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Abstract

This paper considers the out-of-sample forecasting performance of first- and second-
order perturbation approximations for DSGE models that incorporate Markov-switching
behaviour in the policy reaction function and the volatility of shocks. The results sug-
gest that second-order approximations provide an improved forecasting performance
in models that do not allow for regime-switching, while for the MS-DSGE models, a
first-order approximation would appear to provide better out-of-sample properties. In
addition, we find that over short-horizons, the MS-DSGE models provide superior fore-
casting results when compared to those models that do not allow for regime-switching
(at both perturbation orders).
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are frequently used by academics
and researchers at public institutions for policy-analysis and forecasting purposes.1 Most of
these models make use of a framework that is based on linear first-order perturbations, where
it is assumed that the sample of data that is used in the estimation is not subject to any
regime-switching behaviour. In a recent review of research that has been conducted using
DSGE models, Christiano et al. (2018) note that the extensive application of first-order
approximations for the model solution may be motivated by the fact that these models
appear to provide an accurate characterisation of the effects of small shocks that arose
during the post-war period in the United States. In addition, these techniques also allow
researchers to make use of linear filters and estimation methodologies that are not subject to
the computational complexity of non-linear counterparts. However, despite the attractive
features of linear models that employ first-order approximations for the model solution,
there are those who suggest that these models may fail to capture many of the non-linear
features that are present in macroeconomic data. For example, Stiglitz (2018) notes that
the use of linear approximations in such a macroeconomic model would be inappropriate,
as it would not provide an accurate description of the effects of large shocks. In addition,
Fernández-Villaverde et al. (2016) and Schmitt-Grohé & Uribe (2004) have suggested that
the use of higher-order perturbation techniques could provide improvements in terms of the
accuracy of the model solution.2

In this paper we seek to evaluate the use of high-order perturbation techniques for the
model solution, where such models may also incorporate different regime-switching features.
To assess the degree to which the different perturbation techniques and regime-switching
features are able to explain the underlying data, we compare the out-of-sample forecasting
performance of the respective models.3 From an intuitive perspective, the use of higher-order
solutions may be more accurate when the model has no analytical solution and it incorporates
a number of non-linear features. In such a case, a smaller approximation error for the model
solution would potentially allow the model to provide an improved out-of-sample fit of the
data. However, we should also acknowledge that all macroeconomic models include mis-
specification errors and higher-order approximations may be more sensitive to such errors,
if the true underlying relationship between the variables may be described with sufficient
accuracy by a first-order solution. As noted by Granger & Teräsvirta (1993), parameter
estimation in models that incorporate various forms of non-linear relationships is inherently
more difficult, as there are more possibilities and many more parameters to estimate, which
would imply that there are also potentially more mistakes (or mis-specification errors) that
could be made. Hence, the model that employs higher-order techniques to approximate the
solution may provide inferior out-of-sample forecasts. Such a deterioration would potentially
be more prominent when the likelihood function in models that utilise higher-order solution
techniques are not restricted to the same extent as the first-order counterpart.4

A similar situation arises when we consider the use of regime-switching features in the
model. After incorporating these stochastic non-linear parameters, we may differentiate be-
tween periods where there are differences in the underlying behaviour of economic agents.
This may give rise to an improved forecasting performance if such regime-switching be-
haviour is present in the underlying data and it has been accurately described by these
parameters. However, if such features do not exist, are very small, or may not be described
by these particular regime-switching features, then the regime-switching model would incor-

1Lindé (2018) provides a recent summary of the use of DSGE models within academic and policy-making
institutions, while da Silva (2018) and Tovar (2009) make note of their use within central banks. Several
other authors, including Blanchard (2016) and Reis (2018), suggest that while we need to improve upon the
existing framework, it would be wrong to suggest that this framework should be discarded.

2In addition, higher-order model solutions could also be used to capture important features that relate
to asset pricing or welfare effects.

3As an alternative to high-order perturbation techniques, Fernández-Villaverde & Levintal (2017) describe
the use of three projection methods that may be used to solve calibrated versions of a nonlinear DSGE model.

4See section 4 for specific details relating to the potential sources of these forecasting errors.
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porate a larger mis-specification error and when working with data samples that have a finite
length, the parameter estimates may be imprecisely estimated. In such cases, the quality
of the forecasts that are produced by a mis-specified regime-switching model may decrease.
When approximating the solutions for regime-switching models with perturbation techniques
of different orders one would potentially introduce slightly different mis-specification and ap-
proximation errors and as a result we evaluate the out-of-sample forecasting performance of
each of these models individually.

Therefore, this paper seeks to contribute towards the literature that considers the fore-
casting performance of models that make use of first- and second-order approximations, to
extend the work of Pichler (2008) and Balcilar et al. (2015), were we also consider the use
of higher-order perturbation approximations for models that incorporate regime-switching
features. As noted in Liu et al. (2009), Liu et al. (2011), Liu & Mumtaz (2011) and Foerster
et al. (2016), the use of Markov-switching DSGE (MS-DSGE) models allow for the analysis
of more complex dynamic features that may be present in the data. In most cases, these
models require the use of extensions to solution algorithms that are typically applied to
single-regime models, such as those described in Maih (2015), and non-linear filters for the
evaluation of the likelihood function. To complete the analysis in this paper we make use of
the methodology that is described in Ivashchenko (2016) for the estimation and filtering of
MS-DSGE models that make use of second-order approximations for the model solution.

The underlying model incorporates several New Keynesian features, with the addition
of partial indexation on previous inflation. Nominal rigidities are introduced into the price
setting mechanism of the firm and investment adjustment costs, where we make use of
Rotemberg (1982) pricing. Two variants of the MS-DSGE model are considered, where the
first considers the possibility of regime-switching in the policy rule and the second considers
switching in the volatility of the shocks. By allowing for regime-switching in the volatility of
the shocks, the model could potentially distinguish between the effects of relatively large and
small shocks, where one would expect that higher-order solution techniques could potentially
provide more accurate results, when large shocks would take us further away from the steady-
state. All the models are then estimated over recursive data samples for the United States
economy and the forecasts are evaluated on the basis of the root-mean squared-error and
log-predictive score (where we use both Gaussian and mixed-Gaussian distributions).

The results suggest that while the use of higher-order approximations may provide a
superior out-of-sample fit of the data in a model that is restricted to a single regime, this
is not the case for those models that allow for regime-switching. This would imply that
when we allow for the possibility of Markov-switching, a single-order approximation of the
model solution may be sufficiently accurate. Hence, when estimating a relatively parsimo-
nious single-regime model, a second-order approximation, which incorporates a number of
additional components in the evaluation of the likelihood function, provides a superior out-
of-sample result. However, in the case of the MS-DSGE model, which is less parsimonious,
the incorporation of these additional components does not result in an improved out-of-
sample fit. These results differ somewhat from those of Pichler (2008), who found that
when using simulated data, the forecasting performance of a model that utilises a second-
order approximation and a particle filter for the evaluation of the likelihood function may
outperform a model that makes use of a first-order approximation and a linear Kalman fil-
ter. However, he also showed that when applied to economic data for the United States, the
first-order approximation of the model solution provided a superior out-of-sample result.

