

Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers

Faculty and Researchers' Publications

2015-12-03

RT-137: Ilities Tradespace and Affordability Resource Analysis Based on System Architecture Behavior

Farah-Stapleton, Monica; Madachy, Ray; Auguston, Mikhail; Giammarco, Kristin

Systems Engineering Research Center (SERC)

http://hdl.handle.net/10945/70123

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

RT-137: Ilities Tradespace and Affordability

Resource Analysis Based on

System Architecture Behavior

Monica Farah-Stapleton, Ray Madachy, Mikhail Auguston, Kristin Giammarco

Research Task / Overview

This aspect of the RT-137 task leverages the following innovations of Monterey Phoenix Behavior Modeling:

- Behaviors and interactions of the system AND environment are described in one uniform framework
- System interactions among components are specified separately from system behaviors of components
- A library of all possible scenarios (up to a specified scope limit) are generated from the separately specified behaviors and interactions, leveraging the small scope hypothesis that most flaws will be

Goals & Objectives

- To enable affordability tradeoffs with integrated software-hardwarehuman factors through Total Ownership Cost (TOC) modeling
 - Integrated costing of systems across full lifecycle operations
 - Extensions and consolidations for DoD application domains
 - Tool interoperability and tailorability (service-oriented)
- To leverage **Monterey Phoenix (MP)**, a system and software architecture and workflow modeling framework based on **behavior modeling**.
- To improve affordability-related decisions across all joint services
- To assess MP for automatically providing cost information from architectural models

Data & Analysis

Apply Function Point (FP) Counting Methodology to Monterey Phoenix (MP) Behavioral Model:

- Identify typical questions to be answered and determine type of count
- Describe system and environment behaviors using MP, and extract Unadjusted FP from the model
- Assess effort using MP-COCOMO II tool, and visualize results in views specific to stakeholders

express the amount of functionality in a system, and can be used

EP	Description	ILF/EIF	FTR / DET	Complex	UFP
EQ	State Drop Down	Golf Courses (I)	(1,2)	Low	3
	External Inquiries	EQ	External Inquiries: EO		

UFP Calculation: FPA Manual Count

1 FTR and 2 DETs identified from the behavior of the State Drop Down EQ

0-1 FTRs and 1-5 DETs correspond to a Low functional complexity rating

A Low functional complexity rating corresponds to <u>3 UFPs</u>

Software Size	Sizing Method Fur	nction Points	ł.			
Unadjusted Function I	Points 280	Language	C	💌 Sel	lect Input File	teetime.mp
Software Scale Drive	rs					
Precedentedness		Nominal 💌		Architecture / Risk Resolution	Nominal	Process
Development Flexibility		Nominal [•	Team Cohesion	Nominal	
Software Cost Drive	rs					
Product			Personnel		Platform	
Required Software Re	eliability	Nominal	•	Analyst Capability	Nominal	Time Cor
Data Base Size		Nominal	•	Programmer Capability	Nominal	Storage C
Product Complexity		Nominal	•	Personnel Continuity	Nominal	Platform \
Developed for Reusa	bility	Nominal [Application Experience	Nominal	Broject
Documentation Match to Lifecycle Nee		Nominal	•	Platform Experience	Nominal 💽	Use of Sc
				Language and Toolset Experience	e Nominal	Multisite (
						Required
Maintenance Off 💌						
Software Labor Rates						
Cost per Person-Month	n (Dollars)					
Calculate						
Results						
Software Developme	nt (Elaboration and	Construction)	Staffin	g Profile	
Effort = 150.6 Person-	months					

UFP Calculation: Extracted From MP

 1 COORDINATE interaction associated with State Drop Down EQ behaviors

•State Drop down EQ COORDINATE contains a nested COORDINATE (2 ADDs)

•The 2 ADDs relate to 2 DETs

ROOT Golfcourses_ILF relates to 1 FTR

•0 -1 FTRs and 1-5 DETs correspond to a Low functional complexity rating

•A Low functional complexity rating corresponds to 3 UFP

•EQ State Drop Down is equal to 1 COORDINATE with a weight of 3

to estimate system cost. Of specific interest are the *input/output* activities of the system.

Terminology:

- External Inputs (EI): Data that is entering a system
- External Outputs (EO) and External Inquiries (EQ): Data that is leaving the system
- Internal Logical Files (ILF): Data that is processed and stored within the system
- External Interface Files (EIF): Data that is maintained outside the system but is necessary to satisfy a particular process requirement

Sources: IFPUG

Future Research

- Refine weights for each Transactional Function
- Refine relationship between steps of a FP Analysis Elementary Process
- The MP architecture model is based on behavior modeling, providing a bridge between the requirements and high level design.
- MP as a **formal architecture model** is a source for **cost estimate** information early in the **design phase**.
- The concept of an **event** in MP is an abstraction for activity within the system. It is **rendered as a pseudo-code**, appropriate for capturing the functional aspects of requirements, and supportive of refinement.
- UFP can be identified in the MP architecture model as an interaction abstraction (i.e. COORDINATE or SHARE ALL constructs).
- The structure and the complexity of interactions in MP provide a source for assigning weights contributing to the UFP.
- Since an MP model is precise and formal, FP metrics can be identified by automated tools.

and MP descriptions

- Nested COORDINATES
- ILF and EIF behavioral representations in MP
- Apply methodology to iTAP UAV case study and IFPUG case study

Contacts/References

- Monterey Phoenix and Related Work: <u>http://faculty.nps.edu/maugusto</u>
- MP Wiki (including full bibliography): <u>https://wiki.nps.edu/display/MP</u>
- Public MP server with MP editor, trace generator, and trace graph visualization: <u>http://firebird.nps.edu/</u>
- MP COCOMO Tool: <u>http://csse.usc.edu/tools/MP_COCOMO</u>

SERC Sponsor Research Review, December 3, 2015