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Abstract

The subterranean niche harbours animals with extreme adaptations. These adaptations

decrease the vagility of taxa and, along with other behavioural adaptations, often result in

isolated populations characterized by small effective population sizes, high inbreeding, pop-

ulation bottlenecks, genetic drift and consequently, high spatial genetic structure. Although

information is available for some species, estimates of genetic diversity and whether this

variation is spatially structured, is lacking for the Cape mole-rat (Georychus capensis). By

adopting a range-wide sampling regime and employing two variable mitochondrial markers

(cytochrome b and control region), we report on the effects that life-history, population

demography and geographic barriers had in shaping genetic variation and population

genetic patterns in G. capensis. We also compare our results to information available for the

sister taxon of the study species, Bathyergus suillus. Our results show that Georychus

capensis exhibits low genetic diversity relative to the concomitantly distributed B. suillus,

most likely due to differences in habitat specificity, habitat fragmentation and historical popu-

lation declines. In addition, the isolated nature of G. capensis populations and low levels of

population connectivity has led to small effective population sizes and genetic differentia-

tion, possibly aided by genetic drift. Not surprisingly therefore, G. capensis exhibits pro-

nounced spatial structure across its range in South Africa. Along with geographic distance

and demography, other factors shaping the genetic structure of G. capensis include the his-

torical and contemporary impacts of mountains, rivers, sea-level fluctuations and elevation.

Given the isolation and differentiation among G. capensis populations, the monotypic genus

Georychus may represent a species complex.

Introduction

The life history of a species along with its habitat specificity, habitat matrix and the spatial and tem-

poral variation in geological and climatic factors through evolutionary time, shape genetic patterns

and consequently drives diversification and speciation (e.g., [1, 2, 3, 4]). As such, dispersal capability

and population dynamics impinge on genetic diversity and spatial genetic structure.
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The subterranean niche is a relatively stable, predictable, and highly specialized domain with

preferred habitat patches often in a disjunct distribution [5]. Not surprisingly, fossorial/subterra-

nean taxa show extreme adaptations to burrowing and respiration, linked to fundamental changes

in molecular and physiological pathways, behaviour and morphology [5]. As a result, fossorial

species typically have low vagility and exhibit behavioural attributes such as territoriality and life-

long fixed home ranges ([6, 7, 8, 9, 10, 11, 12], but see [13, 14]). Populations of fossorial species

therefore regularly exhibit a localized and patchy distribution adhering to specific soil types [5, 7,

9, 10, 15, 16, 17, 18, 19] with restricted gene-flow between them [4, 9, 17]. Given such spatial isola-

tion and often small effective population sizes, fossorial animals are prone to inbreeding and typi-

cally experience bottlenecks and genetic drift, which in turn leads to low genetic diversity and

rapid divergences between isolated populations [4, 5, 7, 9, 10, 11, 12, 17, 20, 21, 22, 23, 24].

One species for which genetic information is still lacking is the Cape mole-rat, Georychus
capensis [25]. The Cape mole-rat is a solitary, territorial subterranean species [26, 27, 28] which

extends their burrow systems in search of food and mates [29, 30] and use seismic signalling

(hindfoot drumming) during mate attraction [27, 28, 31]. Georychus is characterized by a dis-

junct distribution across its South African range (Western Cape, south-western KwaZulu-Natal

and Mpumalanga Provinces, [19, 31, 32, 33, 34, 35] and is restricted to areas where specific eco-

logical variables are present. This species remains largely understudied. Most recently, a study

by Visser et al. [19] documented large geographic differences between populations with regards

to mating variables. Georychus is considered monotypic [36, 37] with currently available molec-

ular and allozyme data suggesting that populations from KwaZulu-Natal [38, 39, 40] and Mpu-

malanga [41] may be a separate species from those in the Western Cape Province.

In this study, we investigate the effects of life-history characteristics on shaping genetic vari-

ation and spatial genetic patterns in G. capensis. Our specific aims are to 1) document genetic

diversity at the population level as well as across the range of G. capensis, 2) investigate demo-

graphic stability (both within populations and across the range), 3) test whether genetic isola-

tion is present across the disjunct distribution, 4) compare our results to a previous study on

Bathyergus suillus (the sister taxon of G. capensis; separated for 20–26 Mya, [20]) with regards

to the genetic diversity and genetic structure across the same broad distribution in the Western

Cape and lastly 5) identify possible geographic barriers to gene-flow across the distribution of

G. capensis. We employed two variable mitochondrial markers, cytochrome b and the control

region fragment. Mitochondrial markers are suitable for studying phylogeographic patterns

and provide valuable baseline data regarding long-term isolation.