The structure of this paper is as follows: section 2 presents the model structure, which
includes details of the regime-switching behaviour. Section 3 provides details of the data and
the methodology for the evaluation of the forecasts, while section 4 contains details relating
to the derivation of the first- and second order approximations for the model. Section 5
discusses the results of the different specifications and section 6 concludes.
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2 Model

The model takes the form of a closed-economy New Keynesian structure that is similar to
that of Pichler (2008), however we also allow for partial indexation on previous inflation,
following the specification in Lindé (2005). Similar model structures have been used in
several other studies for the United States economy and include those of Ireland (2011),
among others. For the derivation of the first-order conditions that give rise to the equilibrium
conditions for model, please consult the online appendix.

2.1 Household

Household utility is dependent on the future expected value of consumption, leisure and real
monetary balances.

E0

∞∑
t=0

βt
{
at
c1−τt − 1

1− τ
+ χm log(mt) + χh(1− ht)

}
(1)

where β is the stochastic discount factor, at is a preference shock, ct represents con-
sumption, τ is the inverse elasticity parameter for substitution between current and future
consumption, χm and χh represent the weights associated with utility from real money bal-
ances (mt) and leisure (1 − ht). The persistence in the preference shock is described by a
first-order autoregressive processes, at = ηaat−1+σaεa,t, where the independent innovations
take the form εa,t ∼ N (0, 1) and σa is used to measure the volatility of these shocks.

This utility function is then subject to a budget constraint that incorporates holdings of
money and bonds, as well as capital and consumption goods. The amount of labour hours
and dividends are also included in the budget constraint, along with the level of investment.

mt−1 + bt−1
πt

+ wtht + qtkt−1 + dt + lt − ct − kt + (1− δ)kt−1

−φk
2

(
kt
kt−1

− 1

)2

kt−1 −
bt
it
−mt (2)

where bt refers to the households bond holdings that mature at the beginning of the
period, πt represents inflation, wt is the real wage, qt is the real price of capital (kt), while
dt and lt refer to the household receipt of lump-sum transfers that are received from firms,
through dividend payments, and government. In terms of the timing convention for reporting
on the capital stock, kt refers to the amount of capital that has been accumulated at the end
of period t. The rate of depreciation is then captured by δ and φk represents the quadratic
adjustment costs for changing the capital stock. The gross nominal interest rate is it.

2.2 Finished-goods producing firm

The firm that is responsible for the production of finished goods makes use of a constant
returns-to-scale technology when transforming the output of firms that are involved in the
production of intermediate goods.

yt =

[∫ 1

0

y
θ−1
θ

t(j) dj

] θ
θ−1

(3)

where yt represent finished goods and yt(j) are the intermediate goods that are produced
by the j ∈ (0, 1) firms that are involved in the production of inputs for the final goods. The
constant elasticity of substitution between the intermediate goods is measured by θ.
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2.3 Intermediate-goods producing firm

A Cobb-Douglas production constraint is used for the intermediate producer that faces
monopolistic competition:

yt(j) = kαt(j)
(
ztht(j)

)1−α
(4)

where α is the share of capital in this production process and zt represents a technology
shock. To describe the persistence of these shocks, we make use of the autoregressive pro-
cesses, zt = ηzzt−1 +(1− ηz) z+σzεz,t, where ηz measures the degree of persistence relative
to the steady-state and the independent innovations take the form, εz,t ∼ N (0, 1).

Nominal rigidities are introduced into the pricing mechanism through the quadratic spec-
ification of Rotemberg (1982), after incorporating partial indexation on previous inflation,
as per Lindé (2005). Hence, the adjustment costs for changing the price of intermediate
goods, in terms of final goods, may be represented by the expression:

φp
2

(
Pt(j)

Pt−1(j)π1−vπvt−1
− 1

)2

ytPt (5)

where φp is the size of the adjustment cost and υ refers to the degree of inflation indexa-
tion. The nominal prices of intermediate and finished goods, are Pt and Pt(j), while π refers
to the steady-state (or targeted) measure of inflation.

2.4 Central bank

The central bank makes use of a Taylor (1993) rule that is measured in terms of deviations
from steady-state values.

log

(
it
i

)
= γi log

(
it−1
i

)
+ γy log

(
yt
y

)
+ γπ log

(πt
π

)
+ σiεi,t (6)

where εi,t is the monetary policy shock to short-term interest rates and σi is the volatility
that is associated with this shock.

Three versions of the model are used in the subsequent analysis. The first does not
employ any regime-switching behaviour. The second variant allows for Markov-switching in
the volatilities of the independent shocks. In this case we allow for two possible states for
stochastic switches in the volatility parameters: σa, σi, and σz. The third version allows for
the possibility of Markov-switching in the monetary policy rule, where there are two possible
states for the monetary policy parameters: γi, γπ, γy. This provides us with a total of six
models, as we make use of both first- and second-order approximations for each of these
specifications.

The parameters in the models are estimated with maximum likelihood techniques for
both orders of perturbation. The RISE toolbox is used for the estimation of all the first-
order models, which employs the filter of Kim (1994) and the solution method that is
described in Maih (2015). For the models that make use of second-order approximations
for the solution, we employ the Markov-switching quadratic Kalman filter (MSQKF) that
is described in Ivashchenko (2016).5

5The RISE toolbox can be downloaded at: https://github.com/jmaih/RISE_toolbox. It does not cur-
rently include the MSQKF that was used for the models that employ second-order approximations for the
model solution.
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3 Data and evaluation

The data for the observed variables in the model includes measures of output, prices and
nominal interest rates for the United States. To be consistent with the model, the data for
the observed variables would need to be stationary. Therefore, for measures of output we
make use of the quarterly growth rate of real gross domestic product (GDP) as this is an
important variable in many forecasting exercises. In addition, for quarterly change in prices,
we use the change in the GDP deflator as this would capture a wide range of innovations to
the pricing mechanism. To measure interest rates, we follow Wu & Xia (2016) and use of
the shadow rates for the Federal Funds Rate, which represent the rates that are applicable
over the majority of time during each quarter. Since the mean values for these variables
differ from zero over the respective subsamples, we incorporate additional constants in the
observation equations (7) - (9) to ensure that the observed variables take on zero steady-state
values.

iobs,t = it − ī+ iobs (7)

πobs,t = πt − π̄ + πobs (8)

yobs,t = yt − ȳ + yobs (9)

The full sample of data that is used in the subsequent analysis covers the period 1978q3 to
2017q3, which provides us with 153 observations after we exclude the first four observations
that are used in the pre-sample period to initialise the filter. The data is then divided
into the respective training and testing sub-samples, where the first in-sample period that is
used for parameter estimation spans until 2006q3. Thereafter, the forecast for this in-sample
period is generated for the 1- to 8-step ahead horizon, over the period 2006q4 - 2008q4. Once
we have stored these results, the in-sample estimation period is extended to 2006q4 for the
forecasts that are generated over the period 2007q1 - 2009q1.

