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Abstract  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Accurate nonlinear dynamic analysis of reinforced concrete structures is necessary for estimating the behavior of 

concrete structures during an earthquake. A realistic modeling approach to assess their strength and their ability to carry 

the expected seismic forces is of great importance. Although a number of constitutive models and modeling approaches 

have been proposed in order to capture the behavior of reinforced concrete structures under static loading conditions, 

only a few of these numerical models have been extended to dynamic problems.  

The objective of this paper is to integrate a computationally efficient 3D detailed modelling of concrete structures with 

damage factors that take into account the opening and closing of cracks, as well as, damage factors for steel 

reinforcement considering the surrounding concrete damage level, in order to capture the level of damage and stiffness 

degradation of structures undergoing many loading cycles. 

In the adopted numerical model, the concrete domain is discretized with 8-noded isoparametric hexahedral finite 

elements, which treat cracking with the smeared crack approach, while the steel reinforcement is modeled as embedded 

beam elements inside the hexahedral mesh. The validity of the proposed method is demonstrated by comparing the 

numerical response with the corresponding experimental results of various reinforced concrete structural members and 

structures. Based on the numerical investigation, it was found that the proposed integration of the damage factors with 

computationally efficient concrete and steel material models can efficiently predict both static and dynamic nonlinear 

behavior of concrete structures, with the ability to capture the complicated phenomenon of the pinching effect.  
 

Keywords: Nonlinear dynamic analysis; reinforced concrete; finite element method; 3D detailed modeling; damage  
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1. Introduction 

The accurate numerical simulation of reinforced concrete (RC) structures under cyclic loading 

conditions has been a critical issue among many researchers over the last decades. Most constitutive  

material models are based on uniaxial laws with strain softening and tension stiffening  

characteristics. These models require many material parameters in order to capture the complex  

mechanical characteristics of concrete such as: micro-cracking, confinement, ductility,  

opening/closure of cracks and crushing. These studies indicate the necessity of a realistic  

constitutive law with parameters that have a direct physical meaning.  

The complex behavior of RC structures under cyclic loading conditions makes the numerical  

procedure unstable, thus, it is more difficult to reach convergence when excessive cracking, rebar  

yielding and rebar rapture take place during the analysis. Therefore, a realistic 3D approach, which  

is characterized by simplicity and computational efficiency, is necessary in order to ensure accurate  

numerical simulations when trying to predict the carrying capacity of RC structures.  

A detailed literature review on the modeling of the behavior of RC structures under cyclic  

loading conditions can be found in [1-3], where a limited number of numerical approaches can be  
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found implementing three-dimensional finite elements for the purposes of cyclic analysis. Pagnoni  

et al. [4] used 8-noded finite elements in conjunction with a 3D bounding surface which contains  

the possible stress points for a given damage level. Another approach for constitutive modelling  

was the use of various uniaxial relations on different planes called microplanes [5]. Eligehaousen  

et al. [6] used this approach in order to study 3D nonlinear analysis of beam-column RC joints  

emphasizing on bond-slip effects. Other researchers used the “equivalent uniaxial strain” concept,  

proposed by Darwin et al. [7], in order to combine the uniaxial laws with the biaxial or triaxial  

behavior of concrete. In this category, Balan et al. [8] studied the effect of concrete’s post peak  

behavior due to the lateral confinement, Kwon et al. [9] proposed the coupling between deviatoric  

and volumetric stresses, whereas, Girard et al. [10] investigated the cyclic behavior of RC columns  

taking into account the bond-slip effect.   

A number of researchers used the compression field theory to capture the behavior of RC  

members subjected mainly to shear stresses. Palermo and Vecchio [11] investigated the behavior  

of shear walls conducting 2D and 3D analysis under cyclic loading conditions. Belleti et al. [12,  

13] proposed a unified approach based on the total strain fixed crack approach for reinforced 

 

 

 

 

 

 

 

 

 

concrete membrane elements indicating the essence of taking into account the shear resistance 

mechanisms that are developed along cracks. Furthermore, some models based on damage 

mechanics have been proposed for 3D cyclic analysis. Richard et al. [14] studied the 

characteristics of micro-cracking, sliding influence and partial stiffness recovery based on 

isotropic damage mechanics. Additionally, Jason et al. [15] combined an elastoplastic law with 

isotropic damage modelling in order to describe the hardening and softening behavior of concrete 

under cyclic compression. The model introduced many material parameters and illustrated the 

improvements achieved compared to a simple damage model but it was noted that the simulated 

responses were mesh-dependent. Yuchuan et al. [16] proposed an anisotropic damage model by 

using nonlinear unloading branches in order to capture the hysteretic behavior of RC structures.   

A very few of these numerical approaches managed to extend their static cyclic models to be  

implemented for solving dynamic problems. Inoue et al. [17] used the compression field theory for  

the dynamic analysis of RC shear walls implementing in plain stress elements for wall panels and  

8-noded solid elements for slabs supported on wall panels. Cela [18] proposed an elastic- 

viscoplastic law, based on Drucker-Prager model, subjected to dynamic plain-stress loading  

conditions, while Kwan et al. [19] suggested an elasticity-based model in order to analyze post- 

tensioned concrete piers using 8-noded plane stress elements.  

 

 

 

 

 

 

 

Ile and Reynouard [20] combined an elastoplastic isotropic uncracked behavior of concrete 

energy-based fracture with a smeared crack approach for modeling the cracked concrete with the 

two-dimensional plane element. Han et al. [21] also proposed a fracture energy-based rotating 

crack model by using 2D plane elements to analyze a three-storey frame building under a seismic 

excitation. Mirzabozorg and Ghaemian [22] used a three-dimensional smeared crack 

approachwith 20-noded isoparametric hexahedral elements, to study concrete gravity dams. In 

their work, the investigators placed emphasis on the simplicity of the model by using a small 

number of material parameters.   

Other researchers used constitutive models which are based on the principles of continuum  

damage mechanics. Mazars et al. [23] proposed a lattice model to investigate shear walls under  

dynamic loads. Faria et al. [24] used 20-noded solid elements and 8-noded plane stress elements to  

analyze the seismic behavior of an arc dam and a reinforced concrete wall. Richard and Ragueneau  

[25], proposed the coupling between plasticity and damage modelling. Plasticity is used for the  

description of concrete in compression, whereas isotropic damage is used for tension. As stated in  
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their work [25], the pathology of mesh-dependency issues was reduced by adopting a nonlocal  

approach proposed in [26]. Additionally, Vassaux et al. [27] used a discrete model to define and  

calibrate quantities such as i) proportional of closed cracks and ii) specific dissipated energy related  

to friction. These quantities were introduced to the previous model in order to describe the hysteretic  

behavior of concrete structures obtained by crack closure and friction.   

Finally, few researchers conducted 3D dynamic analysis by using 3D constitutive models.  

Spiliopoulos and Lykidis [28], and Cotsovos [29] used the triaxial constitutive model, introduced  

by Kotsovos & Pavlovic [2], integrated in 27-noded hexahedral elements. The latter introduce some  

restrictions with regard to the number of cracks that are allowed to open in each iteration, in an  

attempt to obtain convergence during the analysis. Moharrami and Koutromanos [30] proposed a  

3D constitutive model, which combines the elastoplastic and smeared crack approaches in order to  

describe the cyclic and dynamic behavior of concrete. It is noteworthy to say here that, none of  

these researchers investigated the computational efficiency of their proposed models, which is  

deemed crucial when dealing with full-scale dynamic nonlinear analyses of RC structures.  

 

 

 

 

 

 

 

 

 

Most of the studies found in the literature are restricted to 2D analysis in order to capture the 

biaxial behavior of concrete structures, thus do not provide the numerical tools to study the 

realistic 3D mechanical behavior of RC structures. In some cases, material models use many 

numerical restrictions to accomplish stability of their analysis, while other models use complex 

mathematical procedures in order to describe the nonlinear characteristics of concrete. These 

customized models are consisted by many material parameters and thus are found to be unable to 

demonstrate objectivity and numerical robustness for different types of mechanical behaviors and 

structural geometries. Furthermore, it is evident that a numerical tool, which places emphasis on 

the simplicity of its formulation and provides numerical robustness and efficiency for the 

nonlinear cyclic static and dynamic analysis, has to be developed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed model in this work, describes the triaxial behavior of concrete without the need 

of introducing a large number of concrete material parameters. The aim of the proposed model is 

to describe a 3D constitutive material behavior of RC structures with realistic assumptions, which 

can be easily implemented for any given structural RC member or structure.  In this case, only the 

uniaxial compressive and tensile strengths, the Young Modulus of elasticity and the Poisson’s 

ratio are the material parameters that are required to be defined for the analysis of concrete. The 

accuracy, numerical simplicity and the computational efficiency are the most important features 

in order to show the practical use of any model in predicting the nonlinear static and dynamic 

behavior of RC structures. The proposed model adopts the numerical approach, proposed in [3] 

(for cyclic loading conditions), thus it is further integrated herein for simulating the dynamic 

response of RC structures. A new concrete damage factor is presented, which derives from the 

number of opening/closure cracks, while a second damage factor for steel is also introduced in 

this work. The numerical RC modelling approach manages to describe the effect of crack closing 

and crack opening efficiently even for structures which are subjected to a large number of loading 

cycles. It must be noted here that, the simulation of concrete behavior is based on the proposed 

model by Markou and Papadrakakis [1] which was an extension of the model presented by 

