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Abstract 

We challenge the existing literature that points to the detachment of Bitcoin from the 
global financial system. We use daily data from August 17, 2011 - February 14, 2020 
and apply a risk spillover approach based on expectiles. Results show reasonable 
evidence to imply the existence of downside risk spillover between Bitcoin and four 
assets (equities, bonds, currencies, and commodities), which seems to be time 
dependent. Our main findings have implications for participants in both the Bitcoin 
and the traditional financial markets for the sake of asset allocation, and risk 
management. For policy makers, our findings suggest that Bitcoin should be 
monitored carefully for the sake of financial stability.   
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1. Introduction  

Over the last decade, many researches have directed their focus toward the 
controversial Bitcoin market that has quickly attracted the attention of individual and 
institutional investors from around the globe. Bitcoin is a leading investment vehicle 
within the newly emerged digital asset family and eligible for portfolio diversification 
(e.g., Bouri et al., 2019; Guesmi, 2019; Shahzad et al., 2019, 2020). It is regarded as a 
hedge against global uncertainties and a shelter during stress periods (Luther and 
Salter, 2017; Bouri et al., 2017a). However, because the Bitcoin market has grown 
rapidly1 and exhibited extreme price volatility, it is a potential source of instability to 
financial markets (European Central Bank, 2012). It is therefore crucial to understand 
the linkages between Bitcoin and financial markets for the sake of decisions about 
asset allocation, risk management, and financial stability. Notably, Bitcoin has 
gradually become more complex (Antonakakis et al., 2019), suggesting the necessity 
to apply advanced and refined techniques to uncover time-varying risk spillover from 
Bitcoin to other assets.  

In this paper, we uncover the complexity of the risk spillover between Bitcoin and 
conventional assets (equities, bonds, currencies, and commodities) via the 
construction of a time-varying downside risk spillover. The latter is based on the 
expectile Value-at-Risk (EVaR) approach recently proposed by Zhang and Ma (2019), 
which integrates the ARCH-Expectile model with embedded Conditional 
Autoregressive structure (namely CAR-ARCHE model). This would allow for 
capturing the contribution of market risk factors and measuring the downside of 
Bitcoin and the four conventional assets under study. 

This current paper belongs to the literature on Bitcoin finance and economics and 
relates to studies on the linkages between Bitcoin and financial markets and their 
                                                        
1 Bitcoin price increased from around $430 in December 2015 to more than $7000 in December 2019. 
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various policy implications. However, its contributions are on several fronts. Firstly, 
we challenge the growing evidence that mostly indicates that Bitcoin is detached from 
the global financial system (e.g., Baur et al., 2018; Bouri et al., 2019; Corbet et al., 
2018; 2019; Li and Huang, 2020), and provide reasonable evidence to suggest the 
presence of significant downside rsik spillovers between Bitcoin and various asset 
classes. We find that the risk spillover varies with time, which is generally in line with 
the existing studies that generally show that the relationship between Bitcoin and 
other assets classes exbibits some time variation (e.g., Ji et al., 2018; Bouri et al., 
2019; Okorie and Lin, 2020)2. Secondly, we focus on downside risk spillovers rather 
than average spillovers or correlations, which represents a shift in the related literature 
(e.g., Ji et al., 2018; Symitsi and Chalvatzis, 2018; Kurka, 2019; Li and Huang, 2020). 
Thirdly, for measuring risk spillovers, we employ the EVaR that it is related to the 
probability of the tail realization of asset returns and allows for describing the risks 
produced in the entire distribution of asset returns. This has the important 
consequence that the standard risk measures such as VaR and CVaR that at best can 
measure the risks produced at the lower tail of the distribution of asset returns are no 
longer valid because expectile-based spillover measures are more sensitive to the size 
of extreme value of distribution (Kuan et al., 2009) than quantile-based measures (e.g., 
VaR and CVaR). Our results show significant time-varying downside risk spillovers 
from Bitcoin to the conventional assets under study and vice-versa, which has not 
been previously discovered by the GARCH-based measures adopted in the academic 
literature (e.g., Symitsi and Chalvatzis, 2018; Bouri et al., 2018). Our analyses have 
important implications regarding risk management, asset allocation, and regulatory 
formulation.   

