
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-03

SOFTWARE DEFINED NETWORKS: DIALECTING SECURITY

Patrozou, Nektaria
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/69699

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SOFTWARE DEFINED NETWORKS:
DIALECTING SECURITY

by

Nektaria Patrozou

March 2022

Thesis Advisor: Britta Hale
Co-Advisor: Geoffrey G. Xie

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 March 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
SOFTWARE DEFINED NETWORKS: DIALECTING SECURITY 5. FUNDING NUMBERS

 6. AUTHOR(S) Nektaria Patrozou

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 OpenFlow is the standard used in Software Defined Networks. It handles the communication between
the network devices. However, there are some weaknesses linked to OpenFlow. With the use of TLS as a
security solution, it inherits the vulnerabilities of TLS in downgrade attacks. Furthermore, TLS is optional.
To enhance the security in OpenFlow, previous research work provided a solution that comes with the
notion of protocol dialects. Protocol dialects are variations of an existing implementation of an open-source
protocol, such as OpenFlow. They are implemented either by adding proxies or directly modifying the
protocol to the core. The protocol dialect we analyze in this research follows the first approach by
manipulating the protocol in such a way that the actual devices continue to function as before, but additional
security measures are put in place with the use of proxies. Desired additional functionality, additional
security measures, and changes in fields of the actual protocol are performed within the proxies. The devices
“think” that they are communicating with each other exactly as before, but in reality a proxy is standing in
front of each device, and the actual communication takes place with the proxies’ mediation. In this research,
we aim to show the enhanced security of the dialected OpenFlow protocol. We follow the computational
analysis model to conduct a security proof for the dialect, and we also analyze some difficulties in
conducting such a proof.

 14. SUBJECT TERMS
SDN, dialecting security, software defined networks, protocols 15. NUMBER OF

PAGES
 79
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

SOFTWARE DEFINED NETWORKS: DIALECTING SECURITY

Nektaria Patrozou
Lohagos, Hellenic Army

BS, Hellenic Army Academy (Evelpidon), 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2022

Approved by: Britta Hale
 Advisor

 Geoffrey G. Xie
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 OpenFlow is the standard used in Software Defined Networks. It handles the

communication between the network devices. However, there are some weaknesses

linked to OpenFlow. With the use of TLS as a security solution, it inherits the

vulnerabilities of TLS in downgrade attacks. Furthermore, TLS is optional. To enhance

the security in OpenFlow, previous research work provided a solution that comes with the

notion of protocol dialects. Protocol dialects are variations of an existing implementation

of an open-source protocol, such as OpenFlow. They are implemented either by adding

proxies or directly modifying the protocol to the core. The protocol dialect we analyze in

this research follows the first approach by manipulating the protocol in such a way that

the actual devices continue to function as before, but additional security measures are put

in place with the use of proxies. Desired additional functionality, additional security

measures, and changes in fields of the actual protocol are performed within the proxies.

The devices “think” that they are communicating with each other exactly as before, but in

reality a proxy is standing in front of each device, and the actual communication takes

place with the proxies’ mediation. In this research, we aim to show the enhanced security

of the dialected OpenFlow protocol. We follow the computational analysis model to

conduct a security proof for the dialect, and we also analyze some difficulties in

conducting such a proof.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Contents

1 Prelude 1
1.1 Motivation . 1
1.2 Problem Statement. 2
1.3 Research Questions . 3
1.4 Thesis Organization . 3

2 Background 5
2.1 Software Defined Networking 5
2.2 Secure Communication . 20
2.3 Related Work . 20

3 Security and Preliminaries 23
3.1 SDN Security. 23
3.2 Preliminaries . 26
3.3 Variables and Notation . 30

4 A Protocol Utilizing Timestamps 33
4.1 Protocol Description . 33
4.2 Timestamps . 39

5 Security Analysis 45
5.1 Security Model . 45
5.2 Security Proof . 49

6 Conclusion and Future Work 55
6.1 Conclusion . 55
6.2 Future Work . 56

vii

List of References 57

Initial Distribution List 61

viii

List of Figures

Figure 1.1 Dialect Proxy Software . 2

Figure 1.2 Dialecting Proxies Implementation Method 3

Figure 2.1 Main Characteristics of SDN Controllers 11

Figure 2.2 OpenFlow Network Architecture 16

Figure 2.3 Main Components of an OpenFlow Switch 18

Figure 2.4 Illustration of Dialecting of Existing OpenFlow Messages 21

Figure 3.1 OpenFlow Header Layout . 28

Figure 4.1 Dialecting Protocol Flow Diagram 34

Figure 4.2 Simplified View of Dialected OpenFlow Hello Messages 35

Figure 4.3 Key Schedule Key Derivation 36

Figure 4.4 Keys Derived for Different Time Intervals 37

Figure 4.5 Simplified View of Dialected OpenFlow Data Messages 37

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Acronyms and Abbreviations

API Application Programming Interface

AS Autonomous Systems

DiD Defense in Depth

DoS Denial of Service

IT Information Technology

IXP Internet Exchange Points

MITM Man In the Middle

NAC Network Access Control

NAT Network Address Translation

NOS Network Operating System

OF OpenFlow

ONF Open Networking Foundation

OTWG Optical Transport Working Group

SDN Software Defined Networks

SNMP Simple Network Management Protocol

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TSA Time Stamp Authority

TLS Transport Layer Security

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgments

I would like to express my deep gratitude to my two advisors, Dr. Britta Hale and Dr.
Geoffrey Xie. It has been an honor to have worked with them. Their guidance, mentorship,
and patience have helped with the successful completion of this thesis.

A special thank you to Dr. Britta Hale for always finding time despite her hectic schedule
to help or guide me through the difficulties that I encountered along the way. Her integrity
and professionalism are admirable and motivational.

I would also like to thank my siblings and friends who have supported, encouraged and
helped me through every step of the way in this challenging journey of the past two years.

I would like to thank the people that helped me build the foundation of this educational
journey, my parents. Their efforts and sacrifices in order to provide the best education
for me and my siblings have been the rudimentary key to my success in this program. All
in all, their continuous love and support truly helped me conquer all the hurdles in
order to achieve my goals. It was them that lifted me up during moments of
discouragement and struggles throughout this program.

And last but not least, in remembrance of my lovely aunt Vaso, for her unconditional love,
support, and encouragement. You have taught me the meaning of unconditional love. You
will always be a part of my journey. And thank you for the love and care you have given
me.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Dedication

In the memory of Panagiota Stratou-Katsimpra, Vera Katsimpra and Vaso
Talatzi. The three people who inspired most in life with their patience,

resilience, and hard work.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Prelude

In this chapter we introduce the motivation behind our research and describe the main
components of this work.

Software Defined Networking (SDN) technology aims to make a network programmable
and manageable from a central decision point called controller. Thus, the idea behind SDN
is centralized control and management of network devices using software. The controller is
logically centralized because its functionality may be carried out by a collection of controller
instances that are distributed. In SDN, network devices that process and forward data packets
are referred to as switches. An SDN switch relies on the controller to provide instruction on
how to process incoming traffic on a per application flow basis. This emerging technology
has the potential to change the networks industry. However, for this to be achieved, research
must be performed in the management and evaluation of all the security aspects to implement
reliable networks.

There are great financial benefits for organizations from using this technology. When routers
and switches are supported by SDN, the organizations do not have to rely on an external
company with special engineers to undertake the implementation of the network infrastruc-
tures.

1.1 Motivation
The OpenFlow Protocol (OF) is a standard for facilitating communication between an
SDN controller and each switch under its control [1]. Typically, a controller supports many
switches at the same time.

As the only option in Software Defined Networks, the OpenFlow Protocol has some weak-
nesses. Specifically, OpenFlow uses Transport Layer Security (TLS) as a security solution
to authenticate the participating devices and encrypt the control messages. However, ac-
cording to recent research [2], TLS is vulnerable to downgrade attacks. Additionally, TLS
is optional in the current OF standard.

1

A methodology to strengthen vulnerable protocols comes with the notion of protocol di-
alects. A protocol dialect is a modification of the existing implementation of an open-source
protocol. Dialecting a protocol can be performed with the use of proxies or with the mod-
ification of the actual protocol implementation at the binary level. With protocol dialects,
we are able to add security measures or remove unused features while maintaining the core
functionality of the protocol. In this work, we analyze a protocol dialect of OpenFlow that
was developed by Michael Sjoholmsierchio in a recent NPS thesis [2].

Proxies are put in place in front of each device and the additional security is provided
only between the proxies. The actual devices, “switch” and “controller”, think that they are
communicating with each other exactly as before, but the communication is taking place
from device-proxy to proxy-device on the other side of the communication channel. Proxies
communicate in accordance to the modified version of the protocol and they translate any
modified field back to its original, before providing it to the controller or switch. A visual
representation of the topology with proxies is shown in Figure 1.2. The functionality taking
place in each proxy is shown in Figure 1.1.

Figure 1.1. Dialect Proxy Software. Source: [3].

1.2 Problem Statement
There are few prior analyses of protocol dialects regarding their security properties, while
some of the dialects explicitly aim to strengthen vulnerable protocols. In our work, we
analyze a protocol dialect of OpenFlow that was implemented in [3] with the use of proxies.

2

That work aimed on a more secure OpenFlow (OF) protocol in the Software Defined
Networks (SDN) environment, while maintaining an acceptable performance.

Figure 1.2. Dialecting Proxies Implementation Method. Source: [3].

1.3 Research Questions
This research focuses on mathematical analysis and provable security of Sjoholmsierchio’s
OpenFlow dialects, which was designed and tested in previous research. We provide a
formal proof of the resulted dialected protocol. We try to answer questions such as what key
establishment security considerations are in SDN dialecting and how we can mathematically
analyze these options. Our goal is to enhance security in the existing protocols used in SDN
while making as minimum changes as possible trying to achieve Defense in Depth (DiD).

1.4 Thesis Organization
In Chapter 2 we provide background information about SDN, their limitations and features.
Furthermore, we introduce OpenFlow, the protocol used in SDN. Then, we talk about secure
communication and how it is provided, while we analyze security goals and introduce
security primitives. Afterwards, we review related work that led to the conduction of this
research. Chapter 3 contains information about SDN security and also the core preliminaries
of our analysis. Chapter 4 contains the protocol description and explanation of a deconfliction
algorithm used in our protocol, since it’s a protocol that utilizes timestamps. Chapter 5
contains the security model and the security proof. Finally, Chapter 6 contains the conclusion
of our analysis as well as ideas for completion and possible future work.

In this chapter we showed what led to the construction of this research, and next we will
analyze concepts in more depth.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Background

In the previous chapter we introduced the motivation and main components of our research.
In this chapter we explain basic concepts and secure communication of SDN technology.
We also refer to previous work that led to this research.

2.1 Software Defined Networking
In traditional networks, there was not an option for a centralized management of the entire
network. There was a lack of separation between the control and data planes, which are
integrated in the same network devices [4]. Though critical in the early days of networks, it
resulted to the main reason why the traditional network architectures are rigid, multifaceted,
and hard to manage.

According to Open Networking Foundation (ONF) [1], Software Defined Networking tech-
nology is an arising architecture, in which there is a distinction between the routing and the
forwarding processes. Furthermore, it can be manipulated by programming. This relocation
of control, which used to be closely linked with devices like routers or switches, allows the
abstract virtual view of the whole network as a logical entity.

Kreutz et al. [4] distinguish four main components in the design of SDN:

1. The control and data planes are decoupled. Control functionality is re-
moved from network devices that become simple (packet) forwarding
elements.

2. Forwarding decisions are flow-based, instead of destination-based. A flow
is broadly defined by a set of packet field values acting as a match (filter)
criterion and a set of actions (instructions). In the SDN/OpenFlow con-
text, a flow is a sequence of packets between a source and a destination.
All packets of a flow receive identical service policies at the forwarding
devices. The flow abstraction allows unifying the behavior of different
types of network devices, including routers, switches, firewalls, and mid-

5

dleboxes1. Flow programming enables unprecedented flexibility, limited
only to the capabilities of the implemented flow tables.

3. Control logic is moved to an external entity, the so called SDN controller
or Network Operating System (NOS). The NOS is a software platform that
runs on commodity server technology and provides the essential resources
and abstractions to facilitate the programming of forwarding devices based
on a logically centralized, abstract network view. Its purpose is therefore
similar to that of a traditional operating system.

