RF equipment can be very difficult to achieve
unlike a true dedicated receiver where total synchronization can be truly designed such that
all receiver component timing can be aligned.

As shown in Figure 4.16 (a), an initial reference pulse is appended at the beginning of each
of the IQ adaptive waveform signals to facilitate target recognition module synchronization
and enable receiver detection. This technique can help ensure that the received target return
signal aligns with the matched waveform values that are calculated in the FPGA. However,
because the IQ phase outputs from the RF signal generator are observed to drift over time
after system initialization, manual RF phase calibration is often required. The RF phase
output is adjusted at the signal generator until the IQ reference pulses approximately match
in amplitude.

A screen capture of the FSW Signal and Spectrum Analyzer interface is depicted in Fig-
ure 4.16 (b) by displaying the complex-valued target return signal, resulting from the
transmitted waveform interaction with the baseband response, h0. The FSW converts the
received RF signal into HS DIG IQ baseband data format via QSFP1. The data first enter
the receiver module of the R&S VHDL wrapper, which is then sent to an internal first-in,
first-out (FIFO) receiver buffer, '-_���$.
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Figure 4.16. (a) Initial Transmitted Waveform, x, with Reference Pulse
Transmitted by SMW200A and (b) Target Return Waveform, y with Refer-
ence Pulse Captured by FSW, where ?Cℎ4C0[0:3] = 0.25
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In State 3, the target recognition module receiver monitors the '-_���$ output and
searches for the initial reference pulse of the transmitted signal using a conditional statement
with predefined thresholds. As shown in the Logic Analyzer display of Figure 4.17, once the
reference pulse is detected, a read window enable signal, '-_'���, is asserted, capturing
and storing 240 samples. The complex-valued HS DIG IQ data is translated into Q15.16
format through a sign extension process, down-sampled to the 61 sample design format,
and stored in registers ~~[60:0] and ~~_j[60:0].

Figure 4.17. Timing Analysis of TX/RX HS DIG IQ Data Captured on the
Digital Logic Analyzer

In a separate process internal to the FPGA, x is convolved with each of the stored eigen-
waveforms, represented as hℎ, during States 4 and 5, which results in S. In States 6 through
9, S and the received data, y, are used to calculate the likelihood values by evaluating each
target hypothesis PDF. The updated probabilities, ?Cℎ4C0[0:3], are then calculated in State
10.

Using the updated probabilities calculated in State 10, the complex-valued adaptive
waveform is generated and re-transmitted during State 11 using the XPWE module and
R&S VHDL support architecture. Figure 4.18 provides an example of subsequent trans-
mit/receive waveforms, where the probability update determined by the system for h0 is
?Cℎ4C00=0.9987. The corresponding probability update is displayed on the top Logic Ana-
lyzer SPI capture of Figure 4.19, and the ?Cℎ4C00 history for target0 is shown at the bottom.
The state machine is then redirected to State 3, where the adaptive transmit, receive, and
process cycle of States 3 through 11 are repeated for a total of 4 transmissions, as shown in
Figure 4.20.
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Figure 4.18. (a) Subsequent Adaptive Waveform, x, Transmitted by the
SMW200A Signal Generator and (b) Target Return Waveform, y, Captured
by the FSW Spectrum Analyzer (Bottom), where ?Cℎ4C00 = 0.9987.
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Figure 4.19. Digital Logic Analyzer Displaying the Update Probabilities (Top)
and ?Cℎ4C00 History for C0A�4C0 after 2 Transmit/Receive Iterations (Bot-
tom)

Figure 4.20. Digital Logic Analyzer Displaying 4 Adaptive Waveform HS DIG
IQ Transmit and Receive Cycles

After the last transmission, themaximumprobability value is selected by the system from the
?Cℎ4C0[0:3] values, in State 12 through a set of conditional statements. The corresponding
target LED is then turned ON based on the target classification decided by the system. In
this demonstration, Figure 4.21, confirms that the system correctly classifies the bandpass
filter as C0A�4C0. Additionally, the logic analyzer screen capture of Figure 4.22 depicts the
last probability values corresponding to each target hypothesis, as well as the probability
update history of C0A�4C0 corresponding to each transmission. Finally, the last adaptive
waveform is displayed in Figure 4.23. The system returns to the idle state, State 0, where
this last waveform is re-transmitted in periodic intervals for user observation.
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Figure 4.21. Target Classification Status Indicators, C0A�4C0 Determined by
System

