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a b s t r a c t

Wind farm development projects require a detailed survey of the eligible land. The land selected is often
segmented into different region, each owned by different landowners with different land pricing. These
regions are often complex shaped with irregular boundaries. Therefore, an efficient method for
numerically modeling such irregular domains is needed. This work uses support vector data description
(SVDD) to generate an analytical, continuous description of the irregular regions. Whereas other methods
typically work well for modeling convex domains, the SVDD approach can be used to model irregular
regions as a spherical boundary using various kernel mapping. It was demonstrated that the SVDD
approach can be used to model any number of complex regions. An error analysis showed that the SVDD
approach can construct accurate descriptions using a relatively small data set. The applicability of SVDD
method in wind farm layout optimization is also demonstrated. The wind farm optimization study
considered that the terrain is divided into several regions each owned by a different owner offering the
land at a different price. Two different methods for considering the cost of the land are presented. The
differences in optimal farm layouts using the two land cost models were also presented. In each case, the
optimized wind farm layouts resulted in lower cost-of-energy relative to the reference wind farm. It was
shown that the SVDD approach can also be used to restrict the placement of wind turbines in infeasible/
restricted regions. The library for support vector data description was also made available to the public.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

With depleting fossil fuel reserves, there has been a tremendous
push towards energy independence. In recent years, a strong push
towards clean, renewable energy has resulted in significant advances in
solar, wind and nuclear energy systems. There are over 57,000 wind
turbines and over 200 wind farms in the United States alone. The
United States has shifted its focus on wind energy with a goal of
generating 20% of the country’s energy fromwind power alone by 2030
[1] and 35% by 2050 [2].

Much work has been done on wind farm layout design and
optimization. It is a challenging area due to the computationally
expensive model, large number of design variables and constraints,
and extreme multimodality of the function space. Often in literature,
the wind farm layout optimization problem is focused more on
maximizing the power generation and less on accounting for the cost
of the wind farm. The overall cost of the wind farm can be attributed
.com/sohailrreddy/libSVDD.
to cost of the wind turbine and its components, cost of labour,
transportation and land, to name a few. The cost of wind power is
generally higher than other conventional sources of renewable en-
ergy. Efforts have been made to design farms for minimum levelized
cost of energy [3,4] but did not take into account the cost of land
used.

Several works have attempted to include land costs into the
optimization framework. One approach simply assumes that
the cost of the land associated with the wind farm is directly
proportional to the area of the farm [5]. Under this assumption,
the wind farm layout design is solved as a multi-objective
optimization problem where the objectives are to maximize
the power generated and minimize the area occupied (cost).
Another approach assumes the land lease cost is proportional to
the annual power generation of the farm [6,7]. This approach
does not directly take into account the arrangement of the wind
turbines in the farm. When accounting for the land lease costs,
previous works have assumed a regular square farm boundary
and not a more realistic irregular boundary.

In addition to determining the number and layout of wind
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turbines, wind farm developers must also take into account the
land geography and zoning [8,9]. Most literature on wind farm
layout optimization assumes that the all regions of the land are
feasible for wind turbine placement [10,11]. Often the land selected
for the wind farm project is divided into multiple separate regions
each owned by a different entity/individual [12,13]. It is possible
that not all landowners are willing to participate and lease their
land for the wind farm project. It is also possible that certain
conditions, such as soil quality, proximity to features (cities,
schools, etc.), can also make certain regions of the land infeasible
for wind turbine placements.

Ryberg et al. [14] evaluated the eligibility of land over Europe
for wind farm development. They investigated the different
factors that influences the eligibility of land for wind farm
development. Although the land eligible and available for wind
farm development can be identified, an efficient and accurate
approach is still needed to incorporate such constraints within an
optimization framework. Restrictions placed on land available for
wind farm development often lead to a complex-shaped eligible/
feasible regions. Shapes of such complex regions are difficult to
define analytically and, therefore, need special treatment to be
incorporated into the optimization framework. These irregular
boundaries are often modeled as a convex hull or a collection of
convex hull of points within the boundaries [15e18]. This
approach works well for very simple convex shaped boundaries
but cannot model irregular, non-convex boundaries. Grid based
methods have also been used to determine whether turbines lie
within a boundary [6,19]. These methods divide the entire region
into smaller quadrilaterals and use the row and column indices to
determine where the turbine lies. The boundary of the complex
region has also been modeled as a series of straight-line [20] or
interpolated curves [21]. These methods however cannot
accurately model complex, disconnected shapes and require
additional ray-boundary intersection algorithms to determine
whether a turbine lies within the region. Such methods also
require identification of the points that lie only on the boundary
of the region, and not on the interior. Table 1 presents recent
efforts to model irregular domain boundaries. These approaches
also represent the domain using smaller polygonal or regular
rectangular grids, both of which are unable to model complex
domains. Therefore, a method that does not require any
additional sorting or analytical expressions of the boundary and
with the ability to capture complex irregular boundary is needed.

