

Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers

Faculty and Researchers' Publications

2014-12-04

iTAP Methods, Processes and Tools

Madachy, Ray

Systems Engineering Research Center (SERC)

http://hdl.handle.net/10945/70121

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

iTAP Methods, Processes and Tools

Ray Madachy 6th Annual SERC Sponsor Research Review December 4, 2014 Georgetown University School of Continuing Studies 640 Massachusetts Ave NW, Washington, DC

www.sercuarc.org

December 4, 2014

- End Vision
- Status
- Phase 4 Plans
 - -Task 2: iTAP Methods and Tools Piloting and Refinement
 - —Task 3: Next-Generation, Full-Coverage Cost Estimation Model Ensembles

- Total Ownership Cost (TOC) modeling to enable affordability tradeoffs with integrated softwarehardware-human factors
- Current shortfalls for ilities tradespace analysis
 - Models/tools are incomplete wrt/ TOC phases, activities, disciplines, SoS aspects
 - No integration with physical design space analysis tools, system modeling, or each other

New aspects

- Integrated costing of systems, software, hardware and human factors across full lifecycle operations
- Extensions and consolidations for DoD application domains
- Tool interoperability and tailorability (service-oriented)

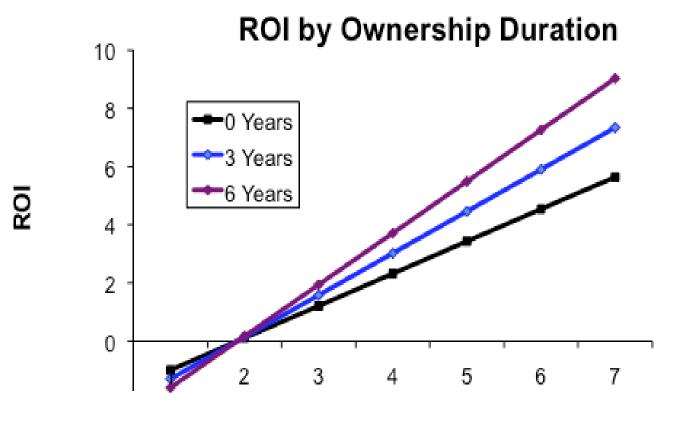
Can improve affordability-related decisions across all joint services

- Research and development
 - Create new ensemble of cost models with DoD stakeholders for broader coverage.
 - -Enable interoperability with other toolsets and researchers (plug and play)
- Piloting and refinement
 - —Engaging with DoD organizations to pilot the TOC methods, process and tools (MPTs); then refine them based on the results of the pilot applications

- Extended parametric cost models for breadth of engineering disciplines to include systems engineering, software engineering and hardware.
- Improved TOC capabilities by adding lifecycle maintenance models.
- Added Monte Carlo risk analysis for subset of cost parameters in integrated SE/SW/HW cost model.
- Initial extensions of general cost models for DoD system types starting with space systems and ships.
- Developed web service for Orthogonal Defect Classification Constructive Quality Model (ODC COQUALMO) supporting tool interoperability (costing in the cloud).
- Successful piloting and follow-on extensions of product line model at NAVAIR.

- Extending models and tools to analyze TOC for a family of systems. The value of investing in product-line flexibility using Return-On-Investment (ROI) and TOC is assessed with parametric models adapted from the Constructive Product Line Investment Model (COPLIMO).
- Models are implemented in separate tools for 1) System-level product line flexibility investment model and 2) Software product line flexibility investment model. The detailed software model includes schedule time with NPV calculations.

Example Product Line TOC and ROI


Open Sar Aircraft Ground Veh	ide												
System Type Vissile Ship	icie	۰.											
System Costs													
Average Product Developmen	t Cost	(Burde	ned \$I	M) 5		Ow	nershij	p Tim	ie (Yei	ars)	3		
Annual Change Cost (% of De	velopr	nent C	ost)	4		Inte	rest Ra	ate (A	Annua	l %)	7		
Product Line Percentages F	Relativ	e Cost	s of R	euse (%)								
Unique % 40	Relat	ive Co	st of R	euse fo	or Ada	oted	40						
Adapted % 30	Relat	ive Co	st of R	euse fo	or Reu	sed	5						
Reused % 30						L							
Investment Cost													
Relative Cost of Developing for	or PL F	lexibili	ty via F	Reuse	1.7								
Calculate Monte Carlo O	n ‡)												
		M	eans										
# of Products	1	2	3	4	5	6	7			Mo			esults
Development Cost (\$M)	\$7.1	\$2.7	\$2.7	\$2.7	\$2.7	\$2.7	\$2.7				Mean=	6.5	SD=1.3
Ownership Cost (\$M)	\$0.9	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	\$0.3	3	15				
Cum. PL Cost (\$M)	\$8.0	\$10.9	\$13.9	\$16.9	\$19.9	\$22.9	\$25.9		10				
PL Flexibility Investment (\$M)	\$2.1	\$0	\$0	\$0	\$0	\$0	\$0		25-				
PL Effort Savings	(\$2.4)	\$0.3	\$2.9	\$5.5	\$8.1	\$10.7	\$13.3	% 2	20-				
Return on Investment	-1.12	0.12	1.36	2.60	3.84	5.08	6.32		5				
								1	0-				
									5-				
									0 5	6	Ż	à	ģ
									5	6	1	8 ROI	9
												noi	

