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ABSTRACT 

Predicting and understanding the biological response to future climate change is a pressing 

challenge for humanity. In the 21st century, many species will move into higher latitudes and 

higher elevations as the climate warms. In addition, the relative abundances of species within 

local assemblages is likely to change. Both effects have implications for how ecosystems 

function. Few biodiversity forecasts, however, take account of both shifting ranges and 

changing abundances. We provide a novel analysis predicting the potential changes to 

assemblage level relative abundances in the 21st century. We use an established relationship 

linking ant abundance and their colour and size traits to temperature and UV-B to predict 

future abundance changes. We also predict future temperature driven range shifts and use 

these to alter the available species pool for our trait-mediated abundance predictions. We do 

this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a 

business-as-usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages 

by 2100 are moderate. On average, species richness will increase by 26%, while species 

composition and relative abundance structure will be 26% and 30% different, respectively, 

compared with modern assemblages. Under RCP8.5, however, highland assemblages face 

almost a tripling of species richness and compositional and relative abundance changes of 

66% and 77%. Critically, we predict that future assemblages could be reorganised in terms of 

which species are common and which are rare: future highland assemblages will not simply 

comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential 

for radical change to montane ant assemblages by the end of the 21st century if temperature 

increases continue. Our results highlight the importance of incorporating trait-environment 

relationships into future biodiversity predictions. Looking forward, the major challenge is to 

understand how ecosystem processes will respond to compositional and relative abundance 

changes. 
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  INTRODUCTION 

Climate change has significant implications for human prosperity and the biodiversity on 

which it depends (IPCC, 2014; Pecl et al., 2017). As a result, generating predictions of the 

state of biodiversity following climate change is now a major goal for ecologists and 

environmental scientists (Urban, 2015). The most frequently reported and predicted changes 

are large-scale species range shifts. As the climate warms, species move to remain within 

their environmental niche. This leads to dramatic shifts of species away from the equator and 

the lowlands, and into high latitude and high elevation areas as global temperature regimes 

change (Parmesan & Yohe, 2003; Parmesan, 2006; Chen et al., 2011; Poloczanska et al., 

2013; Warren & Chick, 2013). These range shifts can result in increased extinction risk for 

individual species (Erasmus et al., 2002; Visser & Both, 2005; Urban, 2015; Pecl et al., 

2017) and could have large consequences for ecosystem functioning and stability as 

assemblages of species are reorganised (Walther, 2010). 

Changes to species distributions, however, are only one manifestation of a suite of ecological 

changes that are expected to result from 21st century climate change.  These include 

alterations to demography, and to the absolute and relative abundances of individuals within 

their geographic ranges (Johnston et al., 2013; Crase et al., 2015; Gaüzère et al., 2015; 

Tayleur et al., 2016; Bowler et al., 2017). Understanding and predicting this small-scale 

assemblage level response to climate change has been repeatedly highlighted as a key, but 

often neglected, component of our ecological forecasting toolbox (Suding et al., 2008; 

Walther, 2010; Urban et al., 2016). This matters because an assemblage where a single 

species makes up 90% of the individuals, for example, and an assemblage where all species 

are represented equally will look and function very differently (Walther, 2010). Indeed, 

several studies of ecosystem functioning have shown how changes in the relative abundances 

or occurrences of one or more taxa can lead to large changes in the rates and modes of 
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function delivery (Slade et al., 2007; Manning et al., 2016; Griffiths et al., 2018; Ashton et 

al., 2019). 

Despite the importance of both niche-based range shifts (i.e. species occurrence) and 

assemblage-level abundance changes in determining the future state of biodiversity following 

climate change, these two factors are rarely investigated in combination (but see Dullinger et 

al., 2012). Many studies use species distribution modelling techniques to project future 

species ranges (Guisan & Thuiller, 2005; Colwell et al., 2008; Urban et al., 2016), and a 

growing literature is making use of species traits to predict how relative abundance changes 

may alter assemblages (Shipley et al., 2006; Frenette‐Dussault et al., 2013; D'Amen et al., 

2015). Either large-scale range shifts or abundance-based assemblage changes could lead to 

species becoming extinct or newly dominant, but there is little explicit understanding of how 

they may interact with each other. 

Previously, we found that darker coloured and larger bodied ant species dominate cold 

environments, such as high elevations and latitudes, while lighter coloured and smaller 

species tend to dominate in hotter environments (Bishop et al., 2016; Gibb et al., 2018). 

