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Abstract— Throughout the Department of Defense, there are
ongoing efforts to increase cybersecurity and improve data
transfer in unmanned robotic systems (UxS). This paper explores
the performance of the Robot Operating System (ROS) 2, which
is built with the Data Distribution Service (DDS) standard as a
middleware. Based on how quality of service (QoS) parameters
are defined in the robotic middleware interface, it is possible to
implement strict delivery requirements to different nodes on a
dynamic nodal network with multiple unmanned systems con-
nected. Through this research, different scenarios with varying
QoS settings were implemented and compared to baseline values
to help illustrate the impact of latency and throughput on data
flow. DDS security settings were also enabled to help understand
the cost of overhead and performance when secured data is
compared to plaintext baseline values. Our experiments were
performed using a basic ROS 2 network consisting of two nodes
(one publisher and one subscriber). Our experiments showed
a measurable latency and throughput change between different
QoS profiles and security settings. We analyze the trends and
tradeoffs associated with varying QoS and security settings. This
paper provides performance data points that can be used to help
future researchers and developers make informative choices when
using ROS 2 for UxS.
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I. INTRODUCTION

The increased use of unmanned systems (UxS) in warfare
centric environments makes it increasingly vulnerable to cyber
threats. In 2017, the Office of the Secretary Defense (OSD) re-
leased their UxS Roadmap in which Data Transport Integration
and Cyber Security were identified as two key challenges for
UxS in the upcoming decades [1]. In order to reduce the costs
associated with new software development for data migration,
the Defense Science Board has pushed the adoption of open
architectures (OA) in UxS development [2].

One such architecture is the Robot Operating System (ROS),
which includes an open source middleware system for robots.
The first version of ROS, ROS 1, was developed by Open
Source Robotics Foundation (OSRF) in 2008. ROS 1 is a valu-
able platform to conduct research, but the architecture does not
provide any native security between nodes, which is crucial for
mission support and tactical deployment.The second version of
ROS, ROS 2, introduces a security architecture that provides
the user the ability to enable and use security features in
order to cyber harden a system. This is imperative within
today’s DoD Information Assurance (IA) requirements [1].
However, one must understand the costs (latency, throughput,
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overhead, etc.) associated with these IA requirements. The
tradeoff between system security and system performance
must be addressed to ensure timely and effective execution
of operational tasks [3].

A. Research Motivations and Contributions

The objective of this work is to quantify the performance
of ROS 2 operating in a two node network while applying
different quality of service (QoS) profiles and security settings.
We provide an in-depth study on the different QoS profiles
available to ROS 2 in the context of network performance.
We also investigate the impact of the ROS 2 security plugins
on network performance. ROS 2 is built on top of the Data
Distribution Service (DDS) as its middleware. The DDS is a
well understood, industry standard that has been implemented
by a number of vendors and deployed in numerous industrial
and defense applications. A key aspect of ROS 2 is the ROS
middleware (RMW) interface between the ROS 2 software
stack and vendor-specific DDS implementations. This integra-
tion of ROS 2 with DDS has not been extensively studied from
the perspective of network/system performance.

To the best of our knowledge, this is the first paper to
comprehensively study the performance of ROS 2 in terms
of both service delivery and security. The performance results
obtained when different QoS and security settings are enabled
will contribute towards evaluating and configuring ROS 2 in
UxS for different use cases.

The contributions of this paper are:
• Analysis and experimentation of ROS 2 performance

using varying QoS profile combinations for plaintext
data traffic. Performance is measured in terms of 1)
packet loss; 2) latency; 3) throughput; and 4) overhead
generation.

• Analysis and experimentation of ROS 2 performance
using varying QoS profile combinations for encrypted
data traffic. Performance is measured in terms of 1)
packet loss; 2) latency; 3) throughput; and 4) overhead
generation.

This paper does not provide specific recommendations of
how to utilize ROS 2 for specific use cases, but instead
provides a series of performance measurements with different
QoS and security combinations that developers can use to
optimize ROS 2 performance.

The rest of this paper is organized in the following manner.
In Section II, we discuss the relevant background information
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on ROS 2 network performance in terms of QoS and security.
In Section III we describe our experimental setup, including
design, implementation, and execution. In Section IV, we
present our results and analysis from multiple experimental
runs. In Section V, we conclude the paper.