To evaluate the forecasting performance of the individual models we make use of three
measures of forecasting accuracy. The first measure is the traditional root-mean squared-
error (RMSE) that is computed according to formula in equation (10), for respective fore-
casting horizon (µ). The second measure is the mean log predictive score (LPS) which
considers the log-likelihood of the data and the respective forecast density. This measure
can be computed for individual variables or for all observed variables according to the for-
mula in equation (11), which assumes that the forecast density is Gaussian (LPSG). In
the presence of large sample sizes, the model with the highest expected log predictive score
(which would be equivalent to the lowest value for the Kullback-Leibler information criteria)
will provide the most accurate forecast.

In the case of Markov-switching models, the forecast density would need to be approxi-
mated by a mixed-Gaussian density (LPSGM). To calculate this statistic we make use of the
formula in equation (12), where obst is the vector of observed variables, while Et(·), refers to
the expectations operator, conditional on information that is available at time t. Similarly,
Et,s(·) is the expectations operator that is conditional on information that is available at
time t, but would also include information relating to the current regime, where pt(ψt = s)
is the probability of being in regime s = {1, 2}. Similarly, Vt(·) and Vt,s(·) relate to the
corresponding variances, conditional on information that is available at time t and about
regime s.

RMSE =

(∑n
t=1 [obst+µ − Et (obst+µ)]

2

n

) 1
2

(10)
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LPSG =

n∑
t=1

{
− (obst+µ − Et [obst+µ])

′
(Vt [obst+µ])

−1
(obst+µ − Et [obst+µ])

2
. . .

+ log

(
|Vt (obst+µ)|−

1
2

(2π)
m/2

)}
/n (11)

LPSGM =

n∑
t=1

log

{
exp

[
− (obst+µ − Et,1 [obst+µ])

′
(Vt,1 [obst+µ])

−1
(obst+µ − Et,1 [obst+µ])

2
. . .

+ log

(
|Vt,1 [obst+µ]|−

1
2

(2π)
m/2

)
+ log (pt [ψt+µ = 1])

]
. . .

+ exp

[
− (obst+µ − Et,2 [obst+µ])

′
(Vt,2 [obst+µ])

−1
(obst+µ − Et,2 [obst+µ])

2
. . .

+ log

(
|Vt,2 (obst+µ)|−

1
2

(2π)
m/2

)
+ log (pt [ψt+µ = 2])

]}
/n

(12)

To investigate the robustness of these results and their sensitivity to the Global Financial
Crisis period, we evaluate the out-of-sample forecasting performance of the models over
different sub-samples that span: 1978q3 - 2006q2, 2006q2 - 2009q4, and 2009q4 - 2017q3.

4 Approximating the solution

Numerical methods are used to approximate the model solution as it does not have an an-
alytical closed-form solution. In the case of DSGE models, this task is usually performed
with the aid of perturbation techniques that allow for an investigation into the robustness
of the results (Judd, 1996, 1998). For example, to evaluate the quality of these approxi-
mations, one could make use of the methods that are described in Peralta-Alva & Santos
(2014) or Judd et al. (2017) to measure the upper- and lower-bound for the approximation
errors.6 As a complementary exercise, one could also consider the out-of-sample forecasting
results of models that incorporate different features and solution methods, which would be
of particular interest when the parameters in the respective models are estimated.

To derive a solution for the MS-DSGE model, one would need to solve the following
equilibrium function:

Etf [Yt+1,Yt,Xt+1,Xt, εt+1, εt; Θ (ψt+1) ,Θ (ψt)] = 0 (13)

where Et is the conditional expectations operator and f is a vector of possibly non-
linear functions that are dependent on the constant transition probabilities, ψ. The non-
predetermined (control) variables are contained in the Yt vector, while the Xt vector contains
the predetermined (endogenous and exogenous) variables. The innovations to the predeter-
mined (exogenous) variables are contained in the εt vector and the parameters in the model
are contained in the Θ vector, which is conditional on the probability of being in a particular
state.

To facilitate parameter estimation, we construct a nonlinear state-space system that
incorporates a measurement equation for the observed variables, Yt = (it, πt, yt)

′
. The state

6In a similar study, Aruoba et al. (2006) compare the use of both perturbation and projection methods
for the solution of a calibrated stochastic neoclassical growth model using various methods of accuracy and
robustness.
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equations are then incorporated in the Xt vector, which allow for the interaction between
the predetermined and non-predetermined variables. This system may then be described as
follows:

Yt = ΦXt + ξt, (14)

Xt = H (Xt−1; εt; Ω;ψt) ,

= Q1,ψt [Xt−1; εt] +
1

2
Q2,ψt

(
[Xt−1; εt]

⊗
[Xt−1; εt]

)
+

1

2
Q2̇,ψt

, (15)

where ξt ∼ N (0,Σξ) represents a vector of measurement errors (Σξ = 0 in the above
model), Φ is a coefficient matrix that describes the relationship between the observed and
state variables, and H is a non-linear function. The model parameters are then contained in
the vector, Ω = {Θ (1) ,Θ (2) , . . . ,Θ (nS) ,Σξ}, where the term nS pertains to the number
of regimes.

When using a first-order approximation for the model solution, we would only need to
estimate terms that are contained in the Q1,ψt matrix, while Q2,ψt and Q2̇,ψt

would contain
additional parameters that would need to be estimated when making use of a second-order
approximation. Hence, in the case of a the second-order approximation, we would need to
estimate the following number of unique elements:[

nX (nX + nEr)
nX + nEr + 1

2
+ nX

]
nS, (16)

where nX is number of elements in the Xt vector and nEr pertains to the number of
elements in the εt vector. This is a relatively large number of parameters, which is restricted
in the case of the first-order approximation as the values for all the second-order coefficients
are set to zero. Hence, when the additional coefficients that are contained in the second-order
approximation are misspecified, then one would expect that the forecasts that are produced
by such a model may be inferior to those that are derived from a model that employs a
first-order approximation for the solution. This argument would also hold when comparing
the results of the Markov-switching models with those that do not include regime-switching
features.

