
1 

Effects of optogenetic stimulation of vasopressinergic retinal afferents on 
suprachiasmatic neurons 

Catherine Hume1, Andrew Allchorne1, Valery Grinevich3, Gareth Leng1 and Mike Ludwig1,2

1Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK 
2Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa 
3Department of Neuropeptide Research, Central Institute of Mental Health, 

University Heidelberg, Mannheim, Germany. 

Correspondence to:  

Mike Ludwig 

Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 

George Square, Edinburgh EH8 9XD, UK 

Tel: -44 (0) 131 650 3275 

email: mike.ludwig@ed.ac.uk 

Keywords: vasopressin, SCN, channelrhodopsin, optogenetics, retina 



2 

Abstract 
Physiological circadian rhythms are orchestrated by the hypothalamic 

suprachiasmatic nucleus (SCN). The activity of SCN cells is synchronised by environmental 

signals, including light information from retinal ganglion cells (RGCs). We recently described 

a population of vasopressin-expressing RGCs (VP-RGC) which send axonal projections to 

the SCN. To determine how these VP-RGCs influence the activity of cells in the SCN, we 

used optogenetic tools to specifically activate their axon terminals within the SCN. Rats were 

intravitreally injected with a recombinant adeno-associated virus (rAAV) to express the 

channelrhodopsin-2 and the red fluorescent protein mCherry under the vasopressin promoter 

(VP-ChR2mCherry). In vitro recordings in acute brain slices showed that approximately 30% 

of ventromedial SCN cells responded to optogenetic stimulation with an increase in firing rate 

that progressively increased during the first 200 s of stimulation and which persisted after the 

end of stimulation. Finally, application of a vasopressin V1A receptor antagonist dampened 

the response to optogenetic stimulation. Our data suggest that optogenetic stimulation of VP-

RGC axons within the SCN influences the activity of SCN cells in a vasopressin dependent 

manner. 

Introduction 
In all animals, the transition between night and day engages a host of physiological 

and behavioural rhythms. A subset of retinal ganglion cells (RGCs) that express melanopsin 

detect the ambient light level, and they project to the suprachiasmatic nucleus (SCN) of the 

hypothalamus to entrain circadian rhythms that are generated within the SCN (1-4). We have 

recently shown that a subpopulation of these RGCs express the neuropeptide vasopressin 

(VP-RGCs). The electrical activity of VP-RGCs is stimulated by light, and vasopressin 

concentrations in the SCN, measured by microdialysis in vivo, increase following light 

exposure (5). 
Vasopressin is also expressed in many neurons of the dorsolateral SCN shell, and 

these have a critical role in maintaining circadian rhythms (6). SCN vasopressin 

concentrations and the expression of vasopressin V1A receptors in the SCN are under 

circadian control (7, 8) and transgenic mice deficient in vasopressin V1A receptors show 

dampened circadian rhythms in the absence of light-cues (8). Additionally, infusion of 

vasopressin V1 antagonists into the SCN speeds up re-entrainment of mice to a new light 

dark cycle when the light phase is shifted experimentally (9).  
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The vasopressin cells in the SCN shell are not direct recipients of signals from the 

VP-RGCs; the projections from the retina innervate just the ventromedial ‘core’ of the SCN, 

which contains neurones expressing other neuropeptides, including vasoactive intestinal 

peptide (VIP) and gastrin-releasing peptide (GRP) (10). Light exposure and stimulation of 

the retino-hypothalamic tract increases the electrical activity of ventromedial SCN core 

neurons in vivo, and these responses are attenuated by the local application of a 

vasopressin V1A receptor antagonist (5). Together these studies suggest that activation of 

VP-RGCs results in vasopressin release in the SCN, which in turn influences the electrical 

activity of SCN core neurons. 