Figure 4.22. Digital Logic Analyzer Data: Target Classification Decision
(Top) and ?Cℎ4C00 History of C0A�4C0 Determined by System
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Figure 4.23. (a) Last Adaptive Waveform, x, Transmitted by the SMW200A
Signal Generator and (b) Target Return Signal, y, Captured by the FSW
Spectrum Analyzer (Bottom), where ?Cℎ4C00 = 1.0
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4.4 Hardware Implementation Observations
The functional demonstration described in Section 4.3 confirms that the PWE CRr target
recognition theory and technique can be implemented into real-time hardware applications.
In this proof-of-concept demonstration, an FPGA-based design is used to perform all cogni-
tive radar decision-making and processing requirements within a fully adaptive, closed-loop
transceiver system using R&S RF test equipment. This real-world digital hardware demon-
stration also confirms that it is possible to incorporate this technique into other processor
technologies, such as digital signal processor (DSP), system on chip (SoC), or application
specific integrated circuit (ASIC) based designs. Most importantly, the PWE technique can
be directly applied in modern radar systems.

The importance of receiver synchronization is critical in this design to properly read received
HS DIG IQ data. As stated in Section 4.3.2, the initial reference pulse of the transmit
waveform is used to dictate the read window at the FIFO receiver buffer. Misinterpreting the
reference pulse introduces synchronization error, which results in recording erroneous data.
This, of course, leads to incorrect target classification if the rest of the processing continues.
The reference pulse in this design is observed to be sensitive to noise. When �,�#�
generator noise is added to the transmit signal significantly above the effective receiver
thermal noise floor, the additional noise intermittently trips the read window threshold and
introduces synchronization error. Notice that the reference pulse has lower energy than the
adaptive waveform. Thus, even if a large carrier to noise (SNR) is set in the RF signal
generator, the reference pulse has lower SNR. In the implementation, we did not have
a matched filter to the pulse since that would have to be matched to the RF carrier phase
(which depends on pressing the initial trigger to the experiment). That level synchronization
to ensure maximum energy is captured from the reference pulse is beyond the scope of
this work. Future designs can increase the energy of the reference pulse to reduce noise
sensitivity. Other considerations include reducing additional layers of synchronization by
removing the FIFO receiver buffer from the design and capturing data directly from the
QSFP+ receiver, since each target return waveform is only 240 samples wide.

In the Vivado implementation, it had already been shown that the PWE technique is robust
via the Monte Carlo simulation method where the performance degradation is dictated by
hardware implementation. For more robust RF demonstrations, synchronization is more of
an issue.
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4.5 Chapter Summary
In this chapter, we demonstrated a hardware realization of the PWE CRr target recognition
technique and theory through the implementation of an FPGA-in-the-loop CRr design inte-
grated with the R&S RF equipment. From this demonstration, we confirmed the functional
feasibility of incorporating PWE concepts into real-time hardware applications. In the be-
ginning of the chapter, we first provided a description of the system hardware, equipment,
and IO components. We then provided a functional demonstration of the CRr target recog-
nition system by stepping through the FSM process. Finally, we concluded this chapter
with design implementation observations, as well as recommendations for future design
optimization. In the next and final chapter, we summarize this complete body of work and
provide recommendations for future research.
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CHAPTER 5:
Summary and Conclusion

The objective of this study was to design an FPGA implementation of a cognitive radar
(CRr) target recognition system utilizing the probability of weighted energy (PWE) adaptive
waveform transmission technique. This thesis served a proof-of-concept investigation to
determine the feasibility of incorporating the PWE adaptive matched waveform theory into
a real-time hardware application and/or demonstration.

Wefirst defined the design objectives and background inChapter 1 by dividing this study into
two main focus areas: (1) develop and simulate the PWE CRr target recognition method
as a Verilog digital system logic design through a Monte Carlo simulation model using
the Xilinx Vivado development environment and (2) design and demonstrate a functional
digital hardware implementation of a PWE CRr target recognition system in a dynamic
closed-loop, fully adaptive transceiver design using an FPGA-based processor integrated
with R&S RF equipment. In Chapter 2, we provided the conceptional background of the
CRr perception-action cycle model and introduced the PWE theory.