4. The network is programmable through software applications running on
top of the NOS that interacts with the underlying data plane devices.
This is a fundamental characteristic of SDN, considered as its main value
proposition. [4]

2.1.1 Limitations Addressed by SDN
The coverage of today’s market demands is almost impossible with just the traditional
network architectures [1]. In an effort to cope with low budgets, Information Technology
(IT) departments are using management tools on the device’s level and non-automatic
procedures. However, traditional network architectures stumble on coping with today’s
user’s or business’s requirements. The ONF [1] lists the limitations that today’s network
designers meet. Below we provide summaries of these listings:

• Complexity that leads to stasis: Complexity is one of the first and foremost limita-
tions of networks today, with one protocol corresponding to one problem and without
the notion of abstraction. It is this complexity that leads to static networks, and those
static networks are in contrast with today’s dynamic server environments. Further-
more, the number of users has increased, with these users requiring connections from
various physical locations.

• Inconsistent policies: The effort of putting isolated protocols together trying to
achieve a network-wide policy leads to another limitation. It can lead to the need for
configuration of a tremendous amount of devices in the network. Additionally, any re-
configuration needed can take a lot of time, hours or even days in some cases. That is

1Middle-box: Network device that converts, inspects, and filters or handles in another way the traffic, for
reasons other than packet forwarding.

6

an extremely rough challenge, the IT departments have to cope with, making it almost
impossible not to have omissions, leading to security breaches and vulnerabilities in
the network.

• Inability to scale: The network grows along with the demands on the data center.
Thus, with the addition of new devices, configuration and management as is, cannot
hold up to this growing complexity.

• Vendor dependence: Unfortunately, there is still no standardization, when it comes
to network equipment. Enterprises are trying to develop and grow by searching and
applying new capabilities according to user or business demands, but they have the
limitation of depending on the vendor they purchased products from. Addition of
equipment from a different vendor may not be able to work with existing equipment.
This is where the Software-Defined Networking architecture comes in contrast, by
developing new standards.

Furthermore with the rapid development in technology, computer networks grew bigger,
leading to more complex and difficult management, maintenance and control [1]. There was
clearly a need to reexamine the traditional network architectures. The staticity of existing
networks does not coincide with the dynamic nature of the computing environments in
today’s enterprises.

Data centers saw changes in traffic patterns, moving from the traditional way of commu-
nication between a client and a server, to machine-to-machine and with users connecting
to the network from all kinds of devices, from different locations and time [1]. Addition-
ally, enterprises implemented utilities including private cloud or public cloud resulting to
additional traffic across the network.

IT’s are struggling to incorporate the users’ needs while trying to maintain compliance
mandate measures protecting data and intellectual property [1]. Another struggle for IT’s
comes with cloud services, the providing of which must not stop security maintenance and
auditing requirements, along with changes in the organization system, consolidations etc.

Lastly, the struggle of bandwidth [1]. With today’s big datasets there is a requirement of
parallel processing of a big number of servers, all of which directly communicate with each
other. This leads to a bigger demand for network capacity. To scale the network to such a
before unthinkable size, while maintaining full connectivity is an extremely hard task.

7

On the other hand, SDN provides ease of adaptation to dynamic inner-organization changes,
reduce of control, maintenance and management complexity, and ease of compliance with
the high-bandwidth demands [1]. SDN centralizes and simplifies the control and manage-
ment of networks. It allows networks to keep up with the rapid development in technology.

8

Some of the benefits that can be achieved through SDN technology, according to ONF [1],
are summarized below:

Centralized control of different environments: SDN software provides the control of network
devices from different vendors. We can configure, maintain, and update devices wherever
in the network, from our office.

Reducing complexity: Automation of managing tasks that before acquired manual treatment.
That reduces operational overhead, delays or network instability caused by any kind of
human error, and increases the enterprise’s agility.

Higher rate of innovation: By making the network programmable, SDN provides escalation
to innovation, since it makes it easier to meet user needs and requirements at the exact
moment they show up.

Increase of reliability and security: In SDN architecture network devices do not need to be
configured individually every time that there is a new add-on or removal or just relocation of a
device. That reduces network failures that root from configuration or policy inconsistencies.
Additionally it provides a visual representation and thus easier control of the network, with
less operational expenses, more configuration capabilities, less errors, and ease of policy
enforcement.

Better user experience: SDN architecture dynamically adapts to user needs. The centralized
control and information about the state of devices provided to higher-level applications,
easily meets any user’s needs. An example comes with network resolution. In traditional
networks, resolution is a setting which users must select not knowing with certainty if the
network is able to support it. That results in an unpleasant user experience, causing delays
or interruptions . In SDN,though resolution is automatically adjusted.

2.1.2 SDN Controllers
We can treat SDN controllers as network operating systems [5]. They form a software
platform which constitutes the base of all the network control applications. Usually, a set
of modules form an SDN controller, and provide different services like routing, security,
policy management, and more, in the direction of meeting the enterprises objectives.

9

We find a number of SDN controllers that were developed with different objectives in mind.
According to [5], the most widespread ones are summarized below:

• NOX Controller: This controller was developed by Nicira Networks early on along
with the OpenFlow protocol. As one of the firsts, it is considered a safe and stable
option, it is widely used and is preferred in educational environments. There are
two versions of this controller with the first being the NOX-classic, implemented in
C++ and Python supporting the network control application by using both languages.
Using two languages though led to inconsistencies concerning features and interfaces.
It might be due to these issues that this first version is no longer supported, and instead
we moved to the second version which is called simply NOX or “new NOX”. This
version was implemented in C++, supporting the network control application also
developed in C++. Even if considered harder, especially for users that are not familiar
with C++, “new NOX” supports both 1.0 and 1.3 versions of OpenFlow and has better
performance and programmability.

• POX Controller: For users that are not familiar with C++, POX is the Python version
of the NOX controller. With Python’s simplicity and flexibility, POX has been the top
choice for SDN projects, in things like debugging SDN applications or implementing
network virtualization. The POX controller is also supported by the official NOX com-
munity. On the downside, POX supports only 1.0 version of OpenFlow protocol but
still provides better performance compared with the NOX-Classic. However, Python
is not a compiling language, therefore it cannot be used for low-level functionality
down to the core of the OpenFlow Protocol, in contradiction with the NOX.

• Ryu Framework: Ryu simplifies network management and applications control. It is
based on Python and supports a variety of protocols, such as NETCONF2, OF-config3,
and OpenFlow, to include version 1.0 and versions 1.2–1.4. Ryu is implemented using
Python.

• Floodlight Controller: Except from C++ and Python, there are Java-based versions of
OpenFlow Controller, one of them being the Floodlight Controller. This is an open-

2“NETCONF is a protocol defined by the IETF to install, manipulate, and delete the configuration of
network devices. NETCONF operations are realized on top of a Remote Procedure Call (RPC) layer using an
XML encoding and provide a basic set of operations to edit and query configuration on a network device” [6].

3“The OF-CONFIG protocol enables configuration of essential artifacts of an OpenFlow logical Switch
so that an OpenFlow controller can communicate and control the OpenFlow Logical switch via the OpenFlow
protocol” [7]

10

source option with a great industry support, which comes from Big Switch Networks.
Maybe the more complex from the options above, due to a large set of features, it
enables easy integration with external business applications.

• OpenDaylight Controller: Another Java-based SDN controller, OpenDaylight was
created as a Linux Foundation collaborative project and it focuses on innovation in
the SDN environment. Besides the open source community, OpenDaylight project is
supported by companies like Cisco, IBM, Brocade and VMware. It supports both 1.0
and 1.3 OpenFlow versions, as well as other protocols like OVSDB4 We can remotely
configure most network devices using legacy protocols, such as Simple Network
Management Protocol (SNMP) and NETCONF. On the drawbacks, OpenDaylight is
complex because of its architecture and a big number of services provided, making it
having a steep learning curve.

Figure 2.1. Main Characteristics of SDN Controllers. Adapted from [5].

SDN Applications
There is wide variety of network environments where we encounter SDN applications.
The enabling of customized control with programmable networks, the simplification of
development and deployment of new network services and protocols make it a preferable
choice that is already used [9]. Below view different e nvironments i n w hich Software
Defined Networking is implemented, summarized from [9].

4OVSDB: Open vSwitch Database, is a management protocol in a software-defined networking environ-
ment. OVSDB was created by the Nicira team that was later acquired by VMware [8].

11

• Enterprise Networks. In enterprises we usually encounter large networks, while se-
curity and performance requirements are quite demanding. Of course requirements
differ from one enterprise to another according to the goals, characteristics, number
of employees etc. As an example, networks in Universities, can be challenging in
terms of security, with many devices connecting with these temporary connections
not being controlled by the University, or the resource allocation. Additionally, there
is the need in these environments, to provide support for research related projects,
experiments and protocols. With SDN, the difficulty and complexity is limited by the
ability “to programmatically enforce and adjust policies” [9], or network performance,
or make it simple to monitor network activity.
Some examples of SDN implementation include “Network Address Translation
(NAT), firewalls, load balancers, and Network Access Control (NAC)” [9]. In more
complex implementations, SDN can be used for centralized management and control.
Another issue in large networks aligns with consistent network updates. Instability
in networks roots mainly from configuration changes and may cause security flaws,
outages and performance disruptions. “With a set of high-level abstractions, network
administrators are able to update the entire network, guaranteeing that every packet
traversing the network is processed by exactly one consistent global network config-
uration. To support these abstractions, several OpenFlow-based update mechanisms
were developed” [9]. Lastly, OpenFlow itself, was initially designed taking issues
found in enterprise networks into consideration.

• Data Centers. Data centers have evolved and continue to evolve rapidly continuously
attempting to meet higher and higher standards. The need for careful traffic man-
agement and enforcement of policies escalates with the size of the infrastructures.
Especially in businesses where even just a small delay can lead to financial dam-
age. Despite the challenges of large scale networks, and the complexity which large
scale brings, data centers have always been adapting in higher demands and require-
ments. Therefore, they run well below capacity while being ready to support higher
workloads.
An important issue in large scale data centers, is energy consumption with its large
scale cost. There has been research, that has been focused on improving servers by
better managing hardware or/and software, but still the amount of energy consumed is
great. Heller et al. [10] research, proposed a power manager (ElasticTree) throughout

12

the network, which with the help of SDN, tries to find a sub-network in the network,
that uses minimum power for real-time traffic conditions. Additionally, it turns off
switces that are not used at the time. Their results showed energy savings up to 62%.
However, there are high performance networks in which SDN solutions are not
appropriate. There is a need to balance the simplified traffic management and visibility
coming from SDN technology, with scalability and performance overhead.
OpenFlow might be considered excessive, since it combines central control and
complete visibility, even when only “significant” flows need to be managed. That may
add delays, especially when switches are overwhelmed with flow table entries. There
are ways to manage that issue but still it might affect the controller on effectively
managing traffic and gathering statistics. There have been suggestions for design
modifications that try to keep flows in the data plane while maintaining visibility,
which could, at some level, balance these issues out.

• Optical Networks. Software-defined and OpenFlow networks, with the management
of data traffic as flows, are able to support multiple network technologies. Thus, they
are able to provide centralized control for optical networks.
According to the ONF [1] and the Optical Transport Working Group (OTWG) that
was created in 2013, SDN and the OpenFlow standard provides benefits to optical
transport networks, such as management flexibility, improvement of network control,
third-party integration, control systems, and new services.

• Home and Small Business. Home or small businesses networks are, maybe, the most
widely used networks and they have become highly complex as well. Low cost network
devices allow flexibility and spread of the network but at the same time require a more
careful network management and stricter security objectives. Networks that are not
secured properly constitute attack targets for malware, while any outages rooting
from network configuration issues can cause financial or other types of losses in
small businesses. It is not practical or even feasible to have a network administrator
to each home or office. SDN technology enables visibility and gives users a view
of their network layout. It also offers a single point of control. Furthermore, there is
the option of assigning the network management to a third party, through remotely
programmable switches, distributed network monitoring algorithms, and conclusion
exporting, for the detection of possible security issues.

13

• Internet Exchange Points (IXP). IXP stations use BGP5 for routing between sectors,
which has certain limitations since it can forward traffic based on destination’s IP
prefix only. SDN deployment on IXP may provide liberation from these limitations,
load balancing etc.

• Backbone Networks. An SDN architecture in backbone networks6 can provide high
programmability and availability. A notable example is Google. Generally, by fol-
lowing a centralized management approach, there are beneficial results like better
network utilization, easier network testing etc.