Investigations of genetic patterns across the range of a species allows for the identification

of specific regions of possible conservation focus, as well as insight into the evolution of the

Bathyergidae in general. The Cape mole-rat is presently a least concern species [42], but this

assessment was based on limited information, and any novel information regarding genetic

structure and hence possible taxonomic revisions, and demographic changes may inform its

conservation status. Genetic diversity should be considered in conservation planning [43] as it

is necessary for the long-term sustainability of populations through allowing adaptation to

changing environments (population fitness, [44, 45, 46, 47]). Decreases in population size may

lead to inbreeding and/or genetic drift, reduced fitness and adaptability [45].

Materials and methods

Sample collection

Georychus capensis specimens were collected from 15 localities (Fig 1) across its known distri-

butional range in the Western Cape (Cape Nature Permit Number: 0056-AAA041-00084),

KwaZulu-Natal (EKZNW Permit Number: OP1716/2016) and Mpumalanga Provinces
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(MPTA Permit Number: 5524), South Africa. In total, 265 G. capensis were collected by placing

Gophinator traps (US patent No. 7,380,368, commercially available from Trapline Products,

Menlo Park, California, USA) baited with peanut butter inside the burrow systems. The trap

works in a similar way to the Victor Easy Set or Macabee traps, however uses a more powerful

torsion mechanism which draws the animal into a pivot point at the front of the trap and

applies ample power and pressure to quickly, consistently and humanely sacrifice rodents in

the body mass- and size class of G. capensis (200 mm long and 400 g in mass). Collection of

specimens was performed under ethical clearance from the Ethics Committee of the University

of Johannesburg (Ethics number 215086650-10/09/15). Traps were checked every hour and

the sacrificed animals were removed and immediately frozen at -10˚C.

DNA extraction and sequencing

Total genomic DNA was extracted from tissue (tail clippings) using a commercial DNA

extraction kit (DNeasy Tissue and Blood kit; Qiagen) following the manufacturer’s protocol.

Two mitochondrial DNA fragments were targeted during PCR amplifications and sequencing

using universal primers: 976 bp of the protein coding cytochrome b gene (L14724 and H15915;

[48, 49]) and 843 bp of the hypervariable control region (LO and E3; [50]).

PCR amplifications followed standard protocols (see [51]). Amplifications were performed

in a MultiGene Optimax system (Labnet International, Inc.) at fragment-specific annealing

temperatures (50˚C for cytochrome b and 48˚C for the control region). Amplicons were

sequenced using BigDye chemistry following the protocols outlined in Jansen van Vuuren and

Chown [52]. Electropherograms of the raw data were aligned and checked manually (Geneious

Pro™ 7.1.7 software; Biomatters Ltd, New Zealand).

Data analyses

Summary statistics and, population demography. The two mitochondrial fragments

were analysed separately (cytochrome b accession numbers: MG496663—MG496927; control

Fig 1. Georychus capensis sampling localities. Map showing localities where G. capensis were sampled across South

Africa. The South African range (yellow shaded) of the species is indicated (based on historical records).

https://doi.org/10.1371/journal.pone.0194165.g001
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region accession numbers: MG496398—MG496662) as well as in concert (1819 bp); the results

were largely congruent between fragments and the concatenated segments. Summary statistics

(number of haplotypes, haplotype diversity and nucleotide diversity) for each population was

calculated in Arlequin version 3.5 [53]. Possible fluctuations in population size were investi-

gated using Fu’s Fs in DnaSP 5.10.01 [54]. To determine a measure of effective population

sizes, Θ (theta) values for populations were calculated in Migrate 3.6.4 [55] using a Bayesian

search strategy. Result were based on averaging over three replicates of 15 000 000 generations

each (burnin = 3 000 000).