The MSQKF is then used to evaluate the likelihood function of the MS-DSGE model
that could be expressed as,

L (Yt|H,Ω) =

T∏
t=1

∫
p (Yt|Xt, Yt−1;H,Ω) p (Xt|Yt−1;H,Ω) dXt, (17)

where p denotes the probability density. One of the benefits of making use of the MSQKF
filter is that we are able to derive a closed-form solution for the likelihood function, when
we assume that H is a quadratic function. The likelihood function for models that make
use of a first-order approximation for the model solution would be regarded as a special case
of the above, where H is a linear function.

5 Results

The RMSEs for the out-of-sample evaluation statistics over the entire sample period, 1978q3
- 2017q3, are presented in Figure 1. These include the results for the models for both model
solutions, which have no regime-switching (NOS) parameters, switching in the volatilities
(VOL) of the shocks, and switching in the monetary policy rule (POL). The forecasting
results for interest rates over the long-term horizon that were provided by the model that
does not allow for regime-switching produces slightly smaller RMSEs over most forecasting
horizons (where most of the gains are made over the longer horizons). However, the model
that does not make use of regime-switching provides less desirable forecasts for inflation and
output, when compared to both of the Markov-switching versions of the model (for each
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order of perturbation). For example, when forecasting inflation the models that incorporate
switching in the policy and volatility parameters provide the most desirable RMSEs over
the shorter and longer horizons. In addition, the model with Markov-switching in the policy
function provides the lowest RMSEs for output, when compared to the forecasting results
that were generated by the other two models.7

When comparing the forecasting performance of the models that use either first- or
second-order approximations, we note that in the case of the model that does not employ
regime-switching, the model that employs the first-order approximation provides improved
predictions for interest rates over the medium- and long-term horizon. In addition, this
model would also appear to provide slightly better forecasts of output. However, when
we consider the results for inflation, we note that second-order approximation provides
much more accurate out-of-sample predictions over the medium- and long-term horizon. In
the case of the model that allows for switching in the volatility of shocks, the model that
makes use of a first-order approximation provides slightly better estimates for interest rates
and inflation, while the second-order approximation provides more accurate forecasts for
output. Then lastly, the first-order approximation of the model that allows for switching
in the monetary policy function provides better predictions over the medium- to long-term
forecasting horizon for inflation, while the version of this model that employs a second-order
approximation provides better forecasts for interest rates.

Additional results for the three individual subsamples are included in the online ap-
pendix, were we note that if we restrict the period of investigation to 1978q3 - 2006q2 or
2009q4 - 2017q3, then the results are similar to those that have been reported above. In
both cases the performance of the model that does not include regime-switching parameters
provides much improved results for the inflation forecasts (when using a first-order approx-
imation for the model solution), although the model with regime-switching in the volatility
of shocks continues to provide the most superior results. When we then consider the results
for the period 2006q2 - 2009q4, we note that the performance of the model that does not
include regime-switching parameters and a first-order model solution produces the lowest
RMSEs for both interest rates and inflation over most forecasting horizons. In addition, it
also provides the second lowest RMSEs for the forecasts for output. This would suggest that
it would possibly be better to model this particular period with a single regime.

7The online appendix also includes tables for all these results.
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Figure 1: Root-mean squared-error (RMSE) statistics [1978q3 - 2017q3]
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Figure 2: Log predictive scores (LPS) [1978q3 - 2017q3]
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Figure 3: Combined LPS [1978q3 - 2017q3]

The results for the log predictive scores are summarised in Figure 2. These statistics sug-
gest that the quality of the density forecasts would appear to provide similar results to those
of the point forecasts. For example, the model that utilises a first-order approximation of the
solution and no regime-switching features provides the best interest rate forecasts over the
long-term horizon, while the models with regime-switching in the volatility of shocks provide
improved interest rate forecasts over the short-term horizon. For inflation, the model with
switching in the policy function provides superior results for forecasts over the short-term
horizon, while the model with switching in the volatility of shocks provide better predictions
for inflation over the long-term horizon. When considering the forecasts for output, we note
that the model with regime-switching in the policy reaction function provides superior fore-
casts for output over both the short-run and the long-run. In addition, when considering
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the results for the second-order approximations, the model that allows for switching in the
monetary policy rule is clearly inferior, when looking to forecast interest rates and inflation
over the short-term horizon. However, when using a first-order approximation for this model
the results are not nearly as poor when deriving forecasts for these variables.

The aggregate quality of these predictions, as measured by the LPSG and LPSGM statis-
tics, are summarised in Figure 3. These results suggest that when comparing the models that
make use of a first-order approximation for the solution, the model with regime-switching
in the policy rule provides the best out-of-sample forecasts over all horizons. However,
for the second-order approximations, the model without switching features outperforms the
other models over longer horizons, while the regime-switching provides improved results
over shorter horizons. In general, we also note that predictions from models that utilise
second-order approximations are better than those that provide predictions from first-order
approximations (in absence of switching), which is largely due to the difference in the fore-
casts for inflation.

The log predictive scores over the periods that preceded the Global Financial Crisis are
largely similar to those that are reported on above, however, during the period 2009q4 to
2017q3 the performance of the model that allows for regime-switching in the volatility of
shocks is much improved, particularly for interest rates over the short-term horizon and
output over most horizons. For the aggregate LPSG and LPSGM measures, we note that
the model that does not employ regime-switching provides slightly better results, possibly
due to the fact that it has less parameters that need to be estimated with a dataset that
extends over a relatively short period of time. However, these summary statistics also show
that for the more recent sub-sample period the model that allows for regime-switching in
the volatility of shocks produces superior results over most horizons.

Table 1: Significance test for equal forecasting ability: First- and second-order approxima-
tions

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

N
O

S

RMSE rt 67.42% 61.96% 32.2% 37.76% 43.73% 26.12% 31.36% 16.2%
RMSE πt 67.42% 61.96% 56.12% 73.36% 86.59% 97.34% 92.83% 97.65%
RMSE yt 0% 0% 0.01% 0% 0% 0% 0% 0%
LPS rt 97.56% 61.96% 14% 17.44% 21.48% 62.54% 43.57% 74.43%
LPS πt 2.44% 0.27% 0.14% 10.55% 21.48% 50% 68.64% 90.61%
LPS yt 8.71% 3.3% 4.42% 2.98% 4.03% 1.19% 3.65% 1%
LPSG 55.98% 38.04% 22.04% 17.44% 56.27% 50% 68.64% 90.61%