One such method for modeling non-linear data is through ma-
chine learning. The recent advances in the field of machine learning
and deep learning has allowed for developments in facial recog-
nition, autonomous vehicles, and artificial intelligence, to name a
few. Recently, suchmethods have also been applied inwind turbine
and wind farm analysis. Steco et al. [26] performed a thorough
review of various machine learning approaches that have been
used for wind turbine condition monitoring. They stated that
almost two-thirds of machine learning methods use a classification
model based on artificial neural networks (ANN) or support vector
Table 1
Methods used by other authors to model irregular domains.

Authors Year Method

Wang et al. [22] 2017 Discrete grid parameterization
Gonzalez et al. [23] 2017 Discrete grid parameterization
Perez-Moreno et al. [24] 2018 Discrete grid parameterization
Feng et al. [17] 2018 Polygon representation
Sorkhabi et al. [16] 2018 Polygon representation
Mittal and Mitra [18] 2019 Polygon representation
Stanley and Ning [25] 2019 Boundary-grid parameterization

2

machines (SVM). Ti et al. [27] demonstrated the use of ANN based
machine learning for wake modeling of wind turbines. Their work
trained the multi-layer neural network using simulated data from
RANS/LES modeling. Clifton et al. [28] used a regression tree model
to predict the power output of individual turbines. Over the years,
machine learning has also be applied to wind farm analysis. How-
land and Dabiri [29] used a physics-informed statistical model and
a two-layer neural network model to accurately predict power
production. Torres et al. [30] made use of a recurrent neural
network to perform power production estimation.

Although machine learning approaches has been heavily
used in analysis-based models such as RANS/LES, they have not
been heavily applied in the wind farm planning. For example,
they have not yet been applied to model the complex boundaries
arising in wind farm projects. Machine learning approaches
seem ideal for these problems since they can accurately classify
points within sets and can determine which region a turbine lies
in. This work presents an approach to efficiently model complex
irregular boundaries using points sampled from a region. It uses
the support vector domain description (SVDD) to generate an
analytical description of the region where the complex
boundaries can be represented simply as a hyperspherical
boundary. Since the resulting description is analytical and
continuous, both gradient based and non-gradient based opti-
mization algorithms can be used to solve the optimization
problem. The accuracy of the SVDD approach was demonstrated
on domains with multiple complex regions with irregular, non-
convex and complex boundaries. The SVDDmodel was then used
to perform wind farm layout optimization on terrain with re-
gions owned by different landowners with different land prices.
This demonstrated the ability of the SVDD approach to not only
model complex boundaries but also model several distinct re-
gions simultaneously. Two different approaches for incorpo-
rating land costs into the optimization framework were also
presented. It was shown that the SVDD model can efficiently
model complex regions and drastically simplify the terrain
modeling problem in wind farm layout design. The library
developed to train the SVDD model [31] is released for public
use.
2. Support vector domain description

The support vector data description [32], also sometimes called
support vector domain description, is a technique inspired by the
support vector machines (SVM) of Vapnik [33] for defining an
optimal description of the objects. Whereas SVM identifies a
separating hyperplane that classifies objects, the SVDD approach
identifies a hypersphere to perform the classification. This method
has been successfully used to define the boundary of the data set
and can be used to model complex, irregular, non-convex
boundaries.
2.1. Mathematical background

The SVDD method computes a sphere of radius R and center a!
that contains the data set such that the radius is minimized

FðR; a!; xiÞ¼R2 þ C
X
i

xi (1)

where C represents the trade-off between the simplicity and the
number of objects rejected (outliers), and xi is the slack variable,
without which the description becomes sensitive to the outliers. In
Eq. (1), C

P
i
xi is the penalty term associated with outlier detection.
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The radius is minimized under the following constraint

����
���� x!i � a!

����
����
2

�R2 þ xi ci; xi � 0 (2)

where x!i are the objects (points) whose description is being
constructed. The Lagrangian L can be constructed using Eq. (1)
and Eq. (2) as

L ðR; a!;ai; xiÞ¼R2 þC
X
i

xi �
X
i

ai

�
R2 þ xi �

����
���� x!i � a!

����
����
2�

�
X
i

gixi

(3)

where the Lagrange multipliers a and g satisfy ai � 0 and gi � 0.
Differentiating Eq. (3) yields a new set of constraints

X
i

ai ¼1 ci (4)

a!¼
P

iai x
!

iP
iai

¼
X
i

ai x
!

i ci (5)

C�ai � gi ¼ 0 ci (6)

It can be seen from the second constraint (Eq. (5)) that the center of
the hypersphere is simply a linear combination of weights ai and the
objects x!i. Since both ai � 0 and gi � 0, the third constraint (Eq. (6))
can be rewritten as 0 � ai � C.

