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The United States Marine Corps (USMC) Installation and Logistics 
Command requested a study for determining appropriate inventory levels of 
war reserve materiel to meet future operational needs under surge demands 
in uncertain environments. This study sought to explore a potential approach 
by using the common newsvendor model, but modified for a military scenario. 
The authors’ novel version of this core concept considers the purchase 
and storage costs of an item and proposes an intangible cost function 
to capture the consequences of a shortage. Further, they show a sample 
application of the model using a ubiquitous military item—the BA-5590/U 
battery. The output of the model provides USMC with a new tool to optimize 
inventory levels of a given item of interest, depending on scenario inputs.
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The objective of this study was to support recent United States Marine 
Corps (USMC) efforts to modernize approaches used to decide the optimal 
levels within their War Reserve Materiel (WRM). The acquisition of mate-
riel for the WRM is unique compared to other acquisition conditions since 
it is not buy-as-you-need. Instead, enough inventory must already exist so 
that surged troops are not experiencing a shortage of items needed during 
combat. On the other hand, unused and discarded items erode the overall 
benefit of having the WRM. Although we focused on the specific require-
ments of the USMC and their typical deployment units and timelines, we 
presented an approach in a general framework that could be adjusted to 
meet the WRM storage requirements of other branches of military service 
as well. This expository piece explores a new method—the newsvendor 
model—that has not yet been fully evaluated for military applications. The 
primary research focus was to determine appropriate modifications to the 
newsvendor model for adaptation to military scenarios for predicting an 
appropriate WRM inventory level.

How Much Supply Is Enough Without 
Buying Excess Capacity?

Marine Air-Ground Task Forces (MAGTFs) are typically employed by 
the USMC to serve as a unified arms organization for military operation 
missions. They consist of air, ground, command, and logistics elements 
and come in battalion, brigade, and larger force sizes. In the event of a surge 
deployment requiring supplies beyond the stock on hand, the Marine Corps 
will need additional supplies from the WRM inventory, with immediate 
availability to support theater operations of MAGTFs until the expected 
long-term sustainment is established.
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To make optimized decisions on WRM levels, the USMC must consider 
logistical capabilities and capacity for theater-level sustainment. It must 
also identify items that may have limited suppliers, lengthy production 
lead times, or both. However, the definitive features of the USMC WRM 
problem are uncertainties surrounding such issues as no restock opportu-
nity, seemingly random demand, and the ultimate discarding of any unused 
expendable items. While multiple purchases may be made to stock the 
WRM, the no-restocking constraint refers to the fact that during the typical 
60-day mission surge window, the USMC will be unable to replenish the 
WRM when inventory runs low. The demand has large uncertainty because, 
while surges have occurred before, databases tracking required demand 
were not kept until recently. Even now, the method used for estimating the 
WRM is lacking tracking systems to measure the materiel demand during 
conflicts and a process for keeping track of changes made to storage levels 
during peacetime. Given these circumstances, the USMC has significant 
concerns regarding its ability to accurately predict and store appropriate 
levels of WRM inventory that can support its next surge demand. This is 
likely not a problem confined to the USMC, but extends to rapid-deploying 
units of the other Services as well.

Department of Defense Instruction 3110.06 War Reserve Materiel (2019) 
establishes policy and provides guidance to Military Departments for 
computing WRM levels of inventory. However, this policy guidance pro-
vides the military services a great deal of latitude without specifying what 
methods should be used to determine the appropriate WRM inventory 
level. Currently, the Marine Corps utilizes the legacy War Reserve System 
(WRS) software program to aid in WRM decisions. WRS uses inputs such 
as unit size, operational plans, temperature zone, tempo of combat, esti-
mated number of days for the mission plan, classes of supply requirements, 
and several other factors. The USMC WRS approach has had issues in the 
past though, highlighted by the fact that some critically important items 
were understocked during the opening days of Operation Iraqi Freedom in 
2003. For example, BA-5590/U batteries were severely understocked. Navy 

Few demand-tracking systems exist, and 
logisticians struggle to account for item 
additions, deletions, and usage over many 

past years. Given these circumstances, the USMC has 
significant concerns regarding its ability to accurately 
predict and store appropriate levels of WRM inventory 
that can support its next surge demand.
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CAPT Clark Driscoll, liaison to the Joint Staff for the Defense Contract 
Management Agency said, “We literally [came] within days of running 
out of these batteries—where major combat operations would either have 
ceased or changed in their character because of the lack of battery support” 
(Fein 2003). Although 180,000 batteries were maintained as a reserve in 
the period leading up to the beginning of the conflict, initial demand for 
the batteries was nearly 620,000—far exceeding the ability of the reserve 
inventory to supply them (Government Accountability Office, 2005).
Numerous other approaches exist to achieve optimized inventory levels. 
One such approach is Economic Order Quantity (EOQ), which determines 
the number of items that should be purchased given the demand, cost to 
place an order, and the cost of holding the items. The method balances the 
costs of placing orders and storing the items in conditions of constant usage 
rates. Although useful in some applications, this approach is not applicable 
to WRM planning for two reasons. First, the EOQ model simply assumes 
restocking will take place when an item inventory level decreases and does 
not capture the consequences of running out of an item. Second, the EOQ 
model assumes a constant demand, but for WRM inventory the demand is 
uncertain.

