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Self-organizing and Load Balancing with Quantum
Effect for Peer-to-Peer Collaborative Learning Agents

and Flexible Command and Control and
Organizational Structures

Ying Zhao, Member, IEEE , Gabe Mata, and Charles Zhou

Abstract—Distributed and collaborative computing and networking have been associated with peer-to-peer models. The U.S.
maritime operations, particularly in the littorals, have been contested and dangerous. It is imperative to develop tools and methods to
help tactical units execute distributed maritime operations (DMO) and expeditionary advanced base operations (EABO). The authors
show innovative Collaborative Learning Agents (CLAs) applied to distributed operations. The authors show a use case for distributed
Marine transportation units to handle Transportation Movement Requests (TMRs) as an example of EABO. The authors show how to
data-mine historical data, discover capability and behavior patterns and anomalies, then apply them to design new peer groups to
balance the load and maintain much lower signatures of being detected or targeted in a new environment. The authors map the need
of lowering operation signatures to a load balancing problem and apply lexical link analysis (LLA). The authors apply the principle of
quantum entanglement and superposition into a framework of LLA quantum intelligence game (LLAQIG). LLAQIG help a peer
achieve the Nash Equilibrium and optimal total social welfare for a whole peer-to-peer network. The DoD tactical units can
potentially leverage the results for flexible command and control (C2), organizational structures, and modernization.

Index Terms—collaborative learning agents, distributed computing, peer-to-peer network, unsupervised machine learning, lexical link
analysis, LLA, association patterns, data mining, load balance, lower signatures, quantum machine learning, LLA quantum intelligence
game, LLAQIG
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1 Introduction

Currently in industrial and commercial applications,
servers used in social networking, content hosting, and

service distributing [1] consist of two different system models:
centralized model or decentralized model.

In a centralized model, data is managed by a single
administrative domain, either an integrated client–server or
a decoupled client–server. In an integrated client–server, ap-
plication developers utilize their own servers to manage and
store relationships of clients or users, also provide required
resources supporting content sharing among clients. In a
decoupled client–server model, clients manage their own data
and only core services updated centrally. A centralized model
is friendly to developers, however, two key concerns have stood
out: accumulated costs for centralized operations, and security
and privacy concerns [2].

In a decentralized model, data management is distributed
across multiple administrative domains, and can be either
decentralized federated or peer-to-peer. In a decentralized
federated model, it offers no centralized infrastructure from
the application developers but there is reliance on exist-
ing decentralized and federated messaging system, such as
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Extensible Messaging and Presence Protocol (XMPP) [3],
which is an open communication protocol designed for instant
messaging (IM) and enables the near-real-time exchange of
structured data between two or more network entities [4].
Thus, clients can choose the service provider as long as they
are part of the same federation. The decentralized federated
model is a break away from the centralized models, with no
single owner of the network. Instead, users host parts of the
network and federate for a complete network, becoming the
bootstrap nodes for the network. Although federation tackles
the scalability concern, the security and privacy concerns are
very similar to a centralized model [5] since the bootstrap
node owners are able to access the private content of the
users that connect to them, while also having control of the
content stored on the servers. Therefore, data sovereignty is
not completely in the hand of a user.

A decentralized peer-to-peer model [6], [7] is different from
a federated one. A peer-to-peer network in which intercon-
nected nodes (“peers”) share resources without a centralized
administration. Peers are equally privileged participants of
tasks or workloads in an application. A peer-to-peer network
organically grows, reduces security, privacy, and anonymity
concerns, alleviates the need for monetizing, and achieves
shared cost of ownership [8].

Distributed and collaborative learning agents (CLAs),
the focus of this paper, are related to peer-to-peer systems,
however, they are studied for the needs of flexible command
and control (C2) and organizational structures of defense
applications. The warfare resource, capability, and assets of
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the U.S. Department of Defense (DoD) components such as
the U.S. Navy and U.S. Marine Corps. (USMC) may reside
in different warfare domains such as sensors, platforms, net-
works, logistics, and weapons. Operational domains can also
include different areas such as air, surface, subsurface, land,
and cyber. Flexible C2 and organizational structures in terms
of distributed combinations of the capabilities and tactics can
provide plug-and-play maneuvers and swarm of capabilities
that are unpredictable by the adversaries.

Distributed operations for defense application stem from
the Distributed lethality model [9], comprising of three pillars:

• The ability to increase the offensive power of individual
warships through networked firing capability;

• The distribution of the offensive capability over a wide
geographic area; and

• The allocation of sufficient resources to the surface
platforms in order to enable the enhanced combat
capability [10].

The major contributions of this article are summarized as
follows:

1) Distributed infrastructure for flexibility: CLAs con-
sist of distributed, networked, and peer-to-peer agent
architecture and analytics. The authors show the
units of the U.S. Navy or USMC empowered by CLAs
allow flexible combinations of capabilities.

2) Deep analytics for load balancing: The authors show
how to apply deep analytics to partition data and
resource from a previously centralized data reposi-
tory and C2 to distributed, collaborative, peer-to-
peer ones to address the challenges of new opera-
tional environments. Using a USMC’s transportation
scenario and data set as an example, the authors
show how to distribute the tactical units’ operations
that maximizes the benefits and lowers the signatures
of being detected and targeted by adversaries. The
authors map the need of lowering operation signa-
tures to a load balancing problem in a peer-to-peer
network, and apply lexical link analysis (LLA) to
solve the problem. The authors apply the princi-
ple of quantum entanglement and superposition in
quantum computing and quantum game, into LLA
quantum intelligence game (LLAQIG) to learn and
combine pattern and anomaly themes from LLA. The
LLAQIG reaches the Nash Equilibrium for each indi-
vidual agent or unit to maximize its value, meanwhile,
achieves the total social welfare for the whole peer-to-
peer system in an unsupervised and self-organizing
fashion. The LLAQIG quantum effect impact factor
is used to show how likely a unit can adjust its
load to an equilibrium one, e.g., a group average.
This is different from the current federated learning,
distributed learning, or quantum machine learning.

Fig. 1 shows a schematic network of CLAs used in dis-
tributed operations.

• Step 1: Each unit builds a content and peer network
using CLAs to:

– Index, data-mine, and fuse the transaction data
and content locally and from its peer network.

– Identify behavior patterns and groups of units
and capabilities from historical transaction data
in the peer network.

• Step 2: A unit receives a new request of capabilities,
it searches its peer network for the best match to fulfil
the request, meanwhile balances the load, avoids being
detected and targeted.

2 Review of the Current Peer-to-peer Models
In this section, the authors review the key components, i.e.,
overlay mechanisms, index and search mechanisms, publish
and subscribe mechanisms, storage and redundancy mecha-
nisms, and analytics for a peer-to-peer network.

2.1 Overlay Mechanisms
A peer-to-peer model has the advantages of being easily
scalable depending on the type of overlay chosen, i.e., how
peers join the network to bring their own resources. The
index and search mechanisms are also tied to the overlay
mechanisms: Based on how the nodes are linked to each other
within the overlay networks, resources are indexed and located
differently. One can classify overlay networks as unstructured,
structured or hybrid.