Substituting Eq. (5) and Eq. (6) into Eq. (3) yields a function to
maximize given by

L ¼
X
i

ai

�
x!i , x!i

�
�
X
i;j

aiaj

�
x!i , x!j

�
(7)

with constraints 0 � ai � C and
P
i
ai ¼ 1. It can be seen from Eq. (5)

that only those objects x!i with ai >0 are needed to define the
hypersphere. These objects are referred to as support vectors.
Objects with ai ¼ 0 are within the hypersphere and objects with
ai ¼ C are considered outliers. The radius of the sphere (R) can be
obtained by taking the distance between the center ( a!) and any
support vector (since all support vectors lie on the boundary). This
procedure of identifying the support vectors, the Lagrange
multipliers ai and the radius R by minimizing Eq. (7) is referred to
as the training phrase and is similar to that used in SVM.

An object z! is on or within a hypersphere with the center at a!
and radius R if jj z!� a!jj2 � R2. If the center is expressed using the
support vectors then the object z! is on or within the sphere if

ð z!, z!Þ�2
X
i

ai

�
z!, x!i

�
þ
X
i;j

aiaj

�
x!i , x!j

�
� R2 (8)

An object is “accepted” and has the same classification as the
training set if it satisfies this acceptance criteria (Eq. (8)). Fig. 1
shows the standard SVDD approach. It can be seen that any point
inside the hypersphere is considered to be inside the region formed
by the training points.

In real-world applications, the data sets are not spherically
distributed and, therefore, classification using hyperspheres are
not an accurate description of the data set. This issue can be
addressed by mapping the data set (objects) into a feature space
3

where a hypersphere is a better approximation. This is done using a
“kernel-trick”, where a kernel Kð x!i , x

!
jÞ that satisfies Mercer’s

theorem [34] is used to map the data set. This SVDD procedure
using kernel mapping is shown in Fig. 2. It can be seen that the
approach constructs an irregular boundary that conforms to the
training points in the input space and represents this irregular
boundary as a hyperspherical boundary in an n� dimensional
feature space. If a point is within the hyperspherical boundary in
the feature space, then it is also within the irregular boundary in
the input space.

Replacing all inner products ð x!i , x
!

jÞ by the kernel representation

Kð x!i , x
!

jÞ, the domain description problem is now given by

L ¼
X
i

aiK
�
x!i , x!i

�
�
X
i;j

aiajK
�
x!i , x!j

�
(9)

where constraints 0 � ai � C and
P
i
ai ¼ 1 are enforced. Then, the

acceptance criteria is given as

Kð z!, z!Þ�2
X
i

aiK
�
z!, x!i

�
þ
X
i;j

aiajK
�
x!i , x!j

�
� R2 (10)

2.2. Numerical implementation

The libSVDD library [31] is used to train the support vector data
description. The library uses the sequential least squares quadratic
programming (SLSQP) algorithm to find the optimum values for
the Lagrange multipliers. There are several kernels that are
available in libSVDD, some of which are given in Table 2. All three
kernel functions were investigated, with the Gaussian kernel
outperforming the Exponential and Laplace kernels.

Using the Gaussian kernel KGð x!i , x
!

jÞ ¼ expð� ðjj x!� y!jj=sÞ2Þ,
the domain description problem can be written as

L ¼1�
X
i

a2i �
X
isj

aiajKG

�
x!i , x!j

�
(11)

with constraints 0 � ai � C and
P
i
ai ¼ 1. The acceptance rule then

becomes

�2
X
i

aiKG

�
z!, x!i

�
�R2 �CX � 1 (12)

where CX ¼P
i;j
aiajKð x!i , x

!
jÞ. The standard deviation s determines

the number of support vectors and the tightness of the fit, where a
smaller s results in a tighter fit and more support vectors. It should
bementioned that once an SVDDmodel is trained, the classification
of new points into their respective regions is exceptionally fast. This
is because the acceptance criteria simply compares the distance of
the point from the center with the radius of the mapped
hypersphere.

2.3. Validation of the support vector data description model

There are several area/terrain factors that can constrain the
wind farm design problem. Such conditions include price of land,
proximity to features (cities, schools, etc.) and soil quality to name a
few. These cases not only require that the terrain be separated into
feasible and infeasible areas but also require an efficient method to



Fig. 1. Visualization of the SVDD procedure without using kernel mapping for a two-dimensional case.

Fig. 2. Visualization of the SVDD procedure using kernel mapping for a two-dimensional case.

Table 2
Kernels available in libSVDD.