Population analyses. As the majority of sampling localities were in the Western Cape,

two separate datasets were constructed to account for sampling bias: 1) all sampled localities

(localities 1–15 as shown in Fig 1) and 2) only localities in the Western Cape (localities 1–12

on Fig 1, hereafter referred to as the Western Cape region). To ascertain whether genetic diver-

sity is significantly partitioned across the sampled range, overall ФST values were calculated

using an AMOVA considering all the sampling localities (l—15) together. To assess the impact

of range fragmentation on the spatial genetic diversity, we divided the samples into three

groups (localities 1–12, locality 13, and localities 14–15; these groupings correspond to the

three provinces namely Western Cape, KwaZulu-Natal, and Mpumalanga). Finally, we

assessed whether genetic diversity was significantly structured across the Western Cape region

(localities 1–12). Additionally, pairwise ФST values were calculated between all sampled locali-

ties. Significance for these tests were determined through 9 999 permutations of the data (Arle-

quin version 3.5; [53]). Isolation-by-distance was evaluated for the Western Cape region using

a Mantel test as implemented in Alleles In Space version 1.0 [56]. Geographic distances were

taken as straight-line distances between localities.

A haplotype network was built using TCS 1.21 [57]; this network also provides an overall

visual assessment of the haplotype diversity in each of the localities. In addition, potential bar-

riers to gene-flow were identified using an interpolation-based graphic approach in the pro-

gramme Alleles In Space [56]. To investigate the genetic clustering of individuals across the

range of Georychus, clustering analyses were performed in BAPS version 6.0 [58, 59, 60] by

employing both a normal clustering search (without geographic data) and a spatial clustering

search (using the coordinates of sampled localities).

Comparison to B. suillus. Summary diversity indices (haplotype diversity and nucleotide

diversity), population demography (Fu’s Fs) and population differentiation (pairwise ФST val-

ues) were sourced from a previous study on B. suillus [4] for which the sampling scheme fol-

lowed a similar broad spatial pattern across the Western Cape region. Estimates of Θ were also

calculated for the B. suillus sequence datasets. For both G. capensis and B. suillus, comparative

statistics were calculated separately for both the control region and cytochrome b datasets

(data for B. suillus sourced from [4]) as well as for a combined dataset of these two fragments.

To account for a possible bias in the spatial scale of sampling, the data from Georychus was

compared to that of B. suillus across two spatial scales: 1) all sampled localities across the distri-

bution of G. capensis (localities 1–15) and 2) only including localities across the Western Cape

Province (localities 1–12). In addition, genetic structure within the two genera was only com-

pared across their distributions in the Western Cape region. Statistical comparisons between

values were performed using a non-parametric Mann-Whitney U test as implemented in IBM

SPSS Statistics version 20.0.0 (International Business Machines Corporation 2011).

Results

When considering all 265 sampled Georychus individuals, 55 haplotypes were identified from

the combined dataset (Table 1, Fig 2). With the exception of the Swellendam (locality 11) and

Genetic isolation in the subterranean Cape mole-rat
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Table 1. Genetic diversity within G. capensis populations.

Locality Sample size (N) Number of haplotypes Haplotype diversity Nucleotide diversity Fu’s Fs

Nieuwoudt-ville (1) 2 1 0.000 ± 0.000 0.000 a

Citrusdal (2) 22 3 0.554 ± 0.097 0.028 15.650���

Moorreesburg (3) 25 5 0.423 ± 0.119 0.015 13.958���

Darling (4) 25 9 0.793 ± 0.064 0.017 4.356�

Wolseley (5) 23 9 0.795 ± 0.076 0.034 5.264�

Ceres (6) 24 7 0.855 ± 0.033 0.028 9.064���

Paarl (7) 18 2 0.471 ± 0.082 0.000 1.215n.s.

Worcester (8) 14 2 0.264 ± 0.136 0.013 5.748�

Cape Town (9) 25 6 0.800 ± 0.049 0.031 8.132���

Struisbaai (10) 20 2 0.442 ± 0.088 0.022 23.371���

Swellendam (11) 20 2 0.190 ± 0.108 0.000 2.248n.s.