An unstructured overlay has flexible node relationships
and lookup operations [11], where nodes rely only on adjacent
nodes for message delivery [12]. The unstructured overlay
supports dynamic peer participation, or churn and a node
failure does not adversely affect connectivity [13].

A structured overlay has a tightly controlled topology
maintained via a network graph, with resources placed in a de-
terministic fashion using distributed hash tables (DHTs) [12],
and nodes cooperatively maintain routing content about how
to reach all nodes in the overlay [12]. Thus, structured overlays
support key-based routing protocols, and can only handle
exact match queries with high precision but are not designed
for keyword searches.

A combination of structured and unstructured overlay
relies on hybrid indexing schemes, hence may have super-
nodes [14]. These super-nodes are connected in a structured
network formation and the communication among the regular
nodes is unstructured.

2.2 Index and Search Mechanisms
Index and search mechanisms are at the core efficient informa-
tion retrieval for a peer-to-peer system. Peer-to-peer indexes
can be classified as local indexes, centralized indexes, and
distributed indexes.

In local indexes, each peer maintains an index for its own
data or objects only seen in the first Gnutella. They support
rich queries along with simple key lookups, and query flooding
is used for global data search. However, the use of local indexes
in a large and growing network becomes inefficient.

In centralized indexes, they depend on a single server to
maintain data references to many peers such as Napster6.
However, a centralized index for a peer-to-peer network rein-
troduces the problems of centralized systems, and hence is
discouraged for a fully decentralized application system.

In distributed indexes, nodes maintain information for a
part of the identifier space and a systematic routing table to
reach nodes responsible for other parts of the identifier space.
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A DHT is similar to a hash table with key-value pairs. Any
participating node can efficiently retrieve the value associated
with a given key. Keys are unique identifiers which map to par-
ticular values, which in turn can be anything from addresses,
to documents, to arbitrary data. The main advantage of a
DHT is that nodes can be added or removed with minimum
work around re-distributing keys.

2.3 Publish and Subscribe Mechanisms

A publish and subscribe system [15], [16], as an event-driven
distributed system, composes of three types of processes,
i.e., publishers, subscribers, and brokers [15] or capability
suppliers, request consumers, and routing brokers in Fig.
1. Each unit is simultaneously a publisher, subscriber, and
broker, therefore needs the mechanisms of all three. They
support distribution of information/data from the publishers
(service and content suppliers) to the subscribers (service
and content consumers). A supplier advertises a content or
service, and a consumer searches content based on its request
requirement. Brokers are essentially routing algorithms that
match suppliers against consumers’ requirements. A publish
and subscribe model depends on the routing algorithms and
overlay topology. A consumer unit needs to have the ability to
precisely match their interests and requests with the content,
which includes determining the overall specification of sup-
plied content and also how the content is routed to it. Content
search and match models can be topic-based, content-based,
or type-based.

2.4 Storage and Redundancy Mechanisms
Users in a peer-to-peer network can directly connect to their
trusted friends and share content. Peers that join the network
bring their own resources such as storage, network band-
width, and computing power, leading to an accumulation of
“free” resources without the need for central coordination by
servers or stable hosts. Peers are both suppliers and con-
sumers of resources and content, in contrast to the traditional
client–server model in which the consumption and supply of
resources is divided [17].

2.5 Analytics Related to Peer-to-Peer Systems
Traditional data sciences and analytics, even machine learning
(ML) and artificial intelligence (AI) algorithms used in small-
or moderate-sized analysis, typically require tight coupling of
the computations, where such an algorithm often executes in
a single machine or job and reads all the data at once [18].
It proves a difficult task to make a generic case of parallel
and distributed computing for analytic algorithms across
distributed data sources, especially for peer-to-peer systems.
The authors review existing analytics below.

2.5.1 Federated Learning and Distributed Learning
Federated learning is an ML technique that trains an ML
algorithm such as deep neural networks across multiple de-
centralized edge devices or servers, holding local data samples
without exchanging them. This approach stands in contrast
to traditional centralized ML techniques that require all the
local data sets uploaded to one server [18].

Fig. 1. Distributed Operations and CLAs: Each unit or node is represented as a single CLA. A unit can be a capability supplier, consumer, or
broker. The patterns of content, data, links in each unit are indexed and learned from historical transaction data. When using CLAs, each unit
first builds a content and peer network to index, data-mine, and fuse data locally and from its peer network, then to identify behavior patterns
and groups of units and capabilities. When a unit receives a new request of capabilities, it searches its peer network for the best match to fulfil
the request, meanwhile balances the load to lower the signatures and avoids detection.
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Federated learning enables multiple agents to build a
common, robust ML model without sharing data, thus al-
lowing to address critical issues such as data security, pri-
vacy, access rights, and anonymity. Applications of federated
learning spread over a number of industries including defense,
telecommunications, IoT, and pharmaceutics. Current feder-
ated learning consists of training local models on local data
samples and exchanging parameters (e.g. the weights of a deep
neural network) between the local nodes and federated servers
to generate a global model shared by the whole federation.
The local nodes do not share and exchange data among
themselves.

Federated learning relies on iterative processes broken up
into an atomic set of client-server interactions: Training local
models on the local data, then aggregating and processing
the local model into a single global model [19]. A central
server is needed for aggregation. In a peer-to-peer approach,
gossip [20] or consensus methodologies [21] lead to the same
results without central servers. For example, in the consensus
methodology, it requires agreement among agents for a single
data value. The agents must put forth their candidate values,
communicate with one another, and agree on a single consen-
sus value.

The consensus approach solves a consensus problem of
supervised learning, and results in a global model common
to all agents, e.g., a classifier minimizing the prediction error
over the union of all data sets.

The consensus approach often requires coordinating
agents to reach consensus. Real-world applications requiring
consensus include cloud computing, clock synchronization,
PageRank, opinion formation, smart power grids, state es-
timation, control of UAVs (and multiple robots/agents in
general), load balancing, and blockchain among others.

This is different from the gossip approach, where all agents
have personalized objectives. The gossip or collaborative
learning, whose goal is to collaboratively improve upon the
local learning models of agents by leveraging information from
their neighbors, is more flexible as it interweaves learning and
propagation in a single process. Specifically, it optimizes a
trade-off between the smoothness of the model parameters
over the network and the models’ accuracy on the local data
sets [20].

Distributed learning originally aims at parallelizing com-
puting power where federated learning originally aims at
training on heterogeneous data sets. While distributed learn-
ing also aims at training a single model on multiple servers,
a common underlying assumption is that the local data sets
are identically distributed (i.i.d.) and roughly have the same
size. None of these hypotheses are made for federated learning.
Instead, the data sets of a federated learning are typically
heterogeneous and their sizes may span several orders of
magnitude.

2.5.2 Self-organizing
One can say that federated learning is an improvement on dis-
tributed learning system, however, current federated learning
does not reside in pure peer-to-peer systems and only focus
on the problems such as prediction and classification that are
typical for supervised ML algorithms to solve.