Name Kð x!, y!Þ
Gaussian expð� ðjj x!� y!jj=sÞ2Þ
Exponential expð� jj x! � y!jj =s2Þ
Laplace expð� jj x! � y!jj =sÞ

Table 3
Number of training points, number of support points and the definition for terrain
division.

N Nsv Definition

Region A 744 276 z>240
Region B 1407 520 180< z � 240
Region C 1582 639 130< z � 180
Region D 705 359 100< z � 130
Region E 1454 628 z � 100
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numerically represent such regions in an optimization framework.
The traditional approach represent the region as a convex hull. This
approach can be used for convex, regular domains but cannot
model irregular non-convex shapes. Such regions can, however, be
represented using the SVDD approach. An SVDDmodel can be built
for each separate region of a terrain. Once trained, the SVDD model
can then be used to identify which region a new point (turbine)
belongs to.

The ability of SVDD to classify points into their respective
regions is investigated. The terrain used for this study was
assumed to be that of the AWEC wind farm (Fig. 7a) in Mojave,
CA, USA and was obtained using the TouchTerrain program [35].
This program extracts terrain profile from satellite images and
represents the terrain profile as elevation at scattered locations.
The AWEC terrain was then separated into five distinct regions
according to their elevation, each with a highly irregular
boundary. An SVDD model was then trained for each region
using the points that belonged only to that individual region.
Table 3 shows the criteria for segmentation for each region of
the AWEC farm. An SVDD model is built for a terrain with four
distinct regions and five distinct regions. It should be
mentioned that in the case with only four separate regions,
Regions D and E are combined to form a single region. Table 3
4

also shows the number of points N used to train the SVDD and
the number of support vectors Nsv in the trained SVDD model. It
should be mentioned that the SVDD models for these examples
were built using only the x and y coordinates of the points in the
terrain. The z coordinate can also be included if the complex
boundary (description of the data set) is three-dimensional. The
SVDD approach can be used in any number of dimensions since
the kernels are only a function of the Euclidean distance.

An additional testing set of 40,000 points uniformly distributed
in x; y2½0;2000� was generated to test the accuracy of the trained
SVDD models. The constructed SVDD models were then used to
place all points in the testing set into their respective regions.

Fig. 3 shows the exact description (Fig. 3a and Fig. 3b) of the
terrain and the SVDD description of the terrain for the four region
and five region case. The SVDD descriptions (Fig. 3c and Fig. 3d)
show that the testing set of 40,000 points were accurately classified
into their appropriate regions. This is seen in the similarity between
the exact segmentation of the regions and the SVDD segmentation
of the regions. It can be seen that the SVDD approach can accurately
model and create accurate descriptions of segmented regions in the
domain. Therefore, the SVDD approach can be used to identify the



Fig. 3. Set used to train the SVDD for modeling a: a) four regions and b) five regions; testing set classified by the trained SVDD model (i.e. constructed description) for a: c) four
region model and d) five region model.

Fig. 4. Relative error in the constructed SVDD description as a function of training set
size.
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region that a point belongs to so that certain constraints can be
enforced. Standard methods such as polygonal representation and
grid-parameterization are unable to capture such complex
boundaries since their representations are linear. The nonlinear
kernel mapping in the SVDD approach addresses this issue and
allows for accurate modeling of the complex regions. The SVDD
approach without kernel mapping would also fail to model such
irregular regions. It should again be mentioned that the SVDD
model was trained using only sampled data points and did not
require any analytical description of the terrain. The SVDD
approach does not depend on the number of separate regions of the
terrain since a single SVDD model is trained for each separate
region.

The description in Fig. 3 was constucted using a training set
with a total of 5892 points. It is also important to quantify the
accuracy of the description constructed using training sets of
different size. For this reason, the SVDD model was trained for the
five-region problem (Fig. 3b) using a varying sized training set. The
points in each training set were uniformly distributed throughout
the domain. Fig. 4 shows the relative error in the description as a
function of the training set size. It can be seen that an accurate
SVDD description can be constructed using a relatively small
training set. It also shows that the error asymptotically converges.
Therefore, the SVDD model can be accurately trained even when a
large training data set is not available.
5

Fig. 5 shows the description constructed using various sizes
of the training set. It can be seen as the size of the training set
increases, the description becomes more accurate. However, a
sufficiently accurate description was obtained using only 400
evenly distributed points.



