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ABSTRACT

This paper espouses the application of orthogonal array experiment to solve a class of engineering
optimization problems encountered in systems engineering and architecting. It also illustrates the
applicability of orthogonal array experiment in systems engineering and architecting with two examples:
verification and validation of the performance of a bandwidth allocation algorithm and architecting of a
system of systems to respond to small boat attacks by terrorists. The orthogonal array experiment
approach does not call for linearization of nonlinear engineering optimization problems; using orthogonal
arrays, it solves them directly by carrying out the smallest possible number of experiments and determin-
ing their solutions from the results of the experiments. The orthogonal array experiment method has been
found to be effective and efficient for these problems. The feasibility of applying the orthogonal array
experiment approach to these problems suggests its potential application to other optimization problems
encountered in systems engineering and architecting. © 2010 Wiley Periodicals, Inc. Syst Eng 14: 208–222,
2011

Key words: orthogonal array experiment; systems engineering and architecting; engineering optimization
problem; assignment problem

1. INTRODUCTION

Three pillars of systems engineering are systems engineering
management, systems engineering methodology, and systems
engineering methods and tools [Sage, 1992]. Systems engi-
neering methodology and system engineering management
are the two pillars that must occur for a successful production
of a system. Systems engineering methodology involves sys-
tem definition, system design and development, and system
deployment. Systems management consists of a task manage-
ment structure, managing systems engineering tasks, and
decision making with respect to system development. The

third pillar, systems engineering methods and tools, is needed
to support systems engineering management and systems
engineering methodology. This paper deals with systems en-
gineering methods and tools. Specifically, it deals with sys-
tems analysis used in systems engineering and systems
architecting. Systems analysis supports many areas, such as
requirements analysis, functional analysis, design evaluation,
synthesis and allocation of design criteria, determination of
system key drivers, system performance assessment, design,
development, detail design performance analysis, system per-
formance analysis, trade-off studies, etc. Systems analysis
often involves solving optimization problems.

An optimization engineering problem can often be cast as
an assignment problem (or a mathematical programming
problem). There are many mathematical methods to solve
assignment problems of different types, such as integer pro-
gramming problems (linear and nonlinear), mixed integer
programming problems, etc. [Minoux, 1986]. As the dimen-
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sion of the problem (i.e., the number of assignment variables
and constraints) increases, the time it takes to solve the
problem increases. Often it is impractical (because it is time-
consuming) to solve these assignments problems when a
Monte Carlo method is involved. Often a quick solution is
needed to enable quick decision making. Often a heuristic
algorithm would be preferred over mathematical optimization
techniques. Often an optimal solution is needed without hav-
ing to search for all possible optimal solutions. And often a
problem in systems analysis calls for just an approximate
solution of an optimization problem with or without con-
straints. In these cases, the orthogonal array experiment ap-
proach has been proven to be effective in providing solutions
to the optimization problem.

This paper espouses the application of orthogonal array
experiment to solve a class of engineering optimization prob-
lems encountered in systems engineering and architecting and
illustrates the mechanism of applying orthogonal array ex-
periment to the problems treated in Huynh and Gillen [2001]
and Huynh et al. [2007]. The problem addressed in Huynh
and Gillen [2001] is a system algorithm performance verifi-
cation and validation problem in which heuristic algorithms
are employed to determine bandwidth to be allocated on
demand in a satellite communications system that maximizes
satisfaction of requests for bandwidth. The problem ad-
dressed in Huynh et al. [2007] is a systems architecting
problem in which architectures of a system of systems to
respond in a cost-effective manner to terrorists using small
boats to attack maritime commerce traffic and critical shore
infrastructure. This problem is a subset of a larger problem of
architecting a system of systems responding to maritime
domain terrorism [Huynh et al., 2009]. The purpose of this
paper is thus to demonstrate the applicability of the orthogo-
nal array experiment approach to solving these engineering
optimization problems.

These problems are not the only assignment problems
encountered in systems engineering and architecting. Indeed,
assignment problems abound in systems engineering. Some
of these assignment problems tackled in recent times are now
mentioned. Attagara [2006] uses heuristics to solve an NP-
hard (nondeterministic polynomial-time hard) assignment
problem of allocating both the type and the number of explo-
sive scanning devices at airports to different groups of pas-
sengers with carry-on baggage so as to maximize the total
airport security while satisfying budget, resource, and
throughput constraints. Vidalis et al. [2005] model serial flow
or production lines as tandem queuing networks and formu-
late them as continuous-time Markov chains to minimize the
average work-in-process when the total service time and the
total number of service phases among the stations are fixed.
Pettit and Veley [2003] discuss risk allocation in airframe
systems engineering in general and in particular the concept
of allocating system-level risks in multidisciplinary design
problems. Vidal [2003] solves service allocation problems in
which a set of services must be allocated to a set of agents so
as to maximize a global utility, using a global hill-climbing
and a bidding-protocol algorithm. Grundel et al. [2005] apply
exact and heuristic methods to solve an NP-complete, non-
linear integer programming problem of determining weapon-
to-target pairings that minimize the total expected survival

value of the targets after all the engagements. Gao et al. [2007]
also solve the weapon-target assignment problem using im-
mune system which serves as a local search mechanism for
genetic algorithm. Holness et al. [2006] treat the personnel
assignment problems from a systems view, using human
factors methodologies and research methods such as macro-
ergonomics, human-computer interaction, the skills-rules-
knowledge framework, hierarchical task analysis, decision
ladders, and abstraction decomposition spaces.

A matrix experiment consists of a set of experiments in
which the settings of the various product or process parame-
ters of interest are changed from one experiment to another
and from which the data are then analyzed to determine the
effects of the parameters on the response of the product or
process [Phadke, 1989]. An orthogonal array experiment is a
matrix experiment using special matrices, called orthogonal
arrays. Section 3.1 discusses orthogonal arrays in some detail.
Orthogonal array experiment is used heavily in quality engi-
neering in general and robust design in particular. Quality
engineering is concerned with reducing the costs incurred
prior to and after the sale of a product [Taguchi, 1978, 1986,
1987; Taguchi, Wu, and Chowdhury, 2004; Taguchi and Wu,
1979; Taguchi and Phadke, 1984; Kackar, 1985, 1986;
Clausing, 1988; Byrne and Taguchi, 1986; Bendell et al.,
1989]. Robust design is a systematic and efficient method of
design optimization for performance, quality, and cost
[Phadke, 1989]. Software testing has also benefited from
orthogonal array experiment [Taguchi et al., 2004; Phadke,
2009]. Jeang and Chang [2002] combine the use of orthogonal
arrays, computer simulation, and statistical methods in the
rapid development of new products and the planning and early
implementation of product development. In this paper, again,
orthogonal array experiment is used to solve engineering
optimization problems in systems engineering and architect-
ing formulated as assignment problems (or mathematical
programming problems). This paper is not purported to serve
as an introduction of robust design. Rather, it espouses the
employment of orthogonal array experiment to solve assign-
ment problems.