Kotsovos and Pavlovic [2]. Additionally, the analytical description of modelling the embedded 

steel bars within the concrete hexahedral elements can be found in [1, 31]. A thorough numerical 

investigation has been conducted in order to study the computational efficiency and accuracy of 

the proposed procedure and presented in sections 3 and 4. The use of rod and beam embedded 

rebar elements for the simulation of the steel reinforcement was also examined and presented in 

section 4, where a mesh sensitivity investigation discusses the objectivity of the proposed 

modeling method.  
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2. Concrete and steel material constitutive models  

A realistic 3D behavior of concrete can be achieved by taking into account in the constitutive  

material model the out of plane stresses, associated with the triaxial stress-strain phenomena that  

affect the overall mechanical behavior of the material. In the adopted material model, each state of  

stress-strain is mathematically described by hydrostatic and deviatoric components, using two  

moduli of elasticity (bulk K and shear G) and an equivalent external stress (σid) in order to describe  

the constitutive relations as presented in [2]. The normal and shear octahedral stresses (σ0, τ0) and  

strains (ε0, γ0) are used. The bulk modulus K and the shear modulus G describe the non-linear σ0- 

ε0(h) and τ0-γ0(d) behavior combined with the use of σid (id refers to the hydrostatic component of the  

internal stress resulting from an external deviatoric stress) in order to take into account the coupling  

effect of τ0-ε0(d) (h and d refer to the hydrostatic and deviatoric components, respectively). The  

constitutive relations take the following form:   

0 0( ) 0( ) 0( ) / (3 )h d id sK         (1) 

0 0( ) 0 / (2 )d sG     (2) 

where Ks and Gs are the secant forms of bulk and shear moduli, respectively. The secant forms of  

bulk and shear moduli as well as σid are expressed as functions of the current state of stress, which  

is derived by regression analysis of the experimental data as presented in [2].  

It is assumed that at the first stages of loading, when the deviatoric stress is less than the 50% of  

the ultimate strength, the concrete material will practically behave in the elastic region thus the  

elastic constitutive model of the uncracked material is used [1]. The constitutive material matrix of  

the uncracked concrete is given by:  
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where μ = Κt – 2 Gt / 3. When the deviatoric stress exceeds 50% of the ultimate strength, the  

parameters Kt=Kt(σ0,τ0,fc) and Gt=Gt(σ0,τ0,fc), where fc represents the uniaxial compressive strength  

are updated according to the current state of stress  in order to account for the concrete material  

deterioration due to microcracking. .  

The concrete’s ultimate strength is expressed with the value of the ultimate deviatoric stress by  

using the expressions of Willam and Warkne [32].   
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            


    
 (4)  

In Eq.4, the rotational variable θ defines the deviatoric stress orientation on the octahedral plane.  

The τ0e (θ=0°) and τ0c (θ=60°) correspond to the ultimate limit states of σ1=σ2>σ3 (triaxial  

extension) and σ1>σ2=σ3 (triaxial compression), respectively, that are taken from experimental data.  

The numerical model is based on the brittle nature of concrete, therefore, when the criterion of  

failure is satisfied the material point loses its capacity abruptly. The model is combined with the  

smeared crack approach that treats cracking by redistributing the released stresses to the  

surrounding uncracked concrete.   
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The constitutive matrix of a cracked concrete element is modified by setting to zero the stiffness  

that corresponds to the direction of the maximum principle tensile stress. Similarly, the constitutive  

matrix is updated in the case of two cracks, by assuming a remaining stiffness along the intersection  

of the two planes of cracks only [1]. The stresses are calculated through the use of the following  

expression:   

 Cr 1 2 30 0 0 0


     -1Τ (5) 

where T-1 is the inverse transformation matrix that is used to transform the principal stress axes to  

the initial x, y and z axes.  

Furthermore, the use of a modified crack-closure criterion is used herein, which is crucial for  

the stability of the nonlinear analysis procedure when dealing with cyclic loading conditions. The  

criterion, introduced in [5], uses the strains associated with the initial formation of the cracks in  

order to determine whether a closing crack will be eventually closed during the numerical  

procedure. The criterion of closing crack takes the following form:  

i cra    (6) 

where εi is the current strain in the i-direction which is normal to the crack plane and εcr is the strain  

that caused the crack formation. Parameter a is a reduction factor, which takes the following form:  

max

max max

1 cr cra


  
  

 
(7) 

 

 

 

 

 

 

 

 

 

 

The maximum strain εmax is determined through the nonlinear Newton-Raphson procedure, 

whereas, in every internal Newton-Raphson iteration, the strains are calculated along the norm of 

the crack planes. Therefore, during an internal iteration, when a crack is formed at a Gauss point, 

it is assumed that εmax = εcr. Then, for every Newton-Raphson i iteration the strains εi normal to 

the crack planes are checked if they are larger than the previously calculated εmax. If this is the 

case, then εmax is set equal to εi. More details regarding the closing crack criterion can be found in 

[3], where it is assumed that the elastic constitutive matrix is used to calculate the stresses of the 

previously cracked Gauss point. In this work, an improvement is proposed concerning the 

formulation of the constitutive matrix of the previously cracked Gauss point, by introducing a 

damage factor. For the case of the steel material model, a damage factor is also adopted in 

conjunction with the Menegotto-Pinto material model, which will be discussed in section 2.2.   

2.1 Damage factor Dc for concrete  

During strong earthquake motions, RC structures develop excessive nonlinear behavior that is  

caused mainly by the intense cracking of concrete, where the steel reinforcement can also yield or  

rapture. The number of cracks that open is an indication of the magnitude of damage that has  

occurred at each RC member. Generally, the material deterioration caused by the opening and  

closing of cracks can determine the hysteretic behavior of the structure.   

Many researchers tried to simulate the hysteretic behavior of RC structures by using damping  

mechanisms. The damping behavior of RC structures is still an open subject of research. Most of  

the studies assume a constant viscous damping with high values of damping ratios throughout the  

nonlinear analysis, by using the Rayleigh or a proportional damping model. In this case, the  

hysteretic curves, which are obtained from the numerical analysis, are characterized as constant  

ellipses, where the mechanical behavior of the structure is attributed to the viscosity mechanisms  

that are activated during the nonlinear dynamic response.   
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However, the experimentally derived hysteretic loops are usually characterized by more abrupt  

changes in terms of stiffness while the corresponding P-δ curves present significant pinching  

effects. A numerical simulation of damping effect based on the hysteretic behavior of the structure  

could result in a more rigorous formulation in capturing the dynamic response and the complicated  

physical phenomena that occur due to the opening and closing of cracks. In this article, the concrete  

material deterioration is integrated with a new damage factor that is directly connected to the  

phenomenon of opening and closing of cracks in order to better describe the hysteretic behavior of  

RC structures and capture the pitching effect.   

 

 

 

 

 

 

 

 

 

 

 

 

 

The material deterioration factor has to take into account the level of cracking (damage), the 

number of times that a crack has been closed and generally, to be associated with the dissipated 

energy that occurs due to the nonlinear structural behavior. The parameter a in Eq. 7, which is 

used in the crack closing criterion [5], is an expression of the strains that were developed at a 

cracked Gauss point after the crack opening. It is therefore a quantity that expresses the level of 

energy that is consumed at a cracked Gauss point. When the parameter a increases, the consumed 

energy increases and the damage of the structural member becomes more pronounced due to the 

material deterioration. Moreover, the expression -(1-a) is proportional to the damage that occurs 

at a cracked Gauss point (this expression is suitable when used within an exponential function 

that outputs values lower than 1, considering that 0 ≤ a ≤ 1). When a crack opens and closes, 

material damage is accumulated because of the developed irreversible strains at that specific area. 

It is obvious that the more times the cracks are closing and opening at a certain area, this area 

loses the ability to retrieve the uncracked stiffness. Based on this mechanism, the expression of 

the damage factor that is proposed in this work takes the following form:  

where fcc is the number of times that a crack has closed, which is updated at every Newton-Raphson  

iteration for each Gauss point. A schematic representation of Eq. 8 can be seen in the Fig. 1.  

 Fig. 1. Schematic representation of the values of the damage factor Dc as a function of the parameter a and fCC  

When the criterion of crack-closure (Eq. 6) at a Gauss point is satisfied, (assuming that this  

Gauss point had prior to that only one crack formation), a part of the stiffness is lost (according to  

Fig. 1) along the previous crack plane which was assumed to form in an orthogonal direction to the  

maximum principle tensile stress. Therefore, the stiffness degradation is directly connected to the  

number of times a crack has opened and closed, thus accumulating the energy loss due to this  
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phenomenon. By assuming that the crack is formed perpendicular to the x’ axis and by using Eq. 3,  

the constitutive matrix takes the following form:   

where β is a shear retention factor and, an and as are constants with recommended values of 0.25  

and 0.125, respectively. The parameters an and as were defined following a parametric investigation  

conducted through the use of a number of RC structural members subjected to cyclic loading  

conditions, which will be presented in section 2.3. Similarly, in the case when two cracks are closing  

and assuming that the cracks were perpendicular to the x’ and y’ axes the constitutive matrix takes  

the following form:  

The proposed expressions of the constitutive matrix (Eqs. 9 and 10) describes the anisotropic  

behavior of concrete at the local coordinate system, therefore, it has to be transformed to the global  

system by using the standard coordinate system transformation laws as follows:  

 T

g lC T C T (11) 

where T is the transformation matrix given in Eq. 12 with the direction cosines given by (li, mi, ni),  

which define the relative orientation of the i-axis of the system (x΄, y΄, z΄) to (x, y, z), respectively.  
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(12) 

It must be noted here that, the constitutive matrix correspond to the cases when a crack is closed  

at a Gauss point, which had previously one, two or three cracks. After the crack closure, the stresses  

are corrected by using the following expression:  

1  i i i

gC   (13) 

Finally, when all cracks at a Gauss point have been closed (uncracked Gauss point) and the  

reduction factor of one of the previous cracks is larger than 0.5, then the constitutive matrix takes  

the following form:  

(1 )  g c gC ΄ D C (14) 

It was found via a numerical investigation that when the reduction factor of one of the previous  

cracks is larger than 0.5, then the accumulated damage is severe and Eq. 14 has to be implemented  
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in order to take this phenomenon into account when the Gauss point is considered uncracked. The  

proposed algorithms for treating cracked and uncracked Gauss points are described in the flow  

charts presented in Figs. 2, 3 and 4. The flow charts present the algorithm that is used in order to  

update the stresses of the previous (i-1) Newton-Raphson internal iteration to the current one (i).  

