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ABSTRACT: The Arctic sea ice response to a warming climate is assessed in a subset of models participating in phase 6 of

the Coupled Model Intercomparison Project (CMIP6), using several metrics in comparison with satellite observations and

results from the Pan-Arctic IceOceanModeling andAssimilation System and theRegionalArctic SystemModel. Our study

examines the historical representation of sea ice extent, volume, and thickness using spatial analysis metrics, such as the

integrated ice edge error, Brier score, and spatial probability score. We find that the CMIP6 multimodel mean captures the

mean annual cycle and 1979–2014 sea ice trends remarkably well. However, individual models experience a wide range of

uncertainty in the spatial distribution of sea ice when compared against satellite measurements and reanalysis data. Our

metrics expose common and individual regional model biases, which sea ice temporal analyses alone do not capture. We

identify large ice edge and ice thickness errors in Arctic subregions, implying possiblemodel specific limitations in or lack of

representation of some key physical processes. We postulate that many of them could be related to the oceanic forcing,

especially in the marginal and shelf seas, where seasonal sea ice changes are not adequately simulated. We therefore

conclude that an individual model’s ability to represent the observed/reanalysis spatial distribution still remains a challenge.

We propose the spatial analysis metrics as useful tools to diagnose model limitations, narrow down possible processes

affecting them, and guide future model improvements critical to the representation and projections of Arctic

climate change.
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1. Introduction

TheArctic is warming at twice the rate of the rest of the planet,

evidenced by rising surface air temperatures in response to

greenhouse gases (Serreze et al. 2009; Serreze and Barry 2011;

Taylor et al. 2013; IPCC 2019). One of the most striking re-

flections of this Arctic amplification (Serreze and Francis 2006)

is the accelerated decrease in sea ice extent (SIE; Meier et al.

2017) observed for each month of the year over the satellite

record since 1978 (Serreze and Barry 2011; Stroeve and Notz

2018). Changes in the sea ice cover alter the surface albedo, the

upper ocean heat content, and thus the surface energy budget

of theArctic Ocean (Jackson et al. 2011; Timmermans et al. 2018).

In addition, a diminishingArctic sea ice cover increases the air–sea

exchange of momentum, surface buoyancy flux, and freshwater

content (Parkinson et al. 1987; Rampal et al. 2011; Proshutinsky

et al. 2019). Hence, a better understanding of the sea ice reduction

is needed to improve climate predictions and projections.

The primary objective of this study is to assess and guide

improvements of outstanding pan-Arctic as well as regional

limitations in historical simulations of sea ice, by employing a

combination of common and new metrics on a subset of

state-of-the-art Earth system models (ESMs) participating

in CMIP6 (Eyring et al. 2016). This is motivated in part by

the need to better understand the complex operation of the

Earth system under climate forcing and in part to convey

confidence in model skill to project the future. The latter is

based on the argument that a model’s ability to simulate

‘‘known’’ mean climate state, trends, variability, and ex-

tremes raises confidence in its projections (Randall et al. 2007;

Massonnet et al. 2012). However, past model performance of

particular observables (e.g., pan-Arctic SIE) alone is not suf-

ficient to describe the quality of a model’s future projection,

due in large part to internal variability, observational uncer-

tainty, and model tuning (Notz 2015). Internal climate vari-

ability itself allows for a range of possible outcomes of Arctic

sea ice states, of which the observed state is but one realization

(Notz 2015; England et al. 2019).

While modern ESMs generally capture much of the physics

and the downward trends of the observedArctic SIE, they have

so far underestimated its acceleration in response to green-

house gas forcing and increasing global surface air temperature

(e.g., Winton 2011; Massonnet et al. 2012; Stroeve and Notz 2015;

Rosenblum and Eisenman 2017; Notz and SIMIP Community

2020). In addition, according to observational and model re-

constructed estimates, the negative trend in sea ice thickness

(SIT) and volume (SIV) has been even stronger than that in

SIE (Kwok and Rothrock 2009; Schweiger et al. 2011;

Maslowski et al. 2012; Stroeve et al. 2014). This aspect alone

corroborates the need for observationally constrained metrics
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of SIT and SIV for model evaluation as they allow for addi-

tional insights into regional and seasonal biases and overall

quality of sea ice simulations. At the same time, observations

of sea ice from passive microwave satellites contain internal

and algorithm uncertainties (Screen 2011; Eisenman et al.