II. RELATED WORK

ROS 2 provides a common robotic software infrastructure
that mitigates the time for code development and interop-
erability issues. One of the key features of ROS 2 with
DDS is the use of the Real-Time-Publish Subscribe (RTPS)
communication standard. RTPS provides configurability and
scalability in a real time data environment. These features
translate to improved latency and throughput as seen in the
eProsima Fast RTPS performance tests [4] (eProsimaTMis a
vendor of DDS middleware). The DDS RTPS protocol can
also be configured with different QoS and security settings.

A. ROS 2 Quality of Service

The recent ROS 2 Crystal Clemmys release (used in this
paper) natively supports three different QoS policies. For
eProsima, these QoS policies are:

• Reliability: Two different sub-policies fall under the
umbrella of reliability. 1) BEST EFFORT: messages are
sent without arrival confirmation from the receiver. This
has the fastest delivery but messages can be lost; 2)
RELIABLE: the publisher expects arrival confirmation
from the receiver. This is a slower method that prevents
data loss [5].

• History: This policy refers to message caching. There are
two sub-policies for sample/data storage. 1) KEEP ALL:
stores all samples/data in memory; 2) KEEP LAST:
stores samples/data up to a maximum queue depth. Queue
depth is a configurable option in DDS [5].

• Durability: This policy defines how a node behaves
regarding samples/data that existed on a topic be-
fore the subscriber joined. Three sub-policies exist. 1)
VOLATILE: past samples/data are ignored and the sub-
scriber receives samples/data after the moment it joins; 2)
TRANSIENT LOCAL: when a new subscriber joins, its
History (queue) is filled with past samples/data that were
stored locally; 3) TRANSIENT: when a new subscriber
joins its History (queue) is filled with past samples/data
which are stored in persistent storage.

In [6], the authors measured end-to-end latencies and
throughput on ROS 1 and ROS 2. Only two QoS profiles
were used for all ROS 2 experiments.The authors showed that
latency differed greatly as data size increased but remained
similar at small data values [6].

B. ROS 2 Security

In [7], the authors conducted a review of using DDS with
ROS 2. The group looked at data sent as plaintext versus full
security enabled data using Rivest-Shamir-Adleman (RSA)
2048 bit and Elliptic Curve Cryptography (ECC) 256 bit.
It was found that, regardless of algorithm or key size, the

overhead of security enabled data had an average increase of
approximately 137% in latency performance and 132% in the
number of packets transmitted.

At the 2018 ROSCon conference, researchers presented
the performance impact due to enabling security in DDS,
specifically by vendor Real Time Innovations (RTI) [8]. The
data size was also increased. The authors showed that latency
increases as more security features (i.e., signing, hashing,
encryption etc.) are added [8].

In [9], we focused on the viablity of ROS 2 to safeguard
communications between multiple unmanned aerial vehicles
and a ground control station (GCS). We specifically looked at
the three security plugins to verify ROS 2’s ability to mitigate
multiple threats. The work in [9] was not investigated from
a network performance perspective. The emphasis of [9] was
on the verification of ROS 2’s security elements on a small
unmanned aerial system.

This paper builds upon the work of [9] by focusing on
the DDS security architecture and service delivery profiles
available to ROS 2. While all of the studies in the literature
have looked at either QoS or security individually, none have
investigated the combination of QoS and security together on
ROS 2 network performance.

III. SYSTEM DESIGN AND SETUP

All experiments were executed using a single topic and
participant setup consisting of one publisher and one sub-
scriber node as illustrated in Fig. 1. The default installed
RMW implementation, eProsima Fast RTPS, was used in our
experiments.

Fig. 1. System setup with RTPS. Source [4]

Experiments in this paper were performed on a SYSTEM76
Wild Dog Pro desktop with a 4.6 GHz i7-8700 processor
running Ubuntu 18.04 LTS (Bionic Beaver) with ROS 2
binaries Crystal Clemmys patch release 2 (February 2019).
Wireshark version 2.6.6 was used to capture and analyze all
one-way network traffic on the loopback internet protocol (IP)
address 127.0.0.1.