Darker colours typically enable organisms to heat up faster than if they had light colouration, 

while larger bodies lose heat more slowly than small bodies (Willmer & Unwin, 1981; 

Stevenson, 1985; Spicer et al., 2017). This colour trend was reversed in hot environments 

with high UV-B levels - an effect that we hypothesized was influenced by the role of melanin 

in defending against harmful UV-B irradiation. The biophysical links between ambient 

temperature, UV-B, colour and body size that we suspect drive these patterns, however, are 

unlikely to be specific to ant assemblages. They operate at a range of scales and in a variety 

of taxa including dragonflies (Zeuss et al., 2014; Pinkert et al., 2017), butterflies (Ellers & 

Boggs, 2004), beetles (Schweiger & Beierkuhnlein, 2015), birds (Delhey, 2017), plants 

(Koski & Ashman, 2015) and microorganisms (Cordero et al., 2018). 
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This trait-environment relationship is important because temperature will increase (IPCC, 

2014), while the direction of change in UV-B irradiance will depend on geographic location 

and emission levels (Bais et al., 2015; Lamy et al., 2018) in the 21st century. Critically, these 

environmental changes will act through species traits to favour some species over others.  

Therefore, relative abundances at the local level will change in accordance with the body size 

and colouration of species. Several studies predict smaller body sizes (Sheridan & Bickford, 

2011; Gibb et al., 2018; Tseng et al., 2018) and lighter (Zeuss et al., 2014; Delhey, 2017) or 

darker (Roulin, 2014) colours for animals as the 21st century progresses. 

Here, we combine predictions of potential trait-mediated abundance changes with anticipated 

range shifts to simulate how montane ant communities will respond to climate change. Ants 

are recognised as a major functional component of terrestrial ecosystems (Evans et al., 2011; 

Zelikova et al., 2011; Ewers et al., 2015; Parr et al., 2016; Griffiths et al., 2018). 

Understanding how their diversity and assemblage structure is likely to change will be key to 

anticipating how entire ecosystems will be altered in the future. Furthermore, the continental 

scale of our dataset, and the observation of the trait-environment relationships in other taxa, 

makes for an important first step in understanding the potential impact of this relationship on 

future species abundances. 

We forecast potential range shifts for our study species by using a simple climate-envelope 

model (Colwell et al., 2008) based on projections of future climate and adiabatic lapse rates 

(the rate at which temperature declines with elevation). We forecast abundance changes by 

first predicting future assemblage averages of colour and body size and then using a 

maximum-entropy based model (Shipley et al., 2006) to estimate the most likely distribution 

of species relative abundances. We simulate future changes under a reduced greenhouse gas 

emissions scenario (RCP2.6) and an unmitigated baseline scenario (RCP8.5) to provide an 

upper and lower estimate of possible biodiversity futures. 
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Specifically, we assess the potential for species richness and composition of montane ant 

assemblages to change throughout the 21st century if we base our predictions on trait-based 

abundance changes, range shifts or a combination of both. We also ask whether the 

combination of these two processes predicts the formation of non-analogous assemblages, 

i.e., assemblages for which there is no contemporary equivalent, in terms of species

composition or relative abundance structure (Le Roux & McGeoch, 2008; Keith et al., 2009). 

METHODS 

Observed data 

We sampled epigaeic ant assemblages during the austral summer using pitfall traps on 14 

elevational transects (108 separate elevational sites) across Africa, Australia and South 

America. Transects ranged from 0 to 3000 m a.s.l. (Bishop et al., 2016). In Africa and 

Australia replicate pitfall trapping grids followed the same protocol. In South America, the 

spatial arrangement, number of traps and size of the traps differed slightly. All traps were 

placed during the austral summer and were open for 5 days and nights in Africa, and 7 days 

and nights in the Australia and South America. Further details on trapping materials are 

found in Appendix S1 and Bishop et al. (2016). For each transect, assemblages were pooled 

at the elevational band level (bands were separated from each other by 100 to 300 vertical 

metres) for this analysis. For each species, we recorded body size, as measured by Weber’s 

length. Weber’s length is defined as the length between the anterodorsal margin of the 

pronotum and the posterodorsal margin of the propodeum and is a commonly used measure 

of body size in ants (Brown, 1953). We recorded Weber’s length to the nearest 0.01 mm. We 

recorded colour as a categorical variable using a predetermined set of colours by a limited 

number of observers. We converted these colours to HSV (hue, saturation and value) values 
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and retained the v (value, or lightness) as a measure of how light or dark in colour a species 

is. This measure of lightness is bounded by 0 and 1. Values of 0 are dark while values of 1 

are light. Both traits were recorded from six specimens per species per elevational transect, 

where possible. Further details can be found in Bishop et al. (2016) and in Appendix S1. 