However, the source from which vasopressin is secreted into the SCN following light 

exposure is unclear. Vasopressin could either be secreted from VP-RGC axon terminals in 

the SCN core or from the dendrites of vasopressin neurons in the SCN shell. Here, we used 

optogenetics to selectively activate VP-RGC axons in the SCN, measured the influence of 

this on the electrical activity of SCN core neurons, and investigated the effects of a V1a 

receptor antagonist on evoked responses.  

Methods 

Animals 
All experimental procedures were approved by a local ethical committee and carried 

out under the UK Home Office Animals (Scientific Procedures) Act 1986 by trained personal 

licence holders. Experiments were performed on a homozygous transgenic rat-line 

expressing an arginine vasopressin enhanced green fluorescent protein (eGFP) fusion gene 

(11). Male and female rats of ~7-8 weeks old were used. Rats were housed in same-sex 

groups in controlled conditions (20-22°C) in a normal 12h dark-light cycle (lights on at 07.00) 

or shifted dark-light cycle (lights on at 11.00), with ad lib access to food and water. Rats were 

housed in the shifted dark-light cycle for at least two weeks before being used for in vitro 

electrophysiology.  

Cloning of rAAV Vectors - Production of rAAVs 
rAAV (serotype 1/2) carrying a conserved 1.9kb AVP promoter and cDNA of ChR2 

(generously provided by Scott Sternson, Janelia Farm) was cloned and produced as 

described previously (12, 13). Standard ChR2 was used which has been characterised (14) 
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and its efficiency confirmed (12, 15, 16). The conserved AVP promoter comprises a 

1.9kb sequence has been revealed by BLAT (BLAST-like alignment tool)(16). 

Intravitreal virus injection 
Rats were anaesthetised with an intraperitoneal injection (IP) of ketamine (75mg/kg) 

and medetomidine (0.5mg/kg). Once placed in a rotatable stereotaxic frame, a midriatic 

(phenylephrine 0.0054% and tropicamide 0.00028%), local anaesthetic (oxybuprocaine 

hydrochloride 0.4%) and antibiotic (ofloxacin 0.3%) were applied to each eye. The head was 

rotated in the frame and the eye punctured with a fine needle (31G extra short dental cartridge 

needle, 0.28 x 12mm; Terumo, Belgium) connected to a 5-μl Hamilton syringe and the needle 

tip lowered into the vitreous humour using a micromanipulator. Two 1-μl injections of virus 

were carried out on each eye, one on each lateral side. The virus was injected slowly into the 

eye and the needle left in place for 30s before being slowly retracted. The medetomidine 

anaesthesia was then reversed with subcutaneous administration of atipamezole (1mg/kg). 

Rats were left in their home cages for 6-8 weeks before being used for electrophysiology. 

In vitro electrophysiology 
Experiments were carried out either at the beginning of the light phase (ZT 2) or at the 

end of the dark phase (ZT 22). From our previous work (5) we anticipated that the amount of 

vasopressin available for activity-dependent release would be maximal at the end of the dark 

phase and minimal at the end of the light phase. Accordingly, we studied cells at the end of 

the dark phase and in the early light phase. Rats subjected to experimental procedures in the 

dark phase were kept in the dark at all times with no light exposure. Rats were lightly 

anaesthetised in isoflurane before being decapitated and the brains quickly removed. A small 

tissue block containing the SCN was cut and immersed in an ice-cold carbogenated N-

methyl-D-glucamine (NMDG)-based aCSF cutting solution (92mM NMDG, 2.5mM KCl, 

1.25mM NaH2PO4, 30mM NaHCO3, 20mM HEPES, 25mM glucose, 2mM thiourea, 5mM Na-

ascorbate, 3mM Na-pyruvate, 0.5mM CaCl2.4H2O and 10mM MgSO4.7H2O; pH 7.35) (17) 

before being sliced into 300-μm sections in partially frozen cutting solution using a vibratome. 