Fig. 5. Description constructed by an SVDD model trained using a grid of: a) 12� 12 points, b) 15� 15 points, c) 18� 18 points d) 20� 20 points, e) 25� 25 points, f) 30� 30
points, g) 35� 35 points, and h) 40� 40 points (Black dots represent the training points.).
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3. Wind farm layout optimization

The application of the SVDD approach in the context of wind
farm layout optimization is presented.
3.1. Wind farm analysis

Eachwind farm configuration in thisworkwas analyzed using the
WindFLO framework [36,37]. WindFLO is a publicly available
software that can be used to analyze the power generation, land-
usage and cost of wind turbines in farms. It uses analytical wake
models, wake superposition schemes and ambient wind models to
compute the wind velocity experienced by wind turbines in a farm.
The framework can use six analytical wake models and four wake
merge/superposition models. It can easily be expanded to include
othermodels.WindFLO also accounts for the terrain profile/elevation
and wake-terrain interactions. The schemes in WindFLO were vali-
dated using experimental data from a scaled wind farm to within 1%
relative error.

The WindFLO framework also features uni-variate and bi-variate,
linear and non-linear cost models for turbines and uses the convex
hull approach to quantify the area of land occupied by the wind farm
layout. For brevity, the specific numerical methods present in WindFLO
are not discussed in this manuscript. For a detailed implementation and
validation, readers are referred to Ref. [37].
3.2. Problem formulation

The wind farm in this study consists of 25, three-bladed
Vestas V90-3 MW wind turbines featuring a rotor radius of
R ¼ 45m and a tower height of H ¼ 105m. The power curve,
coefficient of power (CP) and coefficient of thrust (CT ) curves for
the V90-3 MW turbines are shown in Fig. 6a. The terrain profile
of the wind farm, shown in Fig. 7a was assumed to be that of the
AWEC wind farm. Fig. 6b shows the wind conditions experienced
at the AWEC wind farm from January 1, 2019 to December 31,
2019. The wind conditions were obtained using the cli-MATE
software [38]. The wake in the wind farm is modeled using
Frandsen’s wake model [39]. Multiple-wake interaction is
modeled using the quadratic superposition scheme. It was
shown that the Frandsen’s wake model with a quadratic
6

superposition scheme yielded the most accurate results [37].
The objective is to minimize the cost-of-energy (CoE) of the
wind farm. Since the type of wind turbine is kept constant, the
change in cost of the wind farm is attributed solely to the change
in cost of the land for the farm.

TheWindFLO framework is able to account for terrain elevation and
wake-terrain interactionwhich requires a continuous representation of
the terrain. The AWEC wind farm terrain was modeled using a Radial
Basis Function interpolation of the elevation at the scattered points
obtained using the TouchTerrain software [35]. The terrain was then
segmented into five different regions. Table 4 shows the segmentation
criteria for each region. Each region was assumed to be owned by
different individuals, each with a different land price or restriction.

Two different approaches for incorporating land costs into
the optimization problem were considered. The first approach,
called the per-area (PA) model, assumed that the cost is pro-
portional to the area of the farm within a region and, therefore,
their arrangement within a region. The area of the farm in a
particular region was modeled as the area of the convex hull
formed by the turbines within that region. In the event that a
particular region only contains a single turbine, the area occu-
pied by the farm in the region is taken to be the swept area of
the rotor (pR2). If the turbines in a region are distributed such
that they form a line with length d, the area is taken to be the
area of a rectangle with width of the rotor diameter and length
d. For these two special cases, the convex hull approach cannot
be used since the computed convex hull area will be zero.

The second approach, called the per-turbine (PT) model,
assumes that the cost is proportional to the number of turbines
(NT ) within a region and not the area occupied or their
arrangement. The cost for each of the two approaches are given
in Table 4. The range of land costs used were obtained from the
work of Ratliff et al. [40], and Meyers and Meneveau [41]. In
both land-based cost models, the trained SVDD model was used
to identify the region that a turbine belonged to.

The AWEC farm terrainwas assumed to be divided into five separate
regions shown in Fig. 7b. The criteria for each region are shown in
Table 4. It should be mentioned that the five regions were separated
based on their elevation only for demonstration purposes since this
segmentation is easier. The terrain can also be segmented using satellite
imaging, land owner contracts, etc. Three different cases for



Fig. 6. a) power and turbine coefficients curve of the V90-3 MW turbines and b) windrose diagram for the AWEC wind farm for the year 2019.

Fig. 7. a) Elevation of the AWEC wind farm terrain, b) division of the AWEC farm into five regions, c) terrain division for Case 2 optimization study and d) terrain division for Case 3
optimization study.

Table 4
Definition and cost of land in each region for the optimization study.