Our Approach: Adopting the  
Newsvendor Model Framework

The newsvendor model is based on assumptions that are consistent 
with WRM modeling constraints. Porteus (2008) noted that the newsven-
dor model provides a methodology for solving the problem of how much 
inventory to purchase for the economical storage of a perishable item. Other 
considerations include solving the problem within an applicable time frame 



457Defense ARJ, October 2021, Vol. 28 No. 4 : 452–478  

October 2021

when the actual demand of the item is unknown, and when the economic 
consequences of having “too much” and “too little” are known. Moreover, 
our interest in the newsvendor model is motivated by the fact that many 
others experiencing similar inventory-level problems, where the items in 
inventory are not sold for profit, have used the model. Olivares et al. (2008) 
applied the newsvendor model to estimate how many operating rooms 
should be reserved for cardiac surgery cases. Arikan and Deshpande (2012) 
used the approach in airline flight scheduling to estimate the impact that 
airport operational factors have on airline block-time scheduling. Hadas 
and Herbon (2014) applied a generalized newsvendor model to a public 
transportation operation to estimate the balance between the physical 
size of the fleet and the frequency of certain routes taken. Chen et al. (2017) 
used the same approach to estimate purchasing humanitarian relief items 
as a secondary sourcing option to monetary donations. Likewise, Mallidis 
et al. (2018) estimated the amount of perishable inventory that should be 
donated in humanitarian efforts to achieve an ethical goal to reduce food 
waste to best assist those in need of food. Thus, the newsvendor model as 
a core concept appealed to us as a potentially viable new approach to the 
USMC’s problem.

Newsvendor Model Explained
The newsvendor model optimizes the inventory level by balancing the 

expected marginal costs of both excess and shortage. The expected mar-
ginal cost of excess at a particular inventory level is simply the product of the 
marginal cost of excess and the probability of demand being less than that 
level. Similarly, the expected marginal cost of shortage is the product of the 
marginal cost of shortage and the probability of demand being greater than 
that level. The basic idea is that when the expected marginal cost of excess is 
less than the expected marginal cost of shortage, the inventory level should 
be increased. The optimal inventory level occurs when these two expected 
marginal costs are equal. Adelman et al. (1999) demonstrated the process 
of determining the optimal inventory level in detail for the nonmilitary 
applications of a fashion store and an individual selling newspapers.

The EOQ model simply assumes restocking 
will take place when an item inventory 
level decreases and does not capture the 

consequences of running out of an item. 
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Marginal Cost of Excess and Shortage Formulation
To perform this optimization, we must first determine the marginal cost 

of excess and the marginal cost of shortage. The marginal cost of excess is 
simply the additional cost incurred if we were to have one more item in our 
inventory and it ended up not being used. The marginal cost of shortage is 
the additional cost that we would incur if we had decided not to stock that 
extra item in our inventory, even though it would have been used if available.
The formulation to estimate the marginal cost of excess is usually straight-
forward. Since it captures the cost of increasing our inventory by one 
additional item, the marginal cost of excess, ∆Ce, is calculated as
	 ∆Ce(Q) = P(Q) + H(Q) - Ru (1)
where P(Q) is the unit cost to purchase one additional item when purchasing 
a total of Q items for a given inventory, H(Q) is the unit holding, or storage, 
cost of that one additional item, and Ru is the unit resale value of that one 
item. Since items are typically sold individually or in batches much smaller 
than one’s inventory size, we consider this value to be a constant indepen-
dent of the inventory level, and therefore it is not a function of Q. Certain 
items, while stored, could create additional costs, such as maintenance. 

These costs would need to be captured as well, most naturally as part of the 
holding term. Although the formulation is straightforward, the actual esti-
mation of the value of each term could be difficult and, in some situations, 
require best engineering judgments to be made.
In the typical newsvendor problem, the unit cost to purchase an additional 
item is not a function of the quantity. However, in our military application, 
where the inventory level is quite large, it is possible that as more items are 
produced, the supplier can produce them more cheaply. This is the concept 
of a learning curve. These savings could be partially passed on to the buyer 
by lowering the purchase price accordingly as more items are produced. In 
that case the purchase price of an additional item would depend on quantity.