As discussed in Section 3.2, an orthogonal array used in
an orthogonal array experiment employed in robust design
does not capture all of the experiments of a full factorial
design. Consequently, degradation of the results otherwise
obtained with the full factorial design could occur. Sound
engineering judgment during the planning phase of the ex-
periment design is therefore necessary in order to properly
incorporate potentially significant interactions of factors into
the orthogonal array [Peace, 1992]. Similarly, the solutions of
assignment problems obtained with the orthogonal array ex-
periment as an approximation solution method could poten-
tially deviate from the optimal solutions (i.e., degradation)
obtained with the mathematical programming methods. The
solutions of the assignment problems that have been treated
exhibit some degradation as well as agreement [Huynh, 1997;
Huynh and Gillen, 2001]. As discussed in Section 5.2, the
deviations of the solutions of the dynamic bandwidth alloca-
tion problem, obtained with the orthogonal array experiment
approach, from the optimal solutions, obtained with the com-
mercial optimization tool AMPL and CPLEX [Fourer et al.,
1993], range from 0% (the best case) to 41% (the worst case).
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Also, as reported in Huynh [1997], the solution of the alloca-
tion problem treated by Chu [1969] obtained with the or-
thogonal array experiment approach is in excellent agreement
with that obtained with the integer programming method.

Furthermore, computational time saving achieved with the
orthogonal array experiment approach to solving assignment
problems has been observed with the problems studied thus
far [Huynh, 1997; Huynh and Gillen, 2001; Kessler et al.,
2006; Huynh et al., 2007]. For example, a method to solve a
nonlinear programming problem involves a transformation of
the nonlinear programming problem to a linear programming
problem, which is then solved using existing integer program-
ming methods; but, as a penalty, the dimension (i.e., the
number of assignment variables and constraints) of the result-
ing linear programming problem increases significantly. This
is the case with a transformation technique [Chu, 1969] that
turns a zero-one nonlinear programming problem, in which
m functions are assigned to n subsystems of a system, to a
zero-one linear programming problem; the dimension in-
creases from mn2 + m + n

 to 3n(n − 1)     ∑
i=1

min(µ+1,m)

     

m
i



 + mm + mn2 + 2m + n,

where 




m
i



 = 

m!
i!(m − i)!

 

and µ denotes the number of the new variables resulting from
the transformation technique [Huynh and Kohfeld, 1994].
The increase in the dimension of the problem, hence an
increase in the time to solve it, resulting from the linearization
of the problem, can be avoided by using the orthogonal array
experiment approach, which does not call for linearization of
the nonlinear problem [Huynh, 1997]. Time saving is thus
achieved in this case as well as in the problem of architecting
a system of systems responding to small boat attacks (SBA)
discussed in Section 5.1. Solving this SBA problem using a
full factorial design would involve an evaluation of the effec-
tiveness of 3072 possible combinations (architectures) of the
SBA system concepts, using Monte Carlo simulation. Such
an evaluative effort would take 704 days (or 2 years of around
the clock) to complete 100 simulation runs for each combina-
tion on a Dell Intel Pentium (R) CPU 3.40 GHz. The orthogo-
nal array experiment approach allows this architecting effort
to be completed in a much shorter time [Kessler et al., 2006].

The goals of this paper are:

• Demonstrate the application of the orthogonal array
experiment to solve assignment problems encountered
in systems engineering and architecting.

• Sketch the steps in solving the engineering optimization
problems with the orthogonal array experiment
method.

• Illustrate the application of the steps to the problems
treated in Huynh and Gillen [2001] and Huynh et al.
[2007].

The rest of the paper is organized as follows. Section 2
provides a mathematical description of assignment problems.
Section 3 discusses orthogonal array experiment. Section 4
delineates the steps to follow in the application of orthogonal
array experiment to solve assignment problems. With ex-
cerpts from Huynh and Gillen [2001] and Huynh et al. [2007],
Section 5 illustrates the application of orthogonal array ex-
periment to solving, respectively, the problem of dynamically
allocating bandwidth in a satellite communication network
and the problem of architecting a system of systems respond-
ing to attacks by terrorists using small boats. Finally, Section
6 contains some concluding remarks.

2. MATHEMATICAL DESCRIPTION OF
ASSIGNMENT PROBLEMS

Let F denote the set of elements fj and Sj the set of elements
sjk(j)

 to which fj is to be allocated (assigned). Let X denote a set
of allocation variables defined according to

Xjk(j)
 = X(k(j), j) = 





1,    if  sjk(j)
 is assigned to  fj

0,              otherwise
,

where j = 1, . . . , |F| and k(j) = 1, . . . , |Sj|; |Sj| denotes the
cardinality of Sj. This formulation allows for Sj to be different
for the different elements of F, in the sense that |Sj| are
different and also that sjk(j)

 can be different for different values
of j.

An assignment problem is of the form:

Minimize z(Xjk(j)
)

subject to 











g(Xjk(j)
) ≤ 0,

h(Xjk(j)
) = 0,

Xjk(j)
 ∈ {0, 1},

(1)

j = 1, . . . , |F|, k(j) = 1, . . . , |Sj|.

The function z is called the objective function, which is
real-valued. The feasible region is the collection of the values
of X that simultaneously satisfy X in {0, 1} and the constraints
g(Xjk(j)

) ≤ 0 and h(Xjk(j)
) = 0 in (1), for some functions g and h

of X. X* is optimal if it is feasible and if the value of the
objective function is not less than that of any other feasible
solution: z(X∗) ≤ z(X) for all feasible X. The problem in (1)
involves minimization, but it could just as well involve maxi-
mization, with the appropriate change in the meaning of
optimal solution: z(X∗) ≥ z(X) for all feasible X.

3. ORTHOGONAL ARRAY EXPERIMENT IN
QUALITY ENGINEERING

The perspective of this paper is an introduction of the appli-
cation of orthogonal array experiment to solve assignment
problems encountered in systems engineering and architect-
ing. The subject of orthogonal array experiment has been
covered widely in quality engineering literature [Taguchi,
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1978, 1987, 1993; Taguchi, Wu, and Chowdhury, 2004;
Phadke, 1989; Roy, 1990]. This section provides only a sketch
of orthogonal array experiment, beginning with a brief dis-
cussion of orthogonal arrays.

3.1. Orthogonal Arrays
Orthogonal arrays began with Euler as Latin squares in the
18th century [Euler, 1849]. A Latin square of order s is an s ×
s (square) array with s rows and s columns whose s2 intersec-
tions are occupied by s distinct symbols such that each symbol
occurs once in each row and once in each column [Bose and
Mandel, 1984]. Orthogonal arrays can be obtained from com-
bining orthogonal Latin squares. The columns of an orthogo-
nal array correspond to factors. The factor levels are specified
in each row of the orthogonal array. All combinations of levels
occur and occur an equal number of times in every pair of
columns of an orthogonal array. This combinatorial property
ensures the orthogonality property: All columns in the array
are orthogonal to each other [Pao, Phadke, and Sherrerd,
1989]. “Orthogonal” means “balanced,” “separable,” or “not
mixed.” Taguchi and Wu [1979] have tabulated a number of
orthogonal arrays which can be used conveniently to construct
orthogonal designs for many experimental situations. The
methods of constructing orthogonal arrays can be found in
Taguchi and Wu [1979], Taguchi [1987], Taguchi and Konishi
[1987], Phadke [1989], Roy [1990], Hedayat, Sloane, and
Stufken [1999], and Taguchi, Wu, and Chowdhury [2004].