2014; Ivanova et al. 2014; Meier et al. 2014), while pan-Arctic

and long-term estimates of SIT and SIV are not readily avail-

able from satellites as they cover relatively short time periods.

In particular, uncertainty in satellite-derived estimates of

pan-Arctic SIT distribution and summer sea ice concentra-

tion (SIC) pose considerable challenges (Zygmuntowska et al.

2013; Kwok 2018).

In this study, we expand on the published CMIP6 Arctic sea

ice analyses (Shu et al. 2020; Notz and SIMIPCommunity 2020;

Shen et al. 2021) to isolate specific spatial model limitations.

In particular, we examine SIE, SIT, and SIV from a subset of

12 CMIP6models, which provides a good representation of the

whole set (as discussed in section 2), for the period 1979–2014.

The integrated ice edge error (IIEE; Goessling et al. 2016) and

spatial probability score (SPS; Goessling and Jung 2018) ana-

lyses, referred to collectively as ice edge analysis, are introduced

to identify regions commonly challenging for the majority or

individual CMIP6 models to accurately replicate sea ice

conditions. The rest of this paper is organized as follows: in

section 2 we describe data and methods; in section 3 results

are presented, emphasizing the mean state and decline in pan-

Arctic sea ice, the simulated SIT spatial distribution, and a

regional ice edge analysis; and in section 4 are the discussion

and conclusions.

2. Data and methods

a. Model sea ice output

Sea ice outputs for a subset of CMIP6models (Table 1) were

retrieved from the Earth System Grid Federation repository

(https://esgf-node.llnl.gov/search/cmip6/). Our study used the

historical experiment data to evaluate the capability of the

participating CMIP6 models to represent Arctic sea ice during

the recent past. These experiments were initialized and forced

with common time-dependent observations, including anthro-

pogenic short-lived climate forcing, carbon emissions, land use,

and greenhouse gas historical concentrations, for the time

period of 1850–2014 (Notz et al. 2016; Eyring et al. 2016).

The 12 models selected for our study range from plus and

minus two standard deviations of the CMIP6multimodel mean

sea ice area (SIA) and SIV, as shown in Table S3 in the online

supplemental material of Notz and SIMIP Community (2020).

We chose a limited number of models, representative of

the whole with respect to multimodel mean and spread (see

Table S1 of our paper), to highlight the range of simulated sea

ice biases and limitations and a workable subset to present the

utility of ice edge analysis. Additional criteria for model se-

lection included the availability of sea ice variables for spatial

analysis (e.g., SIT and SIC) and a representation of different

sea ice model components used in CMIP6 simulations (e.g.,

NEMO-LIM, CICE, MPAS-Sea ice, GELATO). Table 1 sum-

marizes the model metadata, climate system components with

nominal resolutions, and the model variables used for analysis.

The horizontal resolution of the CMIP6 sea ice model com-

ponent varies between 50 and 500 km, with the majority still

using a relatively coarse resolution of 18 (;100 km). All but

one CMIP6 model in our study, GFDL-ESM4, produced out-

put from multiple ensemble members (up to 32). Unless oth-

erwise indicated, all values presented in figures and tables show

ensemble means of individual models.

In addition to our CMIP6 analysis, we analyze sea ice

model output from the Regional Arctic SystemModel (RASM;

Maslowski et al. 2012; Roberts et al. 2015; Hamman et al. 2016;

Cassano et al. 2017). The forced sea ice–ocean model config-

uration, which we term RASM-G (Fig. S1 shows the RASM-G

domain), was used for a high spatial resolution (;9km) hindcast

simulation, results of which are presented here. It was initial-

ized after a 57-yr spinup and forced with the Japanese 55-year

atmospheric surface reanalysis data for driving ocean–sea ice

models (JRA55-do; Tsujino et al. 2018). This RASM-G hind-

cast simulation provides a complementary reconstruction of

multidecadal sea ice conditions for the period of 1980–2014, in

addition to the remotely sensed observations and Pan-Arctic

Ice Ocean Modeling and Assimilation System (PIOMAS;

Zhang and Rothrock 2003) reanalysis data.