In our military application, where the 
inventory level is quite large, it is possible 
that as more items are produced, the 

supplier can produce them more cheaply. This is 
the concept of a learning curve. These savings could 
be partially passed on to the buyer by lowering 
the purchase price accordingly as more items are 
produced. 
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The analysis also requires that the marginal cost of shortage be estimated. 
To properly capture it, we need to take into account that not incurring the 
cost of purchasing and storing an item in the first place partially offsets the 
cost of revenue lost from being unable to sell the item. Therefore, the cost of 
shortage, ∆Cs, for an item is expressed as
	 ∆Cs(Q) = Su + ∆I(Q) - P(Q) - H(Q) (2)
where Su is the sale price of a single item and ∆I(Q) is the marginal intan-
gible costs that result from not having the additional item. Like Equation 
(1), the sale price is assumed independent of the quantity in inventory. The 
marginal intangible cost attempts to quantify, in monetary terms, the 
future costs that will occur due to not having an additional item available 
for a customer. In typical newsvendor applications, this is normally the loss 
of future revenue from customers that do not return after being unable to 
purchase the item the first time.
Occasionally, newsvendor models contain an alternative source term to 
capture the situation, where the vendor quickly obtains additional items 
from a back-up source when item demand exceeds the inventory level pur-
chased from the original source. However, since we assume that logisticians 
have no option to quickly procure additional items from an alternate source 
during the surge, we do not include an alternative source term in our formu-
lation. If alternative sourcing were considered, it could be from a domestic 
producer of the item or an allied nation.

Expected Marginal Cost Analysis
The optimal inventory level is determined by increasing the inventory 

level, Q, while the expected marginal cost of excess is less than the expected 
marginal cost of shortage. This condition, where the inventory should be 
increased, is shown mathematically as
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 ∆Ce(Q) P[d≤Q] < ∆Cs(Q) P[d>Q]  (3)
where d is the unknown future demand and P[.] is the probability that the 
condition inside [.] is true. The inventory level should be increased until the 
expected marginal cost from excess is greater than the expected marginal 
cost of shortage. Therefore, we can define the optimal inventory quantity, 
Q*, that occurs when the following expression is satisfied
 ∆Ce(Q) P[d≤Q*] = ∆Cs(Q) (1 - P[d≤Q*]) (4)
while acknowledging that due to the discrete nature of inventory levels, the 
equality may not be realized, in which case the difference between the two 
expected marginal costs should be minimized.

Military Application  
of the Newsvendor Model

To develop our model, we focused on the unique aspects of military oper-
ations. Our analysis considered a Marine Expeditionary Brigade (MEB) as 
a typical force that would need to be supported by supplies from the WRM. 
Our results could be scaled to account for a different force size, for instance a 
Marine Expeditionary Force that planners wish to support with their WRM. 
Our model was based on the expectation of a 60-day surge deployment. After 
that time, we assumed the USMC units would be re-supplied through theater 
sustainment operations. We also assumed a useful shelf life of 10 years for 
the military item. This contributes to the cost of excess by establishing the 
total holding cost of the item. Finally, we only considered materiel from the 
inventory control stocks, which consists of materiel stored centrally at the 
wholesale level using USMC logistics bases, held within the DoD supply 
system, or positioned around the globe.
In military inventory scenarios, the possibility of revenue does not exist 
since the inventory item is never intended to be sold. Instead, the item is 
stored for the sole purpose of using it to achieve military objectives. This 
situation simplifies the cost of excess so that Equation (1) reduces to



461Defense ARJ, October 2021, Vol. 28 No. 4 : 452–478  

October 2021

 ∆Ce(Q) = P(Q) + H(Q)  (5)
since Ru = 0 because the item has no resale value. This expression becomes 
our military scenario marginal cost of excess function.
Similarly, in the marginal cost of shortage expression, the item has no sale 
price. Unlike the typical newsvendor problem, where the cost of an inventory 
shortage is lost profit, in a military application the cost of a shortage must be 
captured by quantifying the intangible cost of not achieving the objectives 
of the operation due to the shortage. The resultant marginal cost of shortage 
expression from Equation 2 becomes
 ∆Cs(Q) = ∆I(Q) - P(Q) - H(Q)  (6)
since there is no sale of the item. The lack of revenue makes the intangible 
cost portion of the marginal cost of shortage critical for the analysis. If no 
marginal intangible cost component can be determined, then the cost of 
shortage is negatively valued. This negative cost represents a benefit to being 
short of inventory. In such a situation, since it would be beneficial to have 
a shortage, the analysis would provide Q* = 0 as the optimized inventory. 
Therefore, the intangible cost term creates a penalty for being short and an 
incentive to hold a certain minimum inventory level.
To construct our marginal intangible cost function, we first note that for 
a military scenario, the marginal intangible cost of shortage depends on 
how many items were available in inventory. This is because the ability 
to achieve the objectives of the operation will depend on the warfighting 
capability of the unit. As the warfighting capability increases, the ability to 
achieve a larger number of the mission objectives increases and therefore 
the intangible cost of not having an additional item should decrease.