Not only are orthogonal arrays used in quality engineering
and robust design, but, being connected to statistics and
coding theory, they are also employed in computer science,
cryptography, agricultural, or medical research [Hedayat,
Sloane, and Stufken, 1999]. For experiment design, the use of
orthogonal arrays allows a significant reduction of the number
of experiments and also the simplicity of data analysis
[Phadke, 1989; Taguchi and Konishi, 1987].

3.2. Orthogonal Array Experiment

Experiment design has a long history. Its theory can be found
in Cochran and Cox [1957], John [1971], Hicks [1973],
Daniel [1976], and Box, Hunter, and Hunter [1978, 2005].
Factorial design of experiments, pioneered by R.A. Fisher in
the 1920s [Pearson, 1974], has been in use since Fisher’s work
in agricultural experimentation [Fisher, 1951]. For a full
factorial design, the number of possible conditions or experi-
ments is Lm, where m is the number of factors and L is the
number of levels for each factor. When the number of factors
and levels per factor are large, the number of possible condi-
tions (or experiments) become extremely large. An efficient
form of factorial design of experiments is thus needed. Or-
thogonal array experiment, which meets that need, requires
only a smaller number of unique factor/level combinations
captured in an orthogonal array.

Again, an orthogonal array experiment is a matrix experi-
ment using orthogonal arrays. In experiment design, the ma-
trix experiments are also known as designed experiments or
runs or conditions, settings as levels, and parameters are
factors [Taguchi, 1978, 1987, 1993; Taguchi, Wu, and
Chowdhury, 2004; Phadke, 1989; Roy, 1990]. An orthogonal
array experiment, which is an important technique in robust

design, allows efficient determination of the effects of several
parameters. Robust design, whose foundations were devel-
oped by Taguchi in the early 1960s, is a systematic and
efficient method of design optimization for performance,
quality, and cost. The factors being examined and their asso-
ciated levels constitute the so-called experimental region.
Optimum product or design results from the best or the
optimum level for each factor, which gives the optimum value
of the response in the experimental region [Phadke, 1989].

3.3. Analysis of Data from Experiments

An orthogonal array experiment involves three main steps:
use of an orthogonal array to plan the matrix experiment; run
the experiments; and use of arithmetic averages of the re-
sponses in determining the effect of a factor level [Roy, 1990].
The last step is part of the data analysis in the orthogonal
experiment, which is now briefly described. Section 4 dis-
cusses the data analysis in detail as it pertains to solving
assignment problems.

The purpose of the data analysis is to achieve one or more
of these objectives: to establish an optimum condition for a
product or a process; to estimate the contribution of individual
factors; and/or to estimate the response under an optimum
condition [Roy, 1990]. The optimum condition is established
from analyzing the main effects of each of the factors, which
indicate the effects of a factor on the objective function when
it goes from one level to another. The analysis of the main
effects, or the estimation of factor effects, involves the calcu-
lation of the arithmetic averages of the responses or of the
signal-to-noise ratios (S/N) of the responses for the levels of
the factors. The S/N ratio measures the sensitivity of the
quality characteristic (response) to those noise factors or
uncontrollable factors. Product or process design with highest
S/N ratios always yields the optimum quality with minimum
variance [Roy, 1990]. Section 4.3 defines the S/N ratio, a
concept developed by Taguchi. The response (objective func-
tion) under the optimum condition is then obtained by running
a confirmatory experiment. This approach is sometimes
called analysis of means (ANOM) [Phadke, 1989], which is
employed in the illustrating problems in this paper.

The analysis of data obtained from an orthogonal array
experiment also involves analysis of variance (ANOVA),
needed for estimating the relative importance of the factors
and the error variance. ANOVA is a standard statistical treat-
ment of the experimental results, which provides a measure
of confidence in the results and compares the variances of the
factors to determine the relative contribution of each factor.
The reader is referred to Taguchi and Wu [1979], Taguchi
[1987], Phadke [1989], Roy [1990], and Taguchi et al. [2004]
for detailed discussions of the ANOVA method used in quality
engineering and robust design.

4. ORTHOGONAL ARRAY EXPERIMENT FOR
SOLVING ASSIGNMENT PROBLEMS

The application of an orthogonal array experiment to solve
assignment problems of the form in (1) that occur in systems
engineering and architecting involves the following steps.
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Step 1. Formulate the engineering optimization problem.
Step 2. Transform the engineering optimization problem

to an assignment problem.
Step 3. Perform an orthogonal array experiment to solve

the assignment problem.
a. Perform experiment design and planning.
b. Run the experiments.
c. Perform data analysis.
d. Obtain an optimal solution.
e. Run a confirmatory experiment with the optimal

solution (to confirm the optimized objective func-
tion).

Step 1 varies from application to application and is unique
to a specific application at hand. Step 1 will be illustrated with
the problems in Section 5. Step 2 turns the engineering
optimization problem formulated in Step 1 into an assignment
problem of the form (2). Like Step 1, Step 2 varies with the
specific application at hand. Step 3—Perform an orthogonal
array experiment—is now elaborated.

4.1. Perform Orthogonal Array Experiment

Performing an orthogonal array experiment involves the fol-
lowing.

4.1.1. Perform Experiment Design and Planning
A key step in designing the orthogonal array experiment is
defining the factors and their levels [Pao, Phadke, and Sher-
rerd, 1989; Phadke, 1989; Roy, 1990; Taguchi, 1987; Taguchi,
Wu, and Chowdhury, 2004]. The factors are the causes which
produce an effect, their levels are the ways in which the factors
are changed, and the response is the result produced by the
factors. There is no systematic way to define factors and their
levels for assignment problems in general; care should be
exercised in choosing factors and their levels appropriately so
as to take advantage of the available orthogonal arrays and so
as to minimize the dimensions of the arrays [Huynh, 1997].

As mentioned before, a full factorial design to explore all
possible factor-level combinations would impractically re-
quire performing an exorbitant number of experiments. The
use of orthogonal arrays drastically reduces the number of
experiments. As pointed out in Huynh [1997], the nature of
an assignment problem of interest dictates the selection of the
factors and their levels and orthogonal arrays. Also, a large
number of factors and levels will require a large orthogonal
array. Large orthogonal arrays, if not already available, can be
readily generated or requested from ASI [1987].