 

 
Fig. 2. Flow chart of the proposed algorithm of the concrete material model.  
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Fig. 3. Flow chart of the proposed algorithm for updating the stress-strain tensors and constitutive matrix for the case of an uncracked Gauss point.  
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Fig. 4. Flow chart of the proposed algorithm for updating the stress-strain tensors and constitutive matrix for the case of a cracked Gauss point.  

2.2 Damage factor Ds for steel reinforcement  

The steel reinforcement is modelled through the use of the Menegotto-Pinto [33] model that  

takes into account the Bauchinger effect. In shear dominated areas of a RC structure, the severe  

inclined cracking leads to significant strength deterioration of steel reinforcement thus affecting  

hysteretic loops of the entire RC member. Experimental results show that RC structures with  

significant shear deformations develop severe pinching characteristics around zero load. In these  

shear dominated areas, the steel reinforcement also develops shear deformations and debonding  

effects from concrete. The re-opening and re-closing of cracks at low level of shear forces enhance  

the slipping phenomena and leads to significant stiffness and strength deterioration of the structure.  

The influence of opening and closing cracks to the pinching phenomenon is described  

experimentally in [34, 35]. The influence of the pinching effect may be modelled by a modification  

of the steel stress-strain relation as described in [36]. Thus, the pinching phenomenon can indirectly  
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be taken into account using a reduced stiffness contribution of the steel reinforcement by defining  

the accumulated damage due to the crack opening/closure effect. This reduction can also be  

characterized as the loss of bonding between steel reinforcement with the surrounding damaged  

concrete.  

The level of damage that occurs due to the opening of cracks can be expressed with Eqs. 7-10.  

The average value of all parameters a (Eq. 7), at the 8 Gauss points within a single hexahedral finite  

element, can determine the level of damage within the volume of the hexahedral element which can  

be expressed by the following expression:  

 1s ElementD a  (15) 

where,  

1

ncr

i

Element

a

a
ncr




and ncr is the number of cracked Gauss points 
(16) 

In the case of unloading, when the structure reaches zero deformation, a material deterioration  

of the steel reinforcement is estimated according to the following expression: 
' (1 )s s sE D E  (17) 

Fig. 5.  Menegotto-Pinto steel model that accounts for the accumulated damage due to the opening and closure of cracks.  

The material deterioration is applied when σs ∙ εs < 0, which describes the situations when crack  

closures and re-openings occur and the pinching phenomena are excessive. The σ-ε curves of the  

Menegotto-Pinto material model that uses the proposed steel damage factor is shown in Fig. 5.  

According to [13, 37], the pinching phenomenon, which leads to the reduction of the energy  

dissipation capacity, is eliminated by the proper orientation of steel grid that is aligned to the  

direction of the applied principal stresses. Therefore, it is difficult to always explain the causes of  

the appearance of these pinching characteristics. The proposed modification of the steel Menegotto- 

Pinto model is a direct way to capture this phenomenon by taking into account the level of cracking  

that occurred in the surrounding area of the steel rebar, which in our case is the hexahedral element  

that hosts the embedded rebar. The proposed damage factors Dc and Ds are investigated in section  

3, while the parametric investigation for defining the values of the parameters an and as is presented  

in the following section. 
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2.3 Parametric investigation for defining constants an and as  

The Del Toro Rivera [38] interior frame joint of Fig. 6a, which was analyzed in [3], is used to  

investigate and define the optimum values of the constant parameters an and as. The numerical  

results obtained for this model in [3] are defined herein as the results obtained by the “initial model”  

that does not use the proposed damage factors. The structural member was subjected to different  

cyclic loading conditions according to the experimental test. The geometry and reinforcement  

details are illustrated in Fig. 6a. The concrete domain was discretized with 8-noded hexahedral  

finite elements and the steel reinforcement was discretized with beam elements (Fig. 6b). In order  

to avoid inducing parasitic stiffness within the numerical model when the cracking will occur, the  

values of the parameters an and as have to be lower than 1 to account for the stiffness reduction due  

to the material deterioration. Numerous combinations of the values of an and as have been tested,  

where the results of the five combinations that were found to better capture the experimental data  

are shown in Table 1.  

Table 1. Combinations of the values an and as that were investigated.  

Combination an as 

1 0.25 0.125 

2 0.5 0.5 

3 0.5 0.125 

4 1 1 

5 0.125 0.125 

(a) (b) 

Fig. 6. Interior frame joint. (a) Geometry and reinforcement details of the beam-column joint [38] and (b) 3D view of the FE mesh of concrete  
elements and steel reinforcement. [3]  

The computed curves are given in Fig. 7, where it can be seen that the numerically obtained  

results match very well the experimental data. It was also found that the values of an and as have  

influenced the dissipated energy that derived from the hysteretic curves. Tables 2, 3 and 4 show the  

values of the dissipated energy (as the area of every hysteretic curve) that were obtained by using  

different set of parameter values (an, as). It can be seen that the numerical curves with the smallest  

divergence were obtained when using the set of values of an = 0.25 and as = 0.125.    

Furthermore, the load carrying capacity of the specimen was accurately predicted by all the  

numerical curves (divergences ≤ 15%). Table 5 shows the comparison of the initial model and the  

proposed model with the experimental data in terms of maximum horizontal load for each loading  

cycle.  
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 Fig. 7. Interior frame joint. Comparison between numerical and experimental results with different values of an and as for the cases of a) first cycle  
b) second cycle, c) third cycle and d) forth cycle. 

Table 2. Comparison of the dissipated energy between experimental results and the proposed numerical model.  

Interior 

Frame 

Joint 

Dissipated 

Energy 

Experimental 

(kN mm) 

Dissipated 

Energy Initial 

Model 

(kN mm) 

Divergence from 

experimental 

(%) 

Dissipated Energy 

Proposed Model 

an=0.25,as=0.125 

(kN mm) 

Divergence 

from 

experimental 

(%) 

1st Cycle 2596.34 1165.14 55.12 1933.84 25.52 

2nd Cycle 1264.12 669.37 47.05 1560.56 23.45 

3rd Cycle 1212.48 942.65 22.25 1570.65 29.54 

4th Cycle 3287.87 1953.10 40.60 4335.26 31.86 

Average 41.26 Average 27.59 

Table 3. Comparison of the dissipated energy between experimental results and the numerical model with an = 0.5 and as = 0.5, 0.125.  
Interior 

Frame Joint 

Dissipated 

Energy 

Experimental 

(kN mm) 

Dissipated Energy 

Proposed Model 

an=0.5, as=0.5  

(kN mm) 

Divergence from 

experimental (%) 

Dissipated Energy 

Proposed Model 

an=0.5, as=0.125  

(kN mm) 

Divergence from 

experimental (%) 

1st Cycle 2596.34 2150.51 17.17 2187.91 15.73 

2nd Cycle 1264.12 1843.40 45.82 1598.99 26.49 

a) b) 

c) d) 
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3rd Cycle 1212.48 1727.10 42.44 1727.10 42.44 

4th Cycle 3287.87 4450.10 35.35 4365.63 32.78 

Average 35.20 Average 29.36 

Table 4. Comparison of the dissipated energy between experimental results and the numerical model with an = 0.125, 1 and as = 0.125, 1.  
Interior 

Frame Joint 

Dissipated 

Energy 

Experimental 

(kN mm) 

Dissipated Energy 

Predicted Proposed 

an=1, as=1  

(kN mm) 

Divergence 

from 

experimental 

(%) 

Dissipated Energy 

Predicted Proposed 

an=0.125, as=0.125 

(kN mm) 

Divergence 

from 

experimental 

(%) 

1st Cycle 2596.34 2168.55 16.48 1928.35 25.73 

2nd Cycle 1264.12 1771.44 40.13 1793.78 41.90 

3rd Cycle 1212.48 1820.81 50.17 1721.63 41.99 

4th Cycle 3287.87 4197.97 27.68 4039.17 22.85 

Average 33.62 Average 33.12 

Table 5. Comparison of the horizontal load of each cycle between experimental and numerical results of the initial and the proposed model.  

Interior 

Frame 

Joint 

Horizontal 

Load Experimental 

(kN) 

Horizontal 

load Predicted 

Initial 

(kN) 

Divergence 

from Experimental 

Horizontal 

load Predicted 

Proposed 

(kN) 

Divergence 

from Experimental 

Positive Negative Positive Negative 
Positive 

(%) 

Negative 

(%) 
Positive Negative 

Positive 

(%) 

Negative 

(%) 

1st Cycle 158 -142 177 -165 12.03 16.20 162 -159 2.58 11.83 

2nd Cycle 146 -126 125 -146 14.38 15.87 156 -148 6.66 17.63 

3rd Cycle 130 -124 118 -139 9.23 12.10 142 -144 9.49 15.82 

4th Cycle 164 -154 144 -178 12.20 15.58 175 -155 6.59 0.65 

Avg. 11.96 14.94 Avg. 6.33 11.48 

3. Numerical Validation of the Proposed Model for Static Cyclic Analysis 

In this section, the numerical validation of the proposed model will be presented for the case of 

static cyclic analysis under ultimate loading conditions. It must be noted at this point that all the  

numerical tests presented in this research work have been performed by using a computer with a  

processing power of 2.50 GHz.  