To better illustrate this, consider a small unit in an isolated engagement 
with only one battery. The soldiers would have to choose between using it 
to fire a weapons system to defend themselves or to power a radio to call for 
support or an evacuation. In such a situation, having an additional battery 
would have allowed the soldiers to do both, greatly increasing the soldier’s 
warfighting capability. On the other hand, consider the same situation but 
with enough batteries to power primary weapons and communications 
systems as well as multiple back-up systems with corresponding batteries. 
If the soldiers are short one battery, due to doctrine that requires back-up 

Our model was based on the expectation 
of a 60-day surge deployment. After that 
time, we assumed the USMC units would be 

re-supplied through theater sustainment operations.  
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systems to be powered and available, then the main consequence is that 
one of multiple back-up systems cannot be operated. But since the primary 
systems, and at least one back-up system, are operational, little, if any, of 
the unit’s warfighting capability decreases.
Mathematically, this behavior translates to a function that has a larger value 
for small inventory levels, monotonically decreases, and approaches zero for 
large inventory levels. The exponential function with a negative argument 
has those characteristics. Further, through the use of two coefficients, which 
we will call the value-to-cost ratio and the inverse rate, we can control how 
large the initial cost is for small inventory levels and the rate at which the 
penalty for being short decreases. The use of these two coefficients provides 
a large amount of freedom to specify the shape of the exponential function.
We define our marginal intangible cost function, ∆I(Q), found in Equation 
(6), as
 ∆I(Q) = αP(Q) e    (7)
where α is the value-to-cost ratio coefficient and γ is the inverse rate 
coefficient. Since we were interested in only the first 60 days of a surge 
deployment, we assumed that the capability, or value, of the item would not 
decrease over this timeframe. We also assumed that the value of the item 
would not decrease while in storage.

The value-to-cost ratio coefficient, α, can be used to adjust the procure-
ment cost to better reflect the value of a single item in terms of achieving 
military objectives. Figure 1(a) shows how changing the value-to-cost ratio 
coefficient alters the marginal intangible cost function when the inverse 
rate coefficient is held fixed. In the figure, the inverse rate coefficient is set 
at 500,000. As the value-to-cost ratio coefficient increases, the marginal 
intangible cost increases for a given inventory level. Since no single value 
can be determined for all the items that might be stored in WRM, the appro-
priate value for the value-to-cost ratio coefficient will depend on the item 
of interest.

As the warfighting capability increases, 
the ability to achieve a larger number of the 
mission objectives increases and therefore 

the intangible cost of not having an additional item 
should decrease.
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FIGURE 1(A). DEPENDENCE OF THE PROPOSED MARGINAL INTANGIBLE COST 
FUNCTION ON THE VALUE-TO-COST RATIO COEFFICIENT, α, FOR 
AN INVERSE RATE COEFFICIENT, γ, OF 500,000
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FIGURE 1(B). DEPENDENCE OF THE PROPOSED MARGINAL INTANGIBLE COST 
FUNCTION ON THE INVERSE RATE COEFFICIENT, γ, FOR A VALUE-
TO-COST RATIO COEFFICIENT, α, OF 3.0
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The inverse rate coefficient, γ, can be described as the rate at which the 
intangible cost function penalty decreases as the inventory level increases. 
We named it the inverse rate because as its value gets larger, the rate at 
which the intangible cost function approaches zero decreases. Figure 1(b) 
shows how changing the inverse rate coefficient alters the marginal intan-
gible cost function when the value-to-cost ratio is held fixed. At a given 
inventory level, as the inverse rate coefficient is decreased, the marginal 
intangible cost decreases. Mathematically, when the inventory level is 
equal to the value of the inverse rate coefficient, the marginal intangible 
cost will be 36.8% of its value at zero inventory. Therefore, the value of the 
inverse rate coefficient should typically be on the order of the median from 
the expected item demand curve or larger. If the value is too small, then 
the marginal intangible cost function goes to zero too rapidly, before even 
reaching the average demand for the batteries. Like the value-to-cost ratio 
coefficient, the appropriate value for the inverse rate coefficient will also 
depend on the item of interest.

Even though the marginal intangible cost portion of Equation (6) is critical, 
logisticians have no straightforward way to capture the monetary value 
of the intangible costs of an item shortage. Our model is but one possible 
way to estimate an intangible cost component. We recognize that many 
different functional relationships, other than exponential, could be used 
to characterize the intangible cost. For example, Hadas and Herbon (2014) 
used a polynomial to capture their cost of shortage. A number of approaches 
are available, other than scaling the procurement cost, to quantify the cost 
of shortage. For example, linking increased casualty rates in battle with 
equipment nonavailability could potentially serve as a powerful method. 
However, we were not able to find the required data to determine the form 
of such a relationship. Finally, the value-to-cost ratio coefficient of the item 
could be allowed to decrease over time as it is stored. One such example of 
valuation changes over time is Hildebrandt (1985), which describes military 
assets in monetary terms.
Characterizing the demand distribution is also required to conduct the 
expected marginal cost analysis. In military applications, both the conflict 
intensity and the variance in the inherent service life of the item affect how 