We calculated assemblage weighted means (AWM) of body size and colour lightness for the 

ant assemblages using the formula: 

𝐴𝑊𝑀 =  ∑ 𝑝𝑖𝑥𝑖

𝑆

𝑖=1

 

Where S is the number of species in an assemblage, pi is the proportional abundance of each 

species and xi is the trait value (lightness or body size) of each species. The difference 

between this analysis and that in Bishop et al. (2016) is that here, replicate assemblages 

within the same elevational band on the same elevational transect are pooled together to form 

a single assemblage. 

We assessed the relationship between each assemblage-weighted trait (colour lightness and 

body size) and temperature and UV-B irradiance using linear mixed models (LMMs). Current 

temperature and UV-B data were taken from the climatic surfaces WorldClim 2 (Fick & 

Hijmans, 2017) and glUV (Beckmann et al., 2014), respectively. We extracted mean 

temperature and UV-B irradiation for January to March (the austral summer months, when 

we sampled ants) for each elevational transect and took an average within each elevational 

band. As temperature and UV-B are correlated, we used the residuals of the relationship as 

the UV-B variable. We used second order polynomial terms to detect curvature and an 

interaction between temperature and residual UV-B was included. Assemblage weighted 

lightness was logit-transformed prior to modelling with a Gaussian distribution. To account 

for the geographical configuration of our study sites we used a nested random effects 
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structure of transect within mountain range within continent. We centred and scaled all 

explanatory variables. We used bias corrected Akaike information criterion (AICc) values to 

compare all possible models. Each of the 108 data points used in these models represents an 

assemblage of ants from a single elevational band. 

We tested our dataset for structural bias in the AWMs by randomly shuffling the traits of 

each species within a given regional pool and refitting the mixed effects models 2000 times 

(Hawkins et al., 2017). We used the same explanatory variables as selected by the best fitting 

original models and extracted a marginal R2 (R2
m = due to fixed effects only) for both colour 

and body size for each randomisation. We compared our original R2
ms to the randomly 

generated R2
ms. For colour and body size, our original R2

ms were in the 1st and 0.99th 

percentile, respectively (Appendix S2). This means that randomly assigning species names to 

trait values could not recreate our observed patterns – implying that there is no problem of 

structural bias in this dataset influencing the trait-environment relationship (Hawkins et al., 

2017). 

Future data 

We use two different climate change scenarios to make future projections of montane ant 

biodiversity. We use Representative Concentration Pathway (RCP) 2.6 and RCP8.5. RCP2.6 

predicts a mean increase in temperature, relative to preindustrial levels of 1°C (range of 0.3-

1.7°C) by 2100 while RCP8.5 predicts an increase of 3.7°C (range of 2.6-4.8°C  IPCC, 

2014). If greenhouse gas emissions are in line with the Paris Agreement of 2015, then 

RCP2.6 is a likely future climate scenario. If not, and emissions continue on their current 

trajectory, the planet faces the future that RCP8.5 describes (Sanford et al., 2014). We 

extracted estimates for regional temperature change from the IPCC (2014) for all of our study 

sites for RCP2.6 and RCP8.5. UV-B irradiance will also change in the 21st century. We use 
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predicted estimates of UV-B change under RCP2.6 and RCP8.5 for all of our study sites from 

Lamy et al. (2018). As both the IPCC (2014) temperature data and Lamy et al. (2018) UV-B 

irradiance data are given in relative or percentage change, we calculate absolute values for 

the 21st century based on our observed data from the WorldClim 2 and glUV surfaces.  

We generated predictions of future assemblage weighted colour lightness and body size for 

all sites by combing the observed LMMs of colour and body size with the time series of 

future temperature and UV-B changes. We used the “predict.lme” function in R (Bates et al., 

2014) to predict future AWM colour lightness and body size under future temperature and 

UV-B conditions. As a result, predictions of future AWM lightness and body size were 

driven by changing temperatures and changing UV-B irradiation levels. Predictions of future 

AWMs were made for each year from 2011-2100. 

Trait simulation 

In the trait simulation, we forecast the state of future ant assemblages based only on changes 

to relative abundance predicted by the trait-environment relationship. We did not simulate 

dispersal: species were not permitted to move out of the sites in which we originally observed 

them.  We use a Community Assembly by Trait-based Selection (CATS) model (Shipley et 

al., 2006; Shipley, 2010; Sonnier et al., 2010). The CATS model predicts the relative 

abundances of different species given a defined species pool, the traits of those species and 

the expected average trait value (assemblage weighted mean, AWMs) (Shipley et al., 2006; 

Laughlin & Laughlin, 2013). 