Oudshoorn (12) 22 1 0.000 ± 0.000 0.000 b

Nottingham Road (13) 3 2 0.667 ± 0.314 0.022 a

Wakkerstroom (14) 19 2 0.200 ± 0.112 0.006 16.331���

Belfast (15) 3 2 0.667 ± 0.314 0.010 a

Total 265 55 0.475 ± 0.106 0.015 41.468���

Genetic diversity for the sampled G. capensis populations (refer to Fig 1) based on the combined dataset. The number of specimens (N), number of haplotypes,

haplotype diversity, nucleotide diversity and Fu’s F values is given for each population. For the Fu’s F values

n.s. = non-significant

� = p<0.05 and

��� = p<0.001.

An indication is given where the analysis could not be performed due to “a” too few samples from that population, or “b” all individuals within that population having

the same haplotype.

https://doi.org/10.1371/journal.pone.0194165.t001

Fig 2. Georychus capensis haplotype network (combined dataset). Haplotype network, constructed from the combined dataset, for all G.

capensis populations. The size of each circle reflects the number of specimens (also indicated in the circles) that share a particular haplotype.

Numbers on branches represent the number of mutational steps separating haplotypes. Separate haploclades reflect haplotypes which differ

by more than 18 mutational steps form other haplotypes.

https://doi.org/10.1371/journal.pone.0194165.g002
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Paarl (locality 7) localities, individual populations, as well as all populations combined, showed

signs of negative population growth (Fu’s Fs values, Table 1). The trend of negative population

growth was also retrieved when the data were partitioned into the separate genetic clusters

over the distribution (Fig 3), with the exception of cluster 2 in the cytochrome b dataset which

showed slight but significant positive population growth (Table 2). The genetic clusters over

the sampled distribution (Fig 3) represent the number of genetically divergent groups based

on the combined dataset. A genetic cluster therefore incorporates all individuals (populations)

which are genetically similar, or are less divergent from one another than from individuals in

another cluster. In addition to negative population growth, effective population sizes for G.

capensis populations were relatively low (S1 Table) with six populations (localities 2, 3, 4, 5, 6

and 9; S1 Fig) having slightly higher Θ values compared to the other populations in all

datasets.

There was significant and strong genetic structure across the range of G. capensis (Table 3;

S3 Table), with every sampling locality presenting as a unique genetic entity (i.e., no haplotypes

were shared between localities, see Fig 2). When all populations are considered together, 86%

of the variation is accounted for by the between population component (ФST = 0.863, df = 264,

Fig 3. Genetic clusters in G. capensis across its distribution. A) The geographic spread of the different genetic

clusters found within G. capensis with B) representing a breakdown of the populations constituting each cluster. The

bars represent the haplotype of each individual with the colour indicating the membership of that individual to a

particular genetic cluster. The colours in (B) correspond to the geographic position of the clusters in space (A).

https://doi.org/10.1371/journal.pone.0194165.g003
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p = 0.000), with only 14% of the variation situated within populations. When three groups

were specified in the AMOVA analysis (Western Cape, KwaZulu-Natal and Mpumalanga

Provinces respectively), 47% of the variation was partitioned among these groups, with 44% of

the variation among populations within each group, and only 8% of the variation partitioned

within these populations. In the Western Cape region, a similar scenario was found with 83%

of the variation among populations with only 16% of the variation accounted for by within-

population variation (ФST = 0.835, df = 239, p = 0.000). Although there was significant isola-

tion-by-distance in the Western Cape region (r = 0.820, p = 0.001), several barriers to gene

flow were detected across the range of G. capensis (Fig 4), contributing to the overall strong

pattern of population structure.

Georychus capensis populations exhibited significantly lower haplotype diversity compared

to B. suillus populations for all datasets (fragments singly or combined) and across both the

spatial scales (Table 4). When comparing nucleotide diversity values, G. capensis exhibited sig-

nificantly lower diversity compared to B. suillus (on both studied spatial scales) only for the

cytochrome b dataset, with non-significant values for the control region and combined data

(see Table 4), possibly suggesting negative population growth in G. capensis. Indeed, the Fu’s

Fs values of G. capensis were significantly higher compared to that of B. suillus in all datasets

and across both spatial scales, with exception of the values based on the cytochrome b datasets

in the Western Cape region (Table 4). In addition, G. capensis exhibited significantly lower

effective population sizes compared to B. suillus (on both spatial scales) based on all datasets

(Table 4). Georychus capensis was spatially more structured compared with B suillus in the

Western Cape region (cytochrome b results only, see Table 4).