The item quantity needed for future 
conflicts of various intensities should, in 
theory, be able to be estimated with some 

degree of accuracy, especially if a database of the 
required quantities of each item during a given conflict 
is maintained. 
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many of the items are needed and therefore influence the overall demand 
curve. Depending on the item, the demand curve could be influenced more 
by one of these factors versus the other.
The dependence on conflict intensity requires that we estimate how much 
more of the item would be consumed as the intensity increases. It also 
requires that we estimate how likely the various battle intensities are. 
Although the demand undoubtedly increases for an item as the battle 
intensity increases, the likelihood of such battle protraction should likely 
decrease. The balance between these two factors creates the overall item 
demand. Szayna (2017) sought to understand what the trends in conflict 
have been, why they have changed, and what type of conflicts we can expect 
in the future. The item quantity needed for future conflicts of various inten-
sities should, in theory, be able to be estimated with some degree of accuracy, 
especially if a database of the required quantities of each item during a given 
conflict is maintained. However, accurately estimating the likelihood of each 
such conflict is much more difficult.
The dependence on service life is typically easier to estimate since data 
usually exist to support its determination. The distribution of the service 
life of the item can be estimated from manufacturers’ data or from historical 
maintenance data. Depending on the amount of data available, an assump-
tion about the shape of the distribution might have to be made.

Sample Application:  
The BA-5590/U Battery

The BA-5590/U is a nonrechargeable lithium-sulfur-dioxide (LiSO2) 
battery that has been in service since the early 1990s (U.S. Marine Corps, 
2011, pp. F2–F21). These high-energy batteries are the most widely used bat-
tery within the DoD. They power a wide range of the electronic equipment 
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used by the USMC. Though often associated with radios and other com-
munications equipment, this battery is also essential for weapon systems 
such as the Javelin and Tube-Launched, Optically Tracked, Wire-Guided 
missile systems.
The expressions for both the marginal cost of excess and shortage require 
the unit purchase cost for the battery to be determined. Based on economies 
of scale that the government has achieved through bulk purchases, the 
approximate current purchase cost is $75 for each battery. The expressions 
for the marginal cost of excess and shortage also require the unit holding 
cost for the batteries to be determined. The BA-5590/U battery has specific 
storage requirements due to its classification as hazardous materiel and 
benefits from refrigeration. Based on a table of storage costs per square foot 
and considering a 10-year storage period, the unit holding cost of an addi-
tional battery is $10.84. The required square footage of storage space was 
determined by assuming we stacked the batteries vertically on a standard 
pallet up to the weight handling limits of each pallet. By knowing the size 
of the batteries, we were then able to determine how many pallets and how 
much floor space was needed.
From Equation (5), the marginal cost of excess for BA-5590/U batteries is 
given by
 ∆Ce = 75.00 + 10.84 = 85.84  (8)
which is simply a constant value independent of the quantity in inventory. 
From Equations (6) and (7), the marginal cost of shortage for the batteries 
is expressed as
 ∆Cs (Q) = 75.00α e  - 85.84  (9)
where the value does depend on the quantity, due to the marginal intangible 
cost portion.
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The final required component of the model is an estimate of the BA-5590/U 
battery demand curve. Ideally, battery usage during past conflicts would be 
used to generate the demand curve. Unfortunately, such a detailed database 
of battery usage during previous conflicts does not exist. The most relevant 
databases show how the number of batteries stored at various locations 
changed over time, but the reason for the change is not included. Sometimes 
the batteries were used during conflicts; however, many other times they 
were used for other purposes such as training. Therefore, another approach 
was required to estimate the battery demand.

We used an existing simulation that models the power and energy consump-
tion of various units in the U.S. military to estimate the battery demand 
curve. The simulation used was the MAGTF Power and Energy Model 
(MPEM) tool (T. Hagen, personal communication, February 11, 2020). The 
MPEM tool provides an estimate of the required quantity of many types 
of batteries used by the military, one of which is the BA-5590/U. The tool 
considers all the equipment used by each of the various units that make up 
an MEB. The simulation user must specify the conflict duration and is also 
able to select from several predefined scenarios that capture the tempo and 
intensity of the operation. For all other inputs being held fixed, a higher 
intensity scenario results in the tool predicting a larger number of batteries 
being needed.
We considered five different combinations of maximum and minimum 
battery usage days when spanning the 60-day surge. The maximum battery 
usage days involved all units of the MEB and a high usage predefined sce-
nario in the tool. The minimum battery usage days involved only a limited 
number of units and a low usage predefined scenario in the tool. To repre-
sent a range of conflict intensities, we varied the number of maximum and 
minimum battery usage days within the 60 days. For instance, our lowest 
intensity conf lict considered 5 days of maximum battery usage and 55 
days of minimum battery usage. Our middle intensity conflict assumed 30 
days of each situation. Overall, we considered five conflicts with different 
intensities. For each of them, we also had to estimate the likelihood that 
future conflicts would require less than the number of estimated batteries 
from each one.