Due to the lack of persistent SIT observations over the

Arctic, we use the PIOMAS sea ice reanalysis as a SIT ‘‘ob-

servational’’ proxy reference, following a number of previous

studies favorably comparing PIOMAS results against thickness

observations from submarines, satellites, and airborne (Zhang

and Rothrock 2003; Schweiger et al. 2011; Stroeve et al. 2014).

The PIOMAS version 2.1 SIV and effective SIT were retrieved

from the Polar Science Center at the University of Washington

(http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-

anomaly/data/) in order to evaluate SIT simulations of CMIP6

models. Here we use SIV time series and monthly mean grid-

ded effective SIT (Zhang and Rothrock 2003; Schweiger

et al. 2011).

b. Observational sea ice data

Monthly mean SIC data for the period of 1979–2014 were

retrieved from the National Oceanic and Atmospheric

Administration (NOAA)/National Snow and Ice Data Center

(NSIDC) and the European Organisation for the Exploitation

of Meteorological Satellites (EUMETSAT) Ocean and Sea

Ice Satellite Application Facility (OSI-SAF). A mean ob-

servational SIC was determined by combining the National

Aeronautics and Space Administration (NASA) Team (NT)

and Bootstrap (BS) SIC from the Climate Data Record (CDR)

of Passive Microwave SIC, version 3 (Meier et al. 2017; ftp://

sidads.colorado.edu/pub/DATASETS/NOAA/G02202_V3) and

the OSI-SAF team SIC estimate (OSI-450; Lavergne et al.

2019; https://doi.org/10.15770/EUM_SAF_OSI_0008). We use

this combined SIC estimate as the primary observational ref-

erence for SIE time series analysis. For the ice edge analysis,

we use the merged NT/BS SIC as observational reference data.

The spread in observational estimates as a result of algorithm

differences can be interpreted as the observational uncertainty,

or absolute uncertainty (Meier and Stewart 2019; Notz and

SIMIP Community 2020).
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Monthly mean SIT estimates from ICESat were retrieved

from NSIDC (Yi and Zwally 2009; https://nsidc.org/data/

NSIDC-0393/versions/1) for the period 2003–08, and CryoSat-2

from the AlfredWegener Institute (Hendricks and Ricker 2019;

https://spaces.awi.de/display/SIRAL) for the period 2010–14.

Satellite SIT observations are available only during the colder

months from October to April, which is why we limit our SIT

analysis to the month of March. For ICESat, SIT data are

available for shorter campaign periods than CryoSat-2 and do

not align seamlessly with our selected month (but CyroSat-2

data do), so some temporal sampling bias is expected in the

model comparison.

c. Sea ice extent, volume, and thickness

We computed simulated SIE time series using the CMIP6

variables of SIC (‘‘siconc’’) and grid cell area (‘‘areacell’’) by

calculating the total area of all grid cells with SIC $ 15%. SIE

is a prevalent metric used for model comparisons and benefits

from the availability of a long-term passive microwave satellite

record and the reduction of uncertainties in SIC associated

with the pole hole, melt ponds, thin ice, andmarginal ice zones.

We chose the SIE metric, as opposed to SIA, to show results

consistent with the ice edge spatial analyses methods described

below (section 2d). The primary shortfall of the SIE metric is

that it is strongly grid-dependent (Notz 2014) as compared to

SIA, and that both SIA and SIE afford only a limited two-

dimensional sea ice evaluation. In determining an ensemble

model mean SIE, SIE time series for each ensemble member is

first calculated before averaging.