A. Quality of Service Settings

Our experiments tested five different QoS profiles for plain-
text and secure data. The parameters of each profile are
defined in Table I. These parameters were applied to both node
participants in order to avoid compatibility issues between the
two participants.

The first two cases both use BEST EFFORT reliability but
with differing history and durability settings. These cases were

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on March 21,2022 at 17:23:55 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
QOS PROFILES SUMMARY FOR THE PUBLISHER/SUBSCRIBER NODES

designed to determine the impact of the history parameter on
performance metrics. For Case (a), depth was set to five and
durability was set to VOLATILE. This means that the amount
of data saved in the history cache is set to five packets and the
VOLATILE setting requires that no old data be sent to a new
subscriber participant that joins in the middle of transmissions.

For Case (b), both participants attempt to maintain a
complete history in the cache (KEEP ALL). The TRAN-
SIENT LOCAL setting was selected as this allows a sub-
scriber to join the topic late and receive previously sent
messages up to the limits set in depth. This parameter setting
takes more resources to implement resulting in possible lower
performance. In summary, Cases (a) and (b) are set to opposite
ends of the performance spectrum (Case (a) results in fast data
transmission while Case (b) results in slow data transmissions)
under BEST EFFORT reliability.

Cases (c), (d), and (e) were setup in a similar manner to
Case (a) and (b) in terms of anticipated performance. For these
three cases, the reliability parameter was set to RELIABLE. In
these cases, heartbeat (HB) messages and acknowledgements
(ACKNACKs) are sent from the publisher and subscriber
throughout the session, and any unacknowledged data samples
will result in retransmissions from the subscriber. The HB
is a submessage sent from the publisher to the subscriber
that checks for connectivity between the two nodes. The
ACKNACK notifies the publisher of which packet sequence
numbers the subscriber has received and which packet se-
quence numbers remain missing [10]. It is still possible to
have lost data samples if the history depth is not large enough
to allow for re-transmissions.

B. Security Settings

eProsima defines the three security plugins as follows:
• Authentication: Provides authentication between discov-

ered participants. Authentication is achieved with a
trusted Certificate Authority (CA) and implements El-
liptic Curve Digital Signature Algorithm (ECDSA) to
perform the mutual authentication. It also establishes a
shared secret key using Elliptic Curve Diffie-Hellman
(ECDH) [4].

• Access Control: Provides validation of entity permissions
and access control using a permissions document signed
by a shared CA [4].

• Cryptographic: Provides encryption applied over the
whole RTPS messages. The default ECC 256 encryption
algorithm in ROS 2 was used for our experiments.

OpenSSL software library and commands were used to gen-
erate the ECC certificates and public and private keys for
both the publisher and subscriber. By default, in this paper,
no access restrictions were set.

IV. RESULTS

One thousand messages of varying sizes were sent in both
plain and encrypted text format between the publisher and
subscriber. Latency was measured using the transmission time
plus the time the middleware takes to process a message,
encrypt and serialize the data for transmission. All latency
and throughput values were compared against Case 1(a) values
(Table I) in a percentage format per Equation (1) and (2). Case
1(a) was chosen as the baseline since it was expected to have
the best performance for all message sizes in plaintext data.

latency∆% =
latencynew − latency1a

latency1a
× 100% (1)

throughput∆% =
throughputnew − throughput1a

throughput1a
×100%

(2)
While modifying the QoS and security settings, overhead

values due to excess protocol data generation, and packet
retransmission can be observed. We define overhead as the
number of data packets that are sent in addition to actual mes-
sage fragments. These excess data packets primarily consist
of metadata that is not appended to RTPS message fragments
(metadata consists of HBs and ACKNACKs).

A. Simulation Parameter Definitions

The following provides definitions for each column of our
tabulated results.

• Total Packets: Packets counted in Wireshark from the first
transmitted RTPS message fragment until the last trans-
mitted message fragment. Includes all metadata (HBs and
ACKNACKs) and discovery protocol messages transmis-
sions after fragment one.

• Message (MSG) Fragment Packets: Packets are fixed size.
Packets are counted in Wireshark that only include RTPS
message fragments.