The simulation user must specify the 
conflict duration and is also able to select 
from several predefined scenarios that 

capture the tempo and intensity of the operation. 
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TABLE 1. DATA USED TO CONSTRUCT THE CUMULATIVE DISTRIBUTION 
FUNCTION OF THE BA-5590/U BATTERY DEMAND CURVE  

Days of maximum 
battery usage by  

all units

Days of minimum 
battery usage by 

selected units

Estimated number 
of batteries needed

Likelihood of future 
conflicts requiring 

fewer batteries

5 55 58,086 0.05

15 45 121,731 0.25

30 30 182,356 0.50

45 15 224,476 0.75

55 5 237,210 0.95

Table 1 lists the number of batteries that the MPEM tool predicted were 
needed for each of our five conflicts, along with our estimate for the like-
lihood of a future conf lict requiring more batteries than listed in each 
row. The battery results highlight that to estimate the required number of 
batteries, the MPEM tool does not use an average daily battery usage rate 
approach that would linearly scale to any length of conflict. Instead, it uses 
historical battery usage data, from both combat and field tests, the actual 
duration itself, and several other factors to estimate the batteries required. 
The conflict duration is important because in longer duration conflicts and 
field tests, batteries tend to be utilized more efficiently rather than replaced 
frequently with new batteries, which tends to happen in short-duration 
situations. From our results, we estimated that the median of the battery 
demand curve is 182,356 batteries. We denote this battery quantity as Q0

 

and will scale it to set our inverse rate coefficient value.
We also looked at the effect that the battery service life would have on the 
number of required batteries in our demand distribution. A previous battery 
study conducted at Naval Postgraduate School (Vroom et al., 2019) deter-
mined that the average battery life of the BA-5590/U was 8.60 hours with 
a standard deviation of 1.52 hours. The estimated total required battery 
hours is the product of this average battery life and the estimated number 
of batteries. To determine the variability in the number of batteries needed 
due to variance in the service life, we created a simulation. The simulation 
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predicted how many batteries were needed to reach the required total 
battery hours if the service life of any given battery followed a normal dis-
tribution with a mean and standard deviation given from the Vroom study. 
By running 1,000 simulations, we determined that the standard deviation 
on the number of required batteries to reach our total battery hours was 
insignificant compared to the variability due to changing the MPEM tool 
input parameters. For example, the 30-30 day conflict scenario that requires 
1,568,261.6 battery hours resulted in a standard deviation of only 75 batter-
ies due to the variability of battery service life. This rather small variance 
revealed that the effects of consumption during battle are more important 
than the variability in battery service life when estimating the number of 
required batteries.

Results and Discussion
Sensitivity to Intangible Cost

The most subjective aspect of our expected marginal cost analysis 
was the marginal intangible cost component. Therefore, we explored the 
sensitivity of our model to the value-to-cost ratio and inverse rate coeffi-
cients. The purpose of our sensitivity study is not only to determine how 
changes to the value-to-cost ratio or inverse rate coefficients can change 
the calculated optimal inventory level, but also how much that level changes 
when the shape of the marginal intangible cost function is altered. Since 
the marginal intangible cost function is subjective, it is quite possible that 
different analysts could value the intangible costs significantly different 
when putting them in monetary terms. Therefore, we selected value-to-cost 
ratio and inverse rate coefficient values that would result in intangible cost 
curves that had significantly different values while keeping the coefficient 
values reasonable.
Figure 1(a) showed that as the value-to-cost ratio increases, the cost of not 
having an additional item at any inventory level increases. The smallest 
value-to-cost ratio coefficient that is realistic is something slightly greater 
than 1.0 since anything smaller means that the value of the item is less than 
its purchase cost. Therefore, we used a value of 1.5 for our smallest value. 
For our largest value-to-cost ratio, we settled on 6.0—a value four times 
larger than our smaller value—but we show results for up to a value of 10.0 in 
Figure 2. We decided that a value-to-cost ratio, larger than an order of mag-
nitude, would be more appropriate when considering two different items.
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FIGURE 2. OPTIMAL INVENTORY STORAGE LEVELS FOR THE BA-5590/U 
BATTERY FOR A RANGE OF VALUE-TO-COST RATIO COEFFICIENT 
AND INVERSE RATE COEFFICIENT VALUES
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As explained above, the inverse rate, to be realistic, should be set by scaling 
up the pre-analysis estimated median demand of the item from the demand 
curve. The smallest reasonable scaling up would be to just use the median 
demand itself, so we used 1.0Q0 as our smallest coefficient value. The largest 
scaling-up value would be one that makes the curve locally appear linear. 
This clearly happens when the inverse rate takes on a value near 20Q0, 
since the blue line in Figure 1(b) corresponds to an inverse rate coefficient 
of 21.9Q0.
When exploring the sensitivity of one coefficient, we held the other one 
fixed to isolate the sensitivity of each coefficient. Besides the smallest and 
largest coefficient values previously discussed, we also selected a third, 
middle value for both coefficients. This middle value was selected to cause 
the marginal intangible cost function to have a shape that was between the 
two shapes created by the smallest and largest coefficient values. Since the 
value-to-cost ratio linearly scales the marginal intangible cost function, we 
simply selected the middle value of 3.0. The inverse rate coefficient is part 
of the argument of the exponential function, so it does not linearly scale 
the shape like the value-to-cost coefficient. We found that a value of 2.5Q0 
created a shape that visually appeared approximately halfway between the 
two shapes when using the smallest and largest values. Figure 1(b) shows 
that the green curve, which is 2.7Q0 (roughly 2.5Q0), is not nearly as steep 
as the red curve nor nearly as flat as the blue curve.