In Chapter 3, we designed the Verilog architecture of a PWE Monte Carlo simulation
model consisting of 15,000 trials. The MATLAB PWE algorithm [16] was employed as a
benchmark to develop the required digital hardware logic and compare performance. Data
structure standardization incorporated throughout the Verilog system modules used 32-
bit signed fixed-point Q15.16 representation to accommodate data precision requirements
with the Xilinx VCU118 and R&S proprietary data bus formats. The overall outcome
of the Verilog Monte Carlo model simulation confirmed that the PWE target recognition
technique can be realized in a hardware description language. Additionally, through this
design model, we produced and verified the functional Verilog module components suitable
for FPGA implementation. Considerations for optimizing this design include incorporating
the CORDIC algorithm for exponential functions [21], improving the square root function
using techniques such as the “Babylonian Method,” and implementing more advanced
division algorithms beyond the elementary Euclidean method to gain precision.
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Finally, in Chapter 4, we designed and exhibited an integrated FPGA-in-the-loop RF hard-
ware demonstration of the PWE CRr target recognition technique with R&S RF equipment.
In this chapter, we first detailed the equipment features and hardware system interconnec-
tions of the Xilinx VCU118 Evaluation Board, SMA200A Vector Signal Generator, and
FSW Signal & Spectrum Analyzer. Additionally, we described the mixed language archi-
tecture, illustrating the Verilog CRr target recognition system design instantiated within the
R&SVHDLwrapper. We then provided a functional demonstration of the system FSM. The
design outcome produced a proof-of-concept demonstration confirming the feasibility of
employing the PWE CRr target recognition technique into real-time hardware applications.
This small-scaled hardware approach exhibited that the PWE concepts can be directly ap-
plied inmodern radar systems using processor technology extending beyond FPGAs, such as
DSPs, SoCs, or custom ASICs. Recommendations that we discussed for optimizing this test
system design include improving transmit and receiver synchronization of the experiment
setup.
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5.1 Recommendations for Future Work
Recommendations for future work can be divided into two focus areas based on levels
complexity: (1) further proof-of-concept PWE CRr development expanding from the test
system presented in this thesis and (2) PWE integration into a true radar system.

The test system setup and environment presented in this project can be further optimized
and expanded using practical target responses, such as military aircraft, naval warship
hulls, or ground utility vehicles, to fully demonstrate a realistic application of PWE target
recognition. For example, in [8], high fidelity EM-simulated radar cross section (RCS)
response models are incorporated into the PWE simulation to represent actual military
target sets. Using the test setup design of this thesis, the C0A�4C0 bandpass filter can be
replaced with a second FPGA configured as a programmable FIR filter that is positioned
in series between the SMA200A and FSW connections. This programmable FIR filter can
incorporate the Verilog filter module developed in this project with the stored military
RCS responses. Adding a layer of complexity, aspect angles should be considered in this
approach, as demonstrated in [8].

This test equipment setup can also be utilized to apply the jammer nulling adaptive wave-
form EM countermeasure technique developed in [9] as a hardware demonstration. This
countermeasure incorporates PWE concepts and RCS models [8] to classify aircraft in the
presence of jammer interference [9].

In addition to the test system setup improvements and optimization recommendations from
Section 4.4, future work recommendations include incorporating the pulse descriptor word
package feature on the R&S SMA200A to provide enhanced streaming IQ generation and
direct control of waveform parameters over the local area network Ethernet connection
between the VCU118 and SMA200A [25]. This method would provide increased flexi-
bility and automation to shape FPGA generated waveforms, as well as eliminate manual
adjustments required in the current system design.
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Furthermore, implementing parallel processing architecture features of the VCU118 Eval-
uation Board is recommended in future improvements to this design to incorporate con-
current computing and enhance Virtex Ultrascale+ FPGA utilization. The onboard Xilinx
Zynq 7000 SoC features a dual core ARM processor [24], which can be used to share the
sequential behavioral load of the FSM currently residing in the target recognition Verilog
module. This would free up processing resources and real estate on the Virtex Ultrascale+
and improve overall system performance. Additionally, stored target responses, eigenwave-
forms, and LUTs can be stored onto the onboard non-volatile memory devices featured on
the VCU118.

Finally, in a more complex application, to fully demonstrate PWE CRr target recognition
methods at the operational level, future research recommendations involve incorporating
the algorithm in a modern radar system, expanding beyond the test environment presented
in this thesis, and using existing and proven transceiver designs in the field. The hardware
realization and demonstration presented in this body of work at the simplistic level provides
confidence that a functional application of the PWE method in a true radar system is
possible.
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