Brain sections were transferred to a continuously carbogenated NMDG-based aCSF cutting 

solution in a water bath at 33°C to recover. After 5-10min, brain sections were transferred to 

a continuously carbogenated HEPES-based aCSF holding solution (92mM NaCl, 2.5mM 

KCl, 1.25mM NaH2PO4, 30mM NaHCO3, 20mM HEPES, 25mM glucose, 2mM thiourea, 

5mM Na-ascorbate, 3mM Na-pyruvate, 2mM CaCl2.4H2O and 2mM MgSO4.7H2O) (17) at 
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room temperature (25°C) for at least 1h before recording. Slices were kept in this same 

holding solution throughout the day until needed for recording. Slices were transferred to 

the patch-clamp rig recording chamber and continuously perfused with carbogenated 

aCSF (119mM NaCl, 2.5mM KCl, 1.25mM NaH2PO4, 24mM NaHCO3, 12.5mM glucose, 

2mM CaCl2.4H2O and 2mM MgSO4.7H2O) (17) at 25°C. Cells and eGFP fluorescence 

were viewed using a Zeiss Axioskop 2FS microscope with water immersion objectives and 

recordings were made using pClamp software (Axon Instruments, Molecular Devices, 

USA). Individual cells were recorded from in a cell-attached configuration using glass 

pipettes filled with recording aCSF and a tip resistance of 3-5mΩ. Once the pipette tip was 

in contact with a cell, a small amount of negative pressure was applied to create a seal with 

a resistance of 20-80mΩ. Only cells in the ventromedial core region of the SCN were 

recorded from, and identified based on their location with respect to the optic chiasm and 

third ventricle (Fig. 1). SCN core neurons receive direct inputs from VP-RGC’s (5). Once a 

stable seal was achieved, at least 100s of baseline activity was recorded. The slices were 

then optogenetically stimulated for 200 or 500s and continuously recorded from. 

Optogenetic simulation was achieved by delivering pulses (5ms pulses; 3s on 2s off) of 

blue light (470nm; 20Hz; optoflash LED light source, Cairn Research Ltd, UK) to the whole 

slice through the microscope objective. This protocol was selected as the secretion of 

neuropeptides requires a high-frequency, prolonged stimulation pattern (18). In some 

experiments, the vasopressin V1A antagonist (d(CH2)51Tyr(Me)2Arg8)-vasopressin (2μM) 

(19) was applied to the recording solution once the cells had started to respond to 

optogenetic stimulation. This antagonist acts at both the vasopressin V1A receptor as well 

as the oxytocin receptor; however, it is 100 times more selective for the vasopressin V1A 

receptor than the oxytocin receptor (20). For non-virus transfected controls, SCN cells from 

VP-eGFP rats were recorded from and the slices exposed to pulses of blue light just as the 

virus transfected slices were. 

Retina Dissection 
To create retina flatmounts, eyes were removed following decapitation and the lens 

and vitreous humour removed by cutting the cornea around the outer edge of the iris. A cut 

was made down each side of the sclera making sure not to cut the retina then the sclera 

prised open and the retina removed; 3-4 incisions were made from the perimeter of the retina 

allowing it to lie flat. On a shaker, the retinas then incubated in heparinised saline for 5min, 

followed by 0.1M PB for 5min and 4% PFA for 5min. Retinas were then stored in 0.1M PB 

with 0.02% sodium azide at 4°C until processed for immunohistochemistry.  
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Figure 1) The spatial distribution of ventromedial SCN cells responding to optogenetic stimulation 
of VP-RGC axons. 
A) Viral reporter expression in VP-RGC’s in retina flat mounts focused on the retinal ganglion cell 
layer. Immunohistochemistry for eGFP shown in green, immunohistochemistry for mCherry (viral 
reporter) shown in red and co-localisation of the two shown in yellow. Arrows point to VP-RGC’s 
expressing mCherry. B) The sites of responding ventromedial SCN cells recorded in brain slices. C)
Diagrams indicating the position of each responding cell recorded mapped onto the rat brain atlas at 
bregma -0.06/0.72mm and -0.84/0.96mm. White shapes represent cells showing overall increase in 
firing rate, grey shapes represent cells showing an initial burst of increased firing, and black shapes 
represent cells whose responses were attenuated by application of a vasopressin V1A receptor 
antagonist. Circles = recordings from ZT2, squares = ZT22. DL, dorsolateral; OC, optic chiasm; VM, 
ventromedial; 3V, third ventricle.
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Immunohistochemistry 
All tissue was processed for free-floating immunohistochemistry as described in (5). 