2.1.3 OpenFlow Protocol
Networking technology has developed and improved in a large scale through innovative
transformations and mechanisms, boosting speeds, increasing reliability and security of
networks [13]. Network devices developed on the physical layer, providing high capacity
connections, improving computing power and various applications, offering tools for easy
inspection of functions. However, the network structure hasn’t seen so many changes from
its early days.

In the existing structure, various network devices from different vendors executing different
software, or in fact “firmware,”7 are handling tasks that compound the network functionality
in its whole, like routing, packet transportation or network access decisions [13]. This doesn’t
leave enough room for for innovative research ideas, like new routing algorithms which can
be tested in large scale environments. Additionally, every effort for new experimental ideas
for constructing the network may result in network failure at certain points, a fact that has
led to static and non-flexible structure of the network and hasn’t been attracting important
innovations towards that direction.

The OF Protocol solves this problem by providing the ability to network administrators, of

5Border Gateway Protocol is a protocol which is designed to distribute routing information between
Autonomous Systemss (ASs) on the Internet [11].

6“A backbone or core network is a part of a computer network which interconnects networks, providing
a path for the exchange of information between different LANs or subnetworks. A backbone can tie together
diverse networks in the same building, in different buildings in a campus environment, or over wide areas” [12].

7“Firmware is a specific class of computer software that provides the low-level control for a device’s specific
hardware. Firmware, such as the BIOS of a personal computer, may contain basic functions of a device, and
may provide hardware abstraction services to higher-level software such as operating systems” [14].

14

practising or applying various capabilities through the software [15]. The OF specification
can be found at the ONF organization. The ONF’s administrative board consists of the
following well known companies: Google, Microsoft, Deutsche Telekom, Verizon, Yahoo
and NTT. Also, companies such as HP, IBM, and CISCO, provide hardware that uses OF.

Definition
As the protocol used in SDN, OpenFlow is the first standard that allowed interaction
between the data and control plane [15]. The flow tables used in OpenFlow are analogous
to the lookup tables used by routers and switches in traditional networks. Through these
flow tables, we can implement firewalls or NAT or collect statistical data. Additionally,
they provide action rules which are created or modified from a centralized controller.
The network administrator is able to program flow control through the controller, and to
determine specific route from the source to the destination using the flow based on the packet
forwarding processing. It decreases the power consumption and the network management
cost by eliminating the procedure of packets processing of the router, since now packet
routes are determined from the centralized controller.

OpenFlow Architecture
Three basic components form the OpenFlow network architecture [13]:

1. OpenFlow switches that make the data plane.
2. OpenFlow controllers that make the control plane.
3. A secure control channel that connects the switches with the control plane.

The communication takes place between switches and hosts or switches and switches using
the data path, and between controller and switches using the control path, as shown in Figure
2.2.

OpenFlow uses Secure Sockets Layer (SSL) and TLS protocols to secure connections
between the controller and the switch [13]. Mutual authentication between the controller
and the switch is performed by exchanging certificates signed by each side’s private key.
However, the controller may be subject to Denial of Service (DoS)8 and/or Man In the

8“A Denial-of-Service (DoS) attack occurs when legitimate users are unable to access information systems,
devices, or other network resources due to the actions of a malicious cyber threat actor. A denial-of-service

15

Figure 2.2. OpenFlow Network Architecture. Source: [13].

Middle (MITM)9. Therefore, security practises implementation is necessary to prevent
such attacks.

OpenFlow Controller
The controller is the “intelligent” part of the network. It maintains network protocols and
policies, and delivers instructions to the various network devices. It adds or removes flow
entries over the secure channel in switch flow tables, using the OpenFlow protocol. The
connection between the switch and the controller takes place with the switch initiating a
TLS or Transmission Control Protocol (TCP) connection when it knows the controller’s IP
address.

There is also the possibility of establishing connections between multiple controllers and
a switch [15]. This option improves reliability since the switch can continue working in
OpenFlow mode if a connection with one of the controllers fails. The controllers hand-off

condition is accomplished by flooding the targeted host or network with traffic until the target cannot respond
or simply crashes, preventing access for legitimate users” [16].

9“A form of active wiretapping attack in which the attacker intercepts and selectively modifies communi-
cated data to masquerade as one or more of the entities involved in a communication association attack” [17].

16

load to each other and this way they are able to maintain a balanced workload between them
and to recover from any failure. After all, the goal of this “multiple-controllers” functionality
is to contribute to the synchronization of this “handoff” functionality of the controllers.

OpenFlow Switch
The OpenFlow switch is the main device for forwarding packets according to one or more
flow tables and a group table [18]. A procedure that is similar to the traditional forwarding
tables with the difference that in the traditional ones the tables are not managed or maintained
by the switch.

OpenFlow switches can be classified into two different categories, according to [18]:

• OpenFlow-only switches: They support functionality that is only based on the Open-
Flow protocol.

• Hybrid switches: They support OpenFlow operation but also normal Ethernet switch-
ing operation.

In more detail, the OpenFlow switch consists of one or more flow tables, one group table—
which perform lookups and forwarding of packets—a meter table, one or more secure
OpenFlow channels, and ports as shown in Figure 2.3.

OpenFlow messages
OpenFlow protocol was created to provide a standardized way of communication between
an OF switch and an OF controller [18]. There are three different message types in Open-
Flow: controller-to-switch, asynchronous, and symmetric. Each of these types is further
distinguished in various sub-types. In the first type, controller-to-switch, the controller is
the initiator of the message and this kind of messages allow the controller to manage, control
or perform switch status inspection. In the asychronous messages, the switch is the initiator
and this type is used for the switch to inform the controller for network events or changes in
its status. In symmetric either one is the initiator and this type does not require a request.
Below, we describe the message types used by OF, summarized from [18]:

17

Figure 2.3. Main Components of an OpenFlow Switch. Source: [18].

• Controller-to-Switch
- Features: By a features request, the controller may request can get basic features

knowledge of a switch. The switch responds by sending its identity and basic
capabilities. This sub-type is usually used while establishing the OF channel.

- Configuration: With the use of queries, the controller is able to configure the
switch.

- Modify-State: With this sub-type the controller is able to perform modifications
on the state of the switches.

- Read-State: In this sub-tybe the controller is not able to perform any kind of
modifications but is able to receive information about capabilities, statistics or
switch configuration.

- Packet-out: With this sub-tybe, the controller sends packets using a specific port
on the switch. The corresponding messages are Packet-in, which the controller
receives and/or forwards.

18

- Barrier: With this sub-type the controller checks message dependencies is noti-
fied for completed operations.

- Role-Request: In this sub-type the controller sets its OF channel role and/or its
ID.

- Asynchronous-Configuration: In this sub-type the controller can configure filters
on the messages it can receive. This is also usually used while establishing the
OF channel.

• Asynchronous
- Packet-in: We mentioned the packet-out messages above and this is the corre-

sponding sub-type. The controller can control these packets. For all packets that
are forwarded to the switch and are not matched with any of the flow entries,
there is an event created and sent as a packet-in event. If the event’s goal is to
configure a packet, and if the switch has enough memory to temporarily save
(buffer) that packet, then the message that is sent, contains only the required from
the controller information, which is about the packet header and a buffer-ID. For
switches that do not support the internal temporary save, or do not have enough
memory, the message that is sent to the controller contains the full packet.

- Flow-Removed: This sub-type is about providing information to the controller
about a change in the flow table. Specifically if a flow entry was removed, usually
after the controller requested for it.

- Port-status: Switches send port-status messages to the controller, informing of
changes on ports.

- Role-status: Providing information to the controller if there is a change on its
role.

- Controller-status: A switch informs controllers when the status of an OpenFlow
channel changes. This can help in redirection if controllers have a failure of
communication to each other.

- Flow-monitor: This is also a sub-type for changes in the flow table. In compari-
sion, with the “flow-removed” sub-type. this one informs and keeps track of all
kind of changes in the flow table and not only when it comes to a flow entry’s
removal.

19

• Symmetric
- Hello: Upon connection establishment, the switch and the controller exchange

Hello messages.
- Echo: These messages are sent to check liveness on the other side of the con-

nection. With an echo message we expect an echo reply. They are also used to
check latencies or bandwidth.

- Error: Error messages are used to check for errors in the connection. The switch
uses these messages to inform for a controller’s request that failed.

- Experimenter: This is a sub-type of messages that enable embedded functional-
ity. They are also meant for additional features in future OpenFlow revisions.

2.2 Secure Communication
We have already mentioned that SDN uses the Openflow standard which relies on TLS.
Unfortunately, TLS is vulnerable and questions arise for the security of SDNs. A security
analysis of OF is given in [19], where the authors evaluate various attacks such as denial
of service and information disclosure, by assuming an adversary that has access to the data
plane.

To be able to talk about secure communication in the dialected protocol, we introduce
security primitives and definitions, such as entity authentication and key agreement.

A basic definition, for example, is Entity Authentication:

Definition 2.2.1 (Entity Authentication [20]). Entity authentication is the process in which
one party participating in a protocol P is assured of the identity of a second party involved
in P, and that the second has participated also, either in the present or immediately prior
to the current time that the evidence is acquired.

We will present more on secure communication and definitions in Chapter 3.

2.3 Related Work
Previous research [3], [2] was performed, in which the authors analyzed the OpenFlow pro-
tocol’s weaknesses, and proposed a dialect approach using proxies in an effort to strengthen

20

security in SDNs. A protocol dialect option for OpenFlow was designed, conducted and
tested in the Mininet simulation environment using proxies. The analysis of that protocol
takes place in two stages, what the authors call derivatives or dialect sub-solutions, as shown
in Figure 2.4. On the first stage TLS is not yet established. The second stage starts after the
TLS handshake. In 𝐷1 an authentication code is merged into the 32-bit transaction-id field
of the original OpenFlow Hello message. In 𝐷2 the packet is not modified and a wrapper
is put as the additional security to protect every OpenFlow message. The authentication
process in 𝐷1 is performed before the TLS is enabled while in 𝐷2 it takes place after the
TLS handshake is established.

Figure 2.4. Illustration of Dialecting of Existing OpenFlow Messages to sup-
port the new Derivatives. Source: [2]. 𝐷2 outer(blue) indicates the derivative
while the inner (green) shading indicates the TLS wrapper.

In this chapter we presented the background of the main components of our work and where
this research rooted from. On the next chapter we start getting in a more specific view of
the core of this research, the security in SDNs.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

CHAPTER 3:
Security and Preliminaries

In the previous chapter we presented the backgroung of our work, while on this chapter we
get more specific and introduce security and preliminaries of our analysis.

3.1 SDN Security
Although SDN provides new network implementations, security has become a main concern
in this technology [21]. Research has shown that various attacks are possible against SDN
through various elements of these networks. Since SDN depends on software, vulnerable
coding points impact SDN security. Furthermore, SDN provides numerous abilities for
security check implementation through the controller applications. More functional means
for network security checks result from this kind of software solutions.

3.1.1 SDN Threat Model
Every single one of SDN architecture’s elements can contain possible vulnerabilities, result-
ing to exploitation of an attacker and harming of the network [21]. To understand the SDN’s
threat model, i.e possible threats on SDN networks, each of the threats can be categorized
in 3 elements [21]:

1. Threat source: A source that causes the vulnerability.
2. Vulnerability source: An SDN element on which the vulnerability issue is created.
3. Threat action: An activity with which the threat is performed.

Threat sources can further be categorized [21]:

• A non-SDN element: A system that is not a part of SDN architecture.
• A misleading SDN element: An unauthorized SDN system inside an SDN network

which performs unauthorized activities.
• A malicious SDN application: An application which has been exposed or a user who

perfoms malicious activities using this application.

23

• A malicious controller: A compromised controller or a user that performs malicious
activities on the controller.

• A malicious network component: A compromised network element or a user, who
performs malicious activities using that element.

• A malicious management console: A management console that has been exposed or
a user who performs malicious activities using that console.

Each of the SDN architecture elements listed below can be a possible vulnerability source
[21]:

- An application
- A controller
- A network component
- A management console
- Northbound interface
- East/westbound interface
- Southbound interface
- Management interface

3.1.2 Possible attacks
Various attacks are possible against SDN or the OpenFlow protocol [21]. These attacks
can aim on unauthorized access, unauthorized information disclosure, unauthorized mod-
ifications, or service disruption. Various attack scenarios are listed below, summarized
from [21]:

Unauthorized access with the use of Brute-Forcing or Password-Guessing attacks.
An intruder penetrating a non-SDN element can achieve unauthorized access in an SDN
element. For example, if the intruder access a management console through random or
systematic use of Password-Guessing, then that console could authorize the intruder with
resources to deploy attacks against the controller and the network which the controller
manages.