Discussion

Compared to B. suillus, G. capensis is characterized by low genetic diversity. This may be a

result of several factors, including population declines at both local (single population) and

regional (across the entire distribution) scales. Indeed, G. capensis populations show significant

declines in population size compared to B. suillus irrespective of the spatial scale considered.

The overall population decline in the Cape mole-rat is in line with the fossil record (G. capensis
fossils are found in areas where they do not occur currently e.g., the Gauteng Province, parts

of the KwaZulu Natal Province and Eastern Cape Province), which suggests that Georychus

Table 2. Demographic stability of G. capensis genetic clusters.

Cytochrome b Control Region Combined

Cluster 1 -0.064n.s. 7.245��� 8.809���

Cluster 2 -2.668� 7.507��� 7.522���

Cluster 3 5.788� 21.717��� 23.371���

Cluster 4 b b b

Cluster 5 a a a

Cluster 6 4.312� 15.066��� 17.571���

Table showing the Fu’s Fs values for the various genetic clusters retrieved across the distribution of G. capensis (see Fig 3) and based on the separate (cytochrome b and

control region) and combined datasets. For the Fu’s F values

n.s. = non-significant

� = p<0.05

��� = p<0.001.

An indication is given where the analysis could not be performed due to “a” too few samples from that cluster, and “b” all individuals within that cluster having the same

haplotype.

https://doi.org/10.1371/journal.pone.0194165.t002
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was once more widely distributed [61, 62, 63, 64]. Historical population contractions during

the Quaternary [62, 64, 65] left populations in the Mpumalanga and KwaZulu-Natal Provinces

as relicts [65]. Overall population declines may result from an increasingly fragmented range

with the loss of suitable habitat, specifically adherence to constant mesic environments [19]

resulting in extreme isolation of G. capensis populations. Isolation and fragmentation of this

habitat may likely be attributed to several climatic oscillations which brought cooler and more

arid climates during the Quaternary [65, 66, 67, 68, 69].

Genetic variation also varies non-randomly among population and species [70] and

depends on several factors including the mating system of the species, population history and

environmental heterogeneity [45]. Ecological factors have been shown to influence natural

selection and therefore genetic diversity in fossorial taxa [70]; natural selection maintains

higher levels of polymorphism in harsh and unpredictable environments in species such as

Spalax ehrenbergi [71]. Conversely, environmental stability causes lower genetic variation in

populations of T. romana [22]. Georychus is associated with mesic conditions and drainage sys-

tems (vleis or areas close to rivers; see [19]). Lower levels of genetic diversity in G. capensis

Fig 4. Barriers to gene-flow across the distribution of G. capensis. A) The genetic landscape (derived from the

interpolation analysis in Alleles In Space) of G. capensis across the sampled distribution. Peaks on the landscape

represent areas that are probable barriers to gene-flow (labelled A-D) with B) showing the location of these barriers on

the distribution map of G. capensis.

https://doi.org/10.1371/journal.pone.0194165.g004
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population occupying stable environments might therefore not pose any risk to long-term per-

sistence, largely because of the lack of environmental stressors.

Extreme isolation may also influence the genetic diversity of G. capensis populations. Geory-
chus populations are characterized by strong genetic structure across the distribution. Habitat

Table 4. Statistical results for the comparisons between G. capensis and B. suillus genetic indices.

Cytochrome b
All populations Mann-Whitney U NGeorcyhus NBathyergus p-value MeanGeorcyhus ± SD MeanBathyergus ± SD

Haplotype diversity 30.000 15 10 0.012 0.411 ± 0.292 0.680 ± 0.235

Nucleotide diversity 37.500 15 10 0.033 0.001 ± 0.001 0.003 ± 0.002

Fu’s FS 18.000 9 10 0.027 2.404 ± 2.781 -0.053 ± 1.089

Θ 16.000 12 10 0.004 0.001 ± 0.000 0.002 ± 0.002

Western Cape Mann-Whitney U NGeorcyhus NBathyergus p-value MeanGeorcyhus ± SD MeanBathyergus ± SD