3.1 RC Beam-Column Joint  

The beam-column joint shown in Fig. 8, was tested by Shiohara and Kusuhara [39] under static  

cyclic loading. The uniaxial compressive concrete strength was reported to be equal to fc = 28.3  

MPa and the yielding stress of the steel reinforcement was 456 MPa for the 13 mm diameter bars  

in the beam section, while the yielding stress of the bars, placed within the column section, was 357  

MPa. The Young modulus of elasticity for the longitudinal bar reinforcement was reported to be  

equal to ES = 176 GPa. For the stirrup reinforcement, 6 mm in diameter rebars were used with a  

yielding stress of 326 MPa and a Young modulus of elasticity equal to 151 GPa.  

The frame joint was subjected to different cyclic loading sets according to the according  

experiment. The loading history that was numerically applied in this work, is presented in the form  

of 15 cycles of imposed displacements in Fig. 9. The concrete domain was discretized with 8-noded  

hexahedral finite elements and the steel reinforcement was discretized with beam elements. A total  

number of 128 concrete (23cm x 15cm x 15cm) and 888 steel elements were used to discretize the  

entire frame joint, as illustrated in Fig. 9.  
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Fig. 8. Geometry and reinforcement details of the beam-column joint [39]. All dimensions are in mm.  

 

 
Fig. 9. Imposed displacement history of the interior frame joint.  

(a) (b) 

Fig. 10. RC beam-column frame joint. (a) FE concrete mesh with imposed displacements, (b) steel reinforcement elements and applied loads.  

The boundary conditions of the numerical model can be seen in Fig. 10, where the displacements  

were imposed at the top section of the column, while a 216 kN compressive force was also applied  

at the same section. Additionally, 8-noded hexahedral finite elements were used at the support and  

at the top sections of the column (red color, where the displacements are imposed) in order to  

simulate the metallic plates, which were placed in order to avoid local failure.  

Beam section 

Column section
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Fig. 11. Beam-Column frame joint. Comparison between numerical and experimental results. Complete force-displacement history.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computed force-displacement curves are compared with the corresponding experimental 

data in Fig. 11. As can be seen, the numerical results match very well with the experimental data, 

where the stiffness and the resulted load-carrying capacity of the specimen were predicted in an 

accurate manner. Furthermore, the numerical energy dissipation values are very close to the 

experimental ones. Fig. 11 also shows the force-displacement curve when the proposed 

modification for the Menegotto-Pinto model is not applied (the DS damage factor is set to 0). 

Furthermore, the numerical results show that the proposed modification manages to capture the 

pinching effect in the case where both proposed damage factors were activated. During the 

analysis, the steel rebars did not develop severe yielding but a bond degradation has occurred due 

to the opening of diagonal cracks inside the joint, according to the experimental results reported in 

[39]. This observation indicates the importance of accounting the damage within the concrete 

domain and numerically transferring it to the steel rebars through the proposed damage factor DS. 

Additionally, Tables 6 and 7 show the comparison of the numerical and experimental results in 

terms of dissipating energy and load carrying capacity for cycles 5, 7, 9, 10, 13 and 15, which 

correspond to the last cycle of each imposed displacement (see Fig. 9) . The experimental data 

show that in the first three cycles the structural member is in the elastic region and show 

negligible dissipating energy, which comply with the numerical findings. Table 6, shows that the 

numerical curves capture the corresponding experimental ones in terms of dissipating energy by 

an average value of 20%. Furthermore, Table 7 shows that the load carrying capacity of the 

structural member was accurately predicted deriving an average error value lower than 10%. 

Finally, according to [39], the first rebar yielding within the beam was observed when the shear of 

the structure was 63.3 kN. The first yielding of beam rebars during the numerical model analysis 

occurred when the shear of the structure was 65.91 kN (which represents a 4% deviation from the 

experimentally observed magnitude).   

Table 6. Comparison of the dissipated energy between the experimental and numerical data.  

RC Joint 

Dissipated Energy 

Experimental  

(kN mm) 

Dissipated Energy 

Predicted  

(kN mm) 

Divergence from 

Experimental  

(%) 

5th Cycle 195.23 105.46 45.98 

7th Cycle 460.85 564.24 22.43 

9th Cycle 2662.45 2540.25 4.59 
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10th Cycle 1791.00 2310.61 29.01 

13st Cycle 4719.40 4275.83 9.40 

15th Cycle 6174.95 5372.14 13.00 

Average 20.74 

Table 7. Comparison of the horizontal load of each cycle between experimental and numerical results of the proposed model.  

RC Joint 

Horizontal load 

Experimental 

(kN) 

Horizontal load Predicted 

Proposed 

(kN) 

Divergence from Experimental 

Positive Negative Positive Negative Positive (%) Negative (%) 

5th Cycle 43.75 -37.5 50.45 -47.22 15.31 -25.93 

7th Cycle 69.38 -62.5 68.78 -65.91 0.86 -5.45 

9th Cycle 78.75 -73.75 81.62 -82.49 3.64 -11.85 

10th Cycle 73.75 -70.454545 72.85 -73.17 1.23 -3.85 

13st Cycle 76.14 -75 74.05 -69.84 2.74 -6.89 

15th Cycle 75.00 -75 72.15 -69.19 3.80 -7.75 

Average 4.60 -10.29 

Overall, the proposed modeling approach managed to capture the cyclic mechanical behavior  

for all imposed displacement cycles with an acceptable accuracy.  

Fig. 12. RC beam-column frame joint. Comparison of experimentally and numerically obtained crack patterns.  

The crack patterns near the failure mode is depicted in Fig. 12, where it can be observed that the  

cracks within the joint indicate a characteristic shear diagonal cracking pattern. The numerical  

model appears to be more heavily cracked than the experimental one, which is attributed to the  

assumption of the smeared crack approach. Nonetheless, the crack pattern shows that the crack  

formation is numerically captured in a realistic manner in-terms of location and direction.  

The required Newton-Raphson internal iterations per displacement increment are shown in Fig.  

13, where an energy convergence tolerance criterion with the acceptable numerical error of 10-4 is  

adopted. It can be seen that, all displacement increments in Fig. 13 required a reasonable number  

of internal iterations to reach convergence regardless the intense nonlinear behavior of the structure.  

Thus, 77% of the displacement increments require less than 5 internal iterations to converge, while  

95% of the displacement increments require less than 10 internal iterations. The computational time  

for the nonlinear solution procedure, as given in Table 8, is 173 seconds to perform 610  

displacement increments, which illustrates the overall stability of the proposed nonlinear solution  

procedure that allows for a complete analysis in less than 3 minutes.   
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Fig. 13. RC beam-column frame joint. Required Newton-Raphson iteration per displacement increment.  

 
Table 8. RC beam-column frame joint. CPU time for different tasks of the numerical solution.  

Task 
CPU Time 

(s) 

Embedded rebar element mesh generation 0.1 

Nonlinear incremental-iterative solution 173 

Total Time 173.1 

3.2 RC Column  

The second structural member, which was numerically investigated with the proposed model, is  

a RC column that was subjected to ultimate limit state cyclic loading conditions. This column was  

experimentally investigated by Saatcioglou and Ozcebe [40]. The uniaxial compressive concrete  

strength was reported to be equal to fc = 32 MPa and the yielding stress of the steel reinforcement  

was 438 MPa for the 25 mm rebars used to reinforce the beam section, while the yielding stress for  

the 10 mm rebars found in the column section was 470 MPa. The geometry, reinforcement details  

and the mesh of the finite element model are illustrated in Fig. 14.  

(a) (b) 

Fig. 14. RC Column. (a) Geometry and reinforcement details [40] (b) Hexahedral and embedded rebar meshes.  

900 mm 

500 mm 

1250 mm 

Loading Beam 
Loading directions 



19 

 
Fig. 15. Imposed displacement history at the top of the column.  

 

 

 

 

 

 

 

 

The RC column was subjected to different cyclic loading conditions according to the 

experimental test. A compressive force of 600 kN was applied at the top section, where the 

loading history imposed, is presented in Fig. 15 in the form of imposed displacements (17 cycles). 

The concrete domain was discretized with 8-noded hexahedral finite elements and the steel 

reinforcement was discretized with the beam finite element. A total number of 24 concrete 

hexahedral (17.5cm x 17.5cm x 15cm) and 120 steel elements were used so as to discretize the 

RC column, as illustrated in Fig. 14b. In addition to that, 8-noded hexahedral finite elements (blue 

color) were used at the support and at the top of the column so as to simulate the boundary 

conditions of the specimen and to avoid any local failure.  

The computed force-displacement curves are compared with the corresponding experimental  

data in Fig. 16. As it can be seen, the numerical results match very well with the experimental ones.  

The hysteretic curves were predicted with a satisfying accuracy, in terms of loading capacity,  

stiffness and energy dissipation.   

 
Fig. 16. RC Column. Comparison between numerical and experimental results.  

Tables 9 and 10 show the comparison of the numerical and experimental results in terms of  

dissipating energy and load carrying capacity, respectively. The displacement level of the first three  

cycles was the yield displacement of the column section as a whole and was recorded during the  

test, where the rate of strain variation was very high at relatively constant loads. Experimentally the  

structure presents a hysteretic behavior with a dissipated energy close to 700 kN·mm, which  
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represents a mere 7.8% of the dissipated energy reported for the 4th loading cycle as shown in Table  

9. In this case, the numerical model behaved elastically during the first three cycles, which 

represents a stiffer behavior. Table 9, shows that the numerical curves capture the corresponding  

experimental ones in terms of dissipating energy of the 4-17 cycles by an average value of 27%. It  

is also interesting to note here that, the deviation of the predicted energy dissipation drops to a 19%  

when accounting the last 9 loading cycles, where the damage level of the specimen is the highest.  