The direction of the rest of the paper is as follows. Section 2 reviews the academic 
literature dealing with the relationship between Bitcoin and financial markets. Section 
3 presents the empirical methods, starting with the definitions of Expectile VaR, 
                                                        
2 Other studies show that the relationship between Bitcoin and uncertainties measures are non-constant 
and varies with time (e.g., Qin et al., 2020).  
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moving to the CAR-ARCHE model and the time-varying downside risk spillover test. 
Section 4 describes the dataset and presents the empirical results. Section 5 concludes.  

2. Related studies  

The relationship between Bitcoin and financial markets has been the subject of several 
studies over the last five years, which mostly indicate that Bitcoin is detached from 
conventional assets like equities, fiat currencies, commodities, and bonds. This is an 
important finding as investors and portfolio managers tend to switch into alternative 
investments in order to diversify the risk of their conventional portfolios. While gold 
maintains a special status as a valuable asset during crisis periods, Bitcoin has 
emerged as an eligible investment vehicle for portfolio diversification (Bouri et al., 
2019; Guesmi, 2019; Shahzad et al., 2019, 2020). In fact, many investors view 
Bitcoin as a shelter during stress periods (Luther and Salter, 2017; Bouri et al., 2017a). 
Not surprisingly, Bitcoin is often considered as a safe haven asset because its value is 
more stable than that of stocks or conventional currencies. It also has a hedging ability 
against stocks because its price determinants are different from those of stocks and are 
mostly dependent on Bitcoin’s own supply and demand and on other unique factors 
such as attractiveness, blockchain technology, mining difficulties, as well as other 
internal factors like security issues and bubbles (e.g., Li and Wang, 2017; Zhou, 2019; 
Kristoufek, 2020)3. Furthermore, Bitcoin has the ability to protect against various 
types of uncertainties (Bouri et al., 2017a; Demir et sl., 2018; Qin et al., 2020).  

In addition to considering Bitcoin market risk measurement (Katsiampa, 2017), 
several studies focus on the market linkages between Bitcoin and conventional assets 
like stocks, bonds, currencies, and commodities using used various methodologies 
such as GARCH models, Granger causality tests, and connectedness measures. Bouri 
et al. (2017b) apply a univariate GARCH model and find that Bitcoin is volatility is 
negatively related with the US stock market uncertainty. Symitsi and Chalvatzis 
                                                        
3 Walther et al. (2019) provide significant evidence on the role of some exogenous factors related to 
economic and financial variables in driving the volatility of Bitcoin.  
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(2018) employ multivariate VAR-GARCH model to examine spillovers between 
Bitcoin and the equity stock indices of energy and information technology. They 
show one-sided return and volatility spillovers and bidirectional shock effects. Baur et 
al. (2018) use various regression models and show that Bitcoin is uncorrelated with 
equities, bonds and commodities during both tranquil and stress periods. Bouri et al. 
(2019) apply a smooth transition VAR-GARCH model and study the spillovers 
between Bitcoin and various assets such as equities, commodities, currencies and 
bonds. They find that Bitcoin returns are somewhat related to commodities, and that 
Bitcoin mostly receives more volatility shocks than it transfers. Other studies apply 
several connectedness measures. Ji et al. (2018) use the directed acyclic graph 
approach and show that the contemporaneous linkages between Bitcoin and financial 
markets are weak, suggesting the isolation of the Bitcoin market. Corbet et al. (2018) 
use time and frequency measures of connectedness and report evidence that Bitcoin is 
segmented from conventional assets, pointing to its diversification benefits. In another 
study, Corbet et al. (2019) systematically examine the literature and argue that the 
Bitcoin market is almost independent of conventional assets, indicating a possibility 
for portfolio diversification. Kurka (2019) examine the relationship between leading 
cryptocurrencies and other asset classes via the application of connectedness 
measures. They indicate that information transmission is negligible on aggregate, but 
there is some indication of significant shocks originating from Bitcoin and 
propagating to financial markets. Li and Huang (2020) show that Bitcoin and other 
leading cryptocurrencies are very weakly connected to traditional assets and thus they 
do not represent an eminent source of risk to the global financial system. Okorie and 
Lin (2020) consider crude oil cryptocurrency markets and show evidence of some 
volatility linkages that might disturb potential hedging strategies.  