Unauthorized access with the use of remote applications exploitation attacks. Taking
advantage of a software vulnerability in an SDN element, an intruder has the opportunity

24

to gain unauthorized access to that element. For example, with access to the management
console, an intruder can take advantage of a vulnerability of buffer overflow in an SDN
server and gain access to SDN applications.

Unauthorized information disclosure with the use of RAM scraping attacks. The in-
truder gains unauthorized access to an aimed system first and the sweeps its physical
memory, hoping to extract sensitive information.

Unauthorized information disclosure with the use of Application Programming In-
terface (API) exploitation attacks. The controller plane provides APIs to applications for
information searching, monitoring and response in network modifications. Applications
that are created using APIs may be vulnerable towards an intruder that performs various
information disclosure attacks.

Unauthorized destruction using API exploitation attacks. The attacker takes advantage
of a vulnerability in the northbound interface land is able to delete network flows to block
traffic from reaching its destination.

Unauthorized information disclosure with the use of Sniffing attacks. Sniffing attacks,
is about stealing data by recording network traffic using a sniffer (an application that aims
in receiving network packets). An attacker can performing a sniffing attack to exploit non or
weakly encrypted communication and gain access to information about the network, which
can result to the network collapse or destruction.

Unauthorized modification using identity destruction attacks. An attacker can bypass
the identity of a legit controller and attempt to interact with a network component, so as to
create instant flow entries in the network’s flow table.

Service interruption using remote application access attacks. This attack could lead in
the decrease in availability of an SDN element. For example, the attacker can take advantage
of an authentication vulnerability in the controller’s software or any network element and
make it unavailable.

Unauthorized information disclosure using attacks against the channel. An attacker
can perform an attack through the channel to see if there are any flow rules by detecting a
difference in the time that is necessary for a connection establishment.

25

Service interruption using flooding attacks. An attacker could use an exposed network
element aiming to flood a controller with network messages and exhaust its resources.

Unauthorized modification using data forgery attacks. A network element that has been
breached could forge network data and affect the controller’s aspect of the network topology.

3.2 Preliminaries
In this Section we introduce and show the basis for what is about to follow. How we choose
to use certain security primitives, how these primitives bind with our protocol analysis
and why they are necessary. We also recall the required definitions for our result on the
OpenFlow protocol.

Message Authentication Codes One important property in our analysis comes with the use
of a MAC. In addition to providing authentication, a MAC provides unforgeability. In the
definition below we refer to a probabilistic polynomial time algorithm, or else a probabilistic
polynomial time Turing machine (PPT), that is equipped with a spare randomness tape.

At this point, it is worth mentioning two security properties, that are closely connected
to MAC’s. The security property of Strong Unforgeability under Chosen Message Attack
(SUF-CMA) and the Existential Unforgeability under Chosen Message Attack (EUF-CMA).
The difference between the two is that in the former, an attacker cannot forge a tag on a
message he did not ask the MAC for from a challenger oracle, and in the latter he cannot
generate another tag for a message he already asked the MAC for.

Definition 3.2.1 (Message Authentication Code (MAC) [22]). A strongly-unforgeable
message authentication code is a probabilistic polynomial-time algorithm 𝑀𝐴𝐶(·) (·).
Let 𝑚 = {0, 1}∗, 𝑚𝐾𝑒𝑦 = {0, 1}𝑘 for some number 𝑘 , and 𝑡 = {0, 1}𝑡𝐿𝑒𝑛 for some number
𝑡𝐿𝑒𝑛.

A message authentication code is defined by a pair of algorithms (𝑀𝐴𝐶(·) (·),
𝑀𝐴𝐶.𝑣𝑒𝑟 (·) (·, ·)). To compute the MAC, 𝑀𝐴𝐶(·) (·) takes a key 𝐾 ∈ 𝑚𝐾𝑒𝑦 and a mes-
sage 𝑚 and computes:

𝑡 = 𝑀𝐴𝐶𝐾 (𝑚) .

The authenticated message is the pair (𝑚, 𝑡); 𝑡 is called the tag on 𝑚.

26

To verify a purported message-tag pair (𝑚, 𝑡), any entity with key K computes

𝑀𝐴𝐶.𝑣𝑒𝑟𝐾 (𝑚, 𝑡) ,

which returns either 0 (message unauthentic) or 1 (message authentic). It is required for all
𝐾 ∈ 𝑚𝐾𝑒𝑦 and 𝑚 ∈ {0, 1}∗, 𝑀𝐴𝐶.𝑣𝑒𝑟𝐾 (𝑚, 𝑀𝐴𝐶𝐾 (𝑚)) = 1. We abuse notation and also
write 𝑡 = 𝑀𝐴𝐶𝐾 (𝑚) as 𝑡 = 𝑀𝐴𝐶 (𝐾, 𝑚), and 𝑀𝐴𝐶.𝑣𝑒𝑟𝐾 (𝑚, 𝑡) as 𝑀𝐴𝐶.𝑣𝑒𝑟 (𝐾, 𝑚, 𝑡).

An adversaryA is a probabilistic polynomial-time algorithm which has access to an oracle
that computes MACs under a randomly chosen key 𝐾′. The output ofA is a pair (𝑚, 𝑡) such
that (𝑚, 𝑡) was not previously output by the MAC oracle.

A MAC is SUF-CMA-secure if, for every adversaryA of the MAC, the function 𝜖 (𝑘) defined
by

𝜖 (𝑘) = 𝑃[𝐾′← {0, 1}𝑘 ; (𝑚, 𝑡) ← A : 1 = 𝑀𝐴𝐶.𝑣𝑒𝑟𝐾 ′ (𝑚, 𝑡)]

is negligible. Note that A wins even if it outputs a different tag on a previously queried
message.

In our protocol, we are limited by the 32-bit transaction-id field in the OpenFlow Header,
as it is shown in Figure 3.1. That field is used by the dialect, to incorporate the use of a
MAC function. Since, 32-bits provide a relatively small field for the use of a MAC, we
balance that issue by introducing time intervals and the killing “off” keys after a certain
time interval. Furthermore, we restrict adversarial access to a MAC oracle to one message,
using the following notion of an One-Time MAC function.

We define a one-time MAC and corresponding security experiment similarly to a one-time
signature from [23]. We also abuse notation and use sEUF-1-CMA to denote strong security
against existential forgeries under adaptive chosen message attacks similarly to [23].

Definition 3.2.2 (One Time MAC). A one-time MAC scheme, OTMAC, consists of three
probabilitstic, polynomial time algorithms (OTMAC.Kgen, OTMAC.MAC, OTMAC.Vfy).

• 𝑂𝑇𝑀𝐴𝐶.𝐾𝐺𝑒𝑛(1_) → 𝑘𝑂𝑇 : takes as input a security parameter _ and outputs a
key 𝑘𝑂𝑇 .

27

Figure 3.1. OpenFlow Header Layout. Source: [3].

• 𝑂𝑇𝑀𝐴𝐶.𝑀𝐴𝐶 (𝑘𝑂𝑇 , 𝑚, 𝑙) → 𝑡: takes as input a key 𝑘𝑂𝑇 and a message string
𝑚 ∈ {0, 1}∗, and outputs a tag 𝑡 of length 𝑙.

• 𝑂𝑇𝑀𝐴𝐶.𝑉 𝑓 𝑦(𝑘𝑂𝑇 , (𝑚, 𝑡)) →: takes as input a key 𝑘𝑂𝑇 and a message-tag pair
(𝑚, 𝑡). If 𝑡 is a valid tag for 𝑚 under 𝑘𝑂𝑇 , then the algorithm outputs 1 (accept), else
it outputs 0 (reject).

We say that an OTMAC algorithm is correct if, for all 𝐾 ∈ 𝑚𝐾𝑒𝑦 and 𝑚 ∈ {0, 1}∗,
|𝑂𝑇𝑀𝐴𝐶.𝑀𝐴𝐶 (𝑘𝑂𝑇 , 𝑚, 𝑙) | = 𝑙 and𝑂𝑇𝑀𝐴𝐶.𝑉 𝑓 𝑦(𝑘𝑂𝑇 , (𝑚,𝑂𝑇𝑀𝐴𝐶.𝑀𝐴𝐶 (𝑘𝑂𝑇 , 𝑚, 𝑙)) =
1.

Consider the following security experiment Exp𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_)with an adversaryA against

the one time strong security against existential forgeries under adaptive chosen message
attacks (sEUF-1-CMA) security of the MAC, play with a challenger.

1. The challenger computes 𝑘𝑂𝑇 ← 𝑂𝑇𝑀𝐴𝐶.𝐾𝐺𝑒𝑛(1_) and runs A with input 𝑘𝑂𝑇 .
2. A may query one arbitrary string 𝑚 to the challenger.

The challenger replies with 𝑡 ← 𝑂𝑇𝑀𝐴𝐶.𝑀𝐴𝐶 (𝑘𝑂𝑇 , 𝑚, 𝑙).
3. A eventually outputs a message string 𝑚∗ and a tag 𝑡∗.

We denote the event that 𝑂𝑇𝑀𝐴𝐶.𝑉 𝑓 𝑦(𝑘𝑂𝑇 , (𝑚∗, 𝑡∗)) = 1 and (𝑥∗, 𝑡∗) ≠ (𝑥, 𝑡)
by

Exp𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_) = 1 .

The above one-time experiment restricts the number of verification queries that an adversary
may make. We allow further parameterization of the above experiment by a time duration

28

restriction, 𝑡𝑑 , for the maximum allowed actual time duration between initialization in Step
1 and completion in Step 3. This is denoted Exp𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴

A,𝑂𝑇𝑀𝐴𝐶,𝑙,𝑡𝑑 (_).

Definition 3.2.3 (Security of One-Time MACs). We define the advantage of an adversary
A in the game Exp𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴

A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_) as

Adv𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_) := 𝑃𝑟 [Exp𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴

A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_) = 1]

and say that OTMAC is sEUF-1-CMA-secure if

Adv𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_) = negl

for a neglible function negl in _.

The time-duration variant parameterization follows similarly to the above.

If Adv𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A,𝑂𝑇𝑀𝐴𝐶,𝑙 (_) is a negligible function in _ for all probabilistic polynomial-time

adversariesA, then we can say that a one-time MAC scheme is also strongly secure against
existential forgeries under chosen message attacks (sEUF-1-CMA).

For the rest of the paper we will be using the OTMAC notation instead of a simple MAC
when it comes to 𝐷1, corresponding to the definition of the One-Time MAC above. That
is a deviation from [3]. We consider it necessary though, since it enhances security of the
protocol. The reason is that given the shortness of the tag in 𝐷1 – only 32 bits – the adversary
would be able to successfully guess the tag in a relatively small number of guesses. By using
an one-time MAC in the protocol, we restrict the number of MAC queries that are possible
under a given key (the application only allows one attempt per timestamp). This is chosen
to improve security against brute-forcing attacks.

For 𝐷2 we will simply using the MAC notation, since we do not have the restriction of the
32-bit field anymore and thus there is no need for an one-time scheme.

Pseudo-Random Functions. Another security function used in our protocol is a Key
Derivation Function (KDF). A KDF is a cryptographic hash function which generates
secret keys using a pseudo-random function [20]. KDF takes the initial keying material,
assuming randomness and derives from it strong secret keys.

29

Hash Functions. Hash functions are used to convert long sequences of bits into smaller
ones with a fixed number of bits. They are used in many basic cryptographic schemes. They
are designed to be one-way functions. That is, given the output it is hard to determine any
information about the input.

Hash function are the main building component of Key Derivation Functions (KDF). In
particular, a KDF is supposed to use the one-way and collision resistance properties of
cryptographic hash functions [24].

Definition 3.2.4 (Pre-image Resistance [25]). Given 𝑦 ∈ {0, 1}_, it should be hard to find a
value x such that 𝐻 (𝑥) = 𝑦.

Definition 3.2.5 (2nd Pre-image Resistance [26]). For a hash function, given 𝑥, it should
be hard to find a value 𝑥′ ≠ 𝑥 such that 𝐻 (𝑥) = 𝐻 (𝑥′).