Research falls short in the area where problems need
unsupervised ML algorithms related to the concept of self-

organizing, the process where some form of overall order or
pattern arises from local interactions between parts of an
initially disordered system. Peer-to-peer systems can be self-
organizing and often use algorithms and techniques inspired
by naturally occurring biological phenomena. These bio-
inspired solutions are characterized as being highly adaptive
and reactive, having support of heterogeneity, distributed
operations, resilience to component failure and can self-
organize [22]. Therefore, bio-inspired approaches have been
taunted as a possible alternative for managing peer-to-peer
overlay networks [23]. Swarm intelligence [24] has been proven
as an effective solution for a wide range of applications.

2.5.3 Load Balancing
In computing, load balancing refers to the process of dis-
tributing a set of tasks over a set of resources (computing
units), with the aim of making their overall processing more
efficient. Load balancing needs to optimize the response time
and avoid unevenly overloading some computing nodes while
other computing nodes are left idle. Master-worker schemes
are among the simplest dynamic load balancing algorithms.
A master distributes the workload to all workers or “slaves”.
However, master-worker schemes do not work for peer-to-
peer systems since there are no master nodes in peer-to-peer
systems. In addition, a peer-to-peer model needs to be fault-
tolerant and robust to reduce single point of failures. The
challenges are to develop self-organizing and unsupervised
learning mechanisms to achieve these requirements for load
balancing of peer-to-peer systems.

2.5.4 Peer-to-peer Mining
The concept peer-to-peer mining is associated with dis-
tributed computing and data analytics, which was envisioned
in earlier software and network systems, and has been evolved
and advanced in many interesting commercial applications
such as bitcoin mining and alternative digital cryptocurren-
cies.

Bitcoin, for example, launched with the intent to have
utility as a peer-to-peer financial system. Bitcoin mining is
the process of creating new bitcoin by solving a computational
puzzle. Bitcoin mining maintains a global ledger of transac-
tions based on DHT and upon which Bitcoins are traded and
generated.

2.5.5 Peer List, Trust, and Security
As a critical component of peer-to-peer systems, like other
systems, data have an appealing target for cyber-attacks.
Tampering with data can go undetected and drive malicious
operations, e.g. data alteration and deletion.

Peer-to-peer models support the zero-trust security re-
quirements [25]. Peer-to-peer networks can remain functional
under churn, strong heterogeneity of resources and workload,
and the presence of malicious nodes in the network and
tailored attacks [1]. A single user is unable to turn the system
down or to censor the content.

3 Defense Application Needs
3.1 Characteristics of New Operational Environments
The U.S. Department of Defense (DoD), who has realized
the importance of distributed computing and peer-to-peer
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architecture early on, has conducted research as part of the
modern warfare strategy [26], [27]. The DoD resources have
gradually migrated to large, distributed, more mobile and
wireless networks of networks. However, the U.S. DoD faces
very sophisticated adversaries and has to operate in contested,
degraded, and dangerous environments.

Contested environments [28] are degraded environments
caused by enemy action, for example, laser, direct weapons,
electronic warfare threats, and cyber attacks. Degraded en-
vironments may also be caused by failed systems or bat-
tle damage. In contested and degraded environments, op-
erational effectiveness reduces, that is caused by the envi-
ronmental limitations, for example, unavailable, jammed, or
unreliable network connectivity and bandwidth. Contested
environments can be subdivided into anti-access and area de-
nial environments. Anti-access environment challenges access,
complicates entry, and makes force posturing very difficult.
Area denial environment limits movement and maneuver of
the forces. For example, in a communication-degraded or
communication-denied environment, local connectivity is pos-
sible, however, global networked connectivity is not possible.
Therefore, peer-to-peer models are more suitable for the con-
tested and degraded environments, resources have to assemble
and reassemble on-the-fly without any fixed infrastructure.

To enhance total force readiness and project combat power
across the wide range of operations and spectrum of conflict
at any time, the U.S. Navy and Marine Corps (USMC)
need larger hybrid fleet, consisting of manned and unmanned
platforms and also the composition of the fleet and the right
mix of platforms, to deliver synchronized lethal and nonlethal
effects across all domains including distributed weapons of
increasing range and lethality [27], [29]. Distributed Maritime
Operations (DMO) for the Navy and Expeditionary Advanced
Base Operations (EABO) for the USMC are essential concepts
to maintain C2 superiority [30] to conduct enduring sea
control and power projection missions.

• A key capability to achieve DMO and EABO is the
Naval Operational Architecture which enables decision
superiority at speed in a high-end fight and flexi-
ble configuration and plug-and-play among sensors,
platforms and weapons, e.g., a sensor connected to
a shooter. These emerging concepts require flexible
infrastructure (computing power and data storage),
network (data links, antennas, routers, and protocols),
data strategy, and tools including tactical decision aids
to help analyze and display data with understandable
and actionable information to the operators.

• DMO and EABO also require to communicate and
share information, critical in a contested environment.
In peacetime, or against lesser adversaries, distributed
C2, dynamically maneuvered forces, and synchronized
effects in time are applied effectively. However, in
contested environments, the existing concepts and tac-
tics fall short. This calls for the DoD to apply data-
driven analysis, innovative and adaptive concepts of
operations (CONOPS) linked to the National Defense
Strategy and the nature of global threats, and to scale
new capabilities for warfighters.

• The DMO and EABO concepts consider not only
offensive capabilities for winning battles, but also de-

velop the abilities to counter-detect and confuse the
enemy as critical tasks to achieve success in contested
environments.

• Another DMO and EABO imperative is logistics. An
enterprise to operate and sustain the warfighters in
contested environments, which require new platforms,
manned and unmanned, to sustain small, dispersed
units far to the front.

Traditionally, a baseline force structure consists of a fixed
set of friendly force ships and aircraft arranged into action
groups including a Carrier Strike Group (CSG), Expedi-
tionary Strike Group (ESG), Surface Action Group (SAG),
and various independent deployable units such as expedi-
tionary Marine units for EABO. The DMO and EABO opera-
tional requirements need the state-of-the-art peer-to-peer sys-
tem capabilities, in order to manage capabilities, manpower,
maintenance, and supply among other resources of distributed
units using the right data strategy, distributed infrastructure,
and deep analytics including AI/ML.

3.2 Important Peer-to-peer Architecture and Analytics
Requirements for DMO and EABO

It is important for DMO and EABO systems to foresee low
availability of units with relevant duties and thus to coun-
teract by selecting other nodes for load balancing, prioritize
message and differentiate services of peers, forward and make
most of the peer-to-peer overlays [31], and optimize routing
based on monitoring content including existing collaboration
patterns [32].

The type of load balancing may need to be accomplished
using self-organizing and self-stabilizing analytics that can
guide the process of a peer-to-peer system to converge from
any given connected topology to a desired topology [33],
achieving overall system reliability, reducing risk in the pres-
ence of outside threats, and avoiding being detected and
targeted.