LPSGM 55.98% 38.04% 22.04% 17.44% 56.27% 50% 68.64% 90.61%

V
O

L

RMSE rt 8.71% 18.02% 8.21% 17.44% 4.03% 62.54% 56.43% 74.43%
RMSE πt 14.56% 0.27% 0.98% 2.98% 0.01% 1.19% 0.01% 0%
RMSE yt 97.56% 100% 100% 100% 100% 100% 100% 100%
LPS rt 99.52% 96.7% 91.79% 82.56% 68.21% 83.16% 56.43% 62.86%
LPS πt 0.18% 0.03% 0% 0% 0% 0% 0.02% 0.04%
LPS yt 91.29% 96.7% 77.96% 89.45% 95.97% 83.16% 87.21% 90.61%
LPSG 22.57% 6.31% 0% 0% 0% 0% 0% 0.04%

LPSGM 8.71% 1.58% 0.98% 0.22% 0.11% 0.01% 0.02% 0.04%

P
O

L

RMSE rt 44.02% 61.96% 86% 98.62% 99.97% 99.95% 99.31% 99.62%
RMSE πt 22.57% 6.31% 14% 10.55% 1.92% 1.19% 3.65% 1%
RMSE yt 32.58% 50% 56.12% 73.36% 68.21% 73.88% 56.43% 50%
LPS rt 0% 0% 0.01% 0.02% 0.32% 2.66% 3.65% 4.94%
LPS πt 0.01% 0% 0% 0% 0% 0% 0% 0%
LPS yt 1.13% 0.69% 0.4% 0.58% 0.83% 1.19% 0.25% 0.38%
LPSG 0% 0% 0% 0.01% 0% 0% 0% 0%

LPSGM 55.98% 0.27% 0.14% 0.02% 0.01% 0.05% 0.25% 0.38%

To consider the extent to which the forecasts that were obtained from first- and second-
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order approximations provide a significant improvement, we make use of the test for equal
forecast ability that is described in Clarke (2007). Table 1 contains the respective p-values
for this test, where the null hypothesis, H0, is that models have equal forecasting ability,
while the alternative hypothesis H1, is that second-order approximation of the model out-
performs the model that employs a first-order approximation. These results suggest that the
differences are significant in most cases, where the most superior model would depend on
combinations of variable and forecasting horizons. Similar results also arise for each of the
sub-samples, which are contained in the online appendix, along with accompanying figures
that display these results.

There are a few cases where the statistics provide diverging results. For example, the
RMSE for the long-term forecasts for interest rates that are provided by the model with
switching in the policy function, suggest that superiority of the second-order model is su-
perior, while the LPS results suggest that the first-order approximation would be preferred.
When considering the aggregate measures for the LPSG and LPSGM it is noted that the
second-order approximation for the model that does not incorporate switching has a sig-
nificant advantage over the first-order approximation of this model. However, this is not
necessarily the case for both of the models that employ switching, particularly over the
medium- to long-term horizon.

Table 2 contains the results of a subsequent test, where we consider whether the inclusion
of Markov-switching would make a significant difference to the forecasting performance of
the respective models, where we use the method of Clarke (2007) once again. In this case
the alternative hypothesis, H1, would suggest that the inclusion of Markov-switching would
provide significant improvements to the forecasting ability of the model. The results for the
first-order approximation suggest that the difference in forecasting ability is significant when
we compare the results of the models for interest rates over shorter horizons and inflation
over all horizons. In addition, the model that makes use of monetary policy switching also
provides superior results for output, while the model that allows for regime-switching in the
volatility of shocks does not provide a significant improvement. In general the LPSG and
LPSGM results suggest that the addition of Markov-switching would result in significant
improvements over all horizons.

When we consider the results of the models that make use of second-order approximations
in further detail, we note that the model that allows for switching behaviour in the monetary
policy function displays a number of interesting properties. In this case the LPSGM results
suggest that this model performance is significantly better over the short-term horizon, while
LPSG results suggest that the model without switching provides significant improvements
over all horizons. Thus, the model that allows for switching in the monetary policy rule
produces an improved forecasting density over shorter horizons, while its mean-variance
forecast is inferior. In the case of the model that allows for switching in the volatilities
of the shocks, the situation is much simpler: the inclusion of this switching behaviour
significantly improves upon the short-term forecasts, while there is an insignificant decrease
in the forecasting ability of the model over longer horizons. This would suggest that when
considering the forecasting performance of models over the medium- to long-term horizon,
the inclusion of additional regime-switching behaviour may be less important, in the case of
models that make use of second-order approximations for the model solution, when compared
to the case of models that make use of first-order approximations for the model solution.
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Table 2: Significance test for equal forecasting ability: Markov-switching

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
V

O
L

v
s

N
O

S
[1

st
] RMSE rt 99.52% 99.31% 97.82% 97.02% 95.97% 90.02% 79.12% 74.43%

RMSE πt 77.43% 96.7% 99.6% 99.99% 100% 100% 100% 100%
RMSE yt 0.02% 0% 0% 0% 0% 0% 0% 0%
LPS rt 99.94% 99.31% 97.82% 97.02% 92.31% 83.16% 79.12% 62.86%
LPS πt 95.19% 99.31% 99.99% 100% 100% 100% 100% 100%
LPS yt 85.44% 88.9% 67.8% 37.76% 4.03% 0.47% 1.68% 1%
LPSG 98.87% 96.7% 91.79% 99.42% 98.08% 98.81% 99.31% 99.62%

LPSGM 97.56% 93.69% 67.8% 82.56% 92.31% 83.16% 92.83% 90.61%

P
O

L
v
s

N
O

S
[1

st
] RMSE rt 99.52% 99.31% 91.79% 94.14% 68.21% 62.54% 31.36% 25.57%

RMSE πt 91.29% 88.9% 77.96% 98.62% 99.17% 99.99% 100% 99.96%
RMSE yt 99.82% 99.31% 99.6% 99.78% 99.68% 99.53% 99.31% 97.65%
LPS rt 100% 99.9% 86% 89.45% 68.21% 37.46% 31.36% 37.14%
LPS πt 22.57% 18.02% 43.88% 37.76% 31.79% 73.88% 68.64% 90.61%
LPS yt 100% 100% 100% 100% 100% 100% 100% 100%
LPSG 100% 99.99% 99.95% 99.78% 99.97% 99.95% 99.75% 99.62%

LPSGM 100% 99.99% 99.86% 99.99% 99.99% 100% 99.75% 99.87%

V
O

L
v
s

N
O

S
[2

n
d

] RMSE rt 99.94% 99.73% 99.86% 82.56% 31.79% 50% 43.57% 50%
RMSE πt 8.71% 50% 14% 50% 21.48% 37.46% 68.64% 25.57%
RMSE yt 85.44% 98.42% 32.2% 62.24% 78.52% 83.16% 87.21% 90.61%
LPS rt 99.99% 99.97% 99.6% 99.78% 98.08% 99.53% 96.35% 90.61%
LPS πt 77.43% 88.9% 86% 50% 68.21% 50% 56.43% 50%
LPS yt 98.87% 99.9% 95.58% 50% 0.83% 1.19% 0.25% 0%
LPSG 99.99% 99.73% 86% 73.36% 43.73% 37.46% 43.57% 25.57%