10 11

Sensitivity Analysis Example

of Products

- Multi-mission, multi-platform needs call for extension of the top-level COPLIMO model to handle subsystems.
 Immediate pilot applications include:
 - -NAVAIR avionics software product line modeling
- Each subsystem has respective cost factors and product line characteristics including
 - Fractions of system fully reusable, partially reusable and cost of developing them for reuse
 - -Fraction of system variabilities and cost of development
 - -System lifetime and rates of change

For Set of Products:

For each subsystem:

- Average Product Cost
- Annual Change Cost
- Ownership Time
- Percent Mission-Unique, Adapted, Reused
- Relative Cost of Developing for PL Flexibility via Reuse
- Relative Costs of Reuse

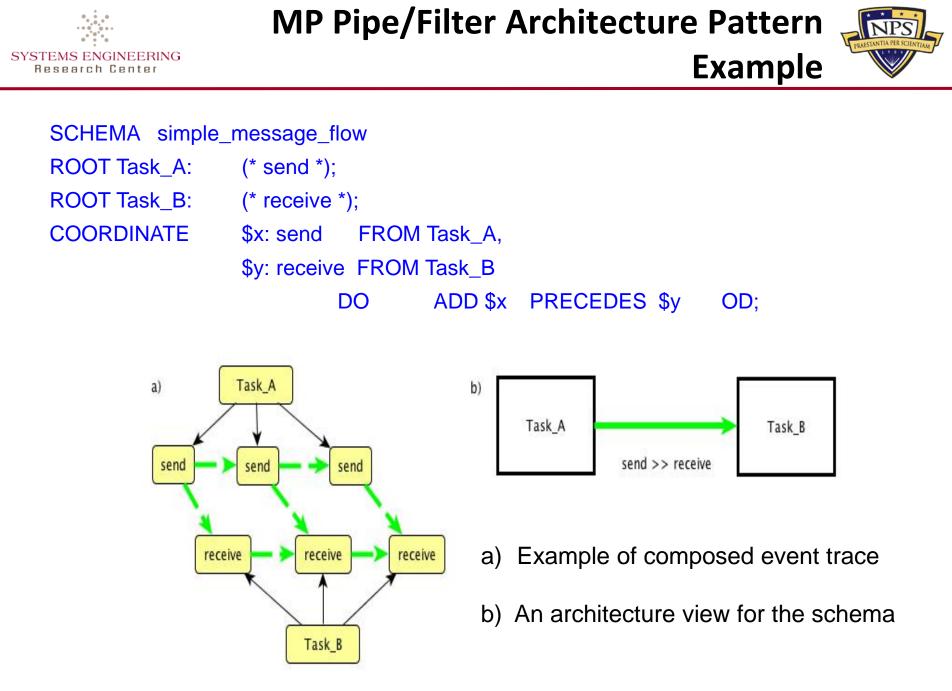
Systems Product Line Model As Functions of # Products, # Years in Life Cycle: • PL Total Ownership Costs • PL Flexibility Investment • PL Savings (ROI)

Example Single System TOC

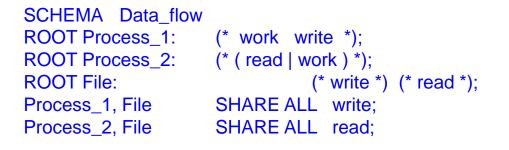
ystems Engineering	Software	Hardware	Sun	nmary					
Systems Engineering Acquisi		Total Cost Distribution Function							
Effort =1767.4 Person-months Schedule = 17.7 Months		# Iterations							
Cost = \$17.7 M			233	259					
Systems Engineering Mainter Annual Cost = \$1.5 M	nance (15 Years)	160	202						
Total Cost = \$23.1 M		100							
Software Development (Elaboration and Constructio		66		78					
Effort = 11520.3 Person-mont/ Schedule = 80.3 Months	IS								
Cost = \$115.2 M		380- 499- 499 618	618- 736 736 855						
Software Maintenance (15 Ye Annual Cost = \$8.5 M	ars)	C	Cost (\$M)						
Total Cost = \$127.7 M		Total Cost Confidence Levels (\$M)							
Hardware Development and F	Production	10% 525.38							
Cost = \$481.6 M		20% 600.83							
Fotals Acquisition Cost = \$614.4 M		30% 661.31 40% 721.87	-						
Maintenance Cost = \$150.8 M		50% 778.13	-						
Total Cost = \$765.2 M		60% 827.96							
		70% 870.80							
		80% 913.87 90% 959.81	-						
		90% 959.81							