DMO and EABO require data and storage management
for each unit, sync and replicate data when a unit returns
to the base. Each unit should define with a great deal of
flexibility towards a total plug-and-play with its own col-
laborators, peers, social connections, and friends. Units may
also need to locate and reestablish connections with lost
friends and form new relationships based on common interests
such as service and content requests. Units should be able
to traverse its own and its peers’ social graphs for their
published content, however, not private content. Means of
communication ensure synchronous communication such as
instant messaging and asynchronous communication to secure
channels and bandwidth for units and to interact with one
another via messages in the form of text, photos, audio, video,
or other format. The messages can be public or private. Shared
storage space interaction might be possible to allow units
to interact with each other via walls, forums or commonly
shared folders as in commercial collaborative cooperations,
gaming, and digital workplaces. One-to-one direct commu-
nication, either asynchronously, when typically the storage
is used, or synchronously, when direct messages are sent
between peers [1]. Multicast communication makes it possible
for multiple parties to communicate at once.
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4 Use Case Scenario
The Transportation Capacity Planning Tool (TCPT) [34] is
a centralized client-server system integrated with the Global
Combat Support System-Marine Corps (GCSS-MC) as a
“bridge technology,” used by the USMC to provide near-term
transportation planning, management, and execution capa-
bilities to supply its operating forces. As a web-based applica-
tion, it enables assets visibility and in-transit visibility that
contribute important information to the logistical picture.
The sample data contains 37,449 transportation movement
requests (TMRs) from 01-OCT-20 to 25-MAR-21 for 287 units
and 15 equipment. The capabilities of a unit are associated
with the equipment it operates. The data attributes are listed
as follows:

• Unit ID
• Equipment TAMCN
• Cargo weight
• Passengers
• Fuel cargo
• Water cargo
• Fuel used
• Oil used
• Miles traveled
• Hours operated

The objectives of the use case to support the EABO
concept and requirement are to

1) First data-mine the centralized data set, analyze
patterns of units collaboration, and prioritize the
units based on the capabilities (e.g., equipment) and
characteristics of the requests (e.g., people or cargo),
and then

2) Use the data mining results to guide the design and
applications of CLAs in a peer-to-peer network. This
allows self-organizing, load balacing, and avoidance of
being detected, targeted, and flexible C2.

The authors apply CLAs for both objectives. CLAs include
distributed, networked, and peer-to-peer agent architecture
and analytics. Initially, the authors show how to use a single
CLA to represent the data set from the centralized model to
address 1), then use the patterns discovered from 1) to design
a peer-to-peer network for 2).

5 Collaborative Learning Agents
As shown in Fig. 2, a single agent represents a single system
capable of ingesting data, indexing, cataloging information,
and performing knowledge and pattern discovery, machine
learning from data, and separating patterns and anomalies
from data. A single CLA represents an operational unit which
possesses certain capabilities. Multiple CLAs work collabora-
tively in a peer-to-peer network. Each agent has a peer list.
In a more detail, a CLA first indexes the data (structured and
unstructured data sources) locally using unsupervised ML and
data mining algorithms, data-mines and discovers knowledge
patterns, and then fuses the models with the models of its
peers. Therefore, the models and indexes that are available
for the whole peer network. A network of CLAs’ collaboration
is achieved through a peer list defined within each agent,
through which each agent passes shared information to its

peers. A CLA network and collaboration mechanism is fault-
tolerant, self-organizing, adaptive, and resilient. CLAs have
been used in the Navy applications such as building swarm
intelligence to health monitoring of systems of systems such
as ships, Internet of Things (IoTs) [35], and edge computing.
CLA also participated a Naval Trident Warrior exercise [36].

CLAs are related to peer-to-peer systems, yet, have the
following major differences:

• CLAs’ overlay structures are unstructured, agents join
the network through the peer lists of each existing
agents.

• CLAs’ index and search are performed for each peer
network in each agent without a dedicated or dominant
agent.

• CLAs’ learning is not federated learning or distributed
learning. Each agent keeps a list of knowledge bases,
however, the list is not global like DHT. Each agent’s
knowledge base is only relevant to its own peer net-
work. Each agent performs unsupervised learning to
discover patterns and anomalies.

• CLAs self-organize to achieve load balancing, accord-
ing to the principle of quantum entanglement and su-
perposition of the value interaction between patterned
and anomalous themes.

For CLAs, each agent (i.e., each node or unit) in itself
becomes the relay of data, communication, request, and capa-
bility of other nodes to achieve the critical infrastructure pro-
tection without fixed structures. In the most advanced cases,
the peer-to-peer or infrastructure-less networks of resources
need to have no fixed, in-place network equipment, fluid, and
dynamic.

This paper focuses on showing how a tactical unit modeled
as a CLA in an EABO use case, which indexes, machine-
learns from local data, fuses models from its peer network,
and prioritizes the data items from the data mining and
fusion models. An agent j includes an analytic engine with
two algorithms, i.e., an AI/ML (Mine) and fusion (Fuse)
algorithm, which can be customized externally. The Mine
algorithm integrates the local knowledge base b(t, j) and the
global knowledge base B(t − 1, j) into a new knowledge base
B(t, j). The Fuse algorithm assesses the total value of Agent
j by separating the total knowledge base into the categories
of patterns and anomalies, and predict a total value V (t, i, j)
for each piece i of the content in Agent j. The whole process
is illustrated in Algorithm 1, where p(j) represents the peer
list of Agent j. The total value V (t, i, j) is used in the global
sorting and ranking of relevant content c in Agent j used in
the agent’s publish, subscribe, index, and search models to
balance load and self-organize.

Algorithm 1 Mine and Fuse in a single CLA j

while t ≥ 0 do
for each p(j) in Agent j’s peer list do
B(t, j)⇐Mine(B(t− 1, p(j)), b(t, j))

end for
for c of the information in Agent j do
V (t, c, j)⇐ Fuse(B(t, j))

end for
end while=0
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Fig. 2. A single CLA data mine and discover patterns for local data sources, multiple CLAs fuse data from its peer list and collaboratively create
ML models

Algorithm 1 can run continuously over time and paral-
lel for each Agent j. In order to perform the Fuse algo-
rithm, the association list B(t, j) is computed recursively with
the amount of the computation distributed among multiple
agents. Both Mine and Fuse algorithms can be customized ex-
ternally. The following Mine and Fuse algorithms are used in
this paper based on the LLA algorithm. The CLA infrastruc-
ture enables a collection of agents working together for fusing
heterogeneous big data sources in a parallel and distributed
fashion as if they are in a single agent. The methodology
can be applied to a wide range of system of systems that
leverage collaborative, distributed learning agents and AI for
automation.

5.1 The Mine Algorithm
A CLA outputs a knowledge base B(t, j) which contains
two components as shown in Fig. 3: The first component
is an association list which contains pairwise correlations or
associations between two word features. The word features
are universal vocabularies and basic elements used for all the
agents to form concepts in their knowledge bases. The second
component is a context/concept list, which contains lists of

Fig. 3. CLA Mine and Fuse

context and concept pairs. Contexts can also be concepts of
timestamps, geolocations, or universal file locators used for all
the agents.

In the CLA’s Mine step, if Agent j’s local model b(t, j)
shares word feature pairs with the knowledge bases to which
its peers pass, i.e., B(t − 1, p(j)), the Mine algorithm simply
modifies and updates the local association list to reflect the lo-
cal data. Meanwhile, a so-called context learning is performed
at each agent when the two agents do not share existing word
feature lists, however, potentially share some contexts. The
Mine algorithm is shown in Algorithm 2.