Definition 3.2.6 (Collision Resistance [27]). A hash function H is collision resistant if for
all adversaries A that run in time t, if it holds that:

𝑃𝑟 [A(𝐻) = (𝑥, 𝑥′) : (𝑥 ≠ 𝑥′) ∧ 𝐻 (𝑥) = 𝐻 (𝑥′)] ≤ 𝜖𝐻 .

3.3 Variables and Notation
In this Section we introduce all the variables and notation we will encounter throughout
the paper. We also make some early observations about timestamps and their use in our
protocol analysis.

3.3.1 Notation
• 𝑆 ∈ S: denotes a specific Switch from the set of all switches
• 𝐶: denotes the Controller
• 𝐾SC: Key derived for message exchange of device 𝑆 to device 𝐶 (resp. 𝐾CS)
• 𝐼: the set of identities, 𝐼 = {𝐶} ∪ S
• 𝜋S

𝑖
: an oracle instance 𝑖 at switch 𝑆 (resp. 𝜋C

𝑗
)

• 𝐷1 (resp. 𝐷2): Dialect 1 (resp. Dialect 2)
• 𝐾D1

𝑆𝐶
∈ K1: Pre-established temporary shared secret key for 𝐷1 for messages from 𝑆

to 𝐶 (resp. 𝐾𝐷1
CS)

30

• 𝐾D2
𝑆𝐶
∈ K2: 𝐷2 session key generated with 𝐾SC as input for messages from 𝑆 to 𝐶

(resp. 𝐾𝐷2
CS)

• 𝐾D1′
𝑆𝐶

: a new time interval 𝐷′1 key generated with 𝐾SC as input (resp. 𝐾CS)
• 𝑠𝑖𝑑: a session identifier. We calculate 𝑠𝑖𝑑 = 𝐷1 OTMAC Switch ∥ 𝐷1 OTMAC

Controller. 10

• 𝑆𝑁𝑆: a sequence number for party 𝑆 (resp. 𝐶)
• 𝑇𝑆S: A timestamp at party 𝑆 (resp. 𝐶)
• 𝑙 = 32𝑏𝑖𝑡𝑠: the OTMAC length parameter

3.3.2 Clock Variables
Each party has a clock variable, initially set to 0. All instances of a protocol running at a
party can access (𝑟𝑒𝑎𝑑) that variable. The adversary has access and control of the clocks,
with the ability to 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 any clock forward.

Timestamps start counting in milliseconds from the moment that the first OpenFlow “Hello”
message is sent. Timestamps’ format looks like [𝐻𝐻 : 𝑀𝑀 : 𝑆𝑆], where:

• 𝐻𝐻 = ℎ𝑜𝑢𝑟𝑠

• 𝑀𝑀 = 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

• 𝑆𝑆 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

With the use of timestamps we are able to calculate the time window (𝑤). The time-window
is defined as the acceptable duration in which each party accepts messages, and is calculated
with the use of timestamps. We will see how that works in detail in Section 4.2. For now it
is enough to know that the time-window is considered to be valid if 0 ≤ 𝑤 ≤ 2𝑠𝑒𝑐.

In this chapter we talked about security in SDNs and saw the preliminaries of our analysis.
In the next chapter we will see our dialected protocol’s description in detail, as well as the
explanation of the deconfliction algorithm we use in our work, a concept we needed since
our protocol utilizes timestamps.

10With OTMAC here we refer to the OTMAC tag, i.e 𝑡 = 𝑂𝑇𝑀𝐴𝐶𝐾SC (𝑇𝑆S, 𝑚𝑠𝑔), not the hardware MAC
address.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 4:
A Protocol Utilizing Timestamps

In the previous chapter we presented the preliminaries of our work as well as variables and
notation used throughout our work. Here we see the protocol description in detail and also
explain the deconfliction algorithm, an algorithm necessary for the use of timestamps in our
protocol.

4.1 Protocol Description
The design choices in the original dialected OF protocol, include a Hash Key Derivation
Function (HKDF) based on a hash based message authentication code (HMAC). For the
needs of our analysis and proof, referring to it as MAC or HMAC, does not causes any
contradictions, since proving security for a MAC indicates properties needed from the
underlying HMAC too.

Protocols Phases
Our protocol is considered a two party mutual authentication protocol, between a switch
and a controller in the SDN environment. Below, we summarize each phase of the protocol,
provided in [3], and shown in Figure 4.1.

• “Phase 0”: Initial (𝐷1 in Fig. 4.1) Key Derivation.
Before implementation of 𝐷1 and 𝐷2, “a pre-shared symmetric key 𝐾 , generated at
random, is established and delivered out-of-band (OOB)” [3]. As shown in (0a,0b) in
Fig. 4.1, we have:

0a. 𝐾SC = 𝐾𝐷𝐹 (𝐾, 𝑇𝑆S, 𝑆, 𝐶)
0b. 𝐾CS = 𝐾𝐷𝐹 (𝐾, 𝑇𝑆C, 𝐶, 𝑆)

The sending party computes the OTMAC with the key and the receiving party verifies
it. The same happens on the receiver’s side.

33

Figure 4.1. Dialecting Protocol Flow Diagram. sid is defined as the concate-
nated OTMAC tags from Steps 1 and 2.

34

Figure 4.2. Simplified View of Dialected OpenFlow Hello exchange messages
in “Phase 0”.

• “Phase 1”: Initial setup by exchanging OpenFlow “Hello” Messages (𝐷1).
The initiator party (the switch) sends an Openflow Hello message (Line 1 in Figure
4.1), appending it with a OTMAC tag of length 𝑙 = 32, using the already estab-
lished pre-shared symmetric key (1a in Figure 4.1), a timestamp generated at his end
(requesting it from local clock authority, see Section 4.2) and an OpenFlow Hello
message. The receiving party (the controller) (in fact the proxy standing in front of
the controller) will check the validity of both the key and the timestamp (1b, 1c in
Figure 4.1). We have already mentioned the valid lifespan of a key being 1 second and
the valid time window (𝑤) of the sender’s timestamp being 2 seconds (see Section
4.2 for more discussion on time selections).
If a message fails the authentication check then the receiving proxy will discontinue
the set up process. The initiator will have to start over. We assume that the 𝐾𝑖 𝑗 keys
are not reused for any other pair in any other connection.
Otherwise, the receiving party sends another OpenFlow Hello message (Line 2 in
Figure 4.1) as shown in Figure 4.1. If that message gets accepted, the communication
is considered established.
Freshness is achieved by implicit timestamps using the rejection loop described in
Section 4.2.
In 𝐷2 we do not require the key lifespan because, unlike the OTMAC of length
𝑙 = 32, in D2 we use a full length MAC tag. We still need unique keys for each
communication.

35

• “Phase 2”: 𝐷2 Key Derivation (𝐷2 in Fig. 4.1). While 𝐷1 gets completed, the two
communicating parties’ proxies create uni-directional keys for 𝐷2. Keys are derived
as follows and are shown in (3a, 3b) in Figure 4.1, respectively:

3a. 𝐾′SC = 𝐾𝐷𝐹 (𝐾SC, 𝑇𝑆S, 𝑆, 𝑇𝑆C, 𝐶, 𝑠𝑖𝑑)
3b. 𝐾′CS = 𝐾𝐷𝐹 (𝐾CS, 𝑇𝑆C, 𝐶, 𝑇𝑆S, 𝑆, 𝑠𝑖𝑑)

A visual representation of the procedure is shown in Figure 4.3.

Figure 4.3. Key Schedule Key Derivation.

Uni-directional keys: Each key derivation has identifiers for the sending and the
receiving party. That way, the sender of a message knows not to receive that message.
That provides the protocol with protection against reflection attacks [28].
The keys are being derived every two minutes in time-intervals, as shown in Figure
4.4.

36

Figure 4.4. Keys derived for different Time Intervals.

Figure 4.5. Simplified View of Dialected OpenFlow Data Exchange Messages
in “Phase 3”.

• “Phase 3”: 𝐷2 Message Exchange. 𝐷2 appends a 512-bit MAC tag to encrypted data
packets before sending (Line 4 in Fig. 4.1). The receiving party accepts the message
only if it successfully passes the MAC check (4b in Fig. 4.1).𝐷2 does not modify fields
or data in the packets, therefore it can be added to different protocols. The longer field
provides a longer key lifetime, among other benefits. Furthermore, sequence numbers
in the MAC calculation increment with each new message, something that provides a
good way of protection against replay attacks.
The sending party (switch) sends its data in the clear appended with a MAC calculated
on the secret key, a sequence number, and the data (Line 4 in Fig. 4.1). A sequence
number increments with each new message in a session. We can think sequence

37

numbers as nonces with the difference that they are not random and thus they can be
predicted [26]. They are used to detect replayed or out of order messages.
The receiving party (controller) will perform the HMAC check (4a in Fig. 4.1). If the
message passes the check, it will accept. Then it will send back its own data appended
with a MAC calculated on its secret key, a sequence number and the data (Line 5 in
Fig. 4.1). That procedure will go on for any number of messages.

38

In case of key failures or a non-valid time-window in 𝐷1, the whole communication
will have to start over with the exchange of the OpenFlow Hello messages (failures
are shown as orange lines at the sides of the diagram in Fig. 4.1, pointing at the start,
indicating that the whole procedure has to start over). In case of MAC verification
failure in 𝐷2 the communication will revert to the last used key, i.e last accepted MAC
with confirmed receipt. That is also shown as orange lines at the sides of the diagram
in Fig. 4.1.

4.2 Timestamps

4.2.1 Introducing the notion of freshness
With the use of timestamps, the protocol ensures freshness. We have already given a
definition for freshness in Section 3.2. The party sending the message includes the current
time with the use of a timestamp. That timestamp is checked by the receiving party which
compares it with the local time. If the time window (𝑤) is within the limits of what we
have selected as a valid (acceptable) value, then the message is considered fresh. However,
there are some issues arising from the use of timestamps which we will analyze later in this
Section. First, we discuss other mechanisms that can ensure freshness and then we analyze
what we call the deconfliction algorithm, which we use in our protocol. We also discuss
other algorithm choices for agreement on timestamps that exist.

4.2.2 Mechanisms that ensure freshness
Freshness, as a term, indicates a value that has not been seen before [20]. Thus, either
something that is freshly created, or that is used for the first time. The reason that we need
to ensure freshness in values used in our protocol, is quite obvious. We want to ensure
that values are not repeated or re-created. Therefore, we ensure that our protocol is secure
against replay attacks.

There are generally two ways to ensure freshness in a protocol [20]. One method is through
selection/receipt of new keys (e.g. ephemeral keys) or through selection/receipt of short
values, such as timestamps, nonces (random challenges), and sequence counters. The user,
either chooses the value (i.e a new session key), or depends on receiving something ac-

39

companied with a value that is ensured fresh (i.e a timestamp). We discuss these options
below:

Keys. Use of ephemeral keys may contribute to freshness. A fresh ephemeral key can be
chosen for each party in the protocol run. Subsequent use of those keys by both parties in
creation of the session key then ensures freshness of the protocol run.

Timestamps. The sending party adds a timestamp of the current time, to the message
it sends [20]. The receiving party checks that timestamp, when it receives the message,
by comparing it to the local time. If the timestamp’s value falls within an acceptable time
window, then the message received is considered fresh. Timestamps are used in this research
and are discussed further in Section 4.2. In the same Section we also discuss issues arising
from the use of timestamps, i.e clock de-synchronization.

Nonces. One party generates a nonce (unique number that is used only once) and sends it
to the other party [20]. That nonce may be later returned in the message sent after being
modified with a cryptographic function. The receiver checks that the nonce has not been
used before, and therefore knows that the message is fresh. A disadvantage in the use of a
nonce is that it can add to the number of messages being exchanged making the protocol
slower and less efficient [29]. It may also require memory caching to ensure that the nonce
has not been previously used.

Counters. Both parties keep a synchronized sequence counter from which they select the
current value to send with the message [20]. Then the counter gets incremented. A disadvan-
tage here is that both parties need to maintain state information, which again, can affect the
efficiency especially when we talk about a Controller which may maintain communication
with many switches at a time.

4.2.3 Deconfliction Algorithm
We mention our valid time window which is 0 ≤ 𝑤 ≤ 2𝑠𝑒𝑐. To use this time window (𝑤), we
analyze algorithm choices for the agreement of controller and switch on timestamps. Time
plays an important role in our protocol dialect implementation. Furthermore timestamps
potentially give a simple way to kill “off” the keys to increase security, if used correctly.