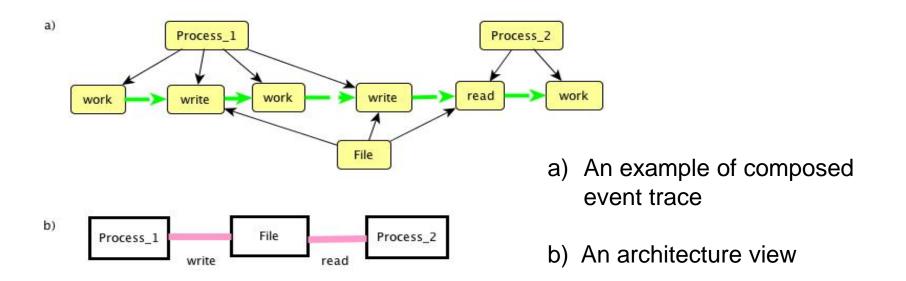
- The ODC COQUALMO and Product Line TOC models/tools have been enhanced for interoperability and tailorability.
- Adaptations to the web-based tools enable other toolsets to plug-in, so their analyses can be crosspollinated with cost, schedule and quality dimensions.
 - External applications can automatically send input parameters and/or files and receive results in lieu of manual user sessions.
 - —Ability to modify or add internal model parameters for different scenarios (e.g. effort, schedule and quality calibration parameters; phase/activity distributions for effort and schedule; defect type distributions, etc.).
 - -APIs demonstrated for multiple languages and platforms.

- Collaboration with AFIT for a joint Intelligence, Surveillance and Reconnaissance (ISR) mission application involving heterogenous teams of autonomous and cooperative agents.
- NPS will provide cost modeling expertise, tools and Monterey Phoenix (MP) modeling support. A focus will be on translations between models/tools in MBSE, specifically mapping architectural elements into cost model inputs.
- Approach
 - Develop a baseline operational and system architecture to capture a set of military scenarios.
 - Transition the baseline architecture to the MP environment.
 - Utilize the executable architecture modeling framework of MP to perform automated assertion checking and find counterexamples of behavior that violate the expected system's correctness.
 - Operational scenarios will be cycled through the MP modeling process, whereby alternate events are captured for each actor in each scenario. This will produce a superset of scenario variants from the behavior models, suitable for input to tradespace analysis and cost models.
 - Design and demonstrate an ISR UAV tradespace.
 - Develop cost model interfaces for components of the architecture in order to evaluate cost effectiveness in an uncertain future environment.



- Continue extending the scope and tradespace interoperability of cost models and tools from previous phases.
- Cost modeling will engage domain experts for Delphi estimates, evolve baseline definitions of cost driver parameters and rating scales for use in data collection, gather empirical data and determine areas needing further research to account for differences between estimated and actual costs.
 - Prototype cost models and tools will be extended accordingly for piloting and refinement.
- For tool interoperability we will integrate cost models in different ways with MBSE architectural modeling approaches and as web services. We will also automate systems and software risk advisors that operate in conjunction with the cost models.
- NPS will provide domain expertise for SysML cost model integration with Georgia Tech and USC to add software cost model formulas and the risk assessment capabilities.
 - This is also allied with Task 2 where we will assess Monterey Phoenix (MP) for automatically
 providing cost information from architectural models. MP will extract software sizing cost
 model inputs to compute costs, and we will assess mapping MP architectural elements into
 systems engineering cost model inputs.


- Monterey Phoenix (MP) is approach to formal software and system specification based on behavior models
- A view on the architecture model as a high level description of possible behaviors of subsystems and interactions between subsystems
- The emphasis on specifying the interaction between the system and its environment
- The behavior composition operations support architecture reuse and refinement toward design and implementation models
- Executable architecture models provide for system architecture testing and verification with tools
- See <u>http://wiki.nps.edu/display/MP</u>



Data items are represented by actions that may be performed on that data

- K. Giammarco and M. Auguston, "Well, You didn't Say not to! A Formal Systems Engineering Approach to Teaching an Unruly Architecture Good Behavior", Complex Adaptive Systems Conference, 2013
- M. Auguston and C. Whitcomb, "Behavior Models and Composition for Software and Systems Architecture", ICSSEA 2012, 24th International Conference on Software & Systems Engineering and their Applications, 2012
- R. Madachy and R. Valerdi, "Automating Systems Engineering Risk Assessment", Proceedings of the 8th Annual Conference on Systems Engineering Research, 2010
- R. Madachy, *Heuristic Risk Assessment Using Cost Factors*, IEEE Software, May 1997