The SIV metric incorporates the vertical dimension (i.e.,

thickness) and it provides amore completemeasure of the state

and rapid change of the Arctic sea ice (Kwok and Rothrock

2009; Stroeve et al. 2012). For each model, we computed sim-

ulated ensemble-mean SIV time series using the CMIP6 vari-

ables: for example, SIV (‘‘sivol’’) or sea ice mass (‘‘simass’’)

and areacell provided by the modeling groups (see Table 1). A

CMIP6 multimodel mean (MM) SIE and SIV for our study

subset is determined by averaging the 12 individual model

ensemble means. Sea ice anomalies are calculated relative to

the 1979–2014 monthly mean for the individual models and

observational references.

We also examined model simulated SIT in order to assess its

spatial pattern distributions. Monthly ensemble-mean SIT was

calculated on the model’s native grid (where available) using

the CMIP6 variables: for example, sivol or simass multiplied by

density of sea ice (rsi), per areacell (see Table 1). A SIT cutoff

of 6 m, informed by Melling (2002), was applied to all models

when determining correlation and root-mean-square error

(RMSE) to correct for erroneous values of too thick sea ice

simulated in portions of the Canadian Arctic Archipelago

(CAA) by some models.

d. Ice edge analysis

Two ice edge spatial analysis techniques were evaluated to

compare the satellite-observed SIE against model simulations

of SIE. First, the spatial probability score (SPS) is a probabi-

listic verification score for contours (Goessling and Jung 2018).

For the sea ice edge contour, SPS is defined as

SPS5

ð
x

ð
y

P[sic. 0:15]
f
(x, y)2P[sic. 0:15]

o
(x, y)

n o2

dx dy ,

where P[sic. 0:15]f is the ensemble probability of having

sic. 0:15 and P[sic. 0:15]o is the binary field (1 or 0) rep-

resenting ‘‘perfect’’ SIE observations. Simply put, the SPS

is a summation of the areal differences between the ‘‘true’’

ice edge and the probabilistic modeled ice edge. The total

SPS is therefore spatial integration of local areas that are

both overestimated and underestimated by model SIE.

Additionally, the average of the squared difference term

in the SPS equation is the local Brier score (Brier 1950), and

is used here in spatial maps to evaluate each grid cell skill

between zero and one in representing the ice edge (cf. Wayand

et al. 2019). A Brier score of zero represents a perfect predic-

tion of SIE, and the score of one represents the alternative

extreme.

The other spatial analysis technique we apply is the in-

tegrated ice edge error (IIEE) (Goessling et al. 2016). The

IIEE is a special case of SPS whereby P[sic. 0:15]f is re-

placed by a binary deterministic value, as is the case for

models with single member simulations. While the majority

of modeling centers participating in CMIP6 do provide at

least a limited number of ensemble members, there is a large

range (e.g., 1 to 32). It is through this lens that we evaluate

the mean IIEE against the SPS. For IIEE, each individual

ensemble member was first treated as a single deterministic

simulation then averaged across all individual model ensem-

bles to determine the individual model mean. Here we calcu-

lated CMIP6 and RASM-G monthly mean SPS and IIEE over

several Arctic regions.

Sea ice observations and model data used for spatial ana-

lyses were linearly regridded, as needed, onto the NSIDC Sea

Ice Polar Stereographic (SIPS) North 25 km 3 25 km grid to

allow for cell by cell comparison between the simulated and the

observed values in both time and space between models. The

absolute mean errors resulting from the grid interpolation are

conservatively estimated at less than 4% for SIE or SIA (up to

3% for 50-km resolution GFDL-ESM4 and up to 3.6% for

100-km resolution CESM2; Fig. S2).

3. Results

Prior to presenting spatial evaluation results, we first in-

troduce time series analysis of the commonly used SIE and

SIVmetrics. These results reveal the simulated sea ice spread

of our selected CMIP6 models and set the stage for spatial

analyses. For both SIE and SIV, we find that the CMIP6

multimodel mean (MM) outperforms any single model in

representing the mean state and trend of the historical sea

ice cover.

a. Sea ice extent and volume

Figure 1a shows the SIE mean annual cycle for CMIP6 and

RASM-G models and the combined passive microwave ob-

servations, and Table 2 summarizes the SIE 12-month running

mean, standard deviation, and linear trends from 1979 to 2014.