40

Deconfliction Algorithm. Assume a case of increasing local time based on a set increment
interval. In this approach each of our parties has a local timer. When party 𝑆 wants to send
a message to 𝐶 it requests a timestamp 𝑇𝑆S from the local timer and puts the timestamp in
the appropriate field in the protocol message. When the message is received by party 𝐶, it
generates its own timestamp 𝑇𝑆C from its own local timer. Then the values 𝑇𝑆S and 𝑇𝑆C

are compared. So, the message is further validated by subtracting 𝑇𝑆C − 𝑇𝑆S to get a range
value. This is the value we need to check for validity. We use the absolute value of 𝑇𝑆C

− 𝑇𝑆S, because we want our valid time window interval to equally be distributed with an
upper and lower range of 2 sec (for 4sec altogether). If ⌈| 𝑇𝑆C − 𝑇𝑆S |⌉ ≤ 2𝑠𝑒𝑐 the message
is accepted; and rejected otherwise. Furthermore, in this work we say that 𝑇𝑆C and 𝑇𝑆S are
uniquely deconflicted if ⌈| 𝑇𝑆C − 𝑇𝑆S |⌉ ≤ 2𝑠𝑒𝑐.

Implicit Timestamps In the protocol described in Figure 4.1, the timestamps 𝑇𝑆C and 𝑇𝑆S

are used to calculate keys and are not sent explicitly in the protocol flows. That is, they
are not used as input in the protocol data packet fields but in the key derivation and tag
derivation for the OTMAC instead [2]. Thus, the deconfliction algorithm use in the protocol
must account for implicit timestamps. Without a concrete 𝑇𝑆C being received, 𝑆 cannot
compute the ceiling function directly. Instead, 𝑆 uses its own timestamp 𝑇𝑆S as a guess at
𝑇𝑆C in the calculation of the OTMAC verification.

Since the timestamp input into the OTMAC must be exact (given the avalanche property
of the MAC), there is not a margin for error and the OTMAC will not verify correctly if
𝑇𝑆C ≠ 𝑇𝑆S. We note that the incrementation interval is therefore important. 𝑆may calculate
all potential timestamps 𝑇𝑆 such that ⌈|𝑇𝑆− 𝑇𝑆S |⌉ ≤ 2𝑠𝑒𝑐, and use each permitted 𝑇𝑆 as a
test verification value for the OTMAC; however, if the number of timestamps |{𝑇𝑆}| is too
large, then this method is infeasible.

That is yet another reason why protocols using timestamps are difficult to verify. There must
be no significant delays in the protocol flows. Furthermore, we must make an assumption
that the Controller and Switch are able to use a sufficiently similar clock time to avoid the
protocol ’rejecting’ unnecessarily [2]. With the use of implicit timestamps 𝐷1 becomes
more similar to the OpenFlow standard.

Non-synchronized clocks. In the case that the clocks of the two parties are not synchronized,
our algorithm would provide false negatives meaning it would reject messages that should

41

not be rejected. Let’s consider the case where party 𝑆 sends a message with timestamp
15:15:24. At the exact same time party’s 𝐶 clock shows 15:15:26. When the message is
received by party 𝐶 it compares with local time which is now 15:15:27. As we can see, the
message will be rejected having a time window of 3 sec ≰ 2 sec, even if its time-window
is actually 1 sec. Furthermore, the algorithm can provide false positives. Let’s consider
another case where party 𝑆 sends a message with a timestamp of 15:15:15. At the exact
same time party’s𝐶 local timer shows 15:15:12. The moment that party𝐶 receives, its local
timer shows 15:15:16 while 𝑆′𝑠 local timer is now 15:15:19. When 𝐶 is comparing with
15:15:15 timestamp it results in a time-window of 1 sec, therefore 𝐶 accepts the message.
The actual time-window though is 3 ≰ 2 sec and the message should have been rejected.
As [H. Massias et al.] conclude in their paper “Timestamps: Main issues on their use and
implementation” [30] time is a value that must be published in an unmodifiable media,
and the place and frequency contribute to the level of trust and granularity that timestemps
provide. This dependency on the published value is what restricts the scalability of the
timestamping system.

Buldas and Saarepera [31] provided a formal proof on the security of time-stamping
schemes. In their work they are referring to underlying hash functions and hash-based
schemes assuming the property of collision resistance. They also suggested a new security
condition namely “chain resistance”. To explain chain-resistance in summary, the authors
write:

Loosely speaking, if 𝑥 can be time-stamped based on 𝑦 = 𝑓 (𝑥), then 𝑥 can be
efficiently computed based on 𝑦, and hence the time stamp is “legitimate”. This
condition implies chain-resistance if we define 𝑓 (𝑥) ≡ 1𝑘 [31].

Thus, with this security condition the authors suggest an function using a parameter 𝑘 that
makes it harder for the adversary to compute a “legitimate” timestamp and might provide
secure time-stamping schemes.

Rompay, Preneel and Vandewalle [32] give an overview of the timestamping problem and
discuss several techniques for timestamp distribution and verification, using the notion of
Time Stamp Authority (TSA).

42

In general, the common idea in most papers includes a trusted centralized service that
provides communication parties with a value, that it digitally signs, corresponding to the
current time, by using a precise clock [31]. Or as we find it in [32], the 𝑇𝑆𝐴, which accepts
requests from communicating parties, appends them with the current date and time and
digitally signs the result to produce a timestamp.

Issues. Some issues considering the use of timestamps are:

• The receiver must be able to detect replay messages within a time-window by keeping
a local state [29].

• Messages with invalid timestamps are discarded but a decision must be made about
messages that are repeats within the acceptance window. A solution here might be to
store all previously received messages to prevent accepting duplicates. So in a way to
use timestamps as sequence numbers.

• If a party’s clock is ahead of other clocks its messages can get postdated.
• Schemes may be vulnerable to a suppress-replay attack where a message is suppressed

and then replayed [33]. Even if a faulty clock gets re-synchronized this vulnerability
remains.

We could treat timestamps as random nonces to simplify the analysis but there would be a
trade-off on security [29].

We described our dialected protocol in this chapter and we saw how the deconfliction
algorithm used in our protocol works. We also described some issues that we consider from
the use of timestamps. Coming next on Chapter 5 is the analysis and the security proof, the
core concept of our work.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

CHAPTER 5:
Security Analysis

After describing the protocol and the deconfliction algorithm in the previous chapter, in this
chapter we provide the core of our analysis, the security model and the security proof.

5.1 Security Model
In this Section we explain assumptions and definitions that are required for our computational
analysis on the OpenFlow dialect. Our protocol’s main goals are Mutual Authentication and
Key Agreement (AKA) for a symmetric key protocol. The Authenticated Key Exchange
(AKE) model [27] was chosen as a basis for the model we use here.

The security modelling and analysis found in [29] was also beneficial for our analysis, since
our protocol relies on timestamps.

5.1.1 Session Variables
We refer to the protocol participants as principals, with the identity set I = S ∪ {𝐶}
which consists of the set of switches (S) and the controller (𝐶). During the execution of
the protocol we may have running instances of each principal. Those will be what we call
session oracles, denoted by 𝜋 such that instance 𝑖 of principal 𝑆 is 𝜋S

𝑖
. These instances are

like running processes controlled by the respective principal and that is how we can treat
them. For the protocol execution we have an instance talking first. That is the initiator of
the conversation producing the first message. The instance that replies is the responder. The
process can go on for a fixed number of flows until both of the participants terminate which
might mean that they have ’accepted’ if the protocol runs according to expectations.

We associate with each session 𝜋S
𝑖

the following variables:

• 𝑖𝑑 ∈ I: the identity of the session (i.e., id = 𝑆𝑛 for 𝜋𝑆𝑛
𝑖

).
• 𝑝𝑖𝑑 ∈ I ∪ {⊥}: the identity of the partner session.

45

• 𝑟𝑜𝑙𝑒 ∈ {𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟, 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟}: the sessions role in the protocol. We require that
𝑟𝑜𝑙𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 if and only if 𝑖𝑑 ∈ S, and respectively 𝑟𝑜𝑙𝑒 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 if and
only if 𝑖𝑑 = 𝐶.

• 𝑡𝑟𝑎𝑛𝑠 ∈ {0, 1}∗ ∪ {⊥}: A transcript of sent and received messages at the session, in
chronological order.

• time ∈ 𝑁: the time tick which the session occurs in based on a global clock.
• 𝐾time = 𝐾SC | |𝐾CS ∈ K × K: A variable storing a session key for time tick time.

Ktime is initialized to ⊥||⊥.
• Λtime ∈ {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒 𝑗𝑒𝑐𝑡}: A variable indicating acceptance for the current session

key. Λ = 𝑎𝑐𝑐𝑒𝑝𝑡 if and only if Ktime ≠ ∅.

5.1.2 Queries
We can define the adversary A as a probabilistic polynomial-time (PPT) Turing machine.
A communicates with the session oracles via queries. We suppose that the adversary has
control over all communication between the interacting parties (session instances). He can
read, send, modify, and delete messages or even create new instances [26]. Additionally he
can place the following queries (adapted from [23], [27]):

• Send(𝜋𝑈
𝑖
, 𝑚): This oracle sends a message 𝑚 to session oracle 𝜋𝑈

𝑖
, for 𝑈 ∈ I. The

oracle will respond according to the protocol and its internal state.
When an attacker sends the first Send query to an oracle 𝜋𝑈

𝑖
, the oracle looks to see

if 𝑚 contains a unique initialization symbol ⊤. If true and 𝑈 ∈ S, it sets 𝑖𝑑 = 𝑈,
𝑟𝑜𝑙𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟, 𝑝𝑖𝑑 = 𝐶, and answers with the first protocol message. Otherwise
and if 𝑈 = 𝐶, it sets 𝑖𝑑 = 𝐶, 𝑟𝑜𝑙𝑒 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 , and responds according to the
protocol, setting 𝑝𝑖𝑑 according to the received message. Else, it responds with ⊥.

• Reveal(𝜋𝑈
𝑖
, time): This oracle returns the contents of the session key 𝐾time session

𝑖 of party 𝑈 ∈ I at time interval time. If the adversary A issues a Reveal query
in interval time or in any prior time interval, we say that the protocol at 𝜋𝑈

𝑖
is

time-revealed. Note that timestamp time and 𝑈 is consistent across all sessions
𝑖. We interpret the time interval associated with a timestamp time to include any
timestamp time𝑙 such that time and time𝑙 can be uniquely deconflicted (e.g. by a
deconfliction algorithms such as proposed in Section 4.2.3).

46

• Test (𝜋S
𝑖
): In the case of 𝜋S

𝑖
having state Λ ≠ 𝑎𝑐𝑐𝑒𝑝𝑡, the oracle returns a failure

symbol ⊥. Else, it tosses a fair coin 𝑏, selects a independent key 𝐾0 ←$ K, sets
𝐾1 = 𝐾 to the ‘real’ key computed by 𝜋S

𝑖
, and returns 𝐾𝑏. This query can only be

asked once during the game.
• Tick(𝑈): This query increments the clock at party𝑈 by one time tick interval.

The adversary has complete control of the time, under the restriction of using the Tick
query [29]. This is intended to model the real-world abilities of an adversary that may not
rewind the actual clock but may cause it to speed ahead or stall.