• Overhead Packets (%): The ratio of overhead packet
messages divided by the total packets.

• MSGs Lost: Number of messages that were not received
by the subscribing node. This could be due to a lost
fragment, a lost message, data collision, etc.

• MSG Fragment Latency (µs): The latency for each trans-
mitted RTPS fragment was calculated by subtracting the
timestamp from the current message fragment from the
previously transmitted message fragment.

• MSG Latency (µs): RTPS message fragments were added
up to determine the total latency for transmitting one
message. This value was then averaged across the other
999 messages transmitted, including some retransmitted
fragments and other messages with incomplete fragments.
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TABLE II
0.25 MB OVERHEAD RESULTS

• MSG Throughput (Gbps): The throughput calculation is
given as Throughput(Gbps) = MSGsize(bits)

latency(µs) . The size
of the message is equal to the total size of the message
fragments, added together.

• ∆%: Each ∆% is a comparison for either the average
MSG fragment latency, average MSG latency, or average
throughput compared against Case 1(a) by using Equa-
tions (1) or (2).

B. Simulation Results

1) 0.25MB File Size: Table II displays the overhead data for
plaintext (Cases 1(a)-1(e)) and secure data (Cases 2(a)-2(e)) as
well as messages lost during transmission. Table III displays
all latencies and throughputs for the ten 0.25MB experimental
runs.

In Table II, for Cases 1(a) and 1(b), little overhead was
generated when compared to Cases 1(c), 1(d), and 1(e). This
was because metadata was not appended to the RTPS message
fragments (as was in Cases 1(c), 1(d), and 1(e)), but was
transmitted separately. For the RELIABLE Cases (c, d, and
e), it was expected that zero messages would be lost as long
as a sufficient history depth is set. For Case 1(d) and 1(e),
we see zero messages lost. Case 1(c) has some messages lost,
as expected, since depth is set to five. For the secure cases
(Cases 2(a)-2(e)), there is an unexpected high number of lost
messages. For this file size, message losses for the secure cases
were much higher than that of the plaintext cases. The tests
for the secure RELIABLE cases were run multiple times to
ensure the results were accurate. The number of lost messages
stayed the same during each experimental trial (greater than
10%). We assumed that given the RELIABLE QoS setting,
messages would be re-transmitted to ensure delivery. However,
these lost messages indicate that the re-transmissions timed out
and could not be delivered.

Table III displays performance metrics related to latency
and throughput. Case 1(a) has no data displayed in the ∆%
columns since this case was considered the baseline for
comparison. Case 1(b) and 2(b) have the worst performance
metrics when compared to the baseline. This is when QoS
settings were set to BEST EFFORT, KEEP ALL, and TRAN-
SIENT LOCAL.

TABLE III
0.25 MB LATENCY AND THROUGHPUT RESULTS

TABLE IV
0.5 MB OVERHEAD RESULTS

2) 0.5MB File Size: In Table IV, the trend of the overhead
results are very similar to the 0.25MB results. Case 1(d) and
1(e) continue to have 100% message delivery (0 messages
lost) but Case 2(d) and Case 2(e) continue to have loses. As
the message size approximately doubled in size, the message
losses for all secured transmitted data have approximately
decreased by the half (see last column of Table II vs Table IV).

Table V expressed very similar trends from Table III, includ-
ing Case 1(b) and 2(b) continuing to display the worst per-
formance metrics compared to Case 1(a). Throughput stayed
nearly constant as history depth increased from five to 1000
in the RELIABLE cases (Cases 1(c) vs 1(d) and Cases 2(c) vs
2(d)). However, latency increases significantly for these cases.

3) 1MB File Size: In Table VI, Case 1(c) continues to have
a large amount of retransmitted metadata (overhead is 43.89%)

TABLE V
0.5 MB LATENCY AND THROUGHPUT RESULTS
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TABLE VI
1MB OVERHEAD RESULTS

TABLE VII
1MB THROUGHPUT AND LATENCY RESULTS

as was seen in previous file sizes. This was expected due
to the RELIABLE setting and history depth set to five. The
subscriber continually informs the publisher of the missing
data, but since history depth is so small, the publisher is unable
to retransmit from the temporary cache. Overall, for the secure
data, the message losses are continuing to decrease as the
message size increases. For Case 2(d) and 2(e), as the message
size doubles, the messages lost decreases significantly when
compared to Tables II and IV. This follows the trend that was
seen for the 0.5MB file size. All other trends appear relatively
the same.