Furthermore, Table 10 shows that the load carrying capacity of the structural member was  

accurately predicted by an average value of 11%.   

Table 9. Comparison of the dissipated energy between experimental results and the numerical model.   

RC Column 

Dissipated Energy 

Experimental  

(kN mm) 

Dissipated Energy 

Predicted  

(kN mm) 

Divergence from 

experimental  

(%) 

4th Cycle 8921.82 3521.09 60.53 

5th Cycle 6680.65 3521.09 47.29 

6th Cycle 5893.46 3587.74 39.12 

7th Cycle 21679.26 13221.18 39.01 

8th Cycle 19298.80 14151.39 26.67 

9th Cycle 18600.37 13836.27 25.61 

10th Cycle 4508.34 3861.10 14.36 

11th Cycle 34293.16 24124.29 29.65 

12th Cycle 31069.46 25390.41 18.28 

13th Cycle 27697.69 24537.60 11.41 

14th Cycle 12729.03 12980.82 1.98 

15th Cycle 44082.07 33610.14 23.76 

16th Cycle 40108.10 32898.84 17.97 

17th Cycle 37092.32 28281.42 23.75 

Average 27.10 

Table 10. Comparison of the horizontal load of each cycle between experimental and numerical results of the proposed model.  

RC Column 

Horizontal Load Experimental 

(kN) 

Horizontal Load Predicted 

Proposed  

(kN) 

Divergence from Experimental 

Positive Negative Positive Negative Positive (%) Negative (%) 

4th Cycle 311.90 -303.30 252.35 -245.88 19.09 -18.93 

5th Cycle 294.60 -290.80 243.11 -228.47 17.48 -21.44 

6th Cycle 283.00 -276.50 239.42 -224.31 15.40 -18.87 

7th Cycle 321.00 -305.50 352.17 -312.87 9.71 -2.41 

8th Cycle 304.60 -289.90 305.64 -265.86 0.34 -8.29 

9th Cycle 298.40 -278.60 269.18 -241.86 9.79 -13.19 

10th Cycle 205.50 -178.30 176.02 -161.20 14.34 -9.59 

11th Cycle 325.90 -287.20 259.60 -252.98 20.34 -11.91 

12th Cycle 291.60 -263.70 260.05 -240.97 10.82 -8.62 

13th Cycle 271.40 -250.20 243.41 -225.34 10.31 -9.94 

14th Cycle 204.30 -185.50 230.03 -181.40 12.59 -2.21 

15th Cycle 281.50 -249.00 258.33 -235.07 8.23 -5.60 

16th Cycle 253.50 -230.90 275.88 -227.43 8.83 -1.50 
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17th Cycle 226.50 -217.80 206.60 -237.85 8.79 -9.20 

Average 11.86 -10.12 

During the last cycles, the numerical model exhibits failure of the longitudinal reinforcement,  

which also indicates the discrepancies of the last cycles in terms of dissipative energy. Nevertheless,  

the numerically predicted stiffness degradation is in a good agreement with the experimentally  

obtained curve.   

The required Newton-Raphson internal iterations per displacement increment that resulted from  

the analysis of the RC column model are shown in Fig. 17. Once more, all displacement increments  

required a relatively low number of internal iterations to reach convergence despite the intense  

nonlinear behavior of the structure due to excessive shear cracking and rebar yielding. The iterative  

method in this case also used an energy convergence tolerance of 10-4. As it can be observed in Fig.  

17, 71% of the displacement increments required less than 15 internal iterations. The computational  

time for the nonlinear solution procedure of 780 displacement increments was 95 seconds (see  

Table 11). This numerical performance further confirms the computational efficiency of the  

developed algorithm.  

 
Fig. 17. RC Column. Required Newton-Raphson internal iteration per displacement increment.  

Table 11. CPU time for different tasks of the nonlinear analysis for RC Column.  

Task 
CPU Time 

(s) 

Embedded rebar element mesh generation 0.02 

Nonlinear incremental-iterative solution 94.3 

Total Time 94.32 

4. Numerical Validation of the Proposed Model for Dynamic Analysis 

4.1 Two-Storey RC frames  

A numerical verification of the accuracy and computational efficiency of the proposed numerical  

method under dynamic loading will be performed on two two-storey RC frames (L30 and H30) that  

have been tested experimentally in [41]. The convergence tolerance was once more set to 10-4 for  

the Newton-Raphson iterations, while the nonlinear implicit Newmark integration method was used  

for the dynamic solution of the equations of motion. The steel rebars were simulated as embedded  

beam elements within the hexahedral concrete elements as presented in [31].   
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These two-storey frames were experimentally investigated by performing dynamic tests in an  

attempt to verify the validity of the European code provisions for the design of earthquake-resistant  

structures (Carydis [41]). The geometric and reinforcement details are shown in Fig. 18. The  

cylindrical specimen’s uniaxial compressive strength of concrete (fc) was 50 MPa and the yielding  

stress (fy) of the steel reinforcement was 500 MPa. Additional masses of 2.87 and 2.62 tons were  

applied at the lower and upper levels, respectively.   

Frame L30 was designed to exhibit moderately low ductility by using a behavioral factor of q =  

2.5, whereas the frame H30 was designed to exhibit a higher ductility factor of q = 5. The frames  

were subjected to horizontal motions applied at their base, as denoted by the green vectors in Fig.  

19. The base motions were sine-like acceleration records along the plane of the frames as illustrated 

 

 

 

 

 

 

 

 

in Figs. 20a and 20b. The accelerograms exhibit a maximum magnitude of approximately one and 

two times the magnitude of the design ground acceleration of the frames, which was 0.30g. 

Furthermore, the response spectrum diagram of each earthquake simulation of L30 and H30 

specimens is illustrated in Figs. 20c and 20d, respectively. In order to show the severity of the 

ground motion (maximum ground acceleration was 0.75g), the spectra used for the design of the 

specimens (Eurocode 8 [42], soil type B) are also plotted in Figs. 20c and 20d. The maximum 

spectral accelerations for L30 are 2.164g and 4.374g for test1 and test2, respectively. For 

specimen H30, the corresponding maximum spectral accelerations are 2.153g, 4.373g and 4.514g 

for test1, test2 and test3, respectively.  

 

 

 

 

 

 

 

 

 

For the modeling requirements, the concrete and rebars were modeled as described in section 

3, whereas the full finite element mesh can be seen in Fig. 19. It is worth noting that the beam 

elements used to discretize the rebars have the exact location and direction of the actual 

reinforcement reported in [41]. The concrete mesh consists of 224 hexahedral finite elements 

(10cm x 15cm x 15.5cm) and 1,891 steel embedded beam rebar elements that were used to model 

the reinforcement of the L30 specimen. For the second specimen (H30), a total of 2,384 

embedded rebar beam elements were used and the same number of hexahedral elements was used 

to discretize the concrete domain. For the discretization of the RC slabs, 128 8-noded hexahedral 

elements were used (red elements in Fig. 19), where the mass density of the elements was set 

accordingly in order to account for the additional mass placed on the structure.   

(a) (b)
Fig. 18. Geometric and reinforcement details of specimens of the RC-frames. (a) L30 and (b) H30.  
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(a) (b) 

Fig. 19. 3D view of the FE mesh of 8-noded hexahedral and embedded rebar elements (a) L30 and (b) H30.  

(a) (b) 

(c) (d) 

Fig. 20. Base acceleration that were subjected during the experiments [35] and the numerical analyses of specimens (a) L30 and (b) H30. Spectrum  
acceleration diagrams of (c) L30 and (d) H30 loading histories.  

The fundamental in-plane period of the L30 model was found to be T1 = 0.2 s (undamaged  

frame), following a modal analysis performed prior to the dynamic analysis. For the dynamic  

analysis the time step was set to ΔΤ = 0,007746 s (which was the time step used for the experimental  

data). In order to further verify the performance of the numerical simulation, the natural frequencies  

for the first two modes were computed and found to be equal to f1 = 2.93 Hz and f2 = 9.7 Hz. These  

values were very close to the experimental ones reported in [41] f1exp = 3.05 Hz and f2exp = 9.8 Hz.  

Furthermore, a constant damping ratio of 2% was applied in order to take into account other  

dissipating mechanisms during the nonlinear dynamic analysis.  

The numerically obtained curves, for the case of specimen L30, were compared with the  

experimental data as shown in Figs. 21-23. It is easy to observe that the numerical model managed  

to capture adequately the dynamic response of the structure in terms of story displacement time  

histories (see Figs. 21-23), demonstrating the ability of the proposed modeling method in capturing  
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the dynamic behavior of this low ductility frame well after the 8th second, where it had developed  

significant damages (see Figs. 21-23 dynamic response after the 8th second). Fig. 23 shows good  

agreement between the numerically computed and experimentally measured base shear of the  

frame.  

Fig. 21. L30 frame. Comparison between the numerical and experimental results of the 1st story displacement response.  

Fig. 22. L30 frame. Comparison between the numerical and experimental results of the 2nd storydisplacement response.  

Fig. 23. L30 frame. Comparison between the numerical and experimental results of the base shear-time history during test 1.  
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Fig. 24. L30 frame. Comparison between the numerical and experimental results of the base shear-time history for three different concrete damage  
factor formulations.  