The above literature reveals important aspects of the linkages between Bitcoin and 
financial markets, mostly pointing to the segmentation of Bitcoin from the global 
financial system. Furthermore, previous studies apply several modeling techniques for 
understanding the spillovers between Bitcoin and financial markets such as 
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time-varying correlations, VAR models, Granger causality, connectedness measures, 
and GARCH-based models. GARCH-based models have been used extensively to 
model the risk of Bitcoin (e.g., Katsiampa, 2017) and continue to represent the main 
tool to models asset linkages while accounting for stylized facts of asset returns such 
as heteroscedasticity and heavy-tails. Specifically, the returns of Bitcoin and other 
assets exbibit tail dependence (Shahzad et al., 2019) that seem to vary with time and 
across quantiles. Interestingly, the Bitcoin market has gradually become more 
complex (Antonakakis et al., 2019), suggesting the necessity to apply more advanced 
and refined techniques to uncover the extreme risk spillovers between Bitcoin and 
assets classes for the sake of financial stability and portfolio implications. To properly 
incorporate such characteristics and cope with the above issues, we use the EVaR 
approach recently proposed by Zhang and Ma (2019), which emerges as a powerful 
and appropriate procedure for our study. Notably, the EVaR goes beyond the Value at 
Risk (VaR) and conditional VaR (CVaR) that at best can measure the risks produced at 
the lower tail of the distribution of asset returns. Therefore, the EVaR allows for 
describing the risks produced in the entire distribution of asset returns and 
conveniently the EVaR is related to the probability of the tail realization of asset 
returns (Zhang and Ma, 2019).  

3. Methods 

3.1. The definitions of Expectile VaR (EVaR) 

For any (0, 1)  , let ( )   be such that ( ) ( )q   . That is, the quantile 
( )q   of Y at the significance level   is equal to the expectile ( )   of Y at the 

prudence level  , and the relationship between ( )   and ( )q   is established as 
Eq. (1) (Yao and Tong, 1996): 

  
( )

( )
( ) ( )( ) 2 ( ) 2 ( ) (1 2 ) ( )

q

q
q ydF y

E Y ydF y q



    





   


             (1) 
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where ( )F y  is the distribution function of asset return Y . 

3.2. The CAR-ARCHE model 

The ARCH-Expectile model with embedded Conditional Autoregressive structure 
(namely CAR-ARCHE model) is as Eq. (2): 

2 2
0

1

( )t t t
t t t

p
t i t i

i

y x e
e

e

 
 

   

 

 

                          (2) 

where t  represents IID (independently identically distribution) with 
  2

t0, 1tE E     , and p denotes the lag order in the ARCH term, 
0 0, 0, 1,2, ,i i p     . When         2 2 2 2

1 1 1= 1, , , , , ,t t t t t n t nx y y y y y         
or  1 1= 1, , , , ,t t t t n t nx y y y y       , the CAR-ARCHE model is marked as the 
CAR1-ARCHE(n, p) and CAR2-ARCHE(n, p), respectively. 

Based on the CAR-ARCHE model, it can be argued that the expectile of asset 
return Y (namely EVaR) satisfies    y tx    . 
 
3.3. Time-varying downside risk spillover test 

(1) The indicator function of EVaR 

Firstly, an indicator function of downside risk based on EVaR series is defined as 
Eq. (3): 

, , ,( EVaR ), 1, 2m t m t m tZ I y m                    (3) 

where ,m ty  and ,EVaRm t  are the logarithmic returns and EVaR of asset return m at 
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time t, respectively, and ( )I   denotes an indicator function. If the actual loss passes 
EVaR, , =1m tZ ; otherwise , =0m tZ . 

(2) Time-varying downside risk spillover statistics 

Let ,EVaR m t  show the time series of EVaRs of an asset return m at the 
significance level of  . Referring to Lu et al. (2014), we set the rolling sample 

64W   in empirical analyses. To assess the dynamic downside risk spillovers during 
the subsample 1,t W t  , suppose  , , ,EVaRm t m t m tZ I y   for two return series 
 1, 2,,t ty y , then the lag-j subsample cross covariance function for 1,tZ  and 2,tZ  is 
specified as: 

     
   
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1, 1 2, 2
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1

1, 1 2, 2
1
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  
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
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(4) 

where 1
,

1

W
m m t

t
f W Z


   . And the lag-j subsample cross correlation function for 1,tZ  

and 2,tZ  is written as Eq. (5): 

     t 1 2 , 0, 1, ,, , 1t j j jW C W D D W    
                (5) 

where  m 1m mD f f  
 denotes the sample variance of ,m tZ . 