The Bellare and Rogaway [26] model, as well as many other models following it, used
the notion of matching conversations. While the BR approach is worth mentioning, we
are using the definition found in [27] which uses the idea of “transcripts” and provides a
more generalized approach to matching conversations. Following that approach, we denote
with 𝜋S

𝑖
.𝑡𝑟𝑎𝑛𝑠 the sequence of sent and received messages by 𝜋S

𝑖
“in chronological order”,

inclusive of any additional data, where each message is prefixed by a timestamp at 𝜋S
𝑖
, time

in which the message was sent (resp. received). Additionaly, 𝜋S
𝑖
.𝑡𝑟𝑎𝑛𝑠 is the transcript of

𝜋S
𝑖
. For two transcripts 𝜋S

𝑖
.𝑡𝑟𝑎𝑛𝑠 and 𝜋C

𝑗
.𝑡𝑟𝑎𝑛𝑠 , we say that 𝜋S

𝑖
.𝑡𝑟𝑎𝑛𝑠 is a prefix of 𝜋C

𝑗
.𝑡𝑟𝑎𝑛𝑠,

if 𝜋S
𝑖
.𝑡𝑟𝑎𝑛𝑠 holds one or more messages, and the timestamp-message pairs in 𝜋S

𝑖
.𝑡𝑟𝑎𝑛𝑠 “are

identical to and in the same order as the first” | 𝜋S
𝑖
.𝑡𝑟𝑎𝑛𝑠 | timestamp-message pairs of

𝜋C
𝑗
.𝑡𝑟𝑎𝑛𝑠. For this we define “identical timestamp” as any timestamp within the same time

interval (e.g. for time𝑆,𝑖 at 𝜋S
𝑖

and time𝐶, 𝑗 at 𝜋C
𝑗
, time𝑆,𝑖 and time𝐶, 𝑗 are in the same time

interval if they uniquely deconflict such as by a deconfliction algorithm such as discussed
in Section 4.2.3).

Definition 5.1.1 (Matching Conversations [27]). We say that 𝜋S
𝑖

has a matching conversation
to 𝜋C

𝑗
, if

1. 𝜋C
𝑗
.trans is a prefix of 𝜋S

𝑖
.trans and 𝜋S

𝑖
has sent the last message(s), or

2. 𝜋C
𝑗
.trans = 𝜋S

𝑖
.trans and 𝜋C

𝑗
has sent the last message(s).

47

While matching conversations aim to identify partners and to make sure that these partners
agree on the messages sent and received in a protocol run they were part of, we also need
different roles when it comes to communication between participants in a conversation, e.g.
a switch and a controller in our protocol. Sessions can be called partners after agreement
on who takes the initiator and who takes the responder role in the run [20].

Jager et. al [27], employ a variant definition of matching conversations (see Definition
5.1.1), in their AKE experiment definition, where the AKA experiment is a game between
an adversary A and a challenger oracle. We use an adaptation of their definitions, below,
accounting for timestamps:

Definition 5.1.2 (Correctness [27]). Assume a “benign” adversaryA , which picks two ar-
bitrary oracles 𝜋S

𝑖
and 𝜋C

𝑗
and performs a sequence of Send queries by faithfully forwarding

all messages between 𝜋S
𝑖

and 𝜋C
𝑗

for delivery within a uniquely deconflicting time interval.
Let 𝐾S

𝑖
denote the key computed by 𝜋S

𝑖
and let 𝐾C

𝑗
denote the key computed by 𝜋C

𝑗
. We say

that an AKA protocol is correct, if for this benign adversary and any two oracles 𝜋S
𝑖

and 𝜋C
𝑗

it always holds that:

1. both oracles have Λ = accept, and
2. 𝐾S

𝑖
= 𝐾C

𝑗
∈ K.

We make the natural extension of this for our protocol as 𝐾S
𝑖
= 𝐾C

𝑗
= 𝐾time = 𝐾SC | |𝐾CS ∈

K × K.

Definition 5.1.3 (Authenticated Key Agreement Protocol Security. Adapted from [27]). We
say that an adversary A (𝑡, 𝜖)-breaks an AKA protocol Π, if A runs in PPT 𝑡, and at least
one of the following two conditions holds:

1. When A terminates, then with probability at least 𝜖 there exists an oracle 𝜋S
𝑖

such
that

• 𝜋S
𝑖

‘accepts’ when in time period time𝑆 with intended partner 𝑝𝑖𝑑 = 𝑈,
• 𝑈 is not time𝑈-revealed for any session 𝑗 and timestamp time𝑈 such that
time𝑈 and time𝑆 are in the same time interval, and

• there is no unique oracle 𝜋U
𝑗

such that 𝜋S
𝑖

has a matching conversation to 𝜋U
𝑗
.

If an oracle 𝜋S
𝑖

accepts in the above sense, then we say that 𝜋S
𝑖

accepts maliciously.

48

2. When A issues a Test-query to any oracle 𝜋S
𝑖

and
• neither 𝜋S

𝑖
nor 𝜋U

𝑗
are time-revealed such that 𝜋S

𝑖
has a matching conversation

to 𝜋U
𝑗

(if such an oracle exists),
then the probability thatA outputs 𝑏′which equals the bit 𝑏 sampled by the Test-query
satisfies

| 𝑃𝑟 [𝑏 = 𝑏′] − 1/2 |≥ 𝜖 . (5.1)

If an adversaryA outputs 𝑏′ such that 𝑏′ = 𝑏 and the above conditions are met, then
we say that A answers the Test-challenge correctly.

We say that an AKA protocol Π is (𝑡, 𝜖)-secure, if it is correct and there exists no adversary
that (𝑡, 𝜖)-breaks it. We define the adversarial advantage ofA, AdvAKA

Π,A (_) as the probability
that A (𝑡, 𝜖)-breaks the protocol Π.

This model aims to capture authenticated key agreement for the environment. This is called
an experiment environment, where we run the protocol in the presence of an adversary A
that is trying to break it. Using this experiment, we look to prove security of the protocol,
i.e. that the adversary is unable to succeed under the presented conditions. In a way, we
execute the adversary by giving it input, letting it run and receiving the output. We can also
interact with the adversary while it runs. If the adversary successfully completes the task,
then it wins.

In a similar way we conduct our proof (in Section 5.2) as a series of games, starting with
bounding simple abilities for the adversary and building up to more complex ones, ending
up by showing that a strong adversary is unable to break the protocol under the experiment.
Some of the abilities that the adversary has, between two communicating parties, include
the fact that it can view outgoing messages and create instances or messages and deliver
them out of order and to any recipient (according to the model description above). Thus we
consider that the communication between parties is entirely controlled by the A.

5.2 Security Proof
In this Section we prove security of the dialected version of the OpenFlow protocol. Our
protocol assumes that a session in the initiator role will always be a Switch, which leaves
the Controller to always being in the responder role.

49

We have already mentioned our protocol’s main goal in Section 3.2, which is Authenticated
Key Agreement. Our proof of security focuses on the model as shown in Section 5.1.

Specifically, we focus on showing security of Dialect 1 as an symmetric AKA protocol
with additional data, establishing a session key based on the pre-shared OOB key. Based
on the key indistinguishability of the eventually established session key 𝐾′ = 𝐾′SC | |𝐾

′
CS, the

authentication security of Dialect 2 follows by the SUF-CMA security of the OTMAC.

The keys are being derived every two seconds in time-intervals, as shown in Figure 4.4. A
can select any time window and try to verify the key, by incrementing the clock using the
Tick query. Because of the imposed protocol restrictions, A can only try verification once
per time interval (this also applies for honest parties). The key changes per interval, so ifA
fails, it can try another interval but the experiment will be under a different key (leading to
a one-time MAC experiment).

Theorem 5.2.1. Suppose KDF is a secure PRF and OTMAC is sEUF-1-CMA-secure for a
specified OTMAC length 𝑙 and time interval 𝑡. Then Dialect 1 as defined in Figure 4.1 is a
secure Authenticated Key Agreement protocol running with time interval 𝑡.

Proof. Let A be a probabilistic polynomial time adversary oracle (PPT) against the AKA,
per Definition 5.1.3.

The proof follows as a sequence of games to test the adversary’s abilities, run by a chal-
lenger. The first game is simply the security experiment described above. Then several
intermediate games follow which modify the game one step at a time and with alignment for
the adversary’s ability to computationally distinguish it from the game before. We denote
Adv𝑖 as the adversarial advantage in Game 𝑖.

Game 0: This game is identical to the AKA security experiment described above. Thus, the
advantage of the adversary on this game is:

Adv0 = AdvAKA
Π,A (_) .

50

Game 1: The challengers guesses the identity of the switch from S, where |S| = 𝑛𝑝 and
the sessions at 𝑆 and 𝐶 from [𝑛𝑠], and aborts if the guess is wrong.

We bound this step by 𝑛2
𝑠 · 𝑛𝑝:

Adv0 ≤ 𝑛2
𝑠𝑛𝑝 · Adv1 .

Game 2: This game is the same as Game 1, except the challenger guesses the timestamp at
𝑆 and at 𝐶 for which the adversary will try to win. If the adversary has 𝑞𝑇 queries to the
Tick oracle, this can be bounded by

Adv1 ≤ 𝑞2
𝑇
· Adv2 .

Game 3: This game is the same as Game 2, except we replace the keys generated in Step 0 of
Phase 0 with randomly sampled keys for the target sessions (𝐾∗CS and 𝐾∗SC) for the OTMAC
oracles. Game 2 and Game 3 are indistinguishable based on the pseudorandomness of the
KDF, for both 𝐾SC and 𝐾CS.

We bound this step as:

Adv2 ≤Adv3 + 2 ·AdvPRNG
𝐾𝐷𝐹,A1

(_) .

Game 4: The goal of the adversary is to make one of the parties accept without a matching
conversation. A can make Reveal queries at will; however if A ever calls Reveal on either
the target session or its partner (if one exists), then the experiment aborts. Thus, it can use
the Reveal query on any switch or controller but not the switch or controller session that are
in a matching conversation with current session 𝑖𝑑.

Case 1. The first case considers a controller that accepts maliciously. At some point, 𝐶
receives a flow of the form Hello, 𝑂𝑇𝑀𝐴𝐶𝐾∗SC

(𝑇𝑆S∥Hello) that verifies correctly, but
was not sent by a valid session at the switch (note that the given switch and the controller
already share a symmetric from which the OTMAC key is derived along with a specific
“Switch”/“Controller” ordering, so the direction and identity of the sender is unique). Also,
the target session and time interval at 𝐶 and any session at 𝑆 in the same time interval, are

51

not time-revealed. Therefore the adversary does not have access to the respective keys nor
any prior key and forging another timestamp within the time interval is bounded by ability
to forge at all.

Since the key 𝐾∗
𝑆𝐶

is specific to the time internal and any second message received within
a time interval is silently dropped, A is restricted to a one-time game. Thus to win against
matching conversations, A must win by forging the OTMAC, which can be done by either
forging the message or the tag, i.e. breaking sEUF-1-CMA security. Additionally, we account
for adjusted length on the OTMAC function, 𝑙 = 32, and time duration parameter, 𝑡𝑑 = 4𝑠𝑒𝑐.
Therefore we have,

Adv3 ≤Adv4 + Adv𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A2,𝑂𝑇𝑀𝐴𝐶,𝑙=32,𝑡𝑑=4𝑠𝑒𝑐 (_) .

Case 2. In this case the first oracle to accept maliciously has role “initiator”. The step follows
similarly to Case 1. Role distinction is implied in the computation of the OTMAC key.

Thus, we have that

Adv3 ≤Adv4 + 2 ·Adv𝑠𝐸𝑈𝐹−1−𝐶𝑀𝐴
A2,𝑂𝑇𝑀𝐴𝐶,𝑙=32,𝑡𝑑=4𝑠𝑒𝑐 (_) .

(Indistinguishability of the keys.) If the adversary successfully distinguishes the session
key from a random value (𝑏 from 𝑏′) it wins. For session key for Dialect 1 is 𝐾𝐷1 =

𝐾𝐷1∗
𝑆𝐶
∥𝐾𝐷1∗

𝐶𝑆
, where 𝐾𝐷1∗

𝑆𝐶
(resp. 𝐾𝐷1∗

𝐶𝑆
) is the output of the KDF in Step 3a and 3b of Figure

4.1. Thus distinguishing 𝐾𝐷1 from random implies distinguishing either Thus,

Adv4 ≤ 2·AdvPRNG
𝐾𝐷𝐹,A3

(_) .

□

In Sjoholmsierchio et. al [2] implementation, the time-window, i.e., time duration parameter,
that was used was really small -only one second- and not four seconds like we chose.
Their choice though was made mainly for simplicity reasons and is something that can be
easily changed (one place in the programming code). Changing the time-window value and

52

experimenting with the implementation can give us various insights according to different
results we would receive. We could look at things like performance or compare numbers of
false negatives, i.e., messages that should pass validation but were rejected instead.

No matter the variant of a MAC algorithm, it usually inherits efficiency and security from
its parents’ primitives [34]. The HMAC algorithm in our protocol uses the cryptographic
hash function BLAKE2b, based on the selection made in prior work [3]. This has been
shown to be efficient, thus making the HMAC relatively fast.