N Nsv Definition USD/m2 USD/ NT Area (km2)

Region A 1041 393 z � 80 0.25 2000 0.656
Region B 887 354 z � 230 0.35 3000 0.770
Region C 1260 512 80< z<170 and x � 800 0.45 4000 0.918
Region D 1100 428 80< z<170 and x<800 0.55 5000 0.644
Region R 1604 618 170 � z<230 ∞ ∞ 1.133

S.R. Reddy Energy 220 (2021) 119691
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optimizationwere considered. The first case (Case 1) neglected the cost
of the land during the optimization. Under this assumption,minimizing
the CoE is analogous to maximizing the annual energy production
(AEP). In the second case (Case 2), regions R and B were combined to
form a single region B (Fig. 7c). That is, all regions of the terrain were
considered to be feasible for wind turbine placement where the cost of
land in each of the four regions was different (Table 4). This case
assumes that each region is owned by a different individual offering the
land at a different price and that all individuals are participating in the
project. The third case (Case 3) considers the same land prices as those
in Case 2 but incorporates an infeasible/restricted region (Region R)
where no turbines can be placed. This case considers five distinct
regions (Fig. 7d) and assumes that the landowner for Region R is not
participating in thewind farmproject and, therefore, not selling/leasing
the land. It can also be assumed that Region R is a body of water (i.e.
river) that prohibits the placement of wind turbines.
3.3. Optimization algorithm

The typical multi-variate, single objective, constrained optimi-
zation can be written as

minf ð x!Þ (13)

x!¼fx1;…; xmg

subject to : x2 ½ai;bi�; i ¼ 1;…;m

hjð x!Þ¼0; j¼1;…;n

gkð x!Þ�0; k¼1;…; o

where x! is a vector of design variables, hj is the jth equality

constraint and gk is the kth inequality constraint. The optimization
in this work is performing using the Single-Objective Hybrid
Optimizer (SOHO). The SOHO algorithm is a hybrid evolutionary
algorithm that actively switches between constitutive algorithms
to accelerate convergence. A detailed description of SOHO is given
in Ref. [42]. All optimization studies were ran for 500 generations
with an initial population of 100 members.

This work uses the constraint violation [43] value approach to
incorporate constraints within the optimization framework. The
constraint violation value of a solution x!, denoted by CVð x!Þ is
calculated as

CVð x!Þ¼
Xn
j¼1

��hjð x!Þ��þXo
k¼1

Cgkð x!ÞD (14)

where the bracket operator CaD returns the absolute value of a if
a>0 and returns 0 otherwise. A lower value of CVð x!Þ is indicative
of a smaller constraint violation. A CVð x!Þ value of 0 indicates that
all constraints are inactive and the solution is feasible. This
constraint violation value is used tomodify the domination criteria.

Definition A solution xð1Þ is said to constraint-dominate another
solution xð2Þ, if any one of the following conditions is true:

1. if xð1Þ is feasible and xð2Þ is infeasible
2. if xð1Þ and xð2Þ are infeasible and xð1Þ has a smaller constraint

violation value
3. if xð1Þ and xð2Þ are both feasible and xð1Þ dominates xð2Þ with the

usual domination principle
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The optimization study attempts to find a farm layout with
minimal cost-of-energy (CoE¼ Cost/AEP) in USD/MWh. The annual
energy production (AEP) is given by Eq. (15)

AEPFarm ¼ð365�24Þ
ð360o

0o

ðUmax

0

PFarmðU; qÞpðU; qÞdUdq (15)

where Umax is the maximum wind speed experienced by the farm at
that location, PFarmðU; qÞ is the power generated by the farm for awind
speed U and a wind direction q, and pðU; qÞd is the probability of the
occurrence of thewind conditionwith speedU and direction q. The AEP
of thewind farm is also normalized by the AEP calculated if all turbines
were operating year around at their rated wind speed (657,000 MWh).

The cost of the turbines in the wind farmwas obtained using the
non-linear, bivarate cost model in WindFLO [37]. The total cost of
the farmwas taken to be the sum of the cost of the turbines and the
cost of the land (Table 4). The design variables were the x and y
coordinates of each wind turbines. This resulted in a total of 50
design variables (two for each of the 25 turbines). The trained SVDD
model was used to classify each turbine in the farm into one of the
five regions based on its x and y coordinates.

Two constraints were included in the optimization study. The
first constraint (Eq. (16)) required that the clearance around each
turbine be greater than its diameter in order to avoid collision
between turbines.

g1ð x!Þ¼ max
j¼1;…;N

�
D�

����
���� x!� x!j

����
����
2

�
(16)

The second constraintwas only implemented in Case 3 and required
that each turbine bewithin the feasible region (Regions A-D). The SVDD
model trained for Case 3was used to determinewhether a turbinewas
in the restricted region (Region R) bymeans of Eq. (12). Using the SVDD
approach, the second constraint can be written as

g2ð x!Þ¼CX þ1�2
X
i

aiKG

�
x!, c!i

�
� R2 (17)

where c!i are the support vectors, R is the radius of the trained
hypersphere and x! is the location of the turbines. Recently,
Reddy [44] successfully performed constrained wind farm
layout optimization using the SVDD approach to model regions
restricted for wind turbine placement.