Ship RDT&E Point Estimate 🔨

Options		
Monte Carlo Risk	Off	•

	Constr	uctive Sy	stems Engin	eerir	ig Cost M	ode	I (COSYSMO)	
System Size		Easy	Nominal	Diff	icult			
# of System Requirem	ents	120	185	48				
# of System Interfaces		12	67	45				
# of Algorithms		19	125	58				
# of Operational Scena	arios	3	14	8				
System Cost Drivers								
Requirements Understanding	High 🗸			Nominal	•	Personnel Experience/Continuity	Nominal	
Architecture	High -	# and Div Installation	versity of ons/Platforms		Very High		Process Capability	Nominal
Understanding Level of Service	- ngn	# of Recu	ursive Levels in	in the	Nominal	-	Multisite Coordination	Nominal
Requirements	Very High 🔻						Tool Support	Nominal
Migration Complexity	Nominal -	,	der Team Cohe		Nominal	-	i con copport	Norman
Technology Risk	Nominal -	Personn	el/Team Capab	ility	Nominal	•		
Maintenance Off 👻								

Results

Systems Engineering Effort =1767.9 Person-months Schedule = 17.7 Months Cost = \$17679187

Total Size =2650 Equivalent Nominal Requirements

Acquisition Effort Distribution (Person-Months)

Phase /	Conceptualize	Develop	Operational	Transition
Activity			Test and	to
			Evaluation	Operation
Acquisition and Supply	34.7	63.1	16.1	9.9
Technical Management	66.1	114.2	75.1	45.1
System Design	180.3	212.2	90.2	47.7
Product Realization	34.5	79.6	84.9	66.3
Product Evaluation	98.6	148.0	219.2	82.2
Your output file	e is <u>http://diana</u> .	.nps.edu/~r	madachy/tools	s/data/cost

Ship RDT&E Point Estimate

ystems Er	ngineering		Software		Hardwa	are	Summary		
Software S	Size	Sizing M	Co ethod Source			lel (COCOMC))		
	<u>SLOC</u>	% Desi Modifie	ign % Code	% Integration	Assessment	Software Understanding (0% - 50%)	Unfamiliarity (0-1)		
New	850000								
Reused	225000	0	0	50	4				
Modified	400000	10	15	60	4	20	.4		
	tedness nent Flexibility Cost Drivers			Resoluti	ture / Risk ion ohesion	Nominal High	 Process Maturity 	Nominal	
Product				Personr	nel		Platform		
	Software Rel	liability	Very High	Analyst	Capability	Nominal	Time Constraint	High	_
Data Base			Nominal •	Program	nmer Capabilit	y Nominal	Storage Constraint	High	_
	complexity				el Continuity	Nominal	■ Platform Volatility	Nominal	
	d for Reusab Itation Match i			Applicat	ion Experience	Nominal	 Project 		
Lifecycle			Nominal	Platform	Experience	Nominal	 Use of Software Tools 	Nominal	
				Langua Experier	ge and Toolset nce	Nominal	 Multisite Development 	Nominal	
							Required Development Schedule	Nominal	
Maintenan	ce Off 🝷								
Software L	abor Rates								
Cost per P	erson-Month	(Dollars) 10000						

Systems Engine	ering	Software	Hardware	Summary	
		Advanced Miss	sions Cost Model (AMCM)		
Quantity	1]			
Dry Weight (Ib.)	1000000]			
Mission Type	Ship - Amphi	b Assault 🛛 👻			
IOC Year	2013]			
Block Number	1]			
Difficulty	Average -	•			
Calculate					
Results					
Hardware Devel Total Cost = \$60		roduction			
This is a simple	advanced mis	sions cost model (AMCM) for a	uick turnaround, rough-order-of-ma	anitude estimating. The model can	ho

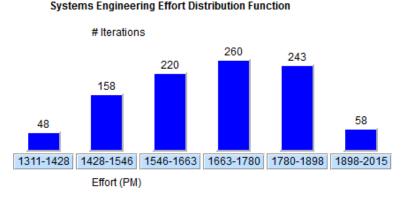
This is a simple advanced missions cost model (AMCM) for quick turnaround, rough-order-of-magnitude estimating. The model can be used for estimating the development and production cost of spacecraft, space transportation systems, aircraft, missiles, ships, and land vehicles. Initial model provided courtesy of NASA with extensions by NPS.