To detect the unidirectional and bidirectional time-varying downside risk 
spillovers for these two assets, referring to Lu et al. (2014), we introduce the Daniell 
kernel function and corresponding test statistics are written as Eq. (6): 
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where      sin , ,k x x x x     is the Daniell kernel function, and M 
represents the lag order, we set 10M   in empirical analyses. Centring factors 
(  1WC k  and  2WC k ) and scaling factors (  1WD k  and  2WD k ) can be specified 
as Eq. (7) (Hong, 2001): 
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 
    (7) 

If  1,ty  and  2,ty  are mutually independent in the subsample, then according 
to Hong (2001), for 1, 2i  ,    , 0,1 ,i tH W N as W  , and the time-varying 
downside risk spillover tests are the one-sided tests. If the significance probability 
of  ,i tH W  is less than the corresponding significance level of  , then the null 
hypothesis can be rejected, which implies significant downside risk spillover for these 
two assets at time t.  

4. Empirical results 

4.1. The dataset and some key statistics 

     This study uses daily data covering Bitcoin price against the US dollar, from 
one of the largest Bitcoin exchanges, Bitstamp, US dollar index, MSCI world equity 
index, S&P Goldman Sachs Commodity Index (GSCI), and PIMCO Investment 
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Grade Corporate Bond Index ETF (Ji et al., 2018). All data series are in USD and 
come from the DataStream database. The sample period is August 17, 2011 - February 
14, 2020, yielding a total of 2,216 daily common observations. The beginning and 
ending of the sample period are dictated by the availability of data. For all series, 
returns are computed in a log form.   
Table 1 presents the summary statistics of daily return. Except for the GSCI, all the 
means of returns are positive. Notably, Bitcoin has the largest mean and the largest 
standard deviation. All return series are negatively skewed and have high values for 
the kurtosis, implying a departure from the Gaussian distribution. Heteroscedasticity, 
based on the ARCH-LM statistics of the Engle (1982) test, is significant in all cases, 
except Bond. Statistics from the augmented Dickey-Fuller (ADF) test (Dickey and 
Fuller, 1979) show that all daily return series are stationary at the 1% level of 
significance.   
 
 Table 1. Summary statistics and key tests of daily returns  

  Mean  Max.  Min. SD Skewness Kurtosis Jarque-Bera ARCH-LM (20) ADF 
Bitcoin 0.309 48.478 -66.395 5.795 -0.9331 22.9758 37165.47*** 18.878***  -48.970*** 
Dollar index 0.013 2.032 -2.399 0.418 -0.0307 5.0445 386.31*** 6.209*** -48.164*** 
MSCI 0.034 4.112 -5.029 0.755 -0.4498 7.2808 1766.774*** 15.571*** -40.914*** 
GSCI -0.033 7.617 -6.586 1.147 -0.0536 6.1031 890.187*** 6.254*** -49.677*** 
Bond 0.004 1.123 -3.905 0.285 -1.4303 19.7299 26598.77*** 0.264 -49.900*** 

Notes: The sample period is August 17, 2011 - February 14, 2020, covering 2,215 daily return 
observations. SD denotes standard deviation. Jarque-Bera statistics are associated with the null 
hypothesis test of whether the return series are normally distributed. ARCH-LM (20) are statistics for 
heteroskedasticity ARCH test, up to 20 lags. ADF is augmented Dickey Fuller statistics of the null 
hypothesis test on the presence of a unit root in the return series. ADF test is conducted with an 
intercept and lag length of models selected based on the Schwarz information criterion. *** indicates 
statistical significance at the 1% level.  
 
Results from the pairwise Pearson correlation coefficients are given in Table 2. They 
show a very weak positive correlation between Bitcoin and each of the other assets, 
except the US dollar. These results are generally is in line with previous studies (i.e., 
Ji et al., 2018).  

Table 2. Pearson correlation coefficients among daily returns 
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Bitcoin Dollar index MSCI GSCI Bond 
Bitcoin 1 
Dollar index -0.004 1 
MSCI 0.015 -0.233 1 
GSCI 0.005 -0.206 0.427 1 
Bond 0.021 -0.115 -0.069 -0.051 1 

Notes: The sample period is August 17, 2011 - February 14, 2020, covering 2,215 daily return 
observations. 

4.2. Selection of CAR-ARCHE model 

In the light of the truncated orders of autocorrelation and partial autocorrelation 
functions, together with the ARCH-LM test and the principle of minimum AIC value, 
appropriate models are singled out through many attempts under the given 
 corresponding to expectiles with different  for the five asset returns, respectively. 
Table 3 lists their specific model forms and lag orders. 