Before immunohistochemistry, retinas were incubated in an enzyme mixture containing 

0.000072% Collagenase (LS005273; Worthington Chemicals, USA) and 0.001% 

Hyaluronidase (LS005475; Worthington Chemicals, USA) in the dark for 30min at room 

temperature with gentle agitation to remove any vitreous humour that may still be attached 

to the retina (21). After enzyme incubation, retinas were washed in 0.1M PB then incubated 

in 0.1M glycine in 0.1M PB for 30 min. After washing, retinas were incubated in blocking 

buffer (10% normal goat serum in 0.1M PB and 0.3% triton-X100) for 1h followed by the 

primary antibodies against GFP (chicken anti-GFP; 1:1000; Abcam ab13970) and mCherry 

(rabbit anti-mCherry; 1:100; ThermoFisher Scientific PA5-34974) in blocking buffer (5% 

normal goat serum in 0.1M PB and 0.3% triton-X100) for 48h at 4°C with gentle agitation. 

Following washes, the retinas were incubated with goat anti-chicken Alexa Fluor 488 

(ThermoFisher Scientific A11039; 1:500) and goat anti-rabbit Alexa Fluor 568 (ThermoFisher 

Scientific A11011; 1:500) secondary antibodies for 80min diluted in 3% normal goat serum, 

0.3% triton-X100 and 0.03% tween in 0.1M PB. The retinas were then mounted onto gelatin-

coated slides and coverslips applied with PermaFlour mounting medium. Retina images were 

taken for analysis using a Leica DMR epifluorescence microscope. Images were processed 

and co-localization of GFP and mCherry immunofluorescence quantified using Fiji software. 

Analysis 
All analysis was carried out using ClampFit (Version 10.7, Axon Instruments, 

Molecular Devices, USA), Microsoft Excel and GraphPad Prism 6 software. The spontaneous 

firing of SCN cells was recorded for at least 100s before the slice was optogenetically 

stimulated, and the mean spontaneous firing rate recorded. For each cell firing at > 1 spike/s 

we constructed an interspike interval (ISI) histogram (in 10-ms bins) of spontaneous activity 

from the last 100s of baseline recording (22), and calculated the coefficient of variation (CV) 

as the ratio of the standard deviation/mean ISI. As ISI distributions for slow firing cells were 

all long-tailed with a conspicuous skew, we also calculated the CV from the log ISIs. 

Hazard functions plot how the excitability of a cell evolves with respect to time since 

the last spike (23). These were constructed from the ISI distribution (in 10-ms bins) according 

to the formula (hazard in bin [t, t+ 10]) = (number of ISIs in bin [t, t+10])/(number of ISIs of 
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length > t). These functions were truncated at the bin where the residual number of ISIs was 

< 20. 

To assess responses to optogenetic stimulation, for each cell the % change in firing 

rate was determined from the mean of the last 100s baseline and last 100s during stimulation. 

Only cells that responded with a mean change in firing rate of ≥10% and a firing rate change 

of ≥0.5 spikes/s were considered to be responsive. 

Statistical Analysis 
Data were tested for deviations from normality using a D’Agostino & Pearson 

omnibus normality test. For data sets that were too small for meaningful normality testing 

(200s stimulation (n=6), non-parametric statistical tests were used. Larger data sets passed 

normality testing (p>0.05; 500s stimulation (n=12) and VP-GFP cells (n=8)) and parametric 

statistical tests were used. 