Systems Engineering	Software	Hardware	Summary	
Systems Engineering Acquisit Effort =1767.9 Person-months Schedule = 17.7 Months Cost = \$17.7 M	ion			
Software Development (Elabor Effort = 10344.6 Person-month Schedule = 77.5 Months Cost = \$103.4 M				
Hardware Development and P Cost = \$608 M	roduction			
Total System Cost = \$744.4 M				
Your output file is <u>http://diana.n</u>	os.edu/~madachy/tools/data/cost	model suiteSeptember 17 20	<u>13 07 42 42 618469.txt</u>	

Created by Ray Madachy at the Naval Postgraduate School. For more information contact him at rjmadach@nps.edu

Ship RDT&E Monte Carlo Risk Analysis

Results


Systems Engineering Effort =1767.4 Person-months Schedule = 17.7 Months Cost = \$17673532

Total Size =2650 Equivalent Nominal Requirements

Acquisition Effort Distribution (Person-Months)

Phase / Activity	Conceptualize	Develop		Transition to Operation
Acquisition and Supply	34.6	63.1	16.1	9.9
Technical Management	66.1	114.2	75.1	45.1
System Design	180.3	212.1	90.1	47.7
Product Realization	34.5	79.5	84.8	66.3
Product Evaluation	98.6	147.9	219.2	82.2

Monte Carlo Results

Systems Engineering Effort Confidence Levels

Your output file is http://diana.nps.edu/~madachy/tools/data/cost_model_suiteSeptember_17_2013_07_55_02_565284.txt

Ship RDT&E Monte Carlo Risk Analysis

Systems Engine	eering	Software		Hardware		Summary	
		Advanc	ed Missior	ns Cost Mo	odel (AMCM)		
Quantity	1]					
Dry Weight (Ib.)	Distribution	Uniform 👻 Min	900000(M	ax 150000(
Mission Type	Ship - Amphi	ib Assault	•				
IOC Year	2013]					
Block Number	1]					
Difficulty	Average •	•					
Calculate							

Systems Engineering Software Hardware Summary **Total Cost Distribution Function** Systems Engineering Acquisition Effort =1767.4 Person-months Schedule = 17.7 Months # Iterations Cost = \$17.7 M 223 192 188 187 Software Development (Elaboration and Construction) Effort = 10344.6 Person-months 121 Schedule = 77.5 Months 87 Cost = \$103.4 M Hardware Development and Production Cost = \$685 M 696-742 742-787 787-832 832-878 878-923 651-696 Total Cost (\$M) System Cost = \$806.1 M Total Cost Confidence Levels (\$M) 693.43 10% 20% 716.06 30% 739.20 40% 762.84 50% 786.89 60% 815.19 70% 835.29 80% 855.01 875.41 90% 100% 923.45

SYSTEMS ENGINEERING Research Center

Systems Engineering	Softwar	е	H	lardwa	are		Summary			
	Constru	ctive Syst	ems Engin	eerin	g Cost Mo	del	(COSYSMO)			
System Size		Easy	Nominal	Diffi	cult					
# of System Requirem	ents	120	185	48	48					
# of System Interfaces		12	67	45						
# of Algorithms		19	125	58						
# of Operational Scena	arios	3	14	8						
System Cost Drivers										
Requirements Understanding	High -	Document # and Dive			Nominal 👻	Personnel Experience/Continuity	Nominal	•		
Architecture Understanding	High -	Installation	s/Platforms		Very High	•	Process Capability	Nominal	-	
Level of Service	Manullinh	# of Recurs Design	sive Levels in	the	Nominal	•	Multisite Coordination	Nominal	•	
Requirements	Very High 🔻	_	er Team Cohe	sion	Nominal	•	Tool Support	Nominal	•	
Migration Complexity	Nominal -		/Team Capab		Nominal	•				
Technology Risk	Nominal -	r ersonne.	ricani Gapab	inty	Nominar	•				
Maintenance On 👻	Annual Change	% 10 M	laintenance D	uratior	(Years) 15					
System Labor Rates Cost per Person-Month	(Dollars) 10000									
Calculate										

Results

Systems Engineering

Effort =1767.9 Person-months Schedule = 17.7 Months Cost = \$17679187

Total Size =2650 Equivalent Nominal Requirements

Acquisition Effort Distribution (Person-Months)

Phase / Activity	Conceptualize	Develop		Transition to Operation
Acquisition and Supply	34.7	63.1	16.1	9.9
Technical Management	66.1	114.2	75.1	45.1
System Design	180.3	212.2	90.2	47.7
Product Realization	34.5	79.6	84.9	66.3
Product Evaluation	98.6	148.0	219.2	82.2

Maintenance

Annual Maintenance Effort = 154.0 Person-Months Annual Maintenance Cost = \$1539792 Total Maintenance Cost = \$23096893

Your output file is http://diana.nps.edu/~madachy/tools/data/cost_model_suiteSeptember_17_2013_08_06_07_160035.txt