The CATS model uses a series of constraint equations to produce a set of possible vectors of 

species relative abundances (Shipley, 2010; Laughlin & Laughlin, 2013). First, the model 

constrains abundances to sum to 1: 
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∑ 𝑝𝑖

𝑆

𝑖=1

= 1 

Where pi is the predicted abundance of species i and S is the number of species in the pool. 

This constraint equation is always the same. 

Second, the model constrains the set of possible relative abundance vectors depending on the 

predicted AWM: 

∑ 𝑡𝑖𝑝𝑖

𝑆

𝑖=1

=  𝑇̅ 

Where pi is the predicted abundance of species i, ti is the trait value of species i, S is the 

number of species in the pool and 𝑇̅ is the AWM. This constraint equation differs across 

different sites (and in our case, through time) as the supplied AWM (𝑇̅) changes. This 

equation refines the set of possible relative abundance vectors to those that produce the same 

AWM as that supplied. 

The final prediction is made using only one vector from the set. The final vector is that which 

maximizes the relative entropy function: 

𝐻(𝑝, 𝑞) =  − ∑ 𝑝𝑖 ln(𝑝𝑖/𝑞𝑖)

𝑆

𝑖=1

 

Where ln is the natural log, pi is the predicted abundance of species i, qi is the prior 

probability of species i and S is the number of species in the pool. The solution with the 

highest entropy is that which minimises the difference between the predicted abundances (pi) 

and the prior information (qi). Under a maximally uninformative prior, where all species have 

the same probability of selection, the model will choose the most even distribution of species 

abundances. Under all other cases, the function will choose the vector which deviates the 
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least from the prior information. Further information on the mathematical formulation of the 

CATS model and it’s comparison to other trait-based predictive frameworks can be found in 

Shipley (2010), Shipley et al. (2006) and Laughlin and Laughlin (2013). We use this CATS 

approach to predict relative abundances of mountain-top ants into the 21st century (further 

information in Appendix S3). 

Before running the simulation, we tested how well CATS could predict the observed relative 

abundances of ants in all of our assemblages when provided with prior information on which 

species were present in each elevational band. We calculated R2 to measure how well the 

predicted relative abundances matched the observed. The CATS model was implemented 

using the “maxent” function in the “FD” package of R (Laliberté & Shipley, 2011). 

We ran the CATS model for each elevational band, from each elevational transect, from the 

observed data year (arbitrarily assigned as 2010) to 2100. In each year, we supplied our 

predictions of future AWM colour lightness and body size. We assigned species not present 

in a given elevational band a prior of 0 and those that were present an even probability of 

selection. This prior means that species richness cannot increase under this simulation. The 

output from this procedure was a vector of relative abundances for each year of the 

simulation, for each elevational band, within each mountain transect and for each RCP 

scenario. 

If a species’ predicted relative abundance was less than 0.0001 (one in ten thousand), it was 

classed as extinct and was removed from the available species pool. Consequently, 

assemblages in this simulation could lose species but they could not gain them. This 

threshold of relative abundance was based on the smallest relative abundance recorded from 

our field observations. Different thresholds around this value make little difference to our 

results (Appendix S4). 
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Range Shift Simulation 

In the range shift simulation, we forecast the future state of ant assemblages using a simple 

climate-envelope model. As a result, this simulation predicted future species occurrence only, 

not relative abundance. There are limited data available on the geographic ranges of the 

species in our study beyond this dataset itself. As a result, we are unable to incorporate the 

entire geographical ranges of these species into comprehensive species distribution models. 

We use the simple method developed by Colwell et al. (2008) to assess potential elevational 

range shifts using only temperature for transect data. Consequently, we interpret our forecasts 

as potential changes in elevational range. 

We first calculated the elevational distributions for all species in the dataset. We set the 

distribution of each species to encompass the highest and lowest elevations from which we 

sampled it. We assume ranges are inclusive and recorded a species as being present at all 

elevations between the highest and lowest recorded occurrences. We set range limits to 

extend halfway to the next neighbouring elevational band above and below (Colwell et al., 

2008). Second, we calculated empirical adiabatic lapse rates, the rate at which temperature 

declines with elevation, for each mountain. We estimated the slope of the relationship 

between temperature and elevation for each mountain using simple linear regression and used 

this as the adiabatic lapse rate. We simultaneously used WorldClim 2 and data logger 

estimates of temperature. For the Australian transects and the Mariepskop transect in South 

Africa we only used WorldClim 2 estimates. Table S5 shows the estimated lapse rates for 

each transect. 