Mean baseline firing rates between groups of cells were compared using an 

unpaired two-tailed t-test. For cells tested with the vasopressin V1A receptor antagonist, 

the effects of the antagonist on cells activated by optogenetic stimulation were calculated 

as the difference in firing rate between the last 100 s of optogenetic stimulation and the 

firing rate in the period 100-200s after antagonist exposure. These changes were compared 

with the changes measured in cells unresponsive to optogenetic stimulation by an unpaired 

t-test. Variances of firing rate were compared with an F test (two sample for variances). 

Results 

VP-RGC viral transfection 
Following immunohistochemistry of retina flatmounts, co-localisation of eGFP 

(vasopressin) and mCherry (viral reporter) was quantified. On average 65.4 ± 8.2% (n=4) of 

eGFP expressing VP-RGC’s co-expressed mCherry for each retina (Fig. 1A). In total, 144 

cells out of 243 eGFP+ VP-RGC’s co-expressed mCherry, and only one non-eGFP+ cell 

showed mCherry expression.  

Spontaneous activity of ventromedial SCN cells 
Recordings were made in SCN slices from 13 rats at the beginning of the light phase 

(ZT 2) and from 10 rats recorded at the end of the dark phase (ZT 22). Spontaneous firing 
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rates for ventromedial SCN cells varied from 0.03 to 17.4 spikes/s with a mean (±SEM) 

firing rate of 4.4 ± 0.4 spikes/s (n=99), similar to rates recorded in previous studies in vitro 

(24). The mean spontaneous firing rate for cells recorded in the light phase (mean 4.5 ± 0.7 

spikes/s, range 0.03 to 16.3 spikes/s, n=50) was similar to that of cells recorded in the dark 

phase (mean 4.4 ± 0.4 spikes/s, range 0.3 to 11.6 spikes/s, n=49). Thus, the spread of 

firing rates was greater for cells recorded in the light phase than for those in the dark phase 

(P<0.001; F test two sample for variances, F=3.4, d.f.48,49). 

The regularity of spike activity can be measured by the coefficient of variation of ISIs: 

a CV value close to 1 is indicative of random firing and a CV value close to 0 is indicative of 

very regular firing. The mean CV was 0.51± 0.04 (n=49) for cells in the dark phase and 

significantly larger (0.77 ± 0.06 n=50) for cells in the light phase (P=0.006). However, the 

CV varies with mean firing rate when ISI distributions are long-tailed, so might reflect the 

greater abundance of slow firing cells in the light phase. If the CV is calculated from the log 

ISIs it is independent of mean firing rate (i.e. there is no significant correlation between the 

mean rate and the CV for log-transformed data); the CV of logISIs was 0.077 ± 0.005 in the 

dark phase and significantly larger at 0.13 ± 0.01 in the light phase (P<0.001) (Fig. 2A). 
To assess firing patterns, ISI histograms were constructed for all cells with a firing 

rate above 1.3 spikes/s. Cells recorded in both the light and dark phases showed a 

unimodal ISI distribution with modes between 60 and 220 ms, depending on mean firing 

rate. From the ISI histograms and CV values it was apparent that cells recorded in the light 

phase were individually more irregular in their spiking (as reflected in the significant 

difference between the CV of logISIs as shown in Fig. 2A). These cells also had a wider 

range of mean spontaneous firing rates (Fig. 2A).  

Hazard functions were constructed from ISI histograms to assess activity-dependent 

influences on excitability in each cell. Cells firing at less than 1.3 spikes/s were excluded 

from hazard function analysis (16 light phase cells and 5 dark phase cells). The individual 

hazard functions shapes for the other 78 ‘active’ cells (firing rate >1.3 spikes/s) were 

strongly dependent on firing rate i.e. speed of inferred repolarisation following a spike (Fig. 