Algorithm 2 The Mine Algorithm for CLA j

for k in the local knowledge base do
if b(t, j, k) in B(t− 1, p(j)) then
B(t, j, k)⇐ B(t− 1, p(j), k) ∪ b(t, j, k))

else
for shared context c of Agent j and Agent p(j) do
B(t, j, c)⇐ B(t− 1, p(j), c) ∪ b(t, j, c))

end for
end if

end for=0

LLA can be used as a Mine or Fuse algorithm. In a LLA,
a complex system can be expressed in a list of attributes
or features with specific vocabularies or lexicon terms to
describe its characteristics. LLA is a data-driven text analysis.
For example, word pairs or bi-grams as lexical terms can
be extracted and learned from a document repository. LLA
automatically discovers word pairs, clusters of word features
and displays them as word feature networks. LLA is related to
but significantly different from so called bag-of-words (BOW)
methods such as Latent Dirichlet Allocation (LDA) [37].

Bi-gram allows LLA to be extended to numerical or cat-
egorical data. For example, for structured data such as at-
tributes from databases, LLA discretizes and then categorizes
attributes and their values to word-like features.

LLA computes the counterfactual proportion difference
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(cf) in Eq. (1) as the strength of two associated items:

cflk = [P (wl|wk)–P (wl|Not wk)]×(Pooled sample size) (1)

where P (wl|wk) is the probability of word feature wl occurs
in the same context if word feature wk occurs. The pooled
sample size is a pooled number of co-occurrence of wl and
wk. cflk is a z-score [38]. If cflk > 1.96, then the link
between word feature wl and wk is statistical significant with
p − value < 0.05. The output of the Mine algorithm is the
statistical significant association matrix for all word feature
pairs wlk, l = 1, ...,W ; k = 1, ...,W , where W is the total
number of unique word features in Agent j’s peer network as
its knowledge base, shown in Eq. (2):

B(t, j) =
[
cf11 ...
... cflk ...

]
(2)

All the entries cflk > 1.96 in Eq. (2).

5.2 The Fuse Algorithm - Prioritizing Content
Traditionally in network theory, the importance of a node is
a form of high-value information. Current methods of ranking
high-value nodes require established hyperlinks, citation net-
works, social networks, or other collective intelligence marked
by humans. However, few or no hyperlinks are available for
private or proprietary data. Furthermore, high-value infor-
mation can be different from applications. Current methods
mainly score popular information, which are mostly useful for
marketing applications. Anomalous information is important
for intelligence analysis. When a peer as a content provider
in a peer-to-peer network crowdsources from its peers as the
content consumers, it can be viewed as a strategic cooperation
game of two players. The content provider’s search for the
best value of itself as a Nash equilibrium may not achieve a
full Pareto efficiency or the so-called optimal social welfare for
the whole peer network, referred as the Prisoner’s dilemma.
It is necessary to apply quantum computing and game prop-
erties to reach both the Nash equilibrium and optimal social
welfare [39].

5.2.1 The Fuse Algorithm Using Eigenvector
A Fuse algorithm examines the knowledge base association
matrix B(t, j) as a whole to rank the word features for each
peer network. A unit or a capability is represented as a word
feature or a node in the word feature network, one Fuse
algorithm in CLA is to rank and prioritize each word feature
according to a global structure (i.e., the matrix in Eq. (2))
that each agent perceives from its own peer network when
the peers start to self-organize. For example, initial ranking is
shown in Eq. (3)

~u0 =


u0

1
u0

2
...
u0
i

u0
N

 (3)

And

~u =


u1
u2
...
uN

 (4)

is the adjusted ranking over time. According to the game
theory, a fixed point or a Nash equilibrium is achieved in Eq.
(5):

B~u∗ = ~u∗, (5)

where B = 1
λmax

B(t,j) is the association matrix computed
from Algorithm 2 and Eq. (2). λmax is the maximum eigen-
value of B(t, j) and the maximum eigenvalue for B is 1. The
B(t, j) is a primitive matrix related to the Perron-Frobenius
theorem [41]: It is non-negative (i.e., all its elements are non-
negative real numbers) and its mth power is positive (i.e., all
its elements are positive) for some natural number m and the
same m works for all pairs of indices, then eigenvalue with the
maximum magnitude of B(t, j) or B(t, j)’s spectrum radius is
positive, i.e. λmax > 0.

The self-organized and self-stabilized ranking ~u∗ is the
eigenvector corresponding to the maximum absolute eigen-
value of B [40], [42], i.e., 1. The ranking change ~u0 propagates
through the peer network, every node can reach every other
node when t continues long enough or irreducible.

The final ranking for all the nodes can be expressed as in
Eq. (6) when the network reaches the equilibrium:

~ufixed =
√

(u0
1)2 + (u0

2)2 + ...+ (u0
N )2


u∗

12
u∗

22
...
u∗
i 2

u∗
N2

 (6)

5.2.2 The Fuse Algorithm Using LLA
LLA can be another Fuse algorithm. The word features in
LLA are clustered into groups or themes using the community
detection algorithms. Each theme is assigned to one of the
three categories based on the modified “modularity” measure
from the community detection algorithm [40]:

• Patterned (P) themes: A patterned theme is more
likely to be shared across multiple diversified domains,
which are already in the public consensus and aware-
ness and can be authoritative.

• Emerging (E) themes: These themes tend to become
patterned over time.

• Anomalous (A) themes: These themes may not seem
to belong to the data domain as compared to others.
They can be interesting, unique, innovative to specific
entities and may be high-value and need further inves-
tigation.

In the community detection algorithm [40], a quality func-
tion (or Q-value), as specifically defined as the “modularity”
measure, i.e., the fraction of edges that fall within communi-
ties, minus the expected value of the same quantity if edges
fall at random without regard for the community structure, is
optimized using a “dendrogram” like greedy algorithm. The
Q-value for modularity is normalized between 0 and 1 with 1
to be the best and can be compared across data sets.

In LLA, the authors improve the modularity metric by
considering a game-theoretic framework with quantum com-
puting principles. In a social network, the most connected
nodes are typically considered as the most important nodes.
However, in LLA, the authors consider anomalous information
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may be more interesting and correlated to high-value nodes.
For example, anomalous content can be used for load balanc-
ing for the DMO and EABO units. Also, for a content, the
combination of patterned, emerging and anomalous themes
contributes to the total value of the information.

Let the value of a content c computed from patterned (P)
themes P (c) and from anomalous (A) themes A(c) of LLA,
respectively. The total value V (c) for c is a function of P (c)
and A(c) as shown in Eq. (7).

V (c) = f(P (c), A(c)) (7)

The authors apply the principle of quantum entanglement
and superposition in quantum computing and quantum game
to learn and select function f in Eq. (7). The framework allow
each agent reach the Nash Equilibrium to maximize its value,
meanwhile, achieve the optimal total social welfare for its
peer-to-peer system as a whole in an unsupervised fashion.
The contribution is different from the current federated learn-
ing and distributed learning.