Software Maintenance

Systems E	ngineering		Software		Hardwa	are	Summary		
			c	onstructiv	ve Cost Mod	lel (COCOMO	II)		
Software New	Size : SLOC 850000	Sizing M % Des Modifie	ethod Sourc	e Lines of Co % d Integration	ode 👻 Assessment		Unfamiliarity (0-1)		
Reused	225000	0	0	50	4				
Modified	400000	10	15	60	4	20	.4		
Preceder		-	Nominal	- Resolut	ture / Risk ion	Nominal	 Process Maturity 	Nominal	•
Developr	ment Flexibility	Y	Low	Team C	ohesion	High	•		
Product	e Cost Drivers I Software Rel		Very High	 Personi Analyst 	nel Capability	Nominal	Platform Time Constraint	High	•
Data Bas	e Size		Nominal	▼	nmer Capabilit		Storage Constraint	High	•
Product C	Complexity		High	•	nel Continuity	Nominal •	Platform Volatility	Nominal	•
Develope	ed for Reusab	ility	Nominal	•	ion Experience				
Documer Lifecycle	ntation Match 1	to	Nominal		n Experience	Nominal •		Nominal	•
2.000,000					ge and Toolset	ł	Multisite Development	Nominal	•
				Experier	nce	Nominal 🔻	Required Development	Nominal	•
Maintenar	nce On 👻						Schedule	Nominal	•
Annual Ch	ange Size (E	SLOC)	80000	Mainter	nance Duration	(Years) 15			
Software U	Understanding	g (0%-50)%) 25	Unfamil	liarity (0-1) .4				
	Labor Rates Person-Month	(Dollars) 10000]					

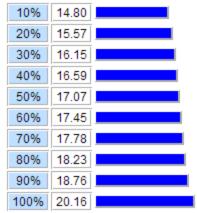
Total Ship Maintenance

Systems Engineering	Software	Hardware	Summary	
Systems Engineering Acquisit Effort =1767.9 Person-months Schedule = 17.7 Months Cost = \$17.7 M	lion			
Systems Engineering Mainten Cost = \$23.1 M	ance			
Software Development (Elabo Effort = 10344.6 Person-month Schedule = 77.5 Months Cost = \$103.4 M	-			
Software Maintenance Cost = \$103.8 M				
Hardware Development and P Cost = \$608 M	roduction			
Total System Cost = \$856.0 M				
Your output file is <u>http://diana.n</u>	ps.edu/~madachy/tools/data/cost	model suiteSeptember 17 20	<u>13 08 08 09 196913.txt</u>	

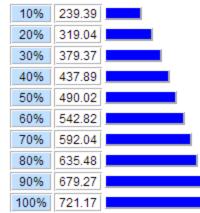
Acquisition and Maintenance Monte Carlo Risk Results (1/3)

Systems Engineering Sol	ftware	Hardware	Sumn	nary
Systems Engineering Acquisition Effort =1767.4 Person-months Schedule = 17.7 Months Cost = \$17.7 M		Total Cost D	istribution Function	n
		# Ite	erations	050
Systems Engineering Maintenance Annual Cost = \$1.5 M Total Cost = \$23.1 M	e (15 Years)	160	202	259
Software Development (Elaboratio Effort = 11520.3 Person-months Schedule = 80.3 Months	on and Construction)	66		78
Cost = \$115.2 M		380- 499- 499 618	618- 736- 736 855	855- 974- 974 1093
Software Maintenance (15 Years) Annual Cost = \$8.5 M Total Cost = \$127.7 M		Cos Total Cost Confidenc	st (\$M)	
Hardware Development and Produ Cost = \$481.6 M	iction	10% 525.38 20% 600.83		
Totals Acquisition Cost = \$614.4 M		30% 661.31 40% 721.87		
Maintenance Cost = \$150.8 M Total Cost = \$765.2 M		50% 778.13 60% 827.96		
		70% 870.80 80% 913.87		
		90% 959.81		

100% 1,093.48



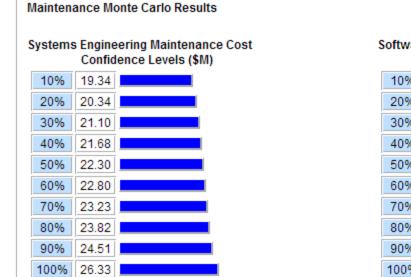
Acquisition and Maintenance Monte Carlo Risk Results (2/3)



Acquisition Monte Carlo Results

Systems Engineering Cost Confidence Levels (\$M)

Hardware Cost Confidence Levels (\$M)


Software Engineering Cost Confidence Levels (\$M)

88.90
98.85
105.11
110.15
113.94
120.28
125.38
133.06
139.49
178.62

Acquisition and Maintenance Monte Carlo Risk Results (3/3)

Software Engineering Maintenance Cost Confidence Levels (\$M)