 
Table 3. Model selection of five asset returns 

Return α θ CARi-ARCHE(n, p) model 

Bitcoin 
0.05 0.0327 CAR2-ARCHE(1, 2) 
0.01 0.0033 CAR1-ARCHE(1, 1) 

Dollar index 
0.05 0.0197 CAR1-ARCHE(1, 1) 
0.01 0.0035 CAR2-ARCHE(1, 1) 

MSCI 
0.05 0.0227 CAR2-ARCHE(1, 1) 
0.01 0.0032 CAR1-ARCHE(1, 1) 

GSCI 
0.05 0.0209 CAR1-ARCHE(2, 1) 
0.01 0.0033 CAR1-ARCHE(1, 1) 

Bond 
0.05 0.0172 CAR1-ARCHE(2, 2) 
0.01 0.0015 CAR1-ARCHE(2, 1) 
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4.3. Estimation of EVaRs based on the CAR-ARCHE models 

We calculate the downside EVaRs by means of the Eq.  ˆˆ ( )y tx     above at 
corresponding prudence levels for the five asset returns, respectively, and relevant 
results are shown in Table 4.  

 
 
 

Table 4. Summary of EVaRs for five asset returns 

Return α θ Mean Std.Dev 
Failure 

time 
Rate of 
failure 

LR 
statistic 

Bitcoin 
0.05 0.0327 -7.3522 1.8922 110 4.97% 0.0054 
0.01 0.0033 -16.8895 5.5854 22 0.99% 0.0010 

Dollar index 
0.05 0.0197 -0.6515 0.0306 117 5.28% 0.3648 
0.01 0.0035 -1.0217 0.0401 26 1.17% 0.6402 

MSCI 
0.05 0.0227 -1.1901 0.3205 119 5.37% 0.6322 
0.01 0.0032 -1.9658 0.6903 32 1.44% 3.8898 

GSCI 
0.05 0.0209 -1.8695 0.2000 120 5.42% 0.8015 
0.01 0.0033 -2.9832 0.1927 25 1.13% 0.3556 

Bond 
0.05 0.0172 -0.5063 0.1647 105 4.74% 0.3141 
0.01 0.0015 -0.9446 0.5382 22 0.99% 0.0009 

 
Some findings are identified as follows: ①All LR-values are lesser than 

corresponding critical values (namely 3.84 and 6.64) at the significance levels of 5% 
and 1%, respectively. Hence, we can say that, at the 5% and 1% significance levels, 
the CAR-ARCHE models have adequately estimated the downside EVaRs of the five 
assets.②No matter at the significance levels of 5% or 1%, the mean values of EVaRs 
of Bitcoin prove far greater than those of other four asset returns. Therefore, in 
comparison, it is necessary for Bitcoin market participants to prepare more risk 
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reserves. 

4.4. Time-varying downside risk spillover between Bitcoin returns and returns of 
the other four assets 

After the EVaR series of the five asset returns are gained, we further calculate the 
unidirectional and bidirectional time-varying downside risk spillover statistics 

 , , 1,2i tH W i  and the corresponding p-values during the sample period. 
Subsequently, the bidirectional and unidirectional time-varying downside risk 
spillovers between Bitcoin returns and the other four asset returns are examined, 
respectively. 

We list the significance probability trends of time-varying downside risk spillover 
statistics at the 5% and 1% significance levels with 64 10W M ， (W  is the 
rolling sample size, M  represents the lag order) (see Fig. 1). According to the 
results in Fig. 1, several findings can be emerged as follows. 

 

  
(a1) 0.05  (b1) 0.01   
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(a2) 0.05  (b2) 0.01   

  
(a3) 0.05  (b3) 0.01   

  
(a4) 0.05  (b4) 0.01   

Fig. 1. Significance probabilities of time-varying downside risk spillover statistics for 
Bitcoin and other four assets at the 5% and 1% significance levels ( 64 10W M ， ) 

 
(1) During the sample period (November 17, 2011- February 14, 2020), there are 

significant bidirectional downside risk spillovers between Bitcoin and the other four 
assets at each time point. At the 5% and 1% significance levels, it can be 
demonstrated from the trends of significance probabilities of the bidirectional 
time-varying statistic 2,tH  that corresponding p-values are close to zero at each time 
point. 