Haplotype diversity 23.500 12 10 0.016 0.385 ± 0.304 0.680 ± 0.235

Nucleotide diversity 30.500 12 10 0.046 0.001 ± 0.001 0.003 ± 0.002

Fu’s FS 18.000 8 10 0.051 2.052 ± 2.751 -0.053 ± 1.089

Θ 17.000 11 10 0.005 0.001 ± 0.000 0.002 ± 0.002

FST 1146.000 66 45 0.042 0.818 ± 0.226 0.764 ± 0.230

Control Region

All populations Mann-Whitney U NGeorcyhus NBathyergus p-value MeanGeorcyhus ± SD MeanBathyergus ± SD

Haplotype diversity 20.500 15 10 0.002 0.438 ± 0.310 0.791 ± 0.170

Nucleotide diversity 55.000 15 10 0.267 0.033 ± 0.027 0.020 ± 0.010

Fu’s FS 11.000 10 10 0.003 9.533 ± 5.781 2.474 ± 3.448

Θ 17.000 12 10 0.005 0.007 ± 0.010 0.034 ± 0.029

Western Cape Mann-Whitney U NGeorcyhus NBathyergus p-value MeanGeorcyhus ± SD MeanBathyergus ± SD

Haplotype diversity 16.500 12 10 0.004 0.420 ± 0.327 0.791 ± 0.170

Nucleotide diversity 43.000 12 10 0.262 0.034 ± 0.028 0.020 ± 0.010

Fu’s FS 11.000 9 10 0.006 9.013 ± 5.879 2.474 ± 3.448

Θ 17.000 11 10 0.007 0.007 ± 0.011 0.034 ± 0.029

FST 1397.000 66 45 0.597 0.714 ± 0.197 0.719 ± 0.239

Combined (cytochrome b and control region)

All populations Mann-Whitney U NGeorcyhus NBathyergus p-value MeanGeorcyhus ± SD MeanBathyergus ± SD

Haplotype diversity 14.000 15 10 0.001 0.475 ± 0.292 0.848 ± 0.174

Nucleotide diversity 55.000 15 10 0.265 0.015 ± 0.012 0.009 ± 0.004

Fu’s FS 12.000 11 10 0.002 9.576 ± 6.917 1.328 ± 3.264

Θ 6.000 12 10 0.000 0.002 ± 0.003 0.018 ± 0.013

Western Cape Mann-Whitney U NGeorcyhus NBathyergus p-value MeanGeorcyhus ± SD MeanBathyergus ± SD

Haplotype diversity 12.000 12 10 0.002 0.466 ± 0.307 0.848 ± 0.174

Nucleotide diversity 43.000 12 10 0.260 0.016 ± 0.013 0.009 ± 0.004

Fu’s FS 12.000 10 10 0.004 8.901 ± 6.898 1.328 ± 3.264

Θ 6.000 11 10 0.001 0.002 ± 0.003 0.018 ± 0.013

FST 1478.500 66 45 0.969 0.736 ± 0.189 0.713 ± 0.238

Summary of the compared results (G. capensis and B. suillus) for haplotype diversity, nucleotide diversity Fu’s Fs and Θ (a measure of effective population size) values.

Comparisons are done for the DNA fragments separately (cytochrome b and control region) and combined. The two spatial scales investigated (the entire distribution of

G. capensis and populations in the Western Cape only) are also included. Spatial structure comparisons (pairwise ɸST values across this range for G. capensis and B.

suillus) are also done for the Western Cape region. For each comparison, the Mann-Whitney U test statistic, number of Georychus values (NGeorychus), number of

Bathyergus values (NBathyergus) and the p-value (significant values in bold) is given. In addition, the mean ± standard deviation (S.D) for Georyhus and Bathyergus are

shown for the values in question.

https://doi.org/10.1371/journal.pone.0194165.t004
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specificity and a low dispersal capability may be the main factors driving spatial genetic struc-

ture. Suitable habitat is disjunctly distributed across the species’ range, and populations are

spatially highly fragmented. Indeed, it was noted that G. capensis is less widespread and popu-

lations much more isolated compared to other South African bathyergid counterparts such as