4. Results of optimization

4.1. Reference farm

For comparison purposes, the reference farm layout was
considered to be a 5� 5 array of wind turbines. Table 5 shows the
wind farm performance and the cost of the reference wind farm
using the two land cost models. The CoE was computed using the
terrain division in Case 2 with the costs given in Table 4. It shows
that the CoE under the two land price models are similar orders of
magnitude. The ‘Farm Area’ is computed as the area of the convex
hull of the entire wind farm, whereas the ‘Area Convex Hull’ is
computed as the sum of the area of the convex hull formed by
turbines in each region.

Fig. 8a and Fig. 8b show the reference farm layout with super-
imposed contours of terrain divisions in Case 2 and Case 3,
respectively. Under the terrain divisions of Case 2, Regions A, B, C
and D feature six, 11, four and four turbines, respectively. Under the
terrain divisions of Case 3, there are nine turbines within the
restricted region.



Table 5
Performance of reference wind farm layout.

Per Area Per Turbine

Normalized AEP 1.35
Farm Efficiency 0.24
Farm Area (in km2) 4.0
Area Convex Hull (in km2) 2.63
CoE (in USD/MWh) 70.85 69.88

Table 6
Performance of optimized wind farm in Case 1 and percent changes from reference
farm (in brackets).

Per Area Per Turbine

Normalized AEP 1.37 (1.3)
Farm Efficiency 0.24 (�0.6)
Farm Area (in km2) 3.72 (�6.9)
Area Convex Hull (in km2) 1.98 (�25)
CoE (in USD/MWh) 69.78 (�1.5) 69.02 (�1.2)
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4.2. Optimization study: case 1

In Case 1, the cost of the land was neglected. Therefore, minimizing
the CoE is analogous to maximizing the AEP. Table 6 shows the
performance of optimized wind farm under Case 1 assumptions. The
CoE shown in Table 6 was computed a posteriori and also accounts for
the cost of the terrain under Case 2 terrain division. It can be seen that
maximizing the AEP also reduced the CoE. The AEP in the optimized
wind farm layout increased by 1.3%. The CoE under PA and PT terrain
costmodels decreased by 1.5% and 1.2% respectively. The total farm area
only decreased by 7%, whereas the combined area of the convex hulls
decreased by 25%.

Fig. 9a and Fig. 9b show the optimized farm layout with
superimposed contours of terrain divisions in Case 2 and Case 3,
respectively. Under the terrain divisions of Case 2, Regions A, B,
C and D feature five, 10, four and six turbines, respectively.
Under the terrain divisions of Case 3, there are six turbines
within the restricted region. It can be seen that the turbines in
the layout are uniformly scattered throughout the domain with
large inter-turbine distances. Such configurations are expected
to change when the cost of the land is also incorporated into the
optimization.

4.3. Optimization study: case 2

The Case 2 assumptions, which incorporate the cost of the land,
should result in vastly different layouts than in Case 1 with the
largest decrease in CoE. Table 7 shows the performance of the
optimized wind farms. Optimization using the PA land cost model
resulted in a 1.3% increase in AEP and an 2% decrease in CoE. It can
be seen that the total land used in all the region decreased by 48%.
Therefore, the significant reduction in CoE is attributed to the
reduction in land costs and not necessarily an increase in AEP. The
wind farm layout optimized using the PT terrain cost model
resulted in a 1.3% increase in AEP and a 1.3% decrease in CoE. The
total land used also decreased by 12%. This shows that the decrease
in CoE is attributed to both the increase in AEP and decrease in land
Fig. 8. The reference wind farm layout with superi
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costs.
Fig. 10 shows the two optimized wind farm layouts under the PA

and PT land cost model. It can be seen that the two layouts are vastly
different. In the farm layout obtained under PA costmodel (Fig.10a), the
layouts in each region occupy a smaller area than those obtained using
the PT cost model (Fig. 10b). The wind turbines in Region D are
distributed along a line, again occupying a minimum area in the most
expensive region. Regions A, B, C and D contain five, 12, five, and three
wind turbines, respectively. The resulting configurations feature ar-
rangements where thewind turbines are clustered near one another to
decrease the overall area occupied.