471Defense ARJ, October 2021, Vol. 28 No. 4 : 452–478  

October 2021

When examining the sensitivity of the value-to-cost ratio coefficient, 
we fixed the inverse rate coefficient at 2.5Q0. We fixed the value-to-cost 
ratio coefficient at 3.0 when looking at the sensitivity of the inverse rate 
coefficient. Table 2 shows the optimal inventory level for the five cases cor-
responding to the different combinations of our coefficient values. The top 
row contains the three value-to-cost ratio coefficients we considered, while 
the first column has the three inverse rate coefficients considered.

TABLE 2. OPTIMAL INVENTORY LEVELS OF BA-5590/U BATTERIES FOR 
VARIOUS VALUE-TO-COST RATIO AND INVERSE  
RATE COEFFICIENTS   

γ                 α 1.5 3.0 6.0

1.0Q0 --- 134,000 ---

2.5Q0 93,250 173,750 212,500

20.0Q0 --- 196,750 ---

We observed that as the value-to-cost ratio coefficient increases, the opti-
mal inventory level increases as well. A significant difference in optimal 
inventory levels was also observed between the smallest and largest value-
to-cost ratio coefficients considered. These two values produce a difference 
in optimal inventory levels of nearly 119,250 batteries, or just over a factor 
of 2.28 between the smallest and largest value-to-cost ratio coefficients. 
The optimal inventory level is very sensitive to the value-to-cost ratio coef-
ficients, relying upon the subjective judgment of planner inputs.
The results also show that as the inverse rate coefficient values increase, the 
optimal battery inventory level also increases. The optimal inventory level 
changes by about 62,750 batteries, or a factor of 1.47, between the smallest 
and largest inverse rate coefficients. Although the inverse rate coefficient 
influences the optimal storage level, it appears to be less sensitive than the 
value-to-cost ratio coefficient. This is most apparent when considering that 
the inverse rate was varied by a factor of 20 in this sensitivity study, while 
the value-to-cost ratio was only varied by a factor of 4.
A contour map of the optimal inventory storage levels over a range of value-
to-cost ratio and inverse rate coefficients provides a complete picture of the 
inventory level sensitivity plane. Figure 2 shows contour lines of constant 
optimal inventory levels with the value-to-cost ratio coefficients ranging 
from 1.25 to 10 and the inverse rate coefficients ranging from Q0 to 20Q0, 
where Q0 = 182,356 for this battery study. The contour map clearly shows 
that the optimal inventory storage level is less sensitive to, and in fact 
almost independent of, the inverse rate coefficient when it is larger than 
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about a value of 5Q0. Conversely, the optimal storage level is sensitive to the 
value-to-cost ratio coefficient across its entire range, but especially when 
the inverse rate coefficient is larger than roughly 3Q0.

Sensitivity to Demand Distribution
Since we used a normal distribution as an expedient for the battery 

distribution, we also examined the sensitivity to the form of the demand 
distribution. One could argue that the battery demand distribution might 
be somewhat skewed toward lower quantities since a minimum number 
of batteries is consumed for even the lowest intensity conflict. So, we also 
created a Weibull distribution to model the battery demand to use in our 
expected marginal cost analysis. The scale and shape parameters of the 
Weibull distribution allow it to capture skewness. Figure 3 shows the cumu-
lative distribution function of the Weibull distribution that we created as 
the blue curve, and the normal distribution that we used previously as the 
red curve. The scale and shape parameter values were selected by mini-
mizing the error, in a least-squares sense, to the MPEM tool data. It has a 
25th-percentile quantity of 131,294 batteries, a median quantity of 172,878 
batteries, and a 75th-percentile quantity of 214,748 batteries. For our nor-
mal distributions, these percentiles were 142,818, 182,356, and 221,894 
batteries, respectively. Therefore, the largest difference is with the left tail 
skewness of the distributions, which is also evident in Figure 3.

FIGURE 3. NORMAL AND WEIBULL CUMULATIVE DISTRIBUTION FUNCTIONS 
USED IN THE ANALYSIS ALONG WITH THE MPEM TOOL  
GENERATED DATA
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TABLE 3. COMPARISON OF OPTIMAL INVENTORY STORAGE LEVELS OF  
BA-5590/U BATTERIES USING A WEIBULL DISTRIBUTION DEMAND 
COMPARED TO A NORMAL DISTRIBUTION DEMAND  

γ                 α 1.5 3.0 6.0

1.0Q0 ---  127,750 (0.95) ---

2.5Q0 87,500 (0.94) 165,500 (0.95) 205,500 (0.97)

20.0Q0 ---  188,500 (0.96) ---

To examine the sensitivity to this demand distribution, the optimal inven-
tory level was determined using the same value-to-cost ratio and inverse 
rate coefficients as in the previous section but now using the Weibull distri-
bution for battery demand. Table 3 shows the optimal inventory levels for 
the five different combinations of coefficients considered previously. The 
optimal inventory level for the five cases using the Weibull distribution is 
the first number shown, while the second number (shown in parentheses) 
is the ratio of this inventory level to the previously determined normal dis-
tribution demand inventory level. The second number being only slightly 
less than 1 shows that the optimal inventory level is not very sensitive to 
the actual distribution shape when the range of the distributions is similar. 
Since the optimal inventory level must fall within the range of the demand 
distribution, it will only change significantly if the range of the distribution 
is significantly changed. 

