

Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers

Faculty and Researchers' Publications

2021

Human-Machine Weapons Engagement Decisions: Systems Safety in Complex Decision Environments

Johnson, Bonnie W.; Miller, Scot A.; Green, John M.; Kendall, Walter A.; Godin, Arkady A.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/69827

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

Human-Machine Weapons Engagement Decisions: Systems Safety in Complex Decision Environments

Advances in computational thinking and data science have led to a new era of artificial intelligence systems being engineered to adapt to complex situations and develop actionable knowledge. These learning systems are meant to reliably understand the essence of a situation and construct critical decision recommendations to support autonomous and human-machine teaming operations.

In parallel, the increasing volume, velocity, variety, veracity, value, and variability of data is confounding the complexity of these new systems – creating challenges in terms of their development and implementation. For artificial systems supporting critical decisions with higher consequences, safety has become an important concern. Methods are needed to avoid failure modes and ensure that only desired behavior is permitted.

NAVAL

SCHOOL

POSTGRADUATE

Research Questions:

- What are the safety concerns involved in implementing AI methods to support human-machine weapons engagement decisions?
- What concepts, requirements, and methods can ensure that future AI-enabled tactical decision aids are safely deployed?

System Produces Faulty/Poor Decis	ion Failure	Modes	System Under Attack (Cyber attack)		Root Causes	
Recommendation		System and its outcom	nes	Pre-Deployment: Design, Development, Testing	Post-Deployment: Operations & Sustainment	
Skewed outcomes/	Uncertain outcomes/	are corrupted by adver	adversary/adversary is	Incompletenessdata sets don't represent all scena	arios Inaccuracy in the algorithm model (prediction error)	
predictions	predictions	Adversa	controlling system	Rare examples – data sets don't include unusual sce	enarios Operational complexity that overwhelms the AI	
Biased outco	omes/	or shuts	down	Bias in the training data sets	Artificial Intelligence System Uncertainty/error in operational datasets	
predictions	Artificial Intel	lligence System syste	em	Corruption in the training data sets	Corruption in operational datasets	
	M	ODEL	Adversary gains access	Mis-labeled or mis-associated data	Lack of explainability	
Or arrata na harra	Operators 🧧		to system; decision	Poor data collection methods	Trust issues	
lack of trust in	ignore the		information/knowledge	Poor validation methods (is there criteria for	Operator-induced error	
the system	system		in compromited	deciding how much training data is good enough?)	Overfitting – when the model presents a	
	(Operators misunderstand	l the	Underfitting in the model – model is not capable o	f attaining very small error on the training data but fails to	
Operators are	Operators introduce	system recommendations	s/	sufficiently low error on the training data	generalize, i.e., fails to perform as well on new	
overly trusting	errors into the system F	redictions System identifies	System identifies	Cost function algorithm errors – trained model is o	optimized to examples; the model is "overfit" to the training data	
(over reliant) in the system			operator misuse	the wrong cost function	Adversarial attacks – hacking, deception, inserting	
the system	Sys	tem identifies	System identifies operator	Wrong algorithm – when the training data is fit to	the wrong false data, controlling automated systems	
Human Machine Operation Issues operator-induced error inattentiveness or fatigue			inattentiveness or fatigue	algorithmic approach (regression neural network, etc.)		
AI System Safety: Four Types of Solution Strategies						
Pre-Deployment: Design, Development, Testing					Post-Deployment: Operations & Sustainment	
1 Inherently Safe Design Focus: ensuring robustness against uncertainty in the training data sets Methods: Interpretability – ensuring designers understand the complex ML systems produced from the data training process Causality – reducing uncertainty by eliminating non-causal variables from the model						
2 Safety Reserves Focus: achieving safety through additive reserves, safety factors, safety margins – through training data set validation						
Methods: Validating training data sets – eliminating uncertainty; ensuring data is accurate, representative, sufficient, bias-free Increasing/improving model training process – ensuring adequate time and resources are provided for training and validation process						
Safe Fail						
			3	Focus: system remains safe when it fails in its intended ope	ration	

Procedural Safeguards

Methods: Human operation intervention (system overrides and manual operation)

Metacognition – AI system self-diagnosis to recognize and address failure modes

Explainability/Understandability/Trust-worthy

Focus: measures beyond ones designed into the system; measures
that occur during operations
Methods: Audits, training, posted warnings, on-going evaluation

Metacognition is a solution strategy that promotes self-awareness within the artificial intelligence system to understand its external and internal operational environments and use this knowledge to identify potential failures and enable self-healing and selfmanagement for safe and desired behavior.

Research P.I.s Dr. Bonnie Johnson, NPS Systems Engineering and Mr. Scot Miller, NPS, Information Sciences
Research Team: Arkady Godin, Tony Kendall, John M. Green
Topic Sponsor: NAWCWD China Lake – Mr. Bruce Nagy
NPS Students: Peh Ming Hui, Luis Cruz, Ryane Pappa, Savanna Shilt, Angela Hoopes, Samuel Wuornos, J. Isaac Jones, Russell Kress, Adam Rahman, William Newmeyer, Wallace Fukumae, Kheng Hun, Robert French, Obed Matuga, and Caitlyn O'Shaugnessy Approved for public release; distribution is unlimited.

NRP Project ID: NPS-21-N317-A