The layout obtained under the PT cost model (Fig. 10b) shows a
more even distribution of the wind turbines throughout the four
regions thereby occupying a larger area. This is because the farm
cost is not dependent on the area occupied by the wind turbines.
This allows for larger inter-turbine distances throughout the farm.
The increased inter-turbine spacing in the wind farm reduces the
velocity deficit due to wake effects and increases the effective ve-
locity experienced by each turbine. This increased velocity leads to
increased power generation by the turbine (Fig. 6a). Regions A, B, C
and D contain six, 11, four and four turbines, respectively.
4.4. Optimization study: case 3

In Case 3, the terrain division is similar to that of Case 2 but
also includes a restricted region (Region R) where no turbines
can be placed. This restricted region can be due to geographical
obstructions such as rivers, poor soil quality or it can be due to a
landowner unwilling to sell/lease the land. Table 8 shows the
performance of the optimized wind farms. Optimization using
the PA terrain cost model results in an increase in AEP of 0.9%
and a decrease in CoE by 1.8%. The wind farm layout optimized
using the PT terrain cost model resulted in a 0.9% increase in
AEP and a 0.9% decrease in CoE. Comparing Tables 7 and 8, it can
be seen that when using the PT model, the percent decrease in
CoE and the percent increase in AEP is the same.
mposed regions from: a) Case 2 and b) Case 3.



Fig. 9. The optimized wind farm layouts for Case 1 with superimposed regions from: a) Case 2 and b) Case 3.

Table 7
Performance of optimized wind farm in Case 2 and percent changes from reference
farm (in brackets).

Per Area Per Turbine

Normalized AEP 1.37 (1.3) 1.37 (1.3)
Farm Efficiency 0.24 (�1.6) 0.24 (�0.8)
Farm Area (in km2) 3.5 (�12.7) 3.7 (�8.2)
Area Convex Hull (in km2) 1.37 (�48) 2.31 (�12)
CoE (in USD/MWh) 69.39 (�2.0) 68.98 (�1.3)

Fig. 10. The optimized wind farm layout for Case 2 under: a) per-area and b) per-turbine terrain cost model.
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Fig. 11 shows the two optimized wind farm layouts under the PA
and PT land cost model. In the case of PA cost model, the turbines in
the most expensive region (Region D) are closely distributed along
a line and occupy a smaller area. In Case 2 (Fig. 10a), it can be seen
that seven turbines were within the restricted region. In Case 3, it
can be seen that no turbines are placed in the restricted region. The
displacement of these seven turbines from their optimum positions
Table 8
Performance of optimized wind farm in Case 3 and percent changes from reference
farm (in brackets).

Per Area Per Turbine

Normalized AEP 1.37 (0.9) 1.37 (0.9)
Farm Efficiency 0.24 (�1.6) 0.24 (�1.1)
Farm Area (in km2) 3.23 (�19) 3.33 (�17)
Area Convex Hull (in km2) 1.08 (�59) 1.77 (�33)
CoE (in USD/MWh) 69.59 (�1.8) 69.27 (�0.9)
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reduced the overall increase in AEP from 1.3% to 0.9%. Regions A, B,
C and D contain seven, six, five and seven turbines, respectively.

In the case of the PT land cost model, the turbines are more uni-
formly distributed throughout the domain compared to the layout
obtained using the PA land cost model. In Case 2 (Fig. 10b), it can be
seen that seven turbines were within the restricted region. The SVDD
constraint (Eq. (17)) in Case 3 displaced the seven turbines from their
optimum location. This displacement reduces the overall increase in
AEP from 1.4% in Case 2 down to 1.0% in Case 3. Regions A, B, C and D
containfive, six, seven and seven turbines, respectively. This shows that
the SVDD approach can also be used to enforce constraints and restrict
placements of wind turbines within regions of complex shapes.
5. Conclusion

This work presented an efficient method for modeling irregular
terrain boundaries arising in wind farm projects. The proposed
approach performs machine learning using support vector data
description. The approach used support vector data description
(SVDD) and kernel mapping to transform the irregular domain,
encountered in wind farm development projects, into a spherical
domain. This converts the irregular, complex boundary into a
spherical boundary with an analytical, continuous description,
thereby, allowing the use of either gradient-based or non-gradient
based optimization algorithms. It was shown that an accurate SVDD
model can be trained using a relatively small training set. The use of



Fig. 11. The optimized wind farm layout for Case 3 under: a) per-area and b) per-turbine terrain cost model.
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SVDD in wind farm development projects was demonstrated by
optimizing the wind farm layout where the eligible land is owned
by multiple landowners. The land for the wind farm project was
assumed to be divided into multiple regions, each owned by a
different individual at a different price. Two different methods for
incorporating the cost of the land into the optimization framework
were presented. The two approaches modeled the cost of the land
on a per-area-used basis or a per-turbine-placed basis. It was
shown that the final optimized layout is dependent on the land cost
model used. The per-area cost model resulted in a layout that oc-
cupies the least land area, whereas the per-turbine cost model
resulted in a layout with larger inter-turbine distances. The use of
SVDD approach to restrict the placement of turbine in the infeasible
region was also demonstrated. The results showed that the SVDD
approach can not only model complex boundaries but also model
several distinct regions simultaneously. The library to train the
SVDD model was also released to the public.
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