LPSGM 100% 98.42% 86% 73.36% 43.73% 16.84% 31.36% 25.57%

P
O

L
v
s

N
O

S
[2

n
d

] RMSE rt 99.98% 99.9% 97.82% 89.45% 56.27% 90.02% 98.32% 97.65%
RMSE πt 67.42% 88.9% 22.04% 26.64% 4.03% 1.19% 0.25% 0.13%
RMSE yt 99.99% 99.97% 99.95% 99.99% 99.99% 99.99% 99.92% 99.87%
LPS rt 0% 0.27% 0.4% 0.58% 0.83% 2.66% 7.17% 4.94%
LPS πt 0.06% 0% 0% 0% 0% 0% 0% 0%
LPS yt 100% 100% 100% 100% 100% 100% 100% 100%
LPSG 8.71% 6.31% 0.98% 2.98% 0.11% 0.17% 0.02% 0.04%

LPSGM 99.99% 100% 99.95% 97.02% 68.21% 62.54% 43.57% 16.2%
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Table 3: Parameters values

NOS VOL POL Pichler (2008)

1st 2nd 1st 2nd 1st 2nd 1st 2nd

σa 0.1167 0.0716 0.0798 0.0763 0.1509 0.1652 0.1061 0.0292
σi 0.0019 0.002 0.0009 0.0009 0.0043 0.0043 0.0014 0.0017
σz 0.6308 0.0176 1.891 1.3343 0.0443 0.0768 100 0.0083
α 0.7789 0 0.8949 0.8953 0.8144 0.8454 0.8347 0.36
δ 0.0522 0.0491 0.1 0.099 0.0852 0.1 0.0019 0.025
θ 2.3164 6.294 2 2.0022 6.9617 6.16 2.0004 6
φk 99.9999 1.2658 100 100 33.2747 29.1348 100 10
χh 9.9972 7.3313 10 7.4068 0.2143 0.2336 9.9947 *
χm 2.8746 0 8.6944 1.7745 0.8768 0.8768 4.2802 *
β 0.9455 0.9833 0.9 0.9017 0.9686 0.9684 0.9882 0.9931
φπ 329.0216 76.4397 1000 897.7809 3.3443 2.2285 16.0592 84.6699
π 1.907 0.0092 1.712 1.9704 1.4927 1.4351 2 0.008662
z 3.4511 28.3427 5.796 24.7356 11.8958 12.0549 185.7394 7082.321
ηa 0.9928 1 0.992 0.9967 0.9469 0.9613 0.8895 0.929
ηz -0.2037 0.8741 0.0054 -0.2078 0.951 0.9673 0.9961 0.9687
γi 0.7725 0.78 0.907 0.908 0.7903 0.6656 0.8602 0.7517
γy 0.0061 0.0126 0.0048 0.0057 0.0066 0.0022 -0.0007 0.0245
γπ 0.2817 0.3859 0.1834 0.1836 1.9776 2.0122 0.518 0.3281
τ 10 9.9977 10 9.9995 9.8966 9.9999 9.9991 2.745
υ 0.8121 0 0.5919 0.8407 0 0 0 NA
iobs 0.0383 0.0208 0.0062 0.0127 -0.0069 0.0139 -0.023 NA
πobs 0.0463 0.0093 0.0054 0.0048 0.003 0.0065 -0.0033 NA
yobs 0.0112 0.0082 0.0078 0.0079 0.0029 0.0062 0.0022 NA
σa(ψ = 2) NA NA 0.2692 0.2898 NA NA NA NA
σi(ψ = 2) NA NA 0.0036 0.0037 NA NA NA NA
σz(ψ = 2) NA NA 2.5602 1.7382 NA NA NA NA
p(ψt+1 = 2|ψt = 1) NA NA 0.0297 0.0234 0.02 0.02 NA NA
p(ψt+1 = 1|ψt = 2) NA NA 0.1202 0.1594 0.039 0.0293 NA NA
γi(ψ = 2) NA NA NA NA 0.2844 0.2128 NA NA
γy(ψ = 2) NA NA NA NA -0.021 -0.0307 NA NA
γπ(ψ = 2) NA NA NA NA 1.0103 1.1105 NA NA

When investigating the performance of models for individual sub-samples, the inclusion
of regime-switching appears to be important for the forecasts that extend over most hori-
zons, during the period that preceded the Global Financial Crisis, although the inclusion
of regime-switching in the policy rule does not result in a significant improvement in the
LPSG statistic. During the 2006q2 - 2009q4 period the introduction of regime-switching
only provides improvements over the t + 1 horizon in certain instances, while the inclusion
of such regime-switching provides significant improvements over the short- to medium-term
horizon during the most recent period (following the Global Financial Crisis).

To consider the relative difference in the respective models, we compare the parameter
estimates for each of the six models that were generated for the full sample. These estimates
are reported in Table 3, where we also include the parameter estimates that are contained
in Pichler (2008). The differences that exist between the results of the model that makes
use of a single regime and those that are reported in Pichler (2008), may be due to the
fact that the model structures are slightly different, as we have included indexation in the
pricing rule. In addition, there are also differences in the in-sample and out-of-sample
periods, the observed variables (i.e. we use output growth instead of the output gap), and
the observation equations; where we use additional parameters for demeaning and assume
the absence of measurement errors. The other difference that exists arises in the case of the
model that makes use of a second-order approximation for the model solution, as we utilise
a non-linear quadratic Kalman filter (QKF) for the evaluation of the likelihood function and
the generation of forecasts, while Pichler (2008) makes use of a particle filter.

It is also worth noting that the log-likelihood value for single regime model that employs
a first-order approximation for the solution is 2005.63. If we then fix the values of parame-
ters in this model to those that are contained in Pichler (2008), the log-likelihood would be
approximately equal to −31010. A similar exercise for the models that make use of second-
order approximations provides log-likelihood values of 1947.23 and −7108, respectively. In
other words, it would appear as if the estimated parameter values in Pichler (2008) are not
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robust to the modifications that have been applied to the models that were constructed in
this paper, which is perfectly understandable when considering the nature of these modifi-
cations. Hence, this would imply that we are introducing new evidence and are not merely
replicating the work of Pichler (2008).

Another important contrast relates to the difference between the parameter estimates
for the first- and second-order approximations, where we observe relatively large differences,
while in Pichler (2008) these are relatively small. This discrepancy may be due to the
different filters that were used in the respective analyses, where Andreasen (2013) notes that
the use of the particle filter could be relatively inaccurate when compared to the Central
Difference Kalman Filter (CDKF). In addition, subsequent research has shown that the QKF
(and MSQKF) filters may provide slight improvements over the CDKF filter, particularly
when there are large deviations from the steady-state (Ivashchenko, 2014). As a result, the
particle filter may not capture the movements that are relatively far away from what would
be provided by a first-order approximation of the model solution.