5.2.3 Game-theoretic Properties of LLA
In a traditional game theory, a player’s search for its own best
reward is modeled as to reach a Nash equilibrium may not
achieve a full Pareto efficiency or optimal social welfare for
all other players, referred as the Prisoner’s dilemma. When
comparing one Nash equilibrium to another, the one that
has a higher social welfare is a Pareto superior solution.
A self-player agent or unit is more successful in terms of
crowdsourcing response of an information, e.g., publishing
content, if its strategy results in a higher social welfare.

A high-value content has to achieve Nash equilibrium ,
i.e., maximizes its own reward, meanwhile, is Pareto efficient
or superior. It is necessary to apply quantum computing
and quantum game properties to meet two requirements
simultaneously. The authors show a connection between LLA,
quantum computing, and quantum game theory so both re-
quirements are satisfied.

A correlation is computed for a content provider’s content
x with its opponent y’s content, i.e., the content consumers or
crowdsourcing audience, can be estimated from the overlap-
ping word features that x and y possess. Assume the sets of
word features for the patterned and anomalous themes for y
is Py and Ay, respectively, and the sets of word features from
x belong to Py and Ay are px and ax, respectively.

When an self-player acts as a content provider to seek
value from a cooperative opponent, the self-player has to
be also Pareto efficient or superior in order to obtain the
right response from the opponent, i.e., the content consumers
or crowdsourcing audience. Being Pareto efficient means the
system can not make at least one player better off without
making any other player worse off, i.e., achieving the so-called
optimal social welfare.

5.2.4 Quantum Properties and Traditional Quantum Game
A classic computer operates on bits, 1 or 0. A quantum
computer operates on qubits. Thus, while a classic computer
can only be in one of two states, a quantum computer with
n qubits can be in an arbitrary superposition of 2n states si-
multaneously, allowing exponentially more possible combina-
tions of states than a regular computer. Quantum mechanics

concepts have informed not only quantum computing meth-
ods and physical quantum computers, but also information
processing in computer science and biology. For instance, the
concepts of quantum superposition and entanglement were
applied to genetic and evolutionary algorithms [43]. Though
quantum computing details are not the focus of this paper, it
is noted that quantum computing, entanglement, and super-
position properties are essential for the traditional quantum
game and quantum intelligence game. In literature, quan-
tum computing principles were explored jointly with game
theory to escape the Prisoner’s dilemma. Several frameworks
for quantum game have been proposed [39], [44], [45]. The
following review is based on the framework detailed in [39],
[46], in which the quantum Prisoner’s Dilemma is discussed.
In a quantum game, each player has a qubit and can manip-
ulate it independently. The quantum formulation proceeds by
assigning the possible outcomes of the classical pure strategies
C and D to two basis vectors in Eq. (8)

|C〉 =
[
1
0

]
, |D〉 =

[
0
1

]
(8)

The state of the game is described by a vector in the tensor
product space which is spanned by the game basis |CC〉,|CD〉,
|DC〉 and |DD〉. At the beginning of the game, the qubits
|C〉 ⊗ |C〉 go through an entangling gate Ĵ = exp(iγ2 D̂ ⊗ D̂)
and γ is the measure of entanglement. ÛA and ÛB are the
quantum strategy moves available to the players with the two
parameters of a quantum unitary 2 x 2 matrices in Eq. (9) and
0 ≤ θ ≤ π and 0 ≤ φ ≤ π

2 .

Û(θ, φ) =
[
eiφ cos θ2 sin θ

2
− sin θ

2 e−iφ cos θ2

]
(9)

After the actions of both players and the gate, the final
state |ψf 〉 = Ĵ+(ÛA ⊗ ÛB)Ĵ |CC〉, which is a superposition.
Measurement will make the final state collapse to one of
classical basis and the reward is calculated according to the
corresponding entries in the matrix. The row player’s expected
reward is given by

RA = rPCC + sPCD + tPDC + pPDD (10)

Two special cases are shown as follows:

1) For a separable game where γ = 0, there exists a pair
of quantum strategies (D̂, D̂) as in Eq. (11)

D̂ = Û(π, 0) =
[

0 1
−1 0

]
(11)

which is a Nash equilibrium and yields reward (p, p).
The quantum game behaves as a classical one.

2) For a maximally entangled quantum game where γ =
π
2 , a novel Nash equilibrium as in Eq. (12).

Q̂ = Û(0, π2 ) =
[
i 0
0 −i

]
(12)

exists, which yields reward (r, r) and has the property
of being Pareto optimal. Therefore the Prisoner’s
dilemma existing in the classical game is removed.
The reward for (Q̂, Q̂) is equal to (Ĉ, Ĉ), so one can
adopt Q̂ as the cooperator’s strategy instead of Ĉ
so that the dilemmas in the classical game theory
can be resolved in the quantum game theory. For
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the Prisoner’s dilemma game, the modified matrix in
the non-maximally entangled quantum game can be
obtained.

 Q̂ D̂

Q̂ r t sin2 γ + s cos2 γ

D̂ t cos2 γ + s sin2 γ p

 (13)

The Prisoner’s dilemma is resolved if r > sin2γ +
s cos2 γ and p < t sin2 γ+s cos2 γ. In these conditions,
a unique Nash equilibrium (Q̂, Q̂) exists, which is
Pareto optimal. The two inequalities call for

sin2 γ > max( t− r
t− s

,
p− s
t− s

) (14)

The classical chicken game is an anti-cooperation game, in
which two chickens chose “Dare” to cross the street or
“Chicken out” to not cross the street. It is mutually beneficial
for the players to play different strategies.

By using quantum computing properties to the classical
chicken game, one can also achieve both Nash equilibrium and
Pareto optimality as in the Prisoner’s dilemma game. In the
same way, one can get the modified matrix of the classical
chicken game in Eq. (15). Q̂ D̂

Q̂ r t sin2 γ + p cos2 γ

D̂ t cos2 γ + p sin2 γ s

 (15)

and the condition of escaping from the dilemma of CG.

sin2 γ >
t− r
t− p

(16)

5.2.5 LLA Quantum Intelligence Game (LLAQIG)
In contrast to a traditional quantum game, the authors ap-
ply geometric and probabilistic quantum superposition and
entanglement to the pattern and anomaly themes of LLA
to determine the quality, value, or impact of a content. The
resulted quantum machine learning system is a quantum intel-
ligence game or LLAQIG . The authors hypothesize quantum
entanglement and superposition effect may be in work in real
life for a content provider and its content consumers or au-
dience. A content provider (self-player) and its crowdsouring
audience (opponent) always have a degree of entanglement
since their knowledge bases are correlated and overlapped that
constitute the content propagation and delivery. The degree
of correlation is px, annotated as the entanglement γ and
entangling Ĵ gate in the traditional quantum game.

The authors show that one can apply the principle of quan-
tum entanglement and superposition in quantum computing
and quantum game to learn and select function f in Eq. (7)
to achieve the Nash Equilibrium for each individual agent
to maximize its value, meanwhile, achieve the optimal total
social welfare for the whole peer-to-peer system in an unsu-
pervised fashion. This is different from the current federated
learning, distributed learning, or quantum machine learning.