In an attempt to further investigate the proposed damage factors presented in this work, the L30  

RC frame has been also analyzed with the “initial model” without activating the proposed damage  

factors. Another formulation of the proposed concrete damage factor was also explored in this  

numerical experiment by assuming a linear correlation between the damage factor DCL and the  

parameters a, fCC, εcr, εmax (Eq. 18). This model is referred to as “linear reduction”.  

 

 

 

 

 

 

 

 

 

 

 

In Fig. 24, the numerical results for this test case are presented for the case of the three 

different models that were used during this parametric investigation. It can be seen that, the model 

with the linear reduction damage factor exhibited higher damages, thus lower base shear, in 

comparison to the corresponding model with the proposed concrete damage factor of Eq. 8. 

Hence, the “linear reduction” model derived a lower load-carrying capacity with a decreased 

hysteretic behavior. However, the numerical model without the damage factors exhibited a stiffer 

behavior during the first three dynamic cycles in comparison to the corresponding experimental 

results [41]. As a result, this model presented an excessive cracking at the beginning of the test, 

leading to premature damages that affected the overall dynamic behavior of the structure. This is 

attributed to the numerical inability of the model to absorb the developed energy that is generated 

during the initial dynamic cycles of the test. As a consequence, this led to discrepancies in terms 

of stiffness and displacements of the numerically predicted structural dynamic response.  

The second test case was performed on H30 RC frame of Fig. 18b, which was designed in order  

to exhibit a more ductile behavior by adding more stirrups to the frame in comparison to the L30  

specimen. The experimental and numerical tests revealed that, the frame developed excessive  

cracking, which occurred at the first dynamic cycles of the excitation (first 3 s of the experiment,  

see Fig. 25). This led to significant strength degradations mainly during the third round of dynamic  

loading (t > 17 s) as well as due to the yielding and fracture of the longitudinal reinforcement at the  

base of the frame, which was a behavior also observed during the experiment [41]. The numerically  

computed displacements of the first and the second floor slabs of the RC frame are compared with  

the experimental data in Figs. 25 and 26, respectively.   
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Fig. 25. H30 frame. Comparison between the numerical and experimental results of the 1st story displacement response.  

 
Fig. 26. H30 frame. Comparison between the numerical and experimental results of the 2nd story displacement response.  

 

 

 

 

 

 

 

 

 

 

The numerical findings indicate that the proposed model managed to model the complete 

dynamic displacement history satisfactorily. It can be observed that during the first two sinusoidal 

acceleration events the response of the RC frame was predicted fairly accurately, while during the 

third sinusoidal acceleration event the experimental test exhibited a relatively stiffer behavior. 

Based on the experimental findings reported in [41], the frame developed severe damages at the 

base, thus the specimen practically failed due to excessive cracking and rebar failures. This was 

also the reason of the remaining deformation that can be noted during the last 5 seconds of the 

experiment (see Figs. 25 and 26). It is evident that the dynamic behavior of the H30 RC frame 

was governed, at that point, by extreme nonlinearities that forced the development of large 

horizontal deformations. Nevertheless, the numerical model manages to describe the overall 

behavior in a satisfactory manner, without any numerical instabilities.  

It should be mentioned that, the computed fundamental in-plane period of the H30 model was  

found to be equal to T1 = 0.22 s, while the same time step was used (ΔΤ = 0,007746 s) for the  

nonlinear dynamic analysis. The natural frequencies computed for the first and second modes were  

found to be equal to f1 = 3.11Hz and f2 = 14.31 Hz, respectively. These values were found to be  

close to the experimental ones reported in [41]: f1exp = 3.28 Hz and f2exp = 10.72 Hz. 
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(a) (b)

Fig. 27. Required Newton-Raphson internal iterations per dynamic step increment (a) L30 and (b) H30.  

 

 

 

 

 

 

 

 

 

 

The required internal iterations, for both L30 and H30 numerical models, are shown in the 

Figs. 27a and 27b. Throughout the numerical experiments, all the dynamic step increments 

required a reasonable number of iterations to achieve convergence regardless the degree of 

nonlinear behavior of the structures. From the computed numerical results, it was found that the 

required internal iterations per dynamic step during the solution procedure were limited to an 

average of 2 to 3, underlining the numerical stability of the proposed modeling method. For the 

L30 model, 87% of the dynamic steps require less than 2 internal Newton-Raphson iterations, 

while for the case of H30 a 78% of the dynamic steps required less than 5 internal iterations to 

achieve convergence. This increase is mainly attributed to the fact that during the 3rd sinusoidal 

acceleration event the analysis was governed by excessive nonlinearities due to significant 

cracking, rebar yielding and failure that was observed during the numerical analysis.   

 

 

 

 

The computational times for the two nonlinear solution procedures are given in Table 12, which 

refer to the solution of 2,041 and 3,826 dynamic time increment steps for the test cases of L30 and 

H30, respectively. The total required time for solving the nonlinear dynamic problems was 319.5 s 

for L30 and 565.8 s for the case of H30. 

Table 12. CPU time for different tasks of the nonlinear analysis for L30 and H30.  

Task 

L30 H30 

CPU Time 

(s) 

CPU Time 

(s) 

Embedded rebar element mesh generation 0.51 0.94 

Nonlinear incremental-iterative solution 318.97 564.82 

Total Time 319.48 565.76 
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(a) 

(b)

Fig. 28. H30 frame. Comparison between (a) numerical and (b) experimental obtained crack patterns.  

Finally, Fig. 28 shows the crack patterns that were formed at the end of test 3 of the H30 frame.  

Based on the experimental observations [41], the cracks were mainly formed at the joints and the  

columns of the specimen. The cracks were larger and denser at the base of the frame, with  

significant inclination at the base of the first level. In this area, the experimentally observed  

damages were associated with intense concrete spalling. Similarly, intense inclination of the cracks  

appeared at the beam-column joints of the first level of the frame (ground floor). It can be seen that,  

there is a good agreement on the distribution, the location and the direction of the cracks, which are  

predicted by the numerical model compared to the corresponding crack patterns of the experimental  

test. However, the numerically predicted crack patterns appear to be denser than the experiment  

ones, which is again attributed to the adopted smeared crack approach.  

4.1.1 Parametric investigation of using rod embedded elements  

In this section, a comparison between the use of beam and rod elements for the simulation of  

steel reinforcement will be presented. The numerical model H30 is used to investigate the case  

where the rebars are modeled as embedded rods and compared to the numerical results obtained  

when beam elements are used for the rebar modeling. The same number of finite elements was used  
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in constructing the new model, whereas the material properties for both steel and concrete materials  

were also kept the same.  

The comparison between the numerical results and the experiment, for the displacements of the  

second floor, is shown in Fig. 29. It can be observed that the model with the rod elements developed  

larger deformations due to the damage that was concentrated at the base of the structure during the  

2nd sinusoidal acceleration event (t = 17 s). Therefore, the numerically predicted response during  

the 3rd sinusoidal acceleration event significantly deviate from the experimental results. As an  

overall conclusion in the case of this highly nonlinear dynamic problem, the use of beam elements  

provides additional numerical stability and accuracy to the dynamic simulation of concrete  

structures.  

Fig. 29. H30 frame. Comparison between the numerical models that use rod and beam elements for modeling the rebars. Second story  
displacement history.  

Table 13. CPU time for the nonlinear dynamic analysis of the H30 frame by using beam and rod elements for modeling the steel reinforcement.  

Task 

H30_Steel Reinforcement: 

Beam element 

H30_Steel Reinforcement: 

Rod element 

CPU Time (s) CPU Time (s) 

Embedded rebar element mesh 

generation 0.94 0.71 

Nonlinear incremental-iterative 

solution 564.82 534.36 

Total Time 565.76 535.07 

Table 13 shows the corresponding computational time required by the two models to solve the  

complete dynamic problem. As it can be seen, the model with rod elements is only 5% faster than  

the corresponding model with the beams. This illustrates the numerical efficiency of the developed  

algorithm, where the additional computational cost with the beam finite element is practically  

negligible.  

4.1.2 Investigation of a modified crack closure criterion  

The crack closure algorithm applied in [3] performs the computation of the strains at a cracked  

Gauss point, where the corresponding strain is computed along the norm of the crack’s plane  

without closing the other cracks existed at the same Gauss point. A modified criterion is examined  

in this section, where all cracks are assumed to close when the crack-closure condition is satisfied  
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at any direction of a Gauss point. In this way, more stiffness is induced in the numerical model  

when any crack is closing at a given double cracked Gauss point.  

 Fig. 30. H30 frame. Comparison between the numerical and experimental results of the second story displacement history of the proposed model 

and the modified model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 shows the results from the dynamic analysis performed with the H30 frame, where the 

second level displacement history is depicted. The graph compares the curves that occurred from 

the use of the new crack-closure assumption described above and the model with the closing 

criterion described in [3]. The use of the modified criterion, exhibits a similar dynamic behavior 

with that obtained when using the standard crack-closure criterion, for the case of the first two 

sinusoidal acceleration events. The main changes are noted at the transition stage between the 2nd 

and 3rd events (see Fig. 30), where the stiffer numerical model (modified model) exhibits a 

deviation from the experimental data due to the additional stiffness added to the system. At this 

point, it is evident that the stiffer model (modified model) delivers significantly larger 

deformations in comparison to the model that uses the standard crack-closure criterion. During 

the dynamic analysis, it was also found that areas with lower crack numbers managed to close 

faster when unloading occurred, thus attracting more stiffness in comparison to other areas that 

did not manage to have their cracks closed. This numerical phenomenon had as a consequence the 

redistribution of the internal stresses between the cracked and uncracked regions of the structure 

which forced the frame to develop larger damages at the base of the frame during the 3rd and final 

cycle. Nevertheless, both models managed to capture the experimental results in a satisfactory 

manner, demonstrating the algorithm’s ability to simulate complicated and challenging nonlinear 

dynamic problems. 