2B). We split these cells into three groups of 26 on the basis of firing rate and plotted the 

mean hazard function for these groups (Fig. 2B). The fastest firing rate group (mean 8.5 ± 

0.8 spikes/s; range 6.3-16.3), distinguished by the steepest hazard function plot, contained 

16 cells in the light phase (Fig. 2C-E) and 10 cells in the dark phase; the middle firing rate 

group (mean 4.5 ± 0.2 spikes/s; range 3.3-6.3) contained 7 in the light phase and 17 in the 

dark phase; and the slow firing rate group (mean 2.3 ± 0.1 spikes/s; range 1.3-3.2) 
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Figure 2. Spontaneous activity of SCN cells 
A) Mean (±S.E.) hazard functions of SCN light and dark phase neurons in 10-ms bins constructed

from 100 s of spontaneous activity. Hazard functions were constructed only for the 78 cells firing 

at >1.3 spike/s. The cells were separated into three groups of 26 cells by their mean firing rate. 

The fast firing cells (triangles) fired at a mean rate of 8.5 ± 0.8 spikes/s, the middle group (open 

circles) at 4.5 ± 0.2 spikes/s and the slow cells (closed circles) at 2.3 ± 0.1 spikes/s. B) CV of log 

ISI plotted against mean log ISI for all spontaneously active SCN cells firing at >1.3 spikes/s. Open 

symbols: cells recorded in the light phase; closed symbols: cells recorded in the dark phase. The 

large symbols are cells activated by optogenetic stimulation, the small symbols are cells 

unresponsive to stimulation. C) Extracts of the raw spike traces for a representative light-phase 

cell with a fast repolarization (left panel) and dark-phase cell with a slow repolarization (right 

panel). D) ISI histograms for the two cells shown in B and E) corresponding hazard functions. 
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contained 10 cells in the light phase and 16 in the dark phase (Fig. 2C-E). These hazard 

functions demonstrate that cells recorded in both light and dark phases display a similar 

range of repolarization speeds. 

Responses of ventromedial SCN cells to optogenetic stimulation 
Fifteen of 50 ventromedial SCN cells recorded in the light phase and 12 of 49 cells 

recorded in the dark phase responded to optogenetic stimulation with a change in firing rate 

of >10% and at least 0.5 spikes/s. As cells in the dark and light phases had similar baseline 

firing rates and as similar proportions responded to optogenetic stimulation, the responses 

were analysed together. 
Twenty-one SCN cells were tested with 200s of optogenetic stimulation. Six showed 

increased firing rate throughout stimulation (baseline 6.4 ± 1.1 spikes/s, stimulation 8.8 ± 

1.4 spikes/s; (Fig. 3A,D,E). A large, narrow ISI histogram peak and steep hazard function 

plot can be seen with optogenetic stimulation demonstrating increased firing frequency and 

faster repolarization (Fig. 3B,C). The mean change in firing rate for these six cells was 2.4 ± 

0.8 spikes/s, whereas the mean change in firing rate for the 15 non-responsive cells was 

-0.4 ± 0.2 spikes/s (Fig. 3E).  

Forty-three ventromedial SCN cells were stimulated for 500s and 12 of these 

showed increased firing rate throughout (baseline 2.9 ± 0.9 spikes/s, stimulation 5.2 ± 1.1 

spikes/s; Fig. 4A,B,C). For these 12 cells, the mean change in firing rate was 2.3 ± 0.5 

spikes/s (2.9 ± 0.9 spikes/s in the 6 cells in the light phase; 1.7 ±0.4 spikes/s in the 6 cells 

in the dark phase). The mean change in firing rate for the 31 non-responsive cells was -0.8 

± 0.4 spikes/s (Fig. 4C).  

Another two cells responded to optogenetic stimulation with a single burst of increased 

firing rate in the first 100s of stimulation. These two cells were stimulated for 500s and showed 

a change in firing rate of 11.8 and 2.4 spikes/s respectively during the first 100s of stimulation 

only. For these cells, the baseline firing rate was 3.3 ± 0.2 and 7.1 ± 0.3 spikes/s, and the 

firing rate during the first 100s of stimulation was 15.1 ± 1.1 and 9.5 ± 1.0 spikes/s, 

respectively. 