For two pure strategies for C andD, a superposition would
be

|X〉 = c0 |C〉+ c1 |D〉 (17)

where the coefficients c1, c2 are complex numbers.

Fig. 4. Superpositioned patterned (P) and anomalous (A) strategies.
The highest-value of a self-player is achieved at the Nash equilibrium
and maximal total social welfare

c0 |C〉 = eiθ

c1 |D〉 = beiφ
(18)

The magnitude of the superposition as a total reward, i.e.,
total social welfare ρ, for the LLAQIG is

ρ = 〈X|X〉 = 1 + b2 + 2b cos(θ − φ) (19)

Among the four points (x1, y1), (x2, y2), (x3, y3), and
(x4, y4) in the superpositioned circles in Fig. 4 and (x1, y1) is
the unique Nash equilibrium for all given cos θ, neither player
can unilaterally improve its reward because the two players
are correlated and entangled. The Nash equilibrium (x1, y1)
also reaches the maximal total social welfare 1 + b and θ = φ.
This is the gain from the quantum effect.

In summary, for a new content c from a content provider,
and assume Py(t, j) and Ay(t, j) are the number of patterned
and anomalous word features for Agent j and its peer network
as content consumers y, and N is a normalization factor, e.g.,
the length of a sentence or message of a content, the value of
content c, V (c), from LLAQIG are computed in Algorithm 3.

Algorithm 3 LLAQIG Algorithm
while t ≥ 0 do

[Py(t, j),Ay(t, j)]⇐ LLA[B(t, j)]
for each new content c provided by x do
V (t, c)⇐ [1 + ax(t,j,c)

N ] px(t,j,c)
N

end for
end while=0

where px(t, j, c) and ax(t, j, c) are the number of over-
lapping word features of the content c with the Py(t, j)
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and Ay(t, j) for Agent j and its peer network at time t,
respectively

LLAQIG Impact Factor of c = [1 + ax(t, j, c)
N

]px(t, j, c)
N

(20)
The LLAQIG quantum effect impact factor measures the

value of a content c expressed in the superposition of the
pattern component px(t,j,c)

N and anomaly component ax(t,j,c)
N ,

and px(t,j,c)
N is the degree of entanglement.

6 Results and Discussions
1) The following are output scores to rank the

nodes/units/items generated by LLA for the use case
data set:

• Number of baskets: A “basket” is a transaction
group specified initially for the data. A basket
is a TMR record in the data set, and items can
be a unit’s capability or other characteristics of
a TMR. Items that co-occur repeatedly across
baskets are considered as associated and likely
to be grouped together. If an item is unit,
number of baskets is the load for a unit.

• Total baskets: Total number of baskets or
TMRs.

• LLA group ID: The LLA group that an item
belongs to. Each group contains the items
linked through co-occurrence.

• LLA type: Patterned, emerging, or anomalous,
the LLA category that an item is categorized.

• LLA group size: Number of unique items in the
LLA group that an item belongs to.

• The probability of occurrence (PO): The per-
centage of baskets contains an item.

• Degree in: Number of items with smaller POs
occur in the same basket with an item.

• Degree in weight: Degree in
Average cf . cf is in Eq. (1),

total estimated impact from other items oc-
curred together.

• Degree out: Number of items with larger POs
occur in the same basket with an item.

• Degree out weight: Degree out
Average cf , total estimated

causal impact of an item to other items.
• Degree: Sum of Degree in and Degree out.
• Degree weight: Degree×Average cf .
• Betweenness: Number of items to which an

item links with the different LLA groups.
• LLAQIG scores of items: Based on Eq. (19)

Fig. 5 shows an example of unit scores output from
LLA for Group 1(A).
Fig. 6 shows Unit 364 linked to the capabilities (e.g.,
equipment) and other characteristics of TMRs. For
example, Unit 364 is associated with the capabilities
of the following as also shown in Fig. 6:

• equipment tamcn d0007, i.e., equipment
d0007

• equipment tamcn d0013, i.e., equipment
d0013

• equipment tamcn d0005, i.e., equipment
d0005

• equipment tamcn d0015, i.e., equipment
d0015

• equipment tamcn d1062, i.e., equipment
d1062

• equipment tamcn d1073, i.e., equipment
d1073

And characteristics

• cargo weight bt 12353.0 45643.2, i.e,
cargo weight between 12353.0 and 45643.2

• cargo weight mt 45643.2, i.e., cargo weight
more than 45643.2

• passengers bt 0 12.8, i.e., passengers be-
tween 0 and 12.8

• fuel used bt 0 28.5, i.e., fuel used between
0 and 28.5

• hours operated bt 0 25.9, i.e., hours oper-
ated between 0 and 25.9

• miles traveled bt 0 103.1, i.e., miles trav-
eled between 0 and 103.1

The association strength of Unit 364 with the capabil-
ities and characteristics are computed from Eq. (1),
e.g., the strength with equipment tacmn d1062 is
21.6.

2) In a network of free content flow, i.e., in the cen-
tralized model of the original data set, where the

Fig. 5. Unit Scores Output from LLA for Group 1(A)

Fig. 6. Capabilities and Characteristics Linked to Unit 364
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distribution of the load converges to an equilibrium
state and some units have more load than others
according to the Fuse algorithm using eigenvector in
Section 5.2.1. For example, in Fig. 15, units sorted
by the real load indicate the top 26% (75 units) have
80% of all the workload. These units behave more
important than others and may be detected and tar-
geted by the adversaries. Fig. 15 shows the cumulative
real load from the sorted units using Degree scores,
eigenvector scores, and Degree weight scores. The
correlation with the real load for the Degree scores
from the LLA fuse algorithm, the scores from the
eigenvector fuse algorithm of Eq. (6), and Degree
weight is 0.60, 0.52, and 0.64 as shown in Table 1,
respectively. Degree weight is a better prediction of

Fig. 7. LLA Group 1(A)

Fig. 8. LLA Group 2(E)

the real load than Degree alone due to the adjustment
from the statistically significant association strength
calculation from Eq. (1).

Fig. 9. LLA Group 4(E)

Fig. 10. LLA Group 3(A) and 9(A)

Fig. 11. LLA Group 8(E)
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TABLE 1
Correlations of Predicted and Real Load

Prediction Method Correlation
Degree 0.60
Eigenvector 0.52
Degree weight 0.64

3) In a new operational environment such as in a con-
tested environment, one would like to set up a peer-
to-peer system to distribute the data and workload to
the peer units and avoid being detected and targeted.
The goal is to balance the load of the nodes to

Fig. 12. LLA Group 6(P)

Fig. 13. LLA Group 7(P)

the opposite directions. Fig. 16 shows the themes
discovered by LLA corresponding to the LLA groups.
The keywords of a theme describe the units, capabil-
ities, and characteristics within a group. Each group
consists of units with linked to similar capabilities
and characteristics. Fig. 7 to Fig. 14 show these LLA
groups of units.

4) The LLA groups can be used for load balancing as
follows:

• Units in each group are peers of each other,
sharing data and local indexes.