Sensitivity to Purchase and Holding Costs
Although considerably less subjective than the intangible cost com-

ponent or the demand distribution, we also looked at the sensitivity of the 
optimal inventory level to the purchase and holding costs in our model. To 
do this, we determined the optimal inventory level using low- and high-pur-
chase and holding costs. However, when conducting this sensitivity analysis, 
we had to address the fact that our formula for the intangible cost function 
(Equation 7) contains the purchase cost as well. The purpose of multiplying 
the value-to-cost ratio coefficient and the purchase cost is to capture the 
true military value of the item. Therefore, for this sensitivity analysis, we 
held the value of the purchase cost variable used in Equation (7) fixed at 
$130. The value-to-cost ratio coefficient was also fixed at 3.0 for all cases. 
This allowed us to vary the purchase and holding costs but not the intrinsic 
military value of the item.
To perform this sensitivity analysis, we used the following ranges of pur-
chase and holding costs. For the low end, we used a unit purchase cost of $75 
and a monthly battery pallet holding cost of $50 ($5.40 per battery assuming 
10 years of storage). These values represent realistic low-end values that we 



474 Defense ARJ, October 2021, Vol. 28 No. 4 : 452–478

“Extra!” Using the Newsvendor Model to Optimize War Reserve Storage   https://www.dau.edu

identified considering economies of scale from buying in large quantities 
and nonrefrigerated storage. For the high end, we used a unit purchase cost 
of $185 and a monthly battery pallet holding cost of $100 ($10.80 per bat-
tery for 10 years). These values correspond to the purchase cost of a single 
commercially available battery, ignoring the benefits of economies of scale, 
and including refrigerated storage. When calculating the optimal inventory 
level, the value-to-cost ratio coefficient for all cases was 3.0 and the inverse 
rate coefficient was 2.5Q0.

For an item with a fixed military value, when the purchase and holding 
costs increase, the optimal inventory storage level decreases. For the low-
end costs, the optimal inventory storage level was 208,750 batteries, while 
for the high-end costs, the optimal storage level was 151,500 batteries. 
This results in a range of 57,250 batteries, or a factor of 1.38, between the 
optimal storage levels considering the low- and high-end cases. This level 
of sensitivity is similar to that of the inverse rate coefficient and much less 
than that of the value-to-cost ratio coefficient.

Conclusions and Future Research
Like any optimization problem, expected marginal cost analysis finds 

a balance between two competing factors—in this case, the expected costs 
incurred from having too many of an item and having too few. The cost of 
having too many is usually straightforward. However, the cost of shortage in 
a military scenario must be captured using an intangible cost function. This 
is inherently a subjective determination. Through our sensitivity analysis, 
we have shown that the most important aspect of our modified newsvendor 
approach is the value-to-cost ratio coefficient. The results of the analysis 
will be meaningful only if one accurately captures the “costs” incurred 
when additional items are needed but not available. Since quantifying this 
will always be conjectural and vary widely, depending on the modeler’s 
input, so too will the optimal inventory levels for the WRM. The span of the 
demand distribution is another important aspect of our approach because 
the optimized inventory level is forced to occur within the bounds of the 
demand distribution. Thus, if the estimated demand distribution covers 

The purpose of multiplying the value-to-
cost ratio coefficient and the purchase 
cost is to capture the true military value of 

the item. 
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the wrong quantity range, then the optimized inventory level will also be 
wrong. Therefore, the two biggest shortfalls of the newsvendor model in a 
military context are the uncertainty surrounding the intangible cost of item 
shortage and the distribution of demand.
The formulation of our model is general enough that it can be applied to any 
item that is part of the WRM and to the other branches of military service. 
However, each branch would need to adjust the parameter values to reflect 
the supported unit size and surge duration that the WRM needs to supply. 
This would most clearly show up in the demand distribution used for the 
analysis. Our model is also general enough that it can be applied to other 
scenarios where the cost of shortage is due to intangible costs rather than 
lost profits, such as humanitarian aid and disaster relief efforts.
Our model has neglected factors such as reuse of items while in theater, 
maintenance of items in storage, and waste in transport and use. These 
factors, presumed to be less significant, would undoubtedly make the model 
more realistic, but would also make the determination of parameter values 
more difficult. This is an area for further research that could leverage and 
refine our work.
Feedback given to us by our research sponsors at the USMC Installation and 
Logistics Command was enthusiastic about how our methods could be used 
to better convey stockage levels in a more realistic context for sustainment 
preparations.
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