Finally, to ensure that the results of this analysis are relatively robust, we compare the
forecast ability of these models with similar forecasts that are provided by VAR and AR
models. The results of this analysis is contained in Tables 4 and 5 of the appendix of this
paper, where we note that the DSGE models have superior predictive ability with a few
notable exceptions. For example, reduced-form models provide better forecasts for output
and they would also appear to outperform the second-order approximation of the model
that allows for regime-switching in the monetary policy function.

6 Conclusion

This paper considers the out-of-sample forecasting performance of two MS-DSGE models
that make use of different perturbation orders for the model solution. The results are then
compared to those of models that do not make use of regime-switching behaviour. Our
results suggest that in the case of the model that does not employ any switching, the model
that is solved with a second-order approximation performs better than the model that makes
use of a first-order approximation for the model solution. However, the opposite is true for
models that employ Markov-switching. It is also worth noting that while these results
summarise the overall performance of the model, this would not imply that the models that
provide the best aggregate performance would generate superior forecasts for each of the
individual variables over different horizons.

In addition to these results, we also consider the effect of introducing Markov-switching
behaviour on the out-of-sample forecasting performance of the respective models. Our find-
ings suggest that when using a second-order approximation, the introduction of switching
in the monetary policy rule would significantly improve the predictive ability of the model.
However, the performance of the model that makes use of switching in the volatility of
the shocks and a second-order approximation for the model solution does not provide any
significant improvement over the model that does not employ regime-switching for longer
forecasting horizons. We also note that the introduction of Markov-switching to the mon-
etary policy rule would improve the forecasting ability of the model over the short-term
forecasting horizon for both perturbation orders. The use of regime-switching in the period
that follows the Global Financial Crisis would appear to be of significant importance for
forecasts over the short- to medium-horizon.

To explain these results, we suggest that since the model that does not employ regime-
switching generates a relatively narrow density for the likelihood function when we make use
of a second-order approximation, the parameters would be more accurately identified. This
would enable the model to describe the more complicated dynamic features that are present
in the data. However, when the model incorporates Markov-switching behaviour, which
would also facilitate the description of more complex dynamics, the incremental advantage
of making use of a higher order perturbation order is no longer present. These results would
be of particular interest to those who make use of DSGE models for forecasting purposes.

To incorporate many of the benefits of the individual models that have been discussed
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in this paper one could potentially make use of a pruned higher-order approximation for
MS-DSGE models, which would be an interesting topic for future research.
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Table 4: Significance test of equal forecasting quality of models and VAR

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
N

O
S

[1
st

]

RMSE rt 44.02% 96.7% 97.82% 98.62% 99.17% 99.99% 100% 100%
RMSE πt 67.42% 61.96% 22.04% 2.98% 7.69% 0.05% 0.02% 0.38%
RMSE yt 14.56% 0.27% 14% 10.55% 7.69% 5.41% 7.17% 4.94%
LPS rt 67.42% 99.9% 99.99% 99.98% 100% 100% 100% 99.96%
LPS πt 98.87% 99.31% 99.86% 97.02% 95.97% 73.88% 87.21% 74.43%
LPS yt 0% 0% 0.05% 0.02% 0.11% 0.01% 0.08% 0.04%
LPSG 1.13% 50% 91.79% 82.56% 95.97% 98.81% 96.35% 99%

LPSGM 1.13% 50% 91.79% 82.56% 95.97% 98.81% 96.35% 99%

V
O

L
[1

st
]

RMSE rt 77.43% 88.9% 97.82% 94.14% 99.68% 99.95% 99.98% 99.96%
RMSE πt 67.42% 72.88% 91.79% 94.14% 92.31% 98.81% 96.35% 83.8%
RMSE yt 0.06% 0% 0% 0% 0% 0% 0% 0.01%
LPS rt 99.82% 99.31% 97.82% 97.02% 99.17% 97.34% 99.31% 99%
LPS πt 99.98% 99.97% 100% 99.99% 100% 100% 99.99% 100%
LPS yt 8.71% 27.12% 8.21% 0.22% 0% 0.05% 0.08% 0%
LPSG 95.19% 81.98% 86% 89.45% 92.31% 90.02% 98.32% 90.61%

LPSGM 97.56% 72.88% 77.96% 82.56% 86.59% 83.16% 87.21% 95.06%

P
O

L
[1

st
]

RMSE rt 91.29% 96.7% 95.58% 73.36% 86.59% 94.59% 96.35% 99%
RMSE πt 85.44% 93.69% 56.12% 73.36% 99.17% 83.16% 43.57% 50%
RMSE yt 98.87% 72.88% 86% 94.14% 98.08% 94.59% 96.35% 95.06%
LPS rt 99.52% 99.73% 99.86% 99.78% 99.89% 99.95% 99.92% 99.62%
LPS πt 67.42% 99.73% 99.6% 99.98% 99.97% 99.95% 100% 100%
LPS yt 95.19% 99.99% 100% 100% 100% 100% 99.99% 99.99%
LPSG 99.94% 99.97% 99.6% 99.99% 100% 100% 99.92% 99.62%

LPSGM 100% 100% 99.95% 99.93% 99.89% 99.95% 98.32% 99.62%

N
O

S
[2

n
d

]

RMSE rt 67.42% 61.96% 91.79% 82.56% 99.17% 98.81% 99.92% 99.87%
RMSE πt 97.56% 72.88% 32.2% 50% 86.59% 62.54% 56.43% 50%
RMSE yt 0.06% 0% 0.01% 0% 0.11% 0% 0.25% 0.13%
LPS rt 95.19% 96.7% 99.02% 99.78% 99.97% 99.99% 99.99% 99.99%
LPS πt 97.56% 99.73% 99.95% 99.99% 100% 100% 99.99% 99.99%
LPS yt 0% 0% 0% 0% 0% 0% 0% 0%
LPSG 2.44% 6.31% 91.79% 98.62% 99.97% 99.83% 99.75% 99.96%

LPSGM 2.44% 6.31% 91.79% 98.62% 99.97% 99.83% 99.75% 99.96%

V
O

L
[2

n
d

]