• Units in each group can search and match each
others’ content (e.g., capability and character-
istics patterns) for a new input of capability
request, e.g., a specific equipment request.

• For a capability request as shown in Fig.
7, i.e., someone requests a service using
equipment tamcn d0013 which is entered via
Unit 3210, the unit searches shared content in
the peer network, and finds Unit 5058, Unit
5060 both have low load and both linked to the
requested capability, therefore Unit 3210 can
potentially route the capability request to Unit
5058 or Unit 5060. As the consequence, the load
of Unit 3210 is balanced to Unit 5058 or Unit
5060.

• After the ten peer-to-peer networks are es-
tablished, the load in each group is balancing
towards the average within each group if sorted
by Degree weight. After such balancing, i.e., if
each unit had the group average as a new load,
then 63% (182 out of 287) of the units would
cover 80% of the total load, corresponding to
the curve that the units are sorted by the “LLA
Peer Group Load Average and Degree Weight”
in Fig. 15. Note that in a total random and
load balanced peer-to-peer network, 80% of the
units would cover 80% of the total load. It
would be optimal to achieve this lowest sig-
nature and best counter-detection posture to
avoid being targeted. However, it is not pos-
sible to reach the total random configurations
of peers because the units’ capabilities and
behavior characteristics patterns are intrinsic
to the units.

Fig. 14. LLA Group 10(A) and 5(A)
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5) The LLAQIG quantum effect impact factor computed
from Eq. (20) is used to show how likely a unit can
adjust its load to an equilibrium one, e.g., a group
average. Sorting by the LLAQIG quantum effect im-
pact factors alone for all the units, 64% (184 out
of 287) of units would cover 80% of the total load,
corresponding to the curve that the units are sorted
by the “LLAQIG Quantum Effect Impact Factor” in
Fig. 15. Combined with the LLA groups, Fig. 5 shows
units in Group 1(A) balanced to the average load
113. The higher the LLAQIG quantum effect impact
factor associated with a unit, the more likely it’s load
balance towards the group average. For example, Unit
5058 has a higher LLAQIG because it has two pattern
scores, two emerging scores, and two anomaly scores,
combined impact factor 0.44, so its load would be
increased more quickly to 113 from 7 since it is linke
to the characteristics “cargo weight mt 45643.2”,
while Unit 5060 has no pattern scores and one
anomaly score, combined impact factor 0, indicating
it is a quite isolated unit in the original centralized
network, therefore, the load is not going to be changed
although it links to a required capability.

6) Although the nature leverage of the LLA groups in 4),
patterns, and LLAQIG quantum effect impact factors

TABLE 2
LLA Peer Groups and Characteristics

LLA Peer Load Number of Equipment
Group Average Equipment List
1 113 7 equipment tamcn d0005

equipment tamcn d0007
equipment tamcn d0009
equipment tamcn d0013
equipment tamcn d0047
equipment tamcn d0198
equipment tamcn d1062

2 208 10 equipment tamcn d0003
equipment tamcn d0005
equipment tamcn d0013
equipment tamcn d0015
equipment tamcn d0045
equipment tamcn d0046
equipment tamcn d0047
equipment tamcn d0048
equipment tamcn d0198
equipment tamcn d1062

3 260 10 ...
4 112 8 ...
5 264 3 ...
6 152 13 ...
7 129 10 ...
8 81 11 ...
9 154 4 ...
10 89 4 ...
Average 164 8

Fig. 15. Unit Cumulative Percentage of Real Load based on Different Prediction Scores
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can significantly lower the signatures, it is better to
design new peer groups to distribute the capabilities
and load as even as possible among all the units for
counter-detection.
Fig. 17 illustrates this strategy to allow each unit
in each group connect to peers in each other group.
There are no peer connections within the LLA groups.
Table 3 shows the new peer groups using this strategy.
The number of capabilities (i.e., Number of Equip-
ment in the table) and capability list (i.e., Equipment
List in the table) are relatively similar in each new
peer group. The average number of equipment for
each group is 13 comparing 8 in the LLA peer groups
in Table 2. The average of the average loads is 131
comparing to 164 in the LLA peer groups in Table
2. This means peer groups can meet similar service
requests. Furthermore, 74% (213 out of 287) of the
units count for 80% of the total load, corresponding to
the curve that the units are sorted by the “New Peer
Group Load Average and LLAQIG Quantum Effect
Impact Factor” in Fig. 15. The LLAQIG quantum
effect impact factors are used in each peer group to
sort and rank a peer to perform a new request, making
each peer group to appear more even and random,

Fig. 16. LLA Groups and Themes

TABLE 3
New Peer Groups and Characteristics

New Peer Load Number of Equipment
Group Average Equipment List
1 133 12 equipment tamcn d0003

equipment tamcn d0005
equipment tamcn d0009
equipment tamcn d0013
equipment tamcn d0015
equipment tamcn d0045
equipment tamcn d0046
equipment tamcn d0047
equipment tamcn d0048
equipment tamcn d0198
equipment tamcn d1062
equipment tamcn d1213

2 85 14 equipment tamcn d0003
equipment tamcn d0005
equipment tamcn d0007
equipment tamcn d0009
equipment tamcn d0013
equipment tamcn d0015
equipment tamcn d0045
equipment tamcn d0046
equipment tamcn d0047
equipment tamcn d0048
equipment tamcn d0198
equipment tamcn d1062
equipment tamcn d1063
equipment tamcn d1213

3 138 15 ...
4 148 14 ...
5 117 14 ...
6 107 13 ...
7 177 13 ...
8 121 11 ...
9 181 15 ...
10 111 12 ...
Average 131 13

lowering signatures inherited from the original cen-
tralized environment.

7) The goal of the peer-to-peer networks is to cover as
many capabilities and patterns as the ones in the
centralized network. The LLAQIG quantum effect
impact factor is used to find the intrinsic value of
a unit, i.e., a unit is capable of carrying a requested
load balance. In Fig. 15, the curve that is mostly close

Fig. 17. Distributed and Collaborative Units Equipped Using CLAs
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to the random one is the one corresponding to the
units sorted by the “New Peer Group Load Average
and LLAQIG Quantum Effect Impact Factor,” which
self-organizes units and makes them appear more
randomly connected, therefore achieves the goal of
lowering signature, counter-detecting, and counter-
targeting for distributed operations such as DMO and
EABO.

7 Conclusions
The future view of DMO and EABO requires to allow flexible,
resilient, and sustainable configuration and combination of
capabilities and tactics across multiple domains including
air, land, sea, space, and cyberspace, and to win in complex
contested environments. The authors applied the peer-to-peer
and self-organizing collaborative learning systems to meet the
requirement.

Peer-to-peer and self-organizing DMO and EABO
equipped with CLAs not only include traditional warfare
capabilities of sensors, platforms, networks, and weapons, but
also extend to other tactics that evolve with new technologies.
The DMO and EABO concepts also require to use advanced
detection and counter-detection technologies.

The authors demonstrated a quantum machine learning
system LLAQIG to design a peer-to-peer network based on
the data and behavior patterns learned from a previously
centralized system for self-organizing, load balancing, and
signature lowering peer-to-peer systems with the quantum
effect.
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