4.2. Run Experiment

An experiment in the orthogonal array experiment application
espoused in this paper refers in general to a computation
performed by a computer program or a computer simulation.
In either case, input to the computation or to the simulation
consists of the orthogonal array selected for the problem at
hand and the data pertinent to the problem. The response is
then calculated for each of the experiments. Finally, the ob-
tained responses are then processed according to the data
analysis described in Section 4.3.

4.3. Perform Data Analysis

Again, the purpose of the data analysis is to achieve one or
more of these objectives: To establish an optimum condition
for a product or a process; to estimate the contribution of
individual factors; and to estimate the response under an
optimum condition [Roy, 1990]. The optimum condition is
established from analyzing the main effects of the factors,
which involves the calculation of the arithmetic averages of
the responses or of the signal-to-noise ratios of the responses
for the levels of the factors. The response (objective function)
under the optimum condition is then obtained by running a
confirmatory experiment. The discussion of the two averages
of the responses follows.

The average effects are the arithmetic averages of the
responses, based on which the optimum levels of the factors
are selected [Roy, 1990]. Let aij denote the level of the jth
factor in the ith experiment (row), zi the response (i.e., the
objective function) corresponding to the ith experiment. Then
the average performance (i.e., the arithmetic average of the
objective function or of the response) of the jth factor at the
αjth level, denoted by f

_
jαj

, is calculated according to

f
_

jα
j
 = 

1
Njα

j

  ∑ 
i=1

Nε

 δ(aij − αj)zi, (2)

where 

Njαj
 =  ∑ 

i=1

Nε

 δ(aij − αj),

is the number of experiments (rows) in which the αjth level is
assigned to the jth factor, the mathematical device 

δ(aij − αj) = 




1,    if aij = αj

0,    otherwise
 

identifies the experiment (trial) in which aij is assigned the
value αjth level, where j = 1, . . . , |F|, and αj = 1, . . . , |Sj|. The
expression of f

_
jαj

 in (2) is a compact way of expressing the
arithmetic averages calculated in an orthogonal array experi-
ment. Explicitly expressed, as an example, the average per-
formance f

_
 of factor 1 at level 2, is, according to (2), 

f
_

12 = 
1

N12
(z1 + ⋅ ⋅ ⋅ + zN

12
),

where N12 is the number of experiments in which the level of
factor 1 is equal to 2 and zk is the response from the kth
experiment of those N12 experiments.

For the purpose of design optimization in a robust design
experimentation, the response of a product/process is called a
quality characteristic [Phadke, 1989]. The parameters (also
called factors) influence the quality characteristic. In a maxi-
mization problem, the quality characteristic of the problem is
the larger-the-better performance, using the quality engineer-
ing parlance [Taguchi, 1978]. If the quality characteristic of
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the problem is the larger-the-better performance, the levels of
the factors are identified according to the maximum average
performance. In this case, if f

_
jk = maxαj

 f
_

jαj
, then the kth level

is assigned to the jth factor. That is, the selected level of a
factor is the level that produces the highest average perform-
ance. If the quality characteristic of the problem is the smaller-
the-better performance (again, using the quality engineering
parlance [Taguchi, 1978]), the levels of the factors are identi-
fied according to the minimum average response. In this case,
if f
_

jk = minαj
f
_

jαj
, then the kth level is assigned to the jth factor.

That is, the selected level of a factor is the level that produces
the smallest average performance. In either case, the levels
assigned to these factors constitute an optimal solution (opti-
mal condition).

For experiments with repetitions (i.e., when an experiment
is independently repeated), the response ηi, which now stands
for the S/N corresponding to the ith experiment, is calculated,
according to Phadke [1989] and Roy [1990], as

ηi = −10 log 







1
M

  ∑ 
r=1

M

 (ηir)
2






      

= −10 log


1
M

 (ηi1
2  + ηi2

2  + ⋅ ⋅ ⋅ + ηiM
2 )


 ,

(3)

in which M is the number of repetitions of each of Nε experi-
ments and ηir is the response of the rth repetition of the ith
experiment. The logarithmic function, log, is with respect to
base 10. The average performance (i.e., the arithmetic average
of the objective function or of the response) is similarly
calculated using (2), and the optimum levels of the factors are
then selected. The argument of the logarithmic function in (3)
is the mean squared response for the ith experiment, which is
the arithmetic average of the squares of the responses of the
replications of the ith experiment. The use of (3) to determine
the optimum levels of the factors is justified by an additive
model, which approximates the relationship between the re-
sponse variable and the factor levels. The reader is referred to
Phadke [1989] for a detailed discussion of additive models
and the justification for the use of S/N ratios in determining
the main effects of the factors.

In this paper and for the illustrating problems, an experi-
ment is carried out only once. Therefore, ηi = −20 logzi. Then,
(2) becomes, with η

__
jαj

 replacing f
_

jαj
,

η
__

jα
j
 = − 

20
Njα

j

  ∑ 
i=1

N
jα

j

 log(zi) = −20 log










∏ 
i=1

N
jα

j

 zi











1 / N
jα

j

,

where j = 1, . . . , |F| and αj = 1, . . . , |Sj|.
Since the logarithm of the geometric mean and the arith-

metic mean increase or decrease together with their argu-
ments, one can use either the average S/N ratio η

__
jαj

 or the
arithmetic mean f

_
jαj

 to determine the optimum levels of the
factors. The ANOM is thus carried out to estimate effects of
the factors, but with ηi now playing the role of zi; if the
averaged response is minimized, then the S/N ratio is maxi-
mized. The illustrating problems in this paper, in which all

experiments are carried out only once, involve the use of the
arithmetic mean f

_
jαj

 and do not necessarily involve ANOVA.
The reader is referred to Phadke [1989] for the use of S/N
ratios in robust design, where actual experiments in some case
studies therein are carried out with repetitions.

Furthermore, when the optimization problem is without
constraints, the data analysis is straightforward. When the
optimization problem is with constraints, the constraints must
be implemented judiciously, as shown in the example in
Section 5.2. The implementation of the constraints can vary
from problem to problem. In the end, the solution that satisfies
the constraints is an optimal solution of the problem.

5. APPLICATION OF ORTHOGONAL ARRAY
EXPERIMENT

For illustration purposes, again, this paper discusses the ap-
plication of orthogonal array experiment to the problem of
dynamically allocating bandwidth in a satellite communica-
tion network and the problem of architecting a system of
systems to respond to attacks by terrorists using small boats.
The discussion of the application of orthogonal array experi-
ment to these problems is excerpted from Huynh and Gillen
[2001] and Huynh et al. [2007], respectively, and focuses on
the implementation of the steps (working mechanics) dis-
cussed in Section 4. Detailed discussions of the application of
orthogonal array experiment to these problems can be found
in the cited references.