(2) With the exception of some special time points, there are no significant 
unidirectional downside risk spillovers from Bitcoin to the Dollar index, world 
equities, commodities and bonds and vice-versa during the sample period. However, 
there are highly significant bidirectional downside risk spillover effects between them 
at each time point. So, it can be found that there exist remarkable synchronising 
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downside risk spillovers between Bitcoin and other four assets in this paper, that is, 
the interactions between them are very rapid and direct. 

It can also be affirmed from the trends of significance probabilities of statistic in 
Fig. 1 that the unidirectional time-varying downside risk spillover statistics from 
Bitcoin to other four assets and vice-versa are not statistically significant for most of 
sample period, but they are remarkable and present a variation with a jump during 
some special time points. For example, at the 5% significance level, in late August, 
2012, in mid-April, 2013, from late September to early October, 2014, from mid to 
late August, 2015, in late June, 2016, in early August, 2016, in early November, 2016, 
in early January, 2017, in early February, 2018, in early September, 2018, as well as in 
early July, 2019, the unidirectional time-varying downside risk spillover statistics 
from Bitcoin to other four assets and vice-versa are very statistically significant. 
While at the 1% significance level, in mid-January, 2016, the unidirectional 
time-varying downside risk spillover statistics from Bitcoin to commodities and world 
equities to Bitcoin are very statistically significant; and in early February, 2018, the 
unidirectional time-varying downside risk spillover statistics from Bitcoin to world 
equities and bonds are very statistically significant. 

Our main results contradict with most of the literature that shows the isolation of 
Bitcoin from the global financial system (e.g., Baur et al., 2018; Bouri et al., 2019; 
Corbet et al., 2018; 2019; Li and Huang, 2020). In fact, during certain periods related 
to major events, the downside risk spillover between Bitcoin and the global financial 
system is significant, which indicate that the declaration that Bitcoin is a new basket 
for eggs (e.g., Qin et al., 2020) is not always correct hold true. The Bitcoin market is 
not segmented, as previously argued. This finding is partially comparable to Bouri et 
al. (2018) and Kurka (2019) who also uncover periods of significant shock 
transmission between Bitcoin and traditional assets. In fact, Kurka (2019) indicate that 
the increasing market value of Bitcoin reinforces the risk spillover from Bitcoin, 
leading to some disruptions to the financial system. It could be that the time-variation 
in the risk spillovers reflects not only exogenous shocks related to economic and 
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financial factors (Walther et al., 2019; Matkovskyy et al., 2020) but also security 
issues (Conti et al., 2018) and bubble risks (Su et al., 2018), both of which might 
contribute to the significant spillover effects between Bitcoin and conventional assets.  

5. Concluding remarks 

The advance of Bitcoin and its extreme high volatility have sparked extensive concern 
over its interplay with the global financial system. To cope with this concern, we 
provide a valuable tool to uncover the dynamic time-evolution of the complex risk 
spillover between Bitcoin and various asset classes (stocks, bonds, currencies, and 
commodities). Overall, the results obtained indicate that downside risk spillovers 
between Bitcoin and the four assets under study are significant and are a phenomenon 
that occurs during specific periods.  

Our analyses have a number of limitations that open new possibilities for future 
research. A first limitation relates to the use of aggregate indices of conventional 
assets, which could mask potential risk spillover between and disaggregated indices 
related to equity sectors, pairs of currencies, or strategic commodities such as gold 
and crude oil. Future studies can address this limitation, now our applied methods 
have successfully uncovered of significant risk spillovers. Another limitation relates 
to the use of Bitcoin as a representative of the cryptocurrency market. This is because 
Bitcoin dominates the cryptocurrency market with a market share that amounts to 
around 70%. Future research can consider some leading cryptocurrencies such as 
Ethereum and Ripple. 
However, despite these limitations, our findings are important and potentially useful 
to investors and portfolio managers to better comprehend the Bitcoin market and 
facilitate more refined portfolio allocations and risk management decisions. Our 
analyses indicate that the risks in one asst can be used to predict the risks in the other 
assets. In fact, the results also show that expectiles-based measures of risk can be 
exploited to capture downside risk spillovers in complex markets that are subject to 
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global trade tensions and difficult economic environment. The findings have also 
implications regarding the design and implementation of procedures for monitoring 
and maintaining financial stability. Given the ability of Bitcoin risk to alter the risk of 
conventual assets, regulators and policy makers have to monitor the Bitcoin market 
for the sake of financial stability. Accordingly, our findings can have an influence on 
the decisions of governments in in countries that seek to consider Bitcoin as an 
official cryptocurrency or as part of their foreign reserves. 
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