 

4.1.3 Mesh-sensitivity Analysis  

In order to examine the mesh sensitivity of the proposed modeling approach, four additional  

meshes were developed to model the L30 RC frame as shown in Fig. 31.  The four meshes that  

were additionally developed for the needs of this parametric investigation (a, b, c and d in Fig. 31),  

consisted of 294, 318, 512 and 576 hexahedral elements, respectively. The numerical results were  

compared with the experimental data and the numerical results that derived from the model  

presented in Fig. 18, which consisted of 392 hexahedral elements.   
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(a) (b) 

(c) (d) 
Fig. 31. 3D view of the FE mesh of the L30 RC frame which consists (a) 294, (b) 318, (c) 512, (d) 576 hexahedral elements.  

 

 

 

 

 

 

 

 

 

After the dynamic analyses were performed, the obtained displacement curves were 

compared as it is illustrated in Fig. 32, where the numerically derived horizontal 

deformations of the second storey were plotted for the case of each developed mesh. It is 

easy to observe that the variations between the displacement responses that resulted 

numerically by the four different meshes are minimal, whereas all models managed to solve 

the complete nonlinear dynamic problem without any numerical instabilities. Furthermore, it 

is also easy to observe that, they all managed to capture the experimental data with a 

satisfactory accuracy. It is well known that, when a finer finite element mesh is used the 

overall nonlinear numerical behavior of a model is accordingly affected, a numerical 

phenomenon that can be also seen in Fig. 32, thus explains the small variations in terms of 

displacements between the different numerical models.  

 



32 

Fig. 32. Comparison between numerical and experimental results of the second story’s displacement response for the  
different mesh discretizations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is evident that the first two models, which consist of 294 and 318 hexahedral elements, 

present slightly larger horizontal displacements given that their meshes foresee the discretization 

of the column section by using a single hexahedral element. Due to the coarser meshes adopted in 

these models (see Fig. 31a and 31b), the obtained numerical results exhibit a slightly larger 

stiffness due to the larger elements that are used to discretize the RC frame’s columns, hence their 

dynamic response at the beginning of the dynamic excitation leads to the development of damages 

at an earlier stage in comparison to the models that adopt a finer mesh (crack openings). This 

phenomenon leads to a more brittle behavior, which eventually causes a relatively higher 

accumulated damage and consequently larger deformations during the dynamic excitation. 

However, it is safe to conclude that the numerical models derived negligible discrepancies, 

capturing the experimental results with an acceptable accuracy. It is also noteworthy to state at 

this point that the use of smaller finite element sizes in an attempt to further refine the RC frame’s 

mesh would eventually add significant computational demand without any numerical merit. As it 

can be seen in Table 14, the computational demand to solve the complete nonlinear dynamic 

problem when the mesh with the largest number of finite elements is used, it requires 

approximately four time more computational time (13 min) than the model with the coarser mesh 

(3.3 min). This highlights the importance of developing a method that will be able to use a coarser 

mesh when dealing with a full-scale structure, without significantly decreasing its numerical 

accuracy. As it was previously stated, all numerical models were analyzed by using a standard 

computer system with a CPU power of 2,50 GHz.  

So as to further investigate the numerical response that derives when the mesh size adopted for  

discretizing the RC frame changes, the first two natural frequencies were also computed herein and  

compared with the experimental data. Table 15, shows the natural frequencies that resulted from  

the five numerical models that were used in this mesh sensitivity study, where it can be seen that  

the maximum variation was 17.57% and 46.73% for mode 1 and 2, respectively. Both variation  

values derived from the coarser mesh, as it can be seen in the relevant table. This numerical  

phenomenon is attributed to the fact that the two models with the coarser meshes derive a stiffer  

numerical response at the beginning of the excitation and therefore they result higher natural  

frequency values. However, the overall average computed error values for the first two modes were  
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equal to 0.5% and 15.3%, respectively, a numerical finding that shows the ability of the proposed  

numerical method to reproduce the experimental data in a satisfactory manner.  

Table 14. Computational demand resulted through the sensitivity analysis of the L30 frame.  

Model 

Number of 

Hexahedral 

Elements 

CPU Time 

Embedded rebar mesh 

generation (s) 

Nonlinear Solution 

Procedure (s) 

Total Time 

(s) 

Mesh 1 294 0.37 198.1 198.47 

Mesh 2 318 0.46 212.36 212.82 

Mesh 3 392 0.51 318.97 319.48 

Mesh 4 512 0.87 608.02 608.89 

Mesh 5 576 0.99 774.33 775.32 

Table 15. Natural frequencies resulted through the sensitivity analysis of the L30 frame.  

Model 
f1 

(Hz) 

f2 

(Hz) 

𝑓1 − 𝑓1,𝑒𝑥𝑝

𝑓1,𝑒𝑥𝑝
(%) 

𝑓2 − 𝑓2,𝑒𝑥𝑝

𝑓2,𝑒𝑥𝑝
(%) 

Experimental 3.05 9.8 - - 

Mesh 1 3.59 14.38 17.57 46.73 

Mesh 2 3.30 14.11 8.33 44.00 

Mesh 3 2.93 9.70 -3.93 -1.02 

Mesh 4 2.80 9.31 -8.26 -5.04 

Mesh 5 2.71 9.02 -11.24 -7.95 

Average 0.5 15.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The numerical pathology of developing mesh-dependent constitutive models arises from the use 

of softening characteristics in the constitutive laws. Models usually use the smeared crack approach 

for simulating cracking thus avoid mesh discontinuities and remeshing procedures. This way, the 

models simulate the geometrical discontinuity through the assumption of displacement continuity. 

This procedure introduces excessive strains along the cracked areas. The constitutive models, which 

describe the post-peak behavior with descending branches, present some stiffness in these cracked 

areas that is not realistic (take for instance a tensile crack; along that direction the stiffness is zero 

but the descent branch assumes the contrary). A general numerical deficiency of the smeared crack 

approach, based on the Rots and Blaauwendraad work [43], is the possibility of developing stress-

locking when smeared softening laws are applied, a numerical problem that is alleviated herein due 

to the brittle concrete behavior assumption. In continuation to that, Bazant and Oh [44] reported that 

excessive stress and strain concentrations in cracked areas lead to mesh-dependent procedures, thus 

the load needed to reach the strength limit strongly depends on the choice of element size and 

incorrectly converges to zero. Once again, this numerical phenomenon is not affecting the proposed 

method due to the fact that it does not foresee the use of a softening branch.  

Most researchers proposed crack band models introducing the fracture energy [44], which is  

considered to be a material parameter. Additionally, nonlocal techniques have been investigated  

[26] which are usually combined to damage models. Finally, second-order gradient-based methods  

have also been proposed. Rots et al. [45] replaced the softening diagram of the constitutive laws to  

a saw-tooth diagram of positive slopes. A series of limiter analyses (“event-by-event strategy)  

replace the incremental Newton-method and led to robust results, as it was reported by the authors  

[45]. On the other hand, the proposed material model of this work, describes the concrete behavior  

as a brittle material with an abrupt loss of its caring capacity when the failure criterion is satisfied  

during the nonlinear dynamic analysis. Therefore, the numerical model manages to discharge the  
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cracked areas from the prementioned excessive stress concentrations by releasing them to the  

surrounding uncracked areas, thus, the numerical instabilities are in this case prevented, hence the  

proposed method leads to a mesh-independent numerical procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the above, it was also observed that during the nonlinear dynamic analysis of the 

L30 RC frame, in some cases where finer meshes were used so as to numerically study the 

dynamic response of the specimen, the sections of the columns that are found at the base of the 

frame developed significant cracking due to the large bending moments that were developed 

during the numerical experiment. The steel-reinforcement elements take in this case the role of 

the post-cracking behavior of concrete within the hexahedral elements that have embedded rebars, 

while the hexahedral elements that do not contain any embedded rebars are called to resist to the 

external forces without the tensile resistance capacity of the steel rebars. This phenomenon is 

presented when finer meshes are used which may lead to local failures and divergence of the 

iteration solution procedure from an early stage of the analysis. This is a numerical phenomenon 

that is common when 3D detailed modeling is used to solve problems that are expected to exhibit 

extreme nonlinearities [46], where the effect of cracks are modeled either through the use of the 

smeared crack approach or through damage models. Additionally, a more extensive mesh 

sensitivity investigation was performed and presented in [46], where deep RC beams without 

stirrups were modeled under monotonic loading conditions.  

 

 

 

 

 

 

According to the numerical investigation performed and presented in this section, it was found 

that the use of 10-20 cm hexahedral elements ensure a reliable element size that can be used for 

establishing numerical efficiency, robustness and accuracy. In addition to that, the overall 

numerical findings discussed in this section show that by developing a numerical method that 

exhibits numerical accuracy and robustness when coarser meshes are implemented, it further 

highlights that the nonlinear dynamic simulation of full-scale RC structures with 3D detailed 

models is now feasible.  

4.2 RC frame  

 

 

 

 

A final test case shown in Fig. 33, was selected to further study the efficiency of the proposed 

algorithm. The RC space frame denoted as frame W050, was investigated by Minowa et al. [47]. 

The RC frame consists of four columns, which were fixed on a shake table at their lower-end and 

monolithically connected to a steel rigid slab at the top. The columns had a height of 850 mm and a 

square cross section of 130x130 mm. The geometric details of the RC specimen are given in Fig.  