We used the data on species elevational distributions, adiabatic lapse rates and predicted 

future temperature changes to predict the shifting ranges of the ant species on each transect 

and, by extension, the shifting assemblage compositions, into the 21st century. Ranges were 
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shifted upslope relative to the observed baseline depending on the predicted temperature 

increase or decrease for a given year. The rate of this vertical movement was set by the 

adiabatic lapse rate of each transect. This procedure is identical to that used by Colwell et al. 

(2008). All species on the same transect move upslope at the same rate. Across the entire 

dataset, the average upslope shift by 2100 was 145 m for RCP2.6 and 1050 m for RCP8.5. 

When a species range overlapped with a sampling site at a given time point, it was classed as 

present. 

Combined Simulation 

The final simulation combines the trait and range shift simulations. The combined simulation 

runs in almost the same way as the trait simulation. We predict relative abundance changes 

based on predicted changes in AWM lightness and body size using CATS. Behind this 

process, however, is a changing species pool. Whereas the trait simulation was static and did 

not allow new species to enter a given elevational band, the combined simulation moves 

species upslope (and downslope) through time according to their predicted range changes. As 

a result, the available species pool that the CATS model is able to select from changes as the 

simulation runs. We ran this simulation under RCP2.6 and RCP8.5. 

Interpretation 

It is not possible to predict accurately patterns of change all the way to 2100 for some 

lowland assemblages under the range shift and combined simulations because we do not have 

data on the species that may enter these areas from even lower elevations or lower latitudes. 

This could cause an artificial lowland biotic attrition in these locations (Colwell et al., 2008). 

For each year we use the predicted temperature change and the adiabatic lapse rate of each 
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mountain to calculate where the “lower predictive limit” is. We only include data from 

assemblages that are above this limit in a given year (Appendix S6). This means that we 

exclude the very lowest assemblages on each mountain, and that there are fewer predictions 

available in 2100 compared with earlier years. This effect is less severe in RCP2.6 than 

RCP8.5 due to the smaller temperature change. 

For each simulation and climate change scenario, we extract five different metrics from each 

year in the 21st century and plot these through time. These metrics are: (1) percentage change 

in species richness, (2) percentage of the original fauna lost, (3) Sørensen’s total 

compositional dissimilarity, (4) Simpson’s turnover-based dissimilarity and (5) the 

abundance weighted Bray-Curtis dissimilarity. All measures are relative to the start of the 

simulation. For example, we calculate dissimilarities as the dissimilarity between a given year 

and the year 2010 (our observed data), while the species richness metrics are all proportional 

to the richness values recorded in 2010. We calculate the average and 95% CI across sites for 

each of these metrics through time separately for RCP2.6 and RCP8.5. For the range shift and 

combined simulations, the year 2010 is based on our current predictions, rather than current 

observations. Our current predictions have slightly elevated species richness (11 ± 0.03 % , 

mean ± SE) due to the interpolation of species ranges. We compared current predictions to 

future predictions to avoid artificially inflating the degree of change estimated due to our 

range interpolation procedure alone. 

To detect the formation of non-analogous assemblages in the combined simulation we find 

the closest modern (year 2010) assemblage, from any elevation, in terms of species 

composition for each future (year 2100) assemblage. We use Sørensen’s dissimilarity metric 

to do this. We then calculate the abundance-based dissimilarity between the future 

assemblages and their closest modern analogue using Bray-Curtis similarity. Large 

Sørensen’s dissimilarities would indicate that future assemblages have no modern analogue, 
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as this is an occurrence-based metric. Alternatively, a low Sørensen’s dissimilarity but a high 

Bray-Curtis dissimilarity would indicate that future assemblages have similar species 

compositions to modern assemblages, but different distributions of relative abundance. 

Between these pairs of future assemblages and their modern analogues, we also calculate a 

mean and maximum rank shift, expressed as a percentage of the largest possible shift. To do 

this we calculate the rank abundance of each species in each of the future-modern analogue 

pairs. We then calculate the absolute change in ranks between each species and divide either 

the maximum change or the mean change by the number of species. This is an extension of 

the mean rank shift metric of Collins et al. (2008). 

RESULTS

As expected, we recovered the same trait-environment relationship as in Bishop et al. (2016) 

after pooling at the elevational band level within a transect - ant assemblages were, on 

average, darker in colour and larger in worker body size in cold environments (Fig. S7). The 

CATS model performed well and predicted 75% of the variation in observed relative 

abundances. This level of accuracy is comparable with previous studies, for example, 

Frenette‐Dussault et al. (2013) reported an accuracy of 40% when using two traits and ~70% 

when using six traits. We use only two traits here. 