RMSE rt 85.44% 72.88% 86% 89.45% 95.97% 99.53% 99.92% 99.96%
RMSE πt 44.02% 6.31% 8.21% 10.55% 31.79% 26.12% 31.36% 37.14%
RMSE yt 0.02% 0% 0.14% 0.58% 0.83% 0.17% 0.69% 0.13%
LPS rt 99.82% 98.42% 95.58% 94.14% 99.17% 97.34% 98.32% 99%
LPS πt 98.87% 88.9% 91.79% 89.45% 92.31% 97.34% 87.21% 97.65%
LPS yt 8.71% 11.1% 2.18% 0.22% 0.01% 0.01% 0.02% 0%
LPSG 95.19% 61.96% 56.12% 73.36% 78.52% 50% 79.12% 83.8%

LPSGM 98.87% 88.9% 67.8% 62.24% 92.31% 83.16% 92.83% 90.61%

P
O

L
[2

n
d

]

RMSE rt 98.87% 98.42% 99.6% 97.02% 99.97% 99.99% 99.98% 99.96%
RMSE πt 67.42% 50% 14% 17.44% 7.69% 5.41% 3.65% 2.35%
RMSE yt 77.43% 38.04% 77.96% 62.24% 78.52% 50% 43.57% 50%
LPS rt 0% 0% 0.14% 2.98% 4.03% 37.46% 68.64% 74.43%
LPS πt 0.06% 0% 0% 0% 0% 0% 0% 0%
LPS yt 1.13% 50% 99.02% 97.02% 86.59% 83.16% 79.12% 90.61%
LPSG 0% 0% 0% 0.22% 0.32% 0.47% 0.02% 0%

LPSGM 100% 99.97% 99.86% 99.78% 99.68% 99.53% 98.32% 97.65%
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Table 5: Significance test of equal forecasting quality of models and AR

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8
N

O
S

[1
st

]

RMSE rt 0.18% 3.3% 8.21% 17.44% 43.73% 73.88% 87.21% 90.61%
RMSE πt 85.44% 50% 8.21% 5.86% 7.69% 0.17% 0.02% 0%
RMSE yt 1.13% 0.1% 0% 0.01% 0.03% 0.05% 0.08% 0.13%
LPS rt 91.29% 96.7% 95.58% 97.02% 86.59% 97.34% 99.31% 97.65%
LPS πt 98.87% 99.73% 99.95% 98.62% 98.08% 94.59% 87.21% 83.8%
LPS yt 0% 0% 0% 0% 0% 0% 0% 0%
LPSG 22.57% 50% 86% 89.45% 95.97% 98.81% 92.83% 95.06%

LPSGM 22.57% 50% 86% 89.45% 95.97% 98.81% 92.83% 95.06%

V
O

L
[1

st
]

RMSE rt 44.02% 81.98% 97.82% 99.78% 99.89% 100% 100% 100%
RMSE πt 95.19% 93.69% 95.58% 89.45% 99.68% 90.02% 99.98% 100%
RMSE yt 0.48% 0% 0% 0% 0% 0% 0.01% 0.01%
LPS rt 99.94% 99.9% 95.58% 99.98% 99.89% 99.83% 99.92% 99.87%
LPS πt 99.94% 100% 100% 100% 100% 100% 100% 100%
LPS yt 8.71% 18.02% 4.42% 0.22% 0% 0% 0% 0%
LPSG 91.29% 72.88% 95.58% 98.62% 98.08% 99.53% 99.75% 99.62%

LPSGM 95.19% 50% 86% 97.02% 98.08% 90.02% 87.21% 90.61%

P
O

L
[1

st
]

RMSE rt 22.57% 61.96% 91.79% 98.62% 99.68% 99.95% 99.99% 100%
RMSE πt 91.29% 88.9% 77.96% 89.45% 98.08% 90.02% 98.32% 95.06%
RMSE yt 97.56% 61.96% 77.96% 94.14% 78.52% 83.16% 79.12% 74.43%
LPS rt 99.98% 99.97% 99.99% 100% 99.99% 100% 99.99% 100%
LPS πt 67.42% 99.31% 100% 100% 100% 100% 100% 100%
LPS yt 95.19% 99.97% 100% 100% 100% 100% 99.98% 100%
LPSG 100% 100% 99.99% 100% 100% 100% 100% 100%

LPSGM 100% 100% 99.99% 99.98% 99.99% 99.99% 99.98% 99.87%

N
O

S
[2

n
d

]

RMSE rt 2.44% 27.12% 56.12% 82.56% 92.31% 99.53% 99.31% 99.87%
RMSE πt 95.19% 72.88% 32.2% 82.56% 68.21% 73.88% 43.57% 83.8%
RMSE yt 0.18% 0% 0% 0.01% 0.03% 0.01% 0.02% 0.04%
LPS rt 99.82% 98.42% 95.58% 99.78% 99.89% 99.83% 99.98% 99.87%
LPS πt 95.19% 99.97% 99.02% 100% 100% 100% 99.99% 99.96%
LPS yt 0% 0% 0% 0% 0% 0% 0% 0%
LPSG 22.57% 27.12% 99.6% 98.62% 99.89% 99.53% 99.75% 99.87%

LPSGM 22.57% 27.12% 99.6% 98.62% 99.89% 99.53% 99.75% 99.87%

V
O

L
[2

n
d

]

RMSE rt 22.57% 61.96% 67.8% 89.45% 95.97% 99.53% 99.92% 100%
RMSE πt 55.98% 18.02% 4.42% 73.36% 31.79% 16.84% 12.79% 9.39%
RMSE yt 0.06% 0% 0% 0.01% 0.01% 0.01% 0.02% 0.04%
LPS rt 99.99% 96.7% 97.82% 98.62% 98.08% 97.34% 92.83% 97.65%
LPS πt 95.19% 98.42% 95.58% 98.62% 99.17% 90.02% 92.83% 99.62%
LPS yt 8.71% 3.3% 0.14% 0% 0% 0% 0% 0%
LPSG 99.94% 81.98% 77.96% 82.56% 78.52% 73.88% 56.43% 83.8%

LPSGM 99.82% 96.7% 77.96% 89.45% 92.31% 90.02% 92.83% 95.06%

P
O

L
[2

n
d

]

RMSE rt 55.98% 81.98% 86% 94.14% 98.08% 99.53% 99.31% 99.87%
RMSE πt 67.42% 27.12% 14% 10.55% 13.41% 2.66% 12.79% 2.35%
RMSE yt 77.43% 27.12% 67.8% 37.76% 31.79% 37.46% 20.88% 16.2%
LPS rt 0% 0% 0% 0.01% 0.11% 0.47% 0.69% 0.38%
LPS πt 0.18% 0% 0% 0% 0% 0% 0% 0%
LPS yt 2.44% 72.88% 99.86% 99.42% 95.97% 97.34% 92.83% 95.06%
LPSG 0.18% 0.1% 0.01% 0.58% 0.83% 0.05% 0.02% 0%

LPSGM 100% 99.97% 99.6% 99.78% 92.31% 62.54% 79.12% 97.65%
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