From Table VII, the RELIABLE cases maintain perfor-
mance results for fragment latency and overall throughput with
metrics appearing to start converging towards each other as file
size increases.

4) 2MB File Size: In Table VIII, the overhead metrics
maintain the same trend as seen in previous messages sizes,
but now message losses are increasing by a significant amount
compared to the 1MB file size. For the secure data cases,
this is the first time all messages were delivered for the Case
2(d) and Case 2(e) data runs (0 messages lost). Experiments
for these two cases were run multiple times to ensure these
were accurate results. The tradeoff of achieving 100% message
delivery was the very high increase in message fragment
retransmissions required to achieve this. We manually ad-
justed the file size to determine when 100% reliability could
be achieved for this experimental setup. At an approximate
1.25MB file size, a continuous 100% message delivery is

TABLE VIII
2MB OVERHEAD RESULTS

TABLE IX
2MB THROUGHPUT AND LATENCY RESULTS

achieved for Case 2(d) and 2(e). What this shows is that
secure data is more effective when the message size is larger.
This is an interesting result that requires further study into
the dynamics of the ROS 2 security plugins that is causing
re-transmissions to fail at smaller data sizes. In Table IX,
previously discussed latency and throughput trends remain
with this message size.

5) 4MB File Size: Due to space, we do not show the tabu-
lated results for the 4MB file size. However, the average data
points from this experiment are plotted in figures presented in
the next section. The tabulated results can be found in [11].
The most prominent issue with the 4MB file size was the
errors that occurred for Case 2(d) and Case 2(e). These errors
disappeared when the file size was reduced to 3MB. The
assumption is that these errors are caused by the large file
size and unknown memory allocation issues.

C. Summary of Analysis

To obtain a clearer picture of how the performance metrics
compared to one another, plots were generated to include
all ten cases and all file sizes. Figs. 2-4 were generated
from data tables containing the latency and throughput results
for the five message sizes (0.5MB-4MB). From Fig. 2, it
can be seen that Case 1(b) and Case 2(b) continually had
the worst performance for packet latency for the plaintext
and secure cases, respectively. Since these two cases are for
HISTORY=KEEP ALL, this suggests the packet latency is
most sensitive to the HISTORY QoS setting.
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Fig. 2. Packet Latency vs. File Size plot for all cases

In Fig. 3, as message size increases so does the cost in
terms of latency. As can be seen from Fig. 3, Cases 2(d)
and 2(e) could not be evaluated beyond the 2MB file size
(due to errors), but the trend shows poor performance. Lastly,
throughput decreases as file size increases for all cases, as can
be seen in Fig. 4.

Fig. 3. MSG Latency vs. File Size plot for all cases

For all of the metrics illustrated in Figs. 2-4, security had
a larger influence on performance than QoS configurations.
Implementing security generates a typical increase in packet
and message latency of greater than 140% compared to the
baseline, while changes in the QoS profiles resulted in a
increase typically less than 40%. Similarly, enabling security
resulted in a minimum decrease in throughput of 48% across
all message sizes, while QoS changes resulted in a maxi-
mum throughput decrease of 36% (often much lower). For
system designers this suggests that where and how security
is implemented in the system will have a large influence
on performance, especially compared to the impact of QoS
profiles.

V. CONCLUSION

This paper analyzed ROS 2 performance as it relates to
latency, throughput, and overhead in a two node network. We
have provided detailed insight on what tradeoffs are sacrificed

Fig. 4. Throughput vs. File Size for all cases

as data is secured or different QoS profiles are used. Through
our experimental setup, the capabilities and performance of
ROS 2 were demonstrated through 50 different scenarios. The
versatility of how the DDS security plugins can be applied
is promising for use in actual warfare environments. In the
future, ROS 2 is expected to include many more capabilities
than it currently has. We plan to continue to examine ROS
2 network performance for UxS use cases as a function of
network scale in lossy networks operating over wireless links.
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