Occurrence metrics 

Predicted species richness changes varied strongly by simulation type and climate change 

scenario (Fig. 1). Across all three simulations, assemblages showed larger changes to overall 

richness and lost more of their original fauna in RCP8.5 compared with RCP2.6. In the trait 



Figure 1. Plots showing predicted changes in species richness (expressed as a percentage change, a–c) and the original fauna (expressed as a percentage of the original 

fauna lost, d–f) for trait, range shift and combined simulations. Blue lines refer to predictions made for RCP2.6, red lines are for RCP8.5. Lines are loess smoothed averages 

taken from across all assemblages and mountain transects. Coloured polygons represent 95% confidence intervals 
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simulation, species richness declined by 10% in RCP2.6 and by 15% in RCP8.5, averaged 

across all assemblages by 2100 (Fig. 1a, d).  In the range shift simulation, species richness 

increased by 29% in RCP2.6 and by 193% in RCP8.5, averaged across all assemblages by 

2100 (Fig. 1b, e). In addition, 14% of the original fauna was lost in RCP2.6 and 43% in 

RCP8.5. In the combined simulation, the change in species richness was not as much as in the 

niche simulation (RCP2.6 = 26%, RCP8.5 = 186%, Fig. 1c) but a larger fraction of the 

original fauna was lost (RCP2.6 = 20%, RCP8.5 = 47%, Fig. 1f). 

Predicted compositional changes also varied strongly by simulation type and climate change 

scenario (Fig. 2). Again, predicted changes were much greater under RCP8.5 compared with 

RCP2.6. In the trait simulation, compositional dissimilarity (as measured by Sørensen’s 

dissimilarity) by 2100 was 0.07 in RCP2.6 and 0.11 in RCP8.5, on average (Fig. 2a). This 

was entirely due to nested patterns of compositional change as the trait simulation only 

allows for extinction, not colonisation (as measured by Simpson’s dissimilarity, Fig. 2d). In 

the range shift simulation, compositional dissimilarity by 2100 was 0.22 under RCP2.6 and 

0.64 under RCP8.5 (Fig 2b). In RCP2.6 this overall compositional dissimilarity was almost 

evenly made up of turnover and nestedness (average turnover by 2100 for RCP2.6 = 0.1, Fig. 

2e). For RCP8.5, turnover was a larger component of overall compositional dissimilarity 

(average turnover by 2100 for RCP8.5 = 0.41, Fig. 2e). In the combined simulation, a similar 

pattern to the niche simulation was seen for both total compositional dissimilarity (RCP2.6 = 

0.27, RCP8.5 = 0.65, Fig. 2c) and turnover dissimilarity (RCP2.6 = 0.12, RCP8.5 = 0.38, Fig. 

2f). 



Figure 2. Plots showing predicted changes in total compositional dissimilarity (Sørensen's dissimilarity, a–c) and turnover dissimilarity (Simpson's dissimilarity, d–f) for 

trait, range shift and combined simulations. Blue lines refer to predictions made for RCP2.6, red lines are for RCP8.5. Lines are loess smoothed averages taken from across 

all assemblages and mountain transects. Coloured polygons represent 95% confidence intervals 
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Abundance metrics 

Predicted abundance weighted dissimilarity is greater for RCP8.5 than for RCP2.6 and shows 

differences between the trait and combined simulations (Fig. 3). In the trait simulation, 

abundance dissimilarity is 0.15 by 2100 under RCP2.6 and 0.37 under RCP8.5 (Fig. 3a). In 

the combined simulation, abundance dissimilarity is 0.33 by 2100 under RCP2.6 and 0.78 

under RCP8.5 (Fig. 3b). 

Modern-future analogues 

While future assemblages tended to have a close modern analogue in terms of species 

occurrence, this was not true when considering assemblage structure and relative abundances. 

The average occurrence-weighted Sørensen’s dissimilarity between predicted assemblages in 

2100 and their closest modern analogue was 0.08 for RCP2.6 and 0.11 for RCP8.5 (Fig. 4a). 

The average abundance-weighted Bray-Curtis dissimilarity between these same pairs of 

future and modern assemblages was 0.36 under RCP2.6 and 0.51 for RCP8.5 (Fig. 4a). In 

RCP2.6, average mean rank shift was 19% and average maximum rank shifts were 42%. For 

RCP8.5, the average mean rank shift was 30% and the average maximum was 70%. A 

maximum rank shift of 100% is the highest possible, whereby the most common species 

becomes the rarest species, or vice versa. 