Twelve ventromedial SCN cells from five non-virus transfected control VP-eGFP rats 

were also recorded at the beginning of the light phase and the slices exposed to 500s of 

pulses of blue light. The mean change in firing rate for these control cells was -0.9 ± 0.4 

spikes/s (Fig. 4C). 
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Effects of a vasopressin V1A receptor antagonist 
During optogenetic stimulation, a vasopressin V1A receptor antagonist was applied 

to 27 ventromedial SCN cells. Before application of the antagonist, seven of these cells had 

responded to optogenetic stimulation with a mean increase in firing rate of 3.7 ± 1.0 spikes/

s from a basal rate of 7.4 ± 2.1 spikes/s (Fig. 5A-C). During antagonist application, there 

was a reduction in firing rate in each of the seven cells (stimulation 11.6 ± 2.2 spikes/s, 

stimulation/antagonist 9.2 ± 2.3 spikes/s; Fig. 5A-C). By contrast, for the 20 non-responsive 

SCN cells, application of the antagonist had no significant effect on firing rate (baseline 5.6 

± 0.7 spikes/s, stimulation 5.5 ± 0.6 spikes/s, stimulation with antagonist 5.6 ± 1.1 spikes/s; 

Fig. 5C). Thus, during optogenetic stimulation, the antagonist reduced the firing rate of the 

7 responsive cells by 2.3 ± 0.4 spikes/s, whereas in the 20 cells non-responsive to 

optogenetic stimulation it produced a mean increase of 0.1 ± 0.7 spikes/s (significant 

difference between groups, t-test, P=0.003). 

Responses of vasopressin expressing SCN cells to optogenetic stimulation 
Eight eGFP+ dorsolateral SCN cells from six virus-transfected rats were recorded 

(Fig. 6A; light phase n=7, dark phase n=1). The spontaneous firing rate of these cells 

ranged from 0.03 to 14.7 spikes/s with a mean of 4.5 ± 2.0 spikes/s. Optogenetic stimulation 

had no excitatory effect on any of these eGFP+ cells, and no significant effect overall on the 

population (baseline 4.5 ± 2.0 spikes/s, stimulation 3.1 ± 1.3 spikes/s; P = 0.11; Fig. 6B,C). 

Discussion 
Optogenetic activation of VP-RGC axons terminating in the SCN increased the 

electrical activity of approximately 30% of neurons in the ventromedial SCN. This appeared 

to be mediated in part by vasopressin as shown by the dampening of stimulation-induced 

responses with the administration of a vasopressin V1A receptor antagonist, consistent with 

the hypothesis that vasopressin is released in an activity-dependent manner from the 

axons of VP-RGCs. No significant effects of the antagonist were seen in any cell that did 

not respond to optogenetic stimulation. 
The most common response to optogenetic stimulation of VP-RGC axons was an 

increase in firing rate that developed progressively during stimulation and which outlasted 

the stimulation. Such slowly developing and persistent effects are expected of activity-

dependent peptide release (25). RGCs also use glutamate as a neurotransmitter (26). 

However, the expected response to evoked glutamate release is a rapid onset, adapting 
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response during stimulation, locked to the stimulation pattern with prompt termination at the 

end of stimulation, very different in all respects from most of the observed responses, 

although two cells responded with a transient burst of increased firing. It thus appears that, 

generally, the responses to stimulation reported in these experiments were not mediated 

monosynaptically by glutamate release. These responses were however blocked by the 

administration of a vasopressin V1A receptor antagonist. 