5.1. Architecting a System of Systems
Responding to Maritime Domain Terrorism

Considered to be the most likely attack in the future, a small
boat attack (SBA) in U.S. waters and ports is an attack by a
single terrorist already in the U.S. who, in an explosive-laden
small boat, blends in with recreational boaters to get close to
high-value units (HVU) and assaults them at a high speed.
There is thus a need to develop a system of systems (SoS) to
respond to such terrorist threats. This SoS is called the mari-
time threat response (MTR) SoS.

The crux of the MTR SoS architecting problem is to
develop architectures of a conceptual, cost-effective, near-
term system of systems (SoS) to respond to small boats used
by terrorists to attack maritime commerce traffic and critical
shore infrastructure and to do so with minimal impact on
commerce and economic cost. The near-term MTR SoS con-
sists of systems that are currently in service, in development,
and commercial-off-the-shelf technologies or systems that
would be available and/or could be developed within the next
5 years. The systems that constitute the SoS include hardware,
software, and human resources.

Step 1. Formulate the Engineering Optimization Problem
The mission to thwart a small boat attack includes search-

ing and detecting the threat (the attacker), neutralizing the
detected threat, and supporting and maintaining the MTR SoS
components. A functional analysis performed by Kessler et
al. [2006] identifies five top-level SoS functions: (1) Com-
mand, Control, Computers, Communication, Intelligence,
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Surveillance, and Reconnaissance (C4ISR), (2) Prepare the
Battlespace, (3) Find/Fix Threat, (4) Finish Threat, and (5)
Sustain. The C4ISR function ensures that the SoS has the
appropriate means to carry out a mission in terms of command
and control and to have appropriate communication channels
to keep the forces informed of the status of operations. The
Prepare-the-Battlespace function ensures that the SoS has the
appropriate personnel, equipment, and platforms to carry out
the mission; it also renders the area of operations ready for
countering a potential attack. The Find/Fix and Finish func-
tions are executed as MTR forces actually carry out the
mission. (Hereafter, for convenience, the word “Threat” will
be excluded from the Find/Fix and Finish functions.) The
Sustain function ensures that all units and equipment are
properly supported and maintained for the duration of opera-
tions. As the system concepts for Sustain are unique, system
concepts corresponding only to the first four top-level func-
tions are identified for use in an MTR SoS. Sustain will thus
be excluded from the formulation of the MTR SoS architect-
ing problem as an assignment problem. A concise elaboration
of these functions can be found in Kessler et al. [2006] and
Huynh et al. [2007]. Some functions may be supported by as
many as four different system concepts, while the others by
as few as two concepts. The four systems concepts supporting
the C4ISR function are: Area Control/Problem-solving; Area
Control/Objective-oriented; Local Control/Problem-solving;
and Local Control/Objective-oriented. The four systems con-
cepts supporting the PBS function are: Small escorts, Medium
escorts, Small and medium escorts, and HVU-based escort
teams. The four systems concepts supporting the Finish func-
tion are: Organic weapons only, Organic weapons and armed
helicopters (air support), Organic weapons and USVs, and
Organic weapons, USVs, and armed helicopters (air support).
Finally, the two systems concepts supporting the Find/Fix
function are: Visual detection; and Visual detection with sur-
face search radar support.

The counter-SBA mission is declared a success if the
terrorist attack boat is prevented from reaching a certain lethal
range of a protected asset. If the terrorist attack boat is still
alive when reaching within the lethal range of the protected
asset, then the counter-SBA mission is a failure.

The total cost of an SoS is contributed by the cost of
procurement of both additional existing and new SoS compo-
nents (platforms), the cost of operating and supporting (O&S)
the SoS, and the cost associated with both the time delay
suffered by commerce (the ferries and the oil tankers) in the
course of responding to an attack and damage to the physical
entities resulting from failures to neutralize the terrorist threat.
Table I contains the cost estimates of the system concepts.
Parenthetically, Table I does not show the costs of the Find/Fix
system concepts, for they incur no cost as they are already
accounted for under PBS and the radar is organic to both the
small and mid-sized escorts; these Find/Fix system concepts
are, however, included in the experiments for the purpose of
assessing the SoS effectiveness. The delay and damage costs
are generated by the mission-level modeling and simulation.
The estimation of the remaining costs is discussed in [Kessler
et al., 2006; Huynh et al., 2007]. 

The cost of procuring the SoS is fixed, but the remaining
costs change with mission execution. The latter are deter-

mined by Monte Carlo simulation [Kessler et al., 2006]. The
cost of procuring the SoS depends on the number of platforms
in the SoS architecture and the cost of each platform. The
O&S cost reflects the number of days per year during which
the platforms in the SoS would be involved in MTR-related
activities and the daily O&S rate, which accounts for both the
system and personnel O&S rates. The average O&S costs for
selected classes of ships and aircraft form the basis for MTR
SoS platform O&S cost estimates. The details of the estima-
tion of the O&S cost can be found in Kessler et al. [2006].

An MTR SoS architecture is a combination of the system
concepts that perform the top-level functions. The problem is
thus to determine which pertinent system concept is assigned
to a top-level function, so that, put together, the assigned

*Note that Table I does not include the Find/Fix system concepts, for they
incur no cost as they are already accounted for under PBS and the radar is
organic to both the small and mid-sized escorts.

  Table I. Cost Estimates* [Huynh et al., 2007]
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system concepts result in an optimal MTR SoS architecture,
in the sense that it maximizes some objective function of
performance and cost.

Step 2. Transform the Engineering Optimization Problem
to an Assignment Problem

In this case F denotes the set of the SoS top-level functions,
fj, j = 1, . . . , 4, and Sj the set of the system concepts that can
perform function fj. The set of allocation variables is defined
according to

Xjk = 




1,  if system concept k of Sj is assigned to function fj,
0,  otherwise

where j = 1, . . . , 4 and k = 1, . . . , |Sj|; |Sj| denotes the number
system concepts in Sj.  In this case, |S3| = 2 and
|S1| = |S2| = |S4| = 4.

The SBA mission success or failure is related to the allo-
cation of the system concepts to the top-level functions; that
is, it is a function of Xjk. Both the total cost of an SoS
architecture and the probability of mission success, Ps, thus
depend on the allocations Xjk. The probability of mission
success is the fraction of the number of Monte Carlo simula-
tion runs in which the SBA mission is a success.

A dimensionless objective function, z, is introduced as
z = ρ(Ps, C), which, by means of a rule ρ, is a function of the
performance measure Ps, and the total system cost C. The
objective function z is thus a function of the allocations Xjk. A
specific rule ρ will be elaborated in the data analysis.

The problem of optimizing the MTR SoS architecture then
amounts to determining an assignment of the system concepts
to the four SoS top-level functions (i.e., the allocations Xjk)
that maximizes the objective function z.

Step 3. Perform Orthogonal Array Experiment
• Perform Experiment Design and Planning. In this

problem, the SoS top-level functions—C4ISR, PBS,
Find/Fix, and Finish—are the factors. Thus, functions 1, 2, 3,
and 4 correspond to C4ISR, PBS, Find/Fix, and Finish, re-
spectively. The system concepts supporting a function are the
levels of the corresponding factor.