Figure 3. Plots showing predicted changes in abundance‐weighted dissimilarity (Bray–Curtis) for trait and combined simulations. Blue lines refer to predictions made for 

RCP2.6, red lines are for RCP8.5. Lines are loess smoothed averages taken from across all assemblages and mountain transects. Coloured polygons represent 95% 

confidence intervals. No plot is presented for the niche simulation because it uses only occurrence data  
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Figure 4. Plots showing the relationship between future assemblages in the combined simulation and their closest modern analogues. In (a), dissimilarity between future 

assemblages and their closest modern analogues is given. Modern analogues are those with the smallest occurrence‐weighted dissimilarity (“Occ.”, Sørensen's 

dissimilarity). Abundance‐weighted dissimilarity (“Abund.”, Bray–Curtis) between the future and closest modern analogues is also given. (b, c) The average and maximum 

change in rank abundance between future and modern pairs, expressed as a percentage of the largest possible shift in rank. Blue boxes are for RCP2.6, red boxes are for 

RCP8.5 
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DISCUSSION 

We have forecast the future of mountain ant diversity using a novel combination of trait-

mediated abundance predictions and temperature driven range shifts. We find that ant 

assemblages are likely to change drastically in terms of species richness, composition and 

abundance structure by 2100. In addition, we predict that while future assemblages will have 

modern analogues in terms of species occurrence, they will have an entirely different 

abundance distribution. These changes are likely to have a significant impact on the way 

these mountain systems function as ants mediate ecosystem processes and interact with many 

other members of the food web (Gómez & Oliveras, 2003; Zelikova et al., 2011; Parr et al., 

2016). Our findings differ strongly, however, between alternative scenarios of climate 

change. Our predictions of species richness changes are much more optimistic under RCP2.6, 

which is a likely climate future only if the greenhouse gas emissions targets set at the Paris 

Climate Agreement of 2015 are met (Sanford et al., 2014). 

Biodiversity forecasts are expanding beyond shifting distributions (Pearson & Dawson, 2003) 

to predict assemblage level information, phylogenetic and functional diversity (Del Toro et 

al., 2015; Graham et al., 2017), and to incorporate a variety of biotic effects such as species 

interactions (Araújo & Luoto, 2007) and dispersal abilities (Dullinger et al., 2012). Here, we 

provide a novel analysis predicting assemblage level relative abundances and potential range 

shifts from an established trait-environment relationship. The general form of the trait-

environment relationship we use here appears to be a feature of many ectotherm assemblages 

and populations (Zeuss et al., 2014; Pinkert et al., 2017). The data we use are also relatively 

more straightforward to collect compared with species interaction coefficients or dispersal 

abilities, and simpler to assess for completeness compared with data for interaction networks 

(Vizentin-Bugoni et al., 2016). Directional changes to species relative abundances may also 



Page 23 of 35

be easier to detect through time compared to species occurrences, because changes in species’ 

rank abundances are more sensitive to change than occurrences, highlighting the usefulness 

of long-term monitoring schemes. As a consequence, the approach is a useful additional one 

for assessing assemblage level changes, which have been highlighted as a key requirement 

for the ecological forecasting toolbox (Suding et al., 2008; Walther, 2010; Urban et al., 

2016).  

Central to our forecasts are the different kinds of assemblage level change that each 

simulation emphasises. Both the trait and range shift simulations are unrealistic in isolation, 

but provide a minimum estimate of each effect in the absence of the other. The combined 

simulation predicts a unique set of future assemblages that neither the trait nor the range shift 

simulation could predict on their own. Under the combined simulation, we predict that future 

assemblages will support a similar set of species to modern ones from further downslope 

(similar observations have been made for plants and moths, Vittoz et al., 2008; Chen et al., 

2009), but that their abundance structure will be reorganised (Fig. 4). This means that 

assemblages will not simply move upslope unchanged as the climate warms – they will also 

face a reorganisation in terms of which species are common and which are rare. 

Notably, most work on the formation of non-analogous assemblages focuses on novel species 

co-occurrences (Keith et al., 2009; Graham et al., 2017). Our forecasts, however, show that 

changes to abundance may be an underappreciated aspect of non-analogous assemblage 

formation and highlight the importance of considering both species occurrence and relative 

abundance (Walther, 2010; Simpson et al., 2011). The way in which these changes play out 

in reality, however, will depend on the form of the dispersal kernels across the species in the 

assemblages involved (Urban et al., 2012; Alexander et al., 2017) and the reorganisation of 

biotic interactions. At this stage, however, there are no independent data (Early & Keith, 
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2019) to assess inter- and intraspecific interactions among ants at these scales and inferring 

this information is fraught with difficulty (Stuble et al., 2017) 