B. suillus and Cryptomys hottentotus [19]. Bathyergus suillus occupies deep sandy soils [35]; this

habitat type is abundant and largely continuous along the coastal margins of South Africa. In

addition, B. suillus is able to utilize mesic areas (with deep soils), thereby resulting in a range

overlap with G. capensis. Given its more generalist ecology, B. suillus exhibits much larger and

aggregated populations with a continuous distribution along the coastal regions of the Western

Cape (J.H. Visser, personal observation). Bathyergus suillus therefore maintains much larger

female effective population sizes (when considering the maternally inherited markers used

here; Table 4; S1 Table) and higher levels of gene-flow (also see [14]) across its distribution,

thereby resulting in the maintenance of higher (mitochondrial) genetic diversity within this

species compared to G. capensis.
The extreme isolation of G. capensis populations negates all chances of genetic exchange

and therefore populations with small effective population sizes may consequently be subject to

inbreeding and/or genetic drift (albeit testing and corroborating these factors will require the

addition of variable nuclear data such as microsatellites or SNPs). Small effective population

sizes are evident in all G. capensis populations (S1 Table). The six populations exhibiting

slightly higher effective population sizes (S1 Fig) represent specimens sampled across larger

and disparate areas (>2km apart). These populations are all located in the south-western Cape

area and are the only localities where G. capensis individuals were distributed across larger

areas (>1km2), therefore representing larger numbers of unrelated mating individuals

(females) and higher levels of genetic diversity (Table 1). Effective population sizes are also

affected by unequal sex ratios [45]. Visser et al. [19] reported skewed sex ratios in most of the

G. capensis sampled populations. It is possible that G. capensis populations have become inbred

over time and/or were subject to bottlenecks, thereby decreasing the genetic diversity of

founder populations. In addition, genetic drift seems to have played a major role in structuring

G. capensis populations. There are no shared haplotypes between populations. Although based

on both mitochondrial and nuclear markers, a loss of genetic variation and concomitant

increase in genetic differentiation through genetic drift, inbreeding and bottlenecks, has been

demonstrated on a temporal scale of 10 years in Geomys bursarius (see [9]). This temporal dif-

ferentiation was found to be of the same magnitude as spatial differentiation in fossorial

rodents [9]. In addition, genetic structure has been shown to result from bottlenecks and small

effective population sizes in two geographically restricted populations (12 km apart) in Cte-
nomys [10].

Given the high genetic structure and geographic isolation among G. capensis populations, it

is no surprise that significant isolation-by-distance was detected for this species in the Western

Cape. Geographical distance may represent an insurmountable barrier to gene-flow for this

poorly dispersing habitat specialist species.

In addition, long-standing geographic barriers such as major rivers and mountain ranges

(similarly to B. suillus; [4]), elevation and biogeographic differences and different dispersal

routes also play a major role in structuring genetic diversity in G. capensis. The six genetic clus-

ters across the distribution of G. capensis, especially in the Western Cape, cannot be explained

by isolation-by-distance alone.

The action of mountains on gene-flow in G. capensis seems to be that of a physical barrier

having a channelling effect; in B. suillus, mountains form a barrier between populations [4].

Within the Western Cape, Clusters 1 and 2 (the Nieuwoudt-ville/Citrusdal/Wolseley/Ceres/

Swellendam cluster and the Moorreesburg/Darling/Paarl/Cape Town cluster, respectively) is

Genetic isolation in the subterranean Cape mole-rat

PLOS ONE | https://doi.org/10.1371/journal.pone.0194165 March 15, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0194165


likely a result of different dispersal routes. Cluster 2 is located on the low-lying areas of the

south-western Cape and is separated from Cluster 1 by the Olifants River-, Boland- and Hot-

tentots Holland Mountains. Cluster 1 is found inland between the Olifants River-, Boland-

and Hottentots Holland Mountains and the Cederberg-, Skurweberg-, Hex River- and Lange-

berg Mountains. It is possible that Cluster 1 spread along the Breede River Valley and followed

the natural north-south valleys between the mountain ranges while spreading northward. The

two clusters therefore appear to have resulted from two different, but relatively recent dispersal

routes. Three individuals from the Moorreesburg locality originate from Cluster 1 and likely

represent an isolated, unidirectional gene-flow event from one of the geographically close

localities to Cluster 2 (Citrusdal/Wolseley areas, or areas in between) through one of the natu-

ral valleys that connect the coastal plain and the Berg River Valley.