10%	98.56
20%	109.59
30%	116.53
40%	122.12
50%	126.32
60%	133.35
70%	139.00
80%	147.52
90%	154.65
100%	198.03

TRANSITIA PER SCIENTIALS	System	Cost Mod	lel Suite	Suite		Options Monte Carlo Risk Off 🔻
	Project Nam	ne: MiniSat	System Type	Satellite	•	
Systems Engine	ering	Software		Hardware		Summary
			Satellite	Hardware RDT	&E	
Element 1. Payload			Param	eter		Cost
1.1 Visible Light	Sensor		Apertur	e diameter (m)	1.0	\$128,827
2. Spacecraft						
2.1 Structure			Structur	e weight (kg)	245	\$15,098
2.2 Thermal			Therma	al weight (kg)	40	\$4,100
			X1 = EF	'S weight (kg)	420	
2.3 Electrical Po	wer System		X2 = B0)L power (wt)	100	\$26,528
2.4 Telemetry, Tr	acking and C	ommand	TT&C w	/eight (kg)	50	\$10,698
2.5 Attitude Determination and Control			ADCS	veight (kg)	110	\$27,315
Calculate Your output file is	http://diana.n	ps.edu/~mada	chy/tools/data/co	st model suiteSer	otember 17 :	2013 08 46 43 265739.txt

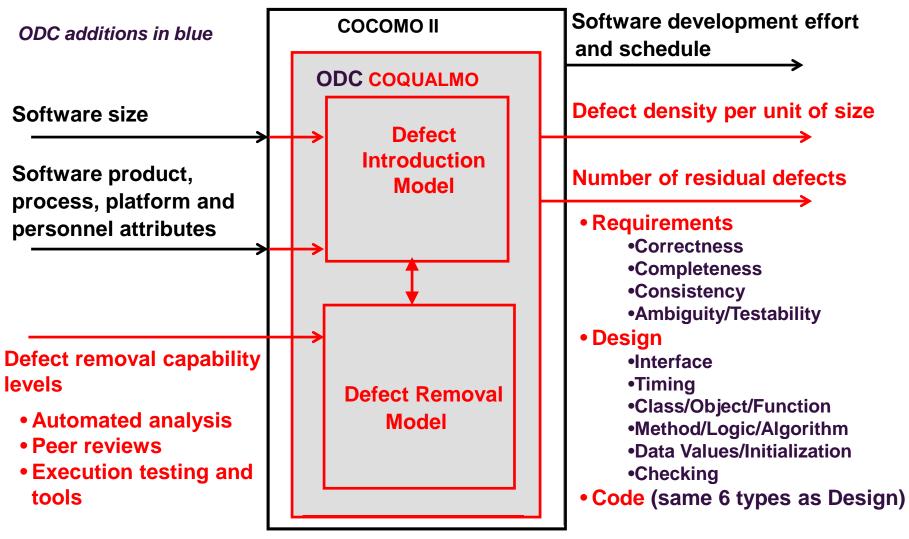
Created by Ray Madachy at the Naval Postgraduate School. For more information contact him at rjmadach@nps.edu

Results Software Development (Elaboration and Staffing Profile Construction) 10-Effort = 169.9 Person-months Schedule = 20.0 Months Cost = \$1698762 Total Equivalent Size = 40000 SLOC People 5 Acquisition Phase Distribution Effort Schedule Average Cost (Person-Phase (Months) Staff (Dollars) months) \$101926 10.2 2.5 4.1 Inception \$407703 Elaboration 40.8 7.5 5.4 0 Construction 129.1 12.5 10.3 \$1291060 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Transition 20.4 2.5 8.2 \$203852 Month Software Activity Distribution (Person-Months) Phase/Activity Inception Elaboration Construction Transition 1.4 4.9 12.9 2.9 Management Environment/CM 1.0 3.3 6.5 1.0 3.9 7.3 10.3 0.8 Requirements 1.9 14.7 20.7 0.8 Design 0.8 5.3 43.9 3.9 Implementation 0.8 4.1 31.0 4.9 Assessment 0.3 3.9 6.1 Deployment 1.2 Your output file is http://diana.nps.edu/~madachy/tools/data/cost model suiteSeptember 16 2013 11 23 24 410790.txt

- The Advance Missions Cost Model (AMCM) predicts development, recurring and mission operations costs of ground vehicles, ships, aircraft, helicopters, missiles, launch vehicles, spacecraft, and human explorations missions.
- It is a system level cost model appropriate for large scale programs requiring many different systems that will be integrated to perform a complex mission. The model is most useful in the pre-conceptual and conceptual design phases of a program when the actual design of the systems is not known and many factors are being traded off.