SCN cells are heterogeneous in their electrophysiological characteristics. Many SCN 

cells are spontaneously active in vitro; in many of these, each spike is followed by an after-

hyperpolarisation followed by a progressive repolarisation that reaches spike threshold. This 

mechanism gives rise to regular spiking at a frequency determined in part by the magnitude 

and duration of the afterhyperpolarisation. In most other SCN cells, there is again a 

repolarisation following an afterhyperpolarisation, but the repolarisation does not exceed 

spike threshold and so spike timing in these cells is more irregular, presumably dominated 

by the random arrival of synaptic input. Thus Pennartz et al. reported that most SCN cells 

could be classified as Cluster I and II cells that fired spontaneously in a regular and irregular 

mode respectively (24). The afterhyperpolarisation in cluster I cells is supported by at least 

three subtypes of K(Ca) channels, including apamin-sensitive channels and iberiotoxin-

sensitive channels; these channels are subject to diurnal modulation by the circadian clock 

leading to the expression of a circadian rhythm in spiking frequency (27). 

Pennartz et al. observed the after-hyperpolarisations directly by patch-clamp 

recordings: in the present study used cell-attached recordings to avoid any disruption of the 

intracellular milieu (24).  We noted that spike activity in virtually all SCN neurons was 

relatively regular, with a CV of less than 1 (which would be indicative of purely random firing), 

and often very much less than 1 (indicative of very regular firing). However, we could not 

objectively separate two populations based on this alone. The sequence of 

afterhyperpolarisation and repolarisation in a spontaneously active cell is reflected in the 

hazard function, and again we noted that whereas some cells showed an early onset of 

repolarisation, in many others it was markedly delayed, consistent with a prolonged 

afterhyperpolarisation. However, we could not objectively separate two populations based on 

this, nor did we find any evidence that responsiveness to optogenetic stimulation was 

associated with any observed difference in cell properties. 

There is considerable evidence for circadian regulation of potassium currents in the 

SCN (28, 29), so, in the present study, we recorded SCN cells at the end of the dark phase 

and at the beginning of the light phase. We observed no significant differences in the mean 
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spontaneous firing, rate but cells in the light phase showed a wider range of spontaneous 

firing rates, and also fired less regularly. This is partly consistent with a change in their 

intrinsic activity-dependent properties; a reduction in the magnitude of the 

afterhyperpolarisation would be expected to produce both higher firing rates and increased 

irregularity of firing, but this would not explain why we also saw more slow firing cells in the 

light phase.  

We did not biochemically identify the cells recorded in the ventromedial SCN, but the 

recording sites are consistent with the distribution VIP and GRP cells in the rat SCN (30). VIP 

and GRP neurons are part of a complex network within the SCN signalling to other cell types 

in the dorsolateral SCN to generate rhythms of neuronal activity (31, 32), which are crucial to 

the functioning and output of the SCN (2). We have previously shown that VP-RGC axons 

terminate in this region and make close synaptic contacts with both VIP- and GRP-expressing 

neurons (5). 
The shell region of the SCN contains many vasopressin neurons that might also be a 

source of vasopressin release following optogenetic stimulation. These neurons are 

primarily situated in the dorsolateral SCN (30) and we have previously shown that VP-RGC 

axons do not make direct contacts with these vasopressin cells (5). The small population of 

dorsolateral SCN vasopressin cells (eGFP+) that we recorded from did not respond to 

optogenetic stimulation. Magnocellular vasopressin neurons are also known to secrete 

vasopressin from their dendrites in an activity-independent manner (33). Therefore, even in 

the absence of increased electrical activity, it is possible that these neurons secrete 

vasopressin into the SCN. 

 In conclusion, the present study provides evidence for communication between VP-

RGCs and ventromedial SCN neurons, supporting the idea that VP-RGCs play an important 

role in the regulation of the SCN. Various studies have shown that vasopressin is involved in 

the maintenance and prevention of the maladaptive shifting of circadian rhythms (6, 8, 9). As 

the disruption of circadian rhythms in humans is associated with a whole variety of diseases 

and conditions including obesity, cardiovascular disease, depression and cognitive 

impairment (3, 34-36), there is great interest in understanding the mechanisms underlying 

circadian dysfunction to identify potential therapeutic targets.  
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