33. The uniaxial compressive strength (fc) of concrete is 26 MPa and the yielding stresses (fy) of the 

steel reinforcement are 380 and 392 MPa for the 16 and 6 mm in diameter rebars, respectively. The  

spacing of the stirrups for each of the four columns is 50 mm, where the total mass placed on the  

roof is 27.8 tons. The RC frame was subjected to one-dimensional excitations along its longitudinal  

axis of symmetry. The imposed acceleration record at its base is illustrated in Fig. 34, where after  

the 15th second, the structure undergoes accelerations that increase through time, forcing the frame  

to develop a significant nonlinear behavior [47]. Thus, the numerical results that will be presented  

herein will therefore concentrate on the dynamic behavior of the structure after the 15th second of  

the dynamic excitation.  

The concrete domain was modeled by 8-noded hexahedral finite elements and the steel  

reinforcement were modeled with beam elements. The transverse and longitudinal embedded rebar  

elements had the exact location and direction of the actual reinforcement. The top and the bottom  

of each RC column are modelled with 96 rigid 8-noded hexahedral elements in order to avoid local  
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failure that maybe developed at these regions. Overall, 48 concrete finite elements (6.75cm x 13cm  

x 15cm) and 368 embedded rebar elements were used to model the four RC columns.  

 
Fig. 33. W050 RC frame. Geometric details [47] and FE mesh with solid and beam finite elements.  

 
Fig. 34. W050 RC frame. Base acceleration of the shake table.  

 

 

 

 

 

For the steel slab and the additional mass applied at the top of the specimen, 126 hexahedral 

elements were used to construct the mesh. After performing a modal analysis, it was found that 

the fundamental period computed by the numerical model was equal to T1 = 0.17 s, a numerical 

result obtained by using the undamaged properties of the concrete and steel materials. Therefore, 

the dynamic time integration step was set to ΔΤ = 0.005 s for the needs of the nonlinear dynamic 

analysis. The numerical curves are compared with the experimental data in Figs. 35 and 36.  

The obtained results indicate that the numerically predicted displacements are in a good  

agreement with the experimental data (Fig. 34), while during the final stages of the numerical  

experiment (t > 24 s) the model exhibited high damages at the base of the frame, resulting into  

larger deformations in comparison to the experiment test [47]. This can be attributed to the highly  

nonlinear response after the development of significant cracking and spalling at the base of the  

structures. By comparing the numerical and experimental base-shear in Fig. 36, it can be seen that  

the numerical model is able to capture the overall behavior of the specimen with a satisfactory  

accuracy, while the deviation of the curves is more pronounced after the 26th second of the analysis.  

It is important to state at this point that the experiment [47] reported significant damages at the  

columns leading to an actual collapse of the structure. This indicates that the experimental  

measurements beyond the 24th second of the dynamic excitation could be hindered by a lack of  

accuracy given the significant nonlinearities that led to the instability of the frame and subsequently  

to the development of very large deformations. It is widely accepted that measuring accurately the  

dynamic behavior of any structure which exhibits nonlinear behavior is a challenge on its own, thus  

many things can affect the final measurements during an experiment. It is therefore impossible for  
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any numerical simulation to be able to capture the experimental results with an absolute accuracy  

due to numerous reasons, such as lack of additional information regarding the specimen,  

experimental errors during measurements, external factors that affect the execution of the  

experiment, as well as the inability of the numerical model to capture additional physical  

phenomena that take place when rebars start to fail. On the other hand, when dealing with the  

objectivity and ability of the numerical model to produce the same results when modeling the same  

specimen, it is evident that the risks involved are significantly lower in comparison to those  

involved in a physical experiment.  

Fig. 35. W050 RC frame. Comparison between numerical and experimental results of the displacement response.  

Fig. 36. W050 RC frame. Comparison between numerical and experimental results of the base shear response.  

a)
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Fig. 37. W050 RC frame. a) Comparison between numerical and experimental base shear curve for the case of modified model and the proposed  
model. b) Comparison between numerical and experimental base shear curve for the case of modified model during the 15th and 24th seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an attempt to further study the proposed algorithm, the RC frame model was also tested with 

the modified crack-closure procedure that was described in section 4.1.2. Fig. 37 shows the results 

of the numerically predicted displacement history. The comparison shows that the modified model 

derived displacements that were more accurate than the model with the initial crack closure criterion 

during the dynamic excitation between the 15th and 24th seconds of the numerical test (Fig. 37b). 

This numerical finding occurred due to the excessive cracking that occurs during this period using 

the initial crack closure criterion. However, after the 24th second the proposed model managed to 

capture more realistically the behavior since the vertical displacements were increased significantly 

and in a similar manner to that of the experiment [47]. On the other hand, the stiffer behavior when 

the modified model is used, leads to smaller horizontal deformations at the final stage of the 

dynamic excitation, thus not being able to capture the failure that occurred at the completion of the 

dynamic excitation. The computational time for solving the complete dynamic problem was 

measured and presented in Table 16. It can be seen that, the total required time for performing 5,459 

dynamic increments, (with a total of 6,636 internal iterations) was 726 seconds, illustrating the 

computational efficiently of the proposed algorithm. In addition to that, the required internal 

Newton-Raphson iterations during the solution procedure are given in Fig. 38, where it can be 

observed that most of the increments required a mere 1 to 2 internal iterations to achieve 

convergence, demonstrating the numerical stability of the proposed method when dealing with 

ultimate limit state dynamic loading conditions. 
Table 16. CPU time for different tasks of the nonlinear analysis for the W050 RC Frame. 

Task CPU Time (s) 

Embedded rebar element mesh generation 0.07 

Nonlinear incremental-iterative solution 725.3 

Total Time 725.37 

b)
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Fig. 38. W050 RC frame. Required Newton-Raphson internal iterations per dynamic step increment.  

5. Conclusions 

 

 

 

 

 

 

 

 

In this research work, the integration of a 3D detailed solid finite-element model with damage 

factors related to both concrete and steel reinforcement was proposed for the nonlinear static 

cyclic and dynamic analysis of RC structures. The concrete material constitutive model combines 

a realistic assumption of the behavior of concrete, which numerically perfectly fits with the 

smeared crack approach. The numerical model with crack opening and closing introduced in [3], 

has been integrated with a proposed concrete damage factor that was formulated by using the 

characteristics of cracking during the nonlinear cyclic analysis as well as by a damage factor for 

the steel material model that is also directly connected to the number of opening and closing of 

concrete cracks, leading to an accurate and numerical efficient algorithmic implementation.  

 

 

 

 

 

 

An extensive numerical investigation was performed in order to validate the ability of the 

proposed modeling framework to capture the cyclic static and dynamic response of RC structures. 

To achieve this objective, three different experimental setups were modeled and analyzed under 

ultimate limit state of nonlinear static cyclic loading conditions, while three RC specimens where 

studied under dynamic loading excitations. All selected experimental setups have been subjected 

to cyclic loads that forced the structural elements to develop extreme nonlinearities and multiple 

crack openings and closings.  

In the case of structures tested for static cyclic loading, the proposed model was found to be able  

to capture the level of damage caused by the crack opening and closing, as reported in the various  

experiments and to predict the overall behavior of the specimens with computational efficiency.  

Based on the numerical findings, the overall contribution of the proposed damage factors for  

concrete and steel were found to be crucial for being able to add numerical stability to the overall  

numerical solution process, as well as for capturing phenomena such as the pinching effect. The  

numerical study revealed that the steel damage factor was crucial in the case of static cyclic loading.  

Regarding the dynamic tests performed under ultimate limit state conditions, the proposed  

damage factors were found to play a crucial role during the dynamic analysis of the structures  

contributing to the ability of the proposed modeling approach to predict the experimental data.  

Based on the numerical investigation conducted on the RC frame H30, it was concluded that the  

use of beam elements, is a more realistic simulation approach for the steel reinforcement, which  

improves the numerical results compared to the experimental data. When the rod embedded rebars  

are used, the H30 frame model was found to develop larger horizontal deformations during the 3rd  
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sinusoidal acceleration event compared to the experimental response. Furthermore, a mesh  

sensitivity analysis was performed and discussed in section 4.1.3 for the case of the L30 frame  

model. The analysis concluded that the proposed modeling approach manages to capture the  

experimental results without any significant mesh sensitivity effects. Based on this numerical  

investigation, it was also concluded that the developed algorithm managed to solve all nonlinear  

dynamic problems without any numerical instabilities and at the same time exhibited high  

computational efficiency, which is a crucial characteristic when dealing with the solution of large- 

scale structures.  

 

 

 

 

 

 

 

 

 

 

 

A numerical investigation was also performed with a modified crack-closure algorithm, where 

all cracks were assumed to close when any of the two cracks was found to be closing at a Gauss 

point. This modified approach had a negligible effect on the numerical response during the first 

two sinusoidal acceleration events (H30 RC frames). However, in the 3rd dynamic test the effects 

of the crack-closure assumption were greater, but still managed to capture the overall dynamic 

behavior of the under study frame, without any numerical discrepancies. This sensitivity analysis 

demonstrates that the proposed algorithm is not affected by modifications related to the crack 

opening and closing mechanism. The same crack-closure assumption was studied in section 4.2 

for the W050 RC frame, where the numerical findings indicated that the modified approach was 

suitable when the structure is heavily cracked but it delivered a stiffer behavior at the end of the 

experiment. When the structure was subjected to high dynamic excitations and began to fail, the 

modified approach overestimated the structure’s stiffness.   

 

 

 

 

 

In conclusion, the numerical results presented in this work, demonstrated the ability of the 

proposed algorithm to capture experimental results with severe nonlinearities, while the numerical 

model implemented for the simulation of the nonlinear 3D behavior of RC structures was 

characterized by a reduced computational effort that makes the proposed numerical simulation 

appealing for the analysis of large-scale structures undergoing excessive cyclic static and dynamic 

loading [48].  
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