All the changes we predict are likely to have a significant impact on ecosystem functioning 

and energy flow in mountain environments, especially given the numerical and functional 

dominance of ants in many terrestrial ecosystems (Griffiths et al., 2018). We predict that 

future high elevation assemblages will likely contain more species than they do now. Given 

the positive relationship between ant diversity and the rate of ecosystem functioning (Fayle et 

al., 2011; Griffiths et al., 2018) it may be that, as more species move upslope, ant mediated 

functions such as scavenging, waste removal and seed dispersal will increase. This picture is 

complicated, however, by our prediction of large changes to the relative abundances of 

species based on their traits. By 2100, the assemblage weighted mean body size in our dataset 

will be 11.5% smaller under RCP8.5, on average, which suggests that the species responsible 

for performing ecosystem functions will also be smaller – the consequences of this for 

functioning are hard to predict. While we are certain that the role of ants in mountain 

ecosystems will change substantially in the future, we can only speculate on the ways in 

which this will happen. 

Although our forecast for the future under RCP8.5 predicts large changes to ant biodiversity 

in mountain regions, our predictions under RCP2.6 are much more optimistic. Under this 

scenario of climate change, we expect species ranges to move upslope by 145 m and, 

correspondingly, our estimates of species loss, species gain and compositional and abundance 

change are much reduced in comparison to RCP8.5. What seems to be shared between the 

two scenarios, however, is the formation of abundance-based non-analogue assemblages. In 

RCP2.6, the degree of rank abundance reorganisation is smaller in comparison to RCP8.5, 

but remains substantial (Fig. 4). In sum, we support the view that reducing greenhouse gas 
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emissions and limiting temperature rises to below 2°C by 2100 is necessary for positive 

outcomes for global conservation and ecosystem integrity (Warren et al., 2018). 

Our simulations of range shifts assume a “full dispersal scenario” (Colwell et al., 2008; 

Fitzpatrick et al., 2011). Species ranges move upslope as the climate warms and there are no 

lags or limits in dispersal capacity. This is probably a reasonable assumption to make for 

ants. The geographic distances between different elevations in our dataset are relatively 

small, ants are renowned dispersers (e.g. Wilson, 1961) and winged reproductive individuals 

may be aided by updrafts in montane environments. On the other hand, it has been argued 

that the social and modular nature of ant colonies confers a high degree of persistence in the 

face of environmental perturbations and extremes (Andersen, 2008). This kind of non-

equilibrial process may limit the available space for newly arrived dispersers to establish. 

This establishment limitation is especially true when considering competitive interactions 

between dominant and subdominant ant species, the outcome of which can also be influenced 

by temperature (Parr, 2008; Roeder et al., 2018). These effects would disrupt the “full 

dispersal scenario” that we have assumed. Determining in more detail which factors limit or 

promote species distributions, dispersal ability and establishment capacities will greatly 

increase our ability to predict and understand future change (Fitzpatrick et al., 2011; 

Alexander et al., 2017). 

In addition to processes such as competition and establishment limitation disrupting our 

simulation assumptions, vegetation-mediated changes to microclimate and soil properties 

may have a large influence on ant assemblages in the 21st century (Ríos-Casanova et al., 

2006; Munyai & Foord, 2012). The real world is more complicated than we can currently 

simulate and, because of this, we interpret our results as reflecting the maximum potential of 

range shifts and thermoregulatory traits to influence assemblage-level change. 
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In particular, our range shift simulation is relatively simple. Due to the lack of information 

available on full species ranges, dispersal abilities and biotic interactions, we were restricted 

in the modelling tools available that could predict elevational range shifts. Consequently, we 

used the method developed by Colwell et al. (2008) to minimise the assumptions we made 

about the biology and ecology of the ant species involved. The caveats are that our data may 

be underestimating true species ranges; that microclimatic variation removes the necessity for 

species to migrate upslope; and that the influence of biotic interactions between newly 

dominant or co-occurring species are ignored. Collecting the necessary data to account for 

these effects is an ongoing challenge (Early & Keith, 2019), particular for invertebrates. 

In summary, we predict large changes to mountain ant assemblages due to temperature driven 

range shifts and trait-mediated abundance change. Many more species will be present in high 

elevation sites in the future, as has been found for plants (Steinbauer et al., 2018), and their 

composition and abundance structure will change substantially. These changes will be much 

larger under RCP8.5 than RCP2.6, but both scenarios predict a future where highland 

assemblages are compositionally analogous to lowland ones but with a reorganised 

abundance structure. Going forward, it will be critical to understand how changes in relative 

abundance will contribute to cascading effects on the wider food web and ecosystem 

functioning. 
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