The factor of 𝑞2
𝑇

appears as a notable reduction in tightness of the proof. However, unlike a
normal sEUF-CMA MAC security where the adversary may have an equivalent number of
queries against the MAC under a given key, we instead restrict the adversary to one query
per MAC under a given key. Consequently a polynomial number of queries against the MAC
is not surprising but rather distributed across many different instantiations of the algorithm
(i.e., run under different keys).

The proof demonstrates areas for optimization in the dialect design. For example, the use
of two KDF computations for key derivation adds a factor. If one KDF was used and split
into sending/receiving keys, this could be optimized.

The use of the Reveal queries points to reveal of the full state. If pre-shared keys / per
time interval keys were stored more securely than session keys, then separating modeling
of compromise of the session key and other keys could provide additional security insights.

In this chapter we presented the security model and the security proof. In the next chapter
we write our conclusions and some ideas for future work.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

CHAPTER 6:
Conclusion and Future Work

In this chapter we present conclusions of this thesis and propose some ideas for future work.

6.1 Conclusion
In this research we have shown that the dialected Openflow protocol proposed and designed
in [3], [2] provides a viable option for improving security for some of the existing issues in
the original Openflow. In our analysis, we assume that D1 and D2 are performed sequentially
with D2 following the implementation of D1. Another assumption that we make is that keys
are used only once for a certain Controller/Switch pair.

Based on key derivation, a new shared OTMAC key is derived every 2 seconds. A must
forge a message-tag pair within the given time window. The one-time MAC is making that
a hard challenge forA. Not only does it have a small probability because of new keys being
derived in small time-windows but also it can only try on each time-window only once.

The design of the dialect seems supported by our proof which works by providing abilities
to a strong 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦 on each step and reducing the chances for breaking the protocol.
This is due to mutual authentication taking place and key establishment before any actual
exchange of data take place. The use of key derivation functions and one-time MACs provide
additional security with or without TLS being enabled.

Our goal is to analyze security in the dialected Openflow at a high level, thus we do not
take any issues on implementation into account. A more in-depth analysis can consider
issues like the time aliveness of the keys before they are “killed off" or a closer assessment
of the time intervals for OTMAC verification functions. Another important outcome of
future analysis can be a different dialect solution but as we have shown, there are limitations
because of the nature of the protocol. The 32-bit header field in Openflow limits our dialect
option if the protocol packet appearance must be (or is desired to be) preserved.

55

Even if there are still some open questions in the security analysis of the Openflow protocol,
we consider this dialect solution and our results as a strong indicator for the viability of the
dialected Openflow protocol.

6.2 Future Work
The dialect can be modified and tried with other choices than the ones we made. For example
different time interval for the “killing off” of keys, or different time (𝑤) for acceptance as
discussed in 4.2.3.

It is still unknown, what is the possibility of success of an adversary trying to break the
MAC scheme with an adaptive chosen-message attack [35]. With the restriction of the length
parameter of 32 bits for the MAC, the time duration parameter of 4 seconds and the one-time
only scheme seem appropriate choices in our effort in trying to keep the unforgeability of
the MAC. Future research can further, experiment with different values for the parameter,
or even a different deconfliction algorithm.

Further analysis of the protocol, even a different approach of provable security is possible,
since even if our analysis, answers and indicates important security concerns, there are still
open questions that can be answered from a different perspective.

56

List of References

[1] “Software-defined networking: The new norm for networks - Open networking foun-
dation,” Apr. 2012 [Online]. Available: https://opennetworking.org/sdn-resources/
whitepapers/software-defined-networking-the-new-norm-for-networks/

[2] M. Sjoholmsierchio, B. Hale, D. Lukaszewski, and G. Xie, “Strengthening SDN
security: Protocol dialecting and downgrade attacks,” Proceedings of the 2021 IEEE
Conference on Network Softwarization: Accelerating Network Softwarization in the
Cognitive Age, NetSoft 2021, pp. 321–329, 2021.

[3] M. Sjoholmsierchio, “Software-defined networks: Protocol dialects,” M.S. thesis,
Dept. of Information Sciences, NPS, Monterey, CA, USA, 2019 [Online]. Available:
https://calhoun.nps.edu/handle/10945/64066

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 4–6, 2014.

[5] S. Barros, M. Simplicio, T. Carvalho, M. Rojas, F. Redigolo, E. Andrade, and
D. Magri, “Applying software-defined networks to cloud computing,” in 33rd
Brazil-ian Symposium on Computer Networks and Distributed Systems, 2015.

[6] R. Enns, “Netconf configuration protocol,” RFC 4741, Dec. 2006 [Online]. Avail-
able: https://www.rfc-editor.org/info/rfc4741

[7] Open Networking Foundation, “OpenFlow management and configuration pro-tocol
(OF-Config 1.1.1),” pp. 1–36, March 23, 2013 [Online]. Available: http:
//opennetworking.wpengine.com/wp-content/uploads/2013/02/of-config-1-1-1.pdf

[8] B. Pfaff and B. Davie, “The open vswitch database management protocol,” RFC
7047, Dec. 2013 [Online]. Available: https://www.rfc-editor.org/info/rfc7047

[9] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, “A sur-
vey of software-defined networking: Past, present, and future of programmable net-
works,” IEEE Communications Surveys and Tutorials, vol. 16, no. 3, pp. 1617–1634,
2014.

[10] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “Elastictree: Saving energy in data center networks.” in NSDI, 2010,
vol. 10, pp. 249–264.

57

https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/
https://calhoun.nps.edu/handle/10945/64066
https://www.rfc-editor.org/info/rfc4741
http://opennetworking.wpengine.com/wp-content/uploads/2013/02/of-config-1-1-1.pdf
http://opennetworking.wpengine.com/wp-content/uploads/2013/02/of-config-1-1-1.pdf
https://www.rfc-editor.org/info/rfc7047

[11] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (S-BGP),” IEEE
Journal on Selected Areas in Communications, vol. 18, no. 4, pp. 582–592, 2000.

[12] Fiber Optic Solutions, “Backbone networks analysis,” Jul. 1, 2016 [Online]. Avail-
able: https://www.fiber-optic-solutions.com/analysis-backbone-networks.html

[13] A. Sonba and H. Abdalkreim, “Performance comparison of the state of the art open-
flow controllers,” M.S. thesis, Dept. of Information Technology, Halmstad Univer-
sity, Halmstad, Sweden, 2014 [Online]. Available: https://www.diva-portal.org/
smash/record.jsf?pid=diva2%3A783679&dswid=-7750

[14] Wikipedia contributors, “Firmware – Wikipedia, the free encyclopedia,” 2022 [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Firmware&oldid=
1071875365

[15] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking:
State of the art and research challenges,” Computer Networks, vol. 72, pp. 74–98,
2014.

[16] CISA, “Understanding denial-of-service attacks,” 2019 [Online]. Available: https:
//www.cisa.gov/uscert/ncas/tips/ST04-015

[17] NIST, “Man in the middle attack,” 2022 [Online]. Available: https://csrc.nist.gov/
glossary/term/man_in_the_middle_attack

[18] Open Networking Foundation, “Openflow switch specification (version 1.5.1),” Cur-
rent, vol. 0, pp. 1–36, 2015 [Online]. Available: https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-
switch-v1.5.1.pdf

[19] R. Klöti, V. Kotronis, and P. Smith, “Openflow: A security analysis,” in 2013 21st
IEEE International Conference on Network Protocols (ICNP), 2013, pp. 1–6.

[20] C. Boyd, A. Mathuria, and D. Stebila, Protocols for Authentication and Key Estab-
lishment, 2nd ed. Heidelberger Platz 3, 14197 Berlin, Germany: Springer, 2020.

[21] Y. Sung, P. K. Sharma, E. M. Lopez, and J. H. Park, “FS-opensecurity: A taxonomic
modeling of security threats in SDN for future sustainable computing,” Sustainabil-
ity, vol. 8, no. 9, p. 919, 2016.

[22] B. Hale and C. Boyd, “Computationally analyzing the iso 9798–2.4 authentication
protocol,” Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8893, pp. 236–255,
12 2014. Available: https://link.springer.com/chapter/10.1007/978-3-319-14054-
4_14

58

https://www.fiber-optic-solutions.com/analysis-backbone-networks.html
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A783679&dswid=-7750
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A783679&dswid=-7750
https://en.wikipedia.org/w/index.php?title=Firmware&oldid=1071875365
https://en.wikipedia.org/w/index.php?title=Firmware&oldid=1071875365
https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://csrc.nist.gov/glossary/term/man_in_the_middle_attack
https://csrc.nist.gov/glossary/term/man_in_the_middle_attack
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://link.springer.com/chapter/10.1007/978-3-319-14054-4_14
https://link.springer.com/chapter/10.1007/978-3-319-14054-4_14

[23] J. S. Coron and J. B. Nielsen, “0-RTT key exchange with full forward secrecy,” Lec-
ture Notes in Computer Science (Including Subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 10211 LNCS, no. Eurocrypt,
pp. V–VI, 2017.

[24] C. Adams, G. Kramer, S. Mister, and R. Zuccherato, “On the security of key deriva-
tion functions,” Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3225, pp.
134–145, 2004.

[25] D. Stebila, “An introduction to provable security,” Lecture Notes in AMSI Winter
School on Cryptography, pp. 1–15, July 10-11, 2014 [Online]. Available: http://files.
douglas.stebila.ca/files/teaching/amsi-winter-school/Lecture-2-3-Provable-security.
pdf

[26] M. Bellare and P. Rogaway, “Entity authentication and key distribution,” Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol. 773 LNCS, pp. 232–249, 1994.

[27] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of TLS-DHE in
the standard model,” Lecture Notes in Computer Science (Including Subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7417
LNCS, pp. 273–293, 2012.

[28] D. Basin, C. Cremers, and S. Meier, “Provably repairing the ISO/IEC 9798 standard
for entity authentication,” Journal of Computer Security, vol. 21, no. 6, pp. 817–846,
2013.

[29] M. Barbosa and P. Farshim, “Security analysis of standard authentication and key
agreement protocols utilising timestamps,” Lecture Notes in Computer Science (In-
cluding Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 5580 LNCS, pp. 235–253, 2009 [Online]. Available: https://link-
springer-com.libproxy.nps.edu/chapter/10.1007/978-3-642-02384-2_15

[30] H. Massias, X. S. Avila, and J.-J. Quisquater, “Timestamps: Main issues on their use
and implementation,” Proceedings. IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE’99), pp. 178–
178, June 1999.

[31] A. Buldas and M. Saarepera, “On provably secure time-stamping schemes,” in Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. Springer, 2004, pp. 500–514.

59

http://files.douglas.stebila.ca/files/teaching/amsi-winter-school/Lecture-2-3-Provable-security.pdf
http://files.douglas.stebila.ca/files/teaching/amsi-winter-school/Lecture-2-3-Provable-security.pdf
http://files.douglas.stebila.ca/files/teaching/amsi-winter-school/Lecture-2-3-Provable-security.pdf
https://link-springer-com.libproxy.nps.edu/chapter/10.1007/978-3-642-02384-2_15
https://link-springer-com.libproxy.nps.edu/chapter/10.1007/978-3-642-02384-2_15

[32] B. Van Rompay, B. Preneel, and J. Vandewalle, “The digital timestamping prob-
lem,” in Symposium on Information Theory in the Benelux. Werkgemeenschap voor
Informatie-en Communicatietheorie, 1999, pp. 71–78.

[33] L. Gong, “A security risk of depending on synchronized clocks,” ACM SIGOPS Op-
erating Systems Review, vol. 26, no. 1, pp. 49–53, 1992.

[34] J. Kim, A. Biryukov, B. Preneel, and S. Hong, “On the security of HMAC and
NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1,” in International Con-
ference on Security and Cryptography for Networks. Springer, 2006, pp. 242–256.

[35] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal on Computing, vol. 17,
no. 2, pp. 281–308, 1988.

60

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

61

	22Mar_Patrozou_Nektaria_First8
	22Mar_Patrozou_Nektaria_new_r2
	Prelude
	Motivation
	Problem Statement
	Research Questions
	Thesis Organization

	Background
	Software Defined Networking
	Secure Communication
	Related Work

	Security and Preliminaries
	SDN Security
	Preliminaries
	Variables and Notation

	A Protocol Utilizing Timestamps
	Protocol Description
	Timestamps

	Security Analysis
	Security Model
	Security Proof

	Conclusion and Future Work
	Conclusion
	Future Work

	List of References
	Initial Distribution List