As aforementioned, for a full factorial design 3072 possi-
ble combinations (architectures) of these system concepts
need to be evaluated for their effectiveness, using Monte Carlo
simulation. Each simulation run on a Dell Intel Pentium (R)
CPU 3.40 GHz computer takes more than 3 min. It would
therefore take 704 days (or 2 years around the clock) to
evaluate those potential combinations, with each combination
requiring 100 simulation runs. This would be impractical.

The appropriate orthogonal array for this application is a
portion of the mixed orthogonal array L32(21 × 49) [Taguchi
and Konishi, 1987], shown in Table II. The columns of the
array correspond to the functions (factors). Each of the 32
rows (or conditions) corresponds to an architecture trial (ex-
periment). The values, ranging from 1 to 4, represent the
system functions. This orthogonal array requires 32 separate
experiments and can be used to study up to 9 factors with 4
levels per factor and 1 factor with 2 levels.

• Run Experiment. Carrying out an experiment (corre-
sponding to a row of the orthogonal array) in this case means

performing a Monte Carlo simulation of the MTR SoS re-
sponse, z, to an attack of an HVU by a small boat attacker.
The Monte Carlo simulation involves 2000 simulation runs
of an SBA mission model, each of which produces success or
failure of the SBA mission. The Monte Carlo simulation
results are then processed to yield the probability of mission
success.

The SBA mission model represents the C4ISR, PBS,
Find/Fix, and Finish functions, the kinematics of the small
boat attacker, the response engagement geometry, the engage-
ment types (i.e., warning and lethal engaging), the engage-
ment sequence (e.g., helicopter followed by close escorts or
the onboard team), and the MTR SoS responses. The SBA
mission model is elaborated in detail in Kessler et al. [2006]
and Huynh et al. [2007].

For each Monte Carlo run, the output of the SBA mission
model is mission success or failure. Postprocessing yields the
probability of mission success for each of the 32 experiments.
Table III displays the experimental results—the probability of
mission success (in the second column) and the total cost (in
the third column) for each of the 32 experiments (in the first
column)—and the dimensionless response (in the fourth col-
umn) defined above.

Table II. The Orthogonal Array Reduced from L32(21, 49)
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• Perform Data Analysis. The rule ρ that amalgamates
the cost Ci, and the probability of success, PSi

, associated with
the ith experiment (row) into a the dimensionless response zi
of the ith experiment is simply

zi = 
1
2

 


100
πmax − πmin

(PS
i
 − πmin) + 

100
ξmax − ξmin

(ξmax − Ci)



 ,

in which ξmax = maxi∈Nε
Ci,  ξmin = mini∈Nε

Ci, πmax = maxi∈Nε
PSi

and πmin = mini∈Nε
PSi

, and Nε denotes the number of experi-
ments (rows).

The average performance of the jth factor (function) at the
αjth level is calculated according to (2), with αj = 1, . . . , |Sj|
and 

Njα
j
 = 




8,    j = 1, 2, 4
16,    j = 3

.

• Obtain an Optimal Solution. Figure 1 displays the
graphs of the calculated f

_
jαj

 against the system concepts for
each function. [Note that the use of the lines to connect the
discrete values in the graphs shown in Fig. 1 is a common
practice in the realm of the Taguchi method. The graphs do
not represent mathematical functional relationships between
the average responses (average performances) and the factor
levels. The connecting lines aid in visually explicating the
differences of the values and also the existence of interactions
of factors.] The calculation of f

_
jαj

 is now illustrated with that
of f
_

41, the average performance of the Finish function carried
out by the Organic-weapons-only system concept. In this
case, as the values of the elements in the Finish column and
rows 1, 7, 10, 16, 19, 21, 28, and 30 in Table II are “1”, (2)
becomes f

_
41 = 1

8
(z1 + z7 + z10 + z16 + z19 + z21 + z28 + z30),

which, making use of the values of the corresponding re-
sponses, zi, i = 1, 7, 10, 16, 19, 21, 28, and 30, in the fourth
column of Table III, yields f

_
41 ≈ 50. The remaining f

_
jαj

 are
similarly calculated.

For this problem, the quality characteristic is the larger-
the-better performance (the overall objective function), and
the system concepts for the functions are therefore identified
according to the maximum average response. The selected
system concept for a function corresponds to the largest f

_
jαj

.
As shown in Figure 1, f

_
12 is the largest among the values

f
_

1αj
, f
_

21 the largest among the values f
_

2αj
, f
_

32 the largest among
the values f

_
3αj

, and f
_

44 the largest among the values f
_

4αj
. In other

words, the maximum average responses (performances) are
obtained with function 1 performed by system concept 2,
function 2 by system concept 1, function 3 by system concept
2, and function 4 by system concept 4. This means that the
optimal cost-effective MTR SoS architecture consists of area
control/objective-oriented for C4ISR, small escorts (boats)
for PBS, visual detection with surface search radar support
for Find/Fix, and organic weapons, USVs, and armed helicop-
ters for Finish. This optimal cost-effective MTR SoS archi-
tecture results in a 0.72 probability of mission success and
costs $188.6 M.

To confirm that the resulting cost-effective SoS architec-
ture is indeed a best architecture, its performance and cost are
compared with those of two additional architectures, namely,
an optimal effective architecture (i.e., maximum-performance
SoS architecture) and a heuristic cost-effective SoS architec-
ture. The orthogonal array experiment approach is also em-
ployed to develop the optimal effective architecture, but with
the objective function being the probability of mission suc-
cess; the cost is not considered. The heuristic cost-effective
SoS architecture consists of the lowest cost system concepts
that would meet system effectiveness requirements [Kessler
et al., 2006]. The components of these two architectures along
with those of the optimal cost-effective SoS architecture can
be found in Huynh et al. [2007]. Of the three architectures,
the optimal cost-effective architecture is found to be the best
MTR SoS architecture for the SBA mission [Huynh et al.,
2007].

  Table III. Experimental Results [Huynh et al., 2007]
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5.2. Dynamic Bandwidth Allocation in a
Satellite Communication Network

Since satellite communications networks offer wide earth
coverage, high-bandwidth, and star topologies suited for com-
mon multimedia applications, extension of terrestrial net-
works to include satellite communication links becomes
attractive. Asynchronous transfer mode (ATM), a technology
that has promised to revolutionize satellite communications,
enables efficient transmission of multimedia traffic with dif-
ferent quality-of-service (QoS) requirements [McDysan and
Spohn, 1999]. Demand-Assignment Multiple-Access
(DAMA) protocol, a channel access method, is important in
providing system capacity and QoS parameters like cell loss,
cell delay, and cell delay variation [Biswas and Izmailov,
2000]. Time slots in communication channels constitute
bandwidth. It need be dynamically allocated on demand so as
to maximize satisfaction of requests for bandwidth from
connections while meeting certain transmission and capacity
constraints, maintaining fairness among requests, and mini-
mizing cell delay variation (CDV).