- The AMCM is a two equation, multi-variable cost estimating relationship. The first equation predicts the development and production cost of the system based of various technical and programmatic factors. The second equation predicts the basic mission operations cost of the system.
- Both equations are fitted to a large historical database that spans 50 years of systems development. Most of the systems are US Government developed, but some commercial and European systems are included.
 - —Database of land, water, air and space systems. The data includes 54 spacecraft, 22 space transportation systems, 61 aircraft, 86 missiles, 29 ships, and 18 ground vehicles. All of the data points are from programs that were completed through IOC.

- Cost, schedule and quality are highly correlated factors in software processes
- Thus the COnstructive QUALity MOdel (COQUALMO) was created to predict defects as an extension of the COCOMO II software cost model [Chulani, Boehm 1999]
 - Uses COCOMO II cost estimation inputs with defect removal parameters to predict the numbers of generated, detected and remaining defects for requirements, design and code
- Provides insights into cost/schedule/quality tradeoff analyses, quality investment payoffs, interactions amongst quality strategies, and likely schedule
- Enables what-if analyses that demonstrate the impact of
 - Defect removal techniques for automated analysis, peer reviews, and execution testing on defect types
 - Effects of **product**, personnel, project, and platform characteristics on software quality
- ODC COQUALMO is a further extension that predicts software defects introduced and removed classifying them with Orthogonal Defect Classification (ODC) defect types


December 4, 2014

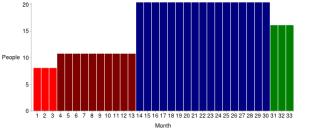
ODC COQUALMO Overview V

COQUALMO extensions to COCOMO II in red

- ODC COQUALMO decomposes defects using ODC categories [Chillarege et al. 1992]
 - Enables tradeoffs of different detection efficiencies for the removal practices per type of defect
- The ODC taxonomy provides well-defined criteria for the defect types and has been successfully applied on NASA projects and others
- With more granular defect definitions, ODC COQUALMO enables tradeoffs of different detection efficiencies for the removal practices per type of defect.
 - V&V techniques have different detection efficiencies for different types of defects, and may have overlapping capabilities between them
- ODC defect types can be mapped to technical performance parameters for trade analysis

December 4, 2014

ODC COQUALMO Outputs



Software Development (Elaboration and Construction)

Effort = 465.3 Person-months Schedule = 27.9 Months Cost = \$4653152

Total Equivalent Size = 100000 SLOC

Phase		Schedule (Months)		Cost (Dollars)
Inception	27.9	3.5	8.0	\$279189
Elaboration	111.7	10.4	10.7	\$1116757
Construction	353.6	17.4	20.3	\$3536396
Transition	55.8	3.5	16.0	\$558378

Remaining Ambiguity/Testability

Remaining

Completeness

Consistency

Correctness

Checking

Class/Object/Function

Interface Method/Logic/Algorithm 270 Timing

Data Values/Initialization 270

42

138

93 325

83

210

375

0

Staffing Profile

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	3.9	13.4	35.4	7.8
Environment/CM	2.8	8.9	17.7	2.8
Requirements	10.6	20.1	28.3	2.2
Design	5.3	40.2	56.6	2.2
Implementation	2.2	14.5	120.2	10.6
Assessment	2.2	11.2	84.9	13.4
Deployment	0.8	3.4	10.6	16.8

Requirements Defects

Introduced

Ambiguity/Testability	70	
Completeness	230	
Consistency	170	
Correctness	530	

Removed

Ambiguity/Testability	28	
Completeness	92	
Consistency	76	
Correctness	204	

Design Defects Intro

ntroduced		
Checking	146	
Class/Object/Function	254	
Data Values/Initialization	510	
Interface	510	
Method/Logic/Algorithm	580	
Timing	0	

Code Defects

Code Delects	
Introduced	

Check Class/Object Data Values/In Interfa Method/Logic Timin

R	emoved		
	Checking	62	
	Class/Object/Function	43	
	Data Values/Initialization	239	
	Interface	134	
	Method/Logic/Algorithm	309	
	Timing	0	

Removed R						Remaining		
king	219		Checking	94		Checking	124	
ct/Function	381		Class/Object/Function	65		Class/Object/Function	315	
Initialization	765		Data Values/Initialization	359		Data Values/Initialization	405	
ace	765		Interface	201		Interface	563	
c/Algorithm	869		Method/Logic/Algorithm	463		Method/Logic/Algorithm	406	
ing	0		Timing	0		Timing	0	

Your output file is https://diana.nps.edu/MSAcq/tools/data/COQUALMO_July_16_2012_21_08_56_333443.txt

Created by Ray Madachy at the Naval Postgraduate School. For more information contact him at rjmadach@nps.edu

 General cost modeling tool currently available at <u>http://diana.nps.edu/~madachy/tools/cost_model_suite.php</u> <u>http://csse.usc.edu/tools/cost_model_suite.php</u>