The isolation of Cluster 3 (the Struisbaai population) may be a result of isolation through

marine fluctuations in sea-level which covered the Agulhas Plain (barrier A on Fig 4; [72, 73,

74]). Indeed, sea-level fluctuations structure fossorial populations through fragmentation and

isolation during transgressions [22, 24]. In addition, the action of rivers drives the isolation of

fossorial populations ([10, 71, 75], but see [24]). It is therefore also likely that Cluster 3 was iso-

lated from surrounding populations by the geographic barriers of the Breede River and Cape

Fold Mountains (see [4] for a similar pattern in B. suillus). In addition, the action of the Breede

River and Gourits River (barrier B on Fig 4), both of which was found as significant geographic

barriers to gene-flow in B. suillus [4], may also drive the isolation of Cluster 4 (the Oudshoorn

population). Conversely, Cluster 4 was found nestled within an enclosed montane valley,

which could have contributed to its isolation.

Clusters 5 and 6 represent relict populations [65] in the Mpumalanga and KwaZulu-Natal

Provinces (with possibly no intermediate populations). These clusters (populations) are sepa-

rated by large geographic distances (>500km) from each other (barrier D on Fig 4) and from

those in the Western Cape (barrier C on Fig 4). Although such large scale isolation has likely

persisted for a protracted period of time (due to population declines; see above), several possi-

ble long-standing barriers also exist in the form of elevation and biogeographic differences

across these regions [19]. These barriers developed through geological and climatic changes in

the Miocene and Pliocene/Pleistocene, including pronounced tectonic uplift along the margins

of the Great Escarpment [76, 77, 78], sea-level fluctuations which inundated and exposed

regions of the coastal shelf [72, 74, 79, 80] and climatic conditions which shifted rapidly from

warm and tropical towards a cooler, drier and more seasonal [78, 81, 82]. In addition, these

changes promoted the spread of grasslands in the interior [76] and fragmented the woodland

savannah vegetation that existed across this region [66, 83, 84].

Conclusion

Georychus capensis is a subterranean species, which exhibits low genetic diversity relative to its

concomitantly distributed sister genus, Bathyergus. This species shows strict adherence to cer-

tain ecological variables [19]; the spatial heterogeneity in the distribution of such suitable habi-

tat results in geographically discrete and isolated populations. Possibly, because of these

considerations, the extreme isolation of G. capensis populations leads to local population

declines and low effective population sizes—inbreeding and bottlenecks may hence reduce

genetic diversity. Also linked to this long term isolation is genetic drift which has led to each

population constituting genetically unique entities. It therefore appears that the habitat speci-

ficity of the species and life-history along with habitat heterogeneity and geographic distance

leads to isolation and differentiation, thereby resulting in high genetic structure between G.

capensis populations.
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In addition, the historical and contemporary actions of geographic barriers (mountains and

rivers), sea-level fluctuations and elevation along with biogeographic differences act in concert

with contractions of the distribution of G. capensis to produce long-term isolation of popula-

tions. As such, this has resulted in several genetically discrete clusters across the distribution of

G. capensis. Specifically, mountains act as geographic barriers, either through channelling dis-

persal events or through isolating G. capensis populations in the Western Cape. In addition,

major rivers and possibly historical changes in sea-level have caused the long-term isolation of

populations in the coastal areas of the Western Cape region. The relict and disjunct Mpuma-

langa and KwaZulu-Natal G. capensis populations, which are also separated from those in the

Western Cape by large geographic distances and elevation- and biogeographic differences,

may have been isolated and diverging for a protracted time.

Speciation has been suggested to be linked to population structure and geographic isolation

in various fossorial/subterranean taxa (e.g., [10, 85, 86, 87, 88, 89, 90]). Given the high degree

of genetic isolation and differentiation among G. capensis populations along with possible

adaptive differences across the distribution (see [19]), it is entirely possible that the monotypic

genus Georychus is in need of a taxonomic revision as it may represent a species complex. In

addition, conservation initiatives should take cognisance of the isolation and divergence of G.

capensis population, both locally and on a distribution-wide scale, and the low level of genetic

diversity within these isolates.
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