To this end, DAMA algorithms need be developed to
optimize bandwidth allocation in real time. The algorithms
must be efficient and robust. Their efficiency ensures a fast
response to a connection’s demand for bandwidth. Their
robustness ensures satisfaction of the connection’s required
QoS and its integrity under unpredictable traffic burstiness.
Computational practicality dictates that only heuristic DAMA
algorithms be implemented in an ATM satellite communica-
tions system. These heuristic algorithms must be validated
and benchmarked before the system using these algorithms is
built. Since simulation is often expensive, optimization ap-
pears to be a preferred option used to validate and benchmark
such algorithms. This application of the orthogonal array
experiment approach deals with validation and benchmarking
of such algorithms.

Step 1. Formulate the Engineering Optimization Problem
A generic satellite communications network consists of

subscriber terminals (STs), a network controller (NC), and
satellites. The network controller, the central control for the
network, manages the uplink bandwidth allocation to all STs.
All STs share a common pool of bandwidth. The NC, where
the DAMA assignment algorithm resides, is responsible for
allocating bandwidth to the STs.

Each ATM service category has a certain priority level. A
request for bandwidth specifies the minimum and maximum
numbers of time slots needed for each priority level. The
DAMA assignment algorithm allocates available bandwidth
(channels and time slots) to satisfy requests from the STs,
collected at the beginning of each assignment cycle. In addi-
tion to maximizing the satisfaction of each request, the
DAMA assignment algorithm must also minimize the CDV
and maintain fairness among the STs. Fairness among the STs
may be achieved by minimizing the differences in the percent-
age satisfaction levels of the STs. The CDV is minimized by
equally distributing the assigned time slots across a frame
[Huynh and Gillen, 2001].

The problem is then to determine the bandwidth allocation
on demand that maximizes satisfaction of requests for band-

Figure 1. Effects of the SoS functions on the objective function.
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width from connections while meeting certain transmission
and capacity constraints, maintaining fairness among re-
quests, and minimizing cell delay variation.

Step 2. Transform the Engineering Optimization Problem
to an Assignment Problem

The allocation of bandwidth on demand in an ATM
satellite communications system is formulated as a non-
linear mixed integer assignment problem. The fine points
of formulating such a problem are elucidated in Huynh and
Gillen [2001].

Let I denote the set of subscribers terminals (ST), J the set
of traffic (or service) priority levels, K the set of channels
(frequencies), and L the set of time slots (or slots) in a channel.
Except where noted, i, j, k, and l hereinafter represent the
elements of the sets I, J, K, and L, respectively. Let Xikl ∈ {0,
1} represent the assignment of slots and channels to an ST,
defined by

Xikl
 =  





1,    if ST  i is assigned to slot l in channel k
0,    otherwise

.

Let Zij denote the number of slots assigned to satisfy requests
from the ith ST for traffic with priority j. Let Yik ∈ {0, 1}
denote allocation function that assigns any slot at all in
channel to the ith ST according to

Yik =  




1,    if ST  i is assigned to any slot in channel k
0,    otherwise .

Let Wil1l2
 ∈ {0, 1} denote the so-called spacing variable

defined by

Wil
1
l

2
 =                         





1,  if ST  i uses both slots l1 and l2  but no slots in between 
0,  otherwise

.

The assignment problem in this illustration is the nonlinear
mixed integer program [Huynh and Gillen, 2001]:

Minimize ξ = λσ∑ 
i



Wil

1
l

2
(l2 − l1) − Wil

1
l

2

|L|
Di



     − λχ∑Xikl

i,k,l

 + λτ∑(
j

ubj − lbj)
(4)

subject to

∑Xikl

k

 ≤ 1, Wi,l (One ST transmitting on one
channel during a time slot)

∑Xikl

i

 ≤ vkl, Wk, l (One ST per available time slot)

∑Xikl

l

 ≤ ckYik, Wi, k (Time slots per channel
assigned to an ST not to exceed
available time slots)

∑Yik

k

 ≤ chmax, Wi (Channels assigned to an ST not
to exceed maximum channels,
chmax)

∑Xikl

k, l

 ≤ ∑Zij

j

, Wi (Time slots in channels
assigned to an ST to be equal to
time slots needed to satisfy
request with all priorities)

minij ≤ Zij ≤ maxij,  Wi, j (Size of each assignment within
the range of the requested time
slots)

lbj ≤ 
Zij − minij

maxij − minij
 ≤ ubj

(Percentage satisfaction levels
among STs to be as close as
possible)

Wil1l2 = 

∑Xikl1

k




  

∑Xikl2

k




  






   ∏ 
l=l1+1

l2−1

  

1 − ∑Xikl

k











 ,

 Wi, l1 < l2

(Time slot spacing constraint)

(5)
In (4), the first component within the absolute value rep-

resents the distance (i.e., the number of slots) between the
slots l1 and l2 assigned to the ith ST. The second component
is the distance between any two assigned slots if Di slots are
assigned to the ith ST, where Di is the average of the minimum
and maximum number of slots, minij and maxij, respectively,
requested by the ith ST; that is, 

Di = 

∑mi
j

nij + ∑m
j

axij

2
, Wi.

As defined, Di ensures that extreme distances are not chosen.
Finally, the weights λσ, λχ, and λτ allow an adjustment of the
contribution of each of the three components to the objective
function. Their values are chosen such that λσ + λχ + λτ = 1.

In (4) the var iables lbj and ubj denote the lower bound and
upper bound, respectively, on the percentage satisfaction level
of each request with priority j. The percentage satisfaction
level is the ratio of the total number of slots allocated above
the minimum number of requested slots to the difference
between the maximum and minimum numbers of requested
slots.

The specific problem treated in Huynh and Gillen [2001]
involves |I| = 3, |K| = 4, |L| = 10, and chmax = 2. Since a
maximum bandwidth allocation is considered more important
than optimal spacing of assignments, the objective function
in (4) is evaluated with λσ = 0.1 and λχ = 0.9. The traffic
demand is randomized.

Step 3. Perform the Orthogonal Array Experiment
• Perform Experiment Design and Planning. This prob-

lem indicates two tiers of assignment: STs to channels and
STs to time slots in the assigned channels. Since each channel
has 10 time slots and there are 4 channels, the total number of
time slots is 40. In this case, a time slot is a factor. Since each
time slot can be assigned to only 1 ST, each factor has three
levels: 1 for ST 1, 2 for ST 2, and 3 for ST 3.
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An experiment here is neither a computer simulation nor
a laboratory experiment with hardware; rather, it is the com-
putation of the objective function associated with a trial
allocation of the time slots (and hence channels) to the STs.
A full factorial design for this problem would require 340 or
1.2 × 1019 experiments. It would be impractical to run such
an exorbitant number of experiments. The use of orthogonal
arrays drastically reduces the number of experiments. This
problem requires the orthogonal array L81(340) for the 40
factors (i.e., time slots) with 3 levels (again corresponding to

the 3 STs). This large orthogonal array can be found in
Taguchi and Konishi [1987]. The 40 columns of the array
correspond to the 40 slots. The values that go into all the
columns correspond to the number of STs, namely, 1, 2, and
3. There are thus at most 81 experiments or conditions to carry
out.

• Run Experiment. A computer program reads the or-
thogonal array L81(340) and the input data such as the size and
state of the network, the traffic demand, and the operational
constraint parameters. The responses (values of the objective

           Table IV. A Comparison of DAMA Assignments by Orthogonal Array Experiment and 
           Optimization [Huynh and Gillen, 2001]
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function) in (4), calculated for the 81 experiments (trials), are
then analyzed by the computer program according to a modi-
fied data analysis, which is discussed next.

• Perform Data Analysis. Each column corresponds to a
particular channel and a particular slot, i.e., j is a function of
k and l. Since four channels each have 10 slots, j = 10(k – 1)
= l, with k = 1, . . . , 4 and l = 1, . . . , 10. Then the average
performance (i.e., the objective function) f

_
jα of the jth factor

(slot) at the αth level is calculated according to (2). Here
Njα is the number of rows in which the jth slot is assigned to
the αth ST and Nε is the number of rows in the orthogonal
array, which is 81.

For this problem, the quality characteristic is “the smaller
the better” performance (the overall objective function), the
levels of the factors are identified according to the minimum
average response. In this illustration, the standard data analy-
sis discussed in Section 4.2 is carried out differently. Instead
of using f

_
ji = minαf

_
jα to assign the jth slot to the ith ST, an

ordered set of the average responses is formed, in which the
average responses, f

_
jα, are ranked from the smallest to the

largest value, and assignments are made from the ordered set.
• Obtain an Optimal Solution. Since j is a known func-

tion of the channel-slot pair (k, l), an assignment of the ith ST
to a channel-slot pair (k, l) can be transformed to the usual
assignment variable, Xikl. As proven in Huynh and Gillen
[2001], in the absence of constraints, these two ways of
implementing the data analysis are equivalent, in the sense
that they yield an identical final allocation. This implementa-
tion enhances the chance of satisfying the requested minimum
time slot constraint as long as feasible solutions exist [Huynh
and Gillen, 2001].

Furthermore, the constraints are handled in a specific
manner. First of all, the minimum number of slots requested
by the STs must be satisfied. Starting with the smallest value
of the ordered set, denoted by Φ, its elements are mapped to
assignments Xikl that satisfy the constraint in (5) that only one
ST can be assigned to an available time slot and then the
constraint in (5) that the number of channels assigned to an
ST cannot exceed chmax until 

∑
k,l

Xikl
 = mini  for all i ∈ I. 

Clearly, the elements of Φ that are successfully mapped to the
total of the minimum numbers of requested slots need not be
consecutive. Let Φ′ = Φ – Φmin, where Φmin is the set of all
the average responses that correspond to the al1ocation of the
minimum numbers of slots requested by the STs. If no such
Φmin exists, then the orthogonal array experiment provides no
feasible solution to the DAMA assignment problem.

The set Φ′ remains an ordered set. Again, starting with the
smallest value of the ordered set Φ′, its elements are mapped
to the assignments Xikl that satisfy the constraints that only
one ST can be assigned to an available time slot and then the
constraint that the number of channels assigned to an ST
cannot exceed chmax, respectively, until 

∑Xikl

k,l

 ≤ maxi for all i ∈ I.

 The final DAMA assignment is thus obtained, for which the
objective function is then calculated.

Table IV shows a comparison of the Monte Carlo results
produced by the orthogonal array experiment and those ob-
tained with the commercial optimization tool AMPL and
CPLEX [Fourer et al., 1993]. It also shows the DAMA assign-
ments and the extent of departure from optimality. The slots
in Table IV marked with “x” are unavailable at the time of
assignment, while those with 0 remain unassigned. The slots
marked with 1, 2, and 3 are assigned to ST 1, 2, 3, respectively.
As shown, Run 1 corresponds to no departure (best case) from
optimality, Run 2 to 13% departure (average case), and Run
3 to 41% (the worst case).

Based on the Monte Carlo results, the way the constraints
are handled thus appear to be effective; the orthogonal array
experiment approach appears to be an appropriate solution
technique for multidimensional assignment problems of this
kind. Additionally, the short runtime of the orthogonal array
experiment makes it suitable for real-time bandwidth alloca-
tion in a satellite communications network.

Employed as a validation and benchmarking tool when
developing real-time heuristic DAMA algorithms, this ap-
proach offers these benefits: ad hoc assessment of the per-
formance of a heuristic algorithm is avoided and, hence,
confidence in the algorithm is increased; and a quantitative
conclusion can be made about the sufficiency of the perform-
ance of a heuristic algorithm. The latter benefit aids in deter-
mining when further development or improvement of an
algorithm is no longer necessary.

6. CONCLUSION

This paper discusses the applicability of orthogonal array
experiment to solving some assignment problems encoun-
tered in systems engineering and architecting. To solve the
nonlinear engineering optimization problems which can be
cast in nonlinear integer programming problems, the orthogo-
nal array experiment approach, as an advantage, does not call
for linearization of the nonlinear optimization problems. It
solves them directly, by carrying out, through orthogonal
arrays, the smallest possible number of experiments and de-
termining the solution from the responses of the experiments.
An engineering optimization problem that involves a large
number of factors and levels will require a large orthogonal
array, which can be generated or obtained from ASI [1987]. 

This paper also illustrates the mechanism of applying the
orthogonal array experiment approach to the problem of
DAMA algorithm performance verification and validation
[Huynh and Gillen, 2001] and the problem of architecting an
SoS responding to small boat attacks by terrorists [Huynh et
al., 2007]. The orthogonal array experiment approach has
been found to be effective and efficient for these problems.
The feasibility of applying orthogonal array experiment to
these problems suggests its potential application to other
optimization problems encountered in systems engineering
and architecting.

The area of application of orthogonal array experiment to
solve assignment problems (or mathematical programming
problems) is still evolving. Research in this area needs to look
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into a unified treatment of constraints in mathematical pro-
gramming problems and methods to handle continuous deci-
sion variables.

7. ACRONYMS

ATM Asynchronous transfer mode 
C2 Command and Control
C4ISR Command, Control, Communications, Comput-

ers, Intelligence, Surveillance, and Reconnaissance
CDV Cell Delay Variation
DAMA Demand-Assignment Multiple-Access
HVU High-Value Unit
MTR  Maritime Threat Response
NC Network Controller 
NPS Naval Postgraduate School
O&S Operating and Support
PBS Prepare Battlespace
PC Patrol Coastal
Ps Probability of success
QoS Quality of Service
SBA Small Boat Attack
SEA Systems Engineering and Analysis
S/N Signal-to-Noise ratio
SoS System of Systems
ST Subscriber terminal
U.S. United States
USCG United States Coast Guard
USV Unmanned Surface Vehicle
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