We can clearly see that GISS-E2.1H is highest biased across all
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months, while E3SM 1.0 and MIROC6 both exhibit biases in

winter months outside one standard deviation of the MM

spread (Fig. 1a) relative to the observed mean SIE annual

cycle. Additionally, all models except GISS-E2.1H exhibit a

realistic seasonal cycle consisting of SIE maximum in March

and minimum in September. Consistent with Shu et al. (2020),

the month of March has a slightly larger spread among the

CMIP6 models than September (Fig. 1a), suggesting larger

winter sea ice edge variability across models.

All models simulate SIE negative trends with varying in-

tensity (Table 2), in general agreement with the observed

historical SIE decline for the 36-yr period (1979–2014). The

CMIP6MM rate of decline, 20.55 3 106 km2 decade21,

matches closely the observed trend (20.533 106 km2 decade21).

However, individual CMIP6model trends are spread relatively

wide, with only four of 12 CMIP6 models falling within two

standard deviations of the observed trend. The discrepancy

here can be mostly explained by model bias; that is, positive

(negative) bias models tend to have stronger (weaker) de-

clining trends (Table 2).

Figure 1b shows the mean SIV annual cycle for CMIP6 and

RASM-G models and PIOMAS reanalysis, while Table 2

summarizes their respective SIV 12-month running means,

standard deviations, and linear trends. Compared to SIE, the

SIV shows a relatively larger model spread, with the largest

bias in UKESM1.0-LL and CNRM-ESM2-1 (Fig. 1b). All

models, except E3SM 1.0, have a realistic seasonal cycle con-

sisting of the SIV maximum in April and the SIV minimum in

September.

As in the case for SIE, all models simulate a declining SIV

trend with varying intensity, which qualitatively matches the

PIOMAS and satellite estimated (Kwok 2018) SIV trends.

The CMIP6MM SIV mean of 20.36 3 103 km3 and trend

of 23.02 3 103 km3 decade21 for 1979–2014 pairs very well

with the PIOMAS mean of 20.18 3 103 km3 and trend

of 23.03 3 103 km3 decade21 (Table 2). Here seven of 12

CMIP6 models fall within two standard deviations of the

PIOMAS SIV trend.

b. Sea ice thickness

An accurate spatial distribution of SIT is key to estimates of

SIV and it reflects the skill in simulation of local processes,

coupled interactions and energy transfer between the ocean

below, the sea ice, and the atmosphere above (Stroeve et al.

2014). We first assess whether the CMIP6 models accurately

simulate the spatial distribution of SIT by focusing on the

months of mean SIE maximum (March; Fig. 2) and minimum

(September; Fig. 3) for the period 1979–2014. The mean

satellite-observed ice edge, determined from the gridded

NSIDCmonthly SIE, is included on each SIT image. However,

because of the satellite limitations in differentiating thin ice (at

least up to 0.2m) from open water (W. Meier, NSIDC, 2021,

personal communication), we impose the limit SIT . 0.1m in

order to provide a conservative and comparable estimate of the

simulated ice edge.

The PIOMAS simulatedmonthlymean ice thickness (Figs. 2n

and 3n) is often used as an historical observational ‘‘proxy’’

(e.g., Labe et al. 2018) with the following caveats: PIOMAS

has a general tendency to underestimate SIT in regions of thick

(.3.5m) ice [e.g., near the Canadian Arctic Archipelago

(CAA) and north of Greenland], and overestimate ice thick-

ness in regions of thin ice. Additionally, PIOMAS has a tongue

of;2.5m ice that extends across the Arctic to the Chukchi and

East Siberian Seas in March that is not depicted in in situ ob-

servations (Schweiger et al. 2011; Stroeve et al. 2014). Here we

include a spatial pattern correlation coefficient (r, at 99%

confidence interval) andRMSE against PIOMAS on each figure.

However, as was the case for CMIP5 (Stroeve et al. 2014),

nearly all CMIP6 models show high correlation (r. 0.84) with

PIOMAS forMarch SIT (except GISS-E2.1H; r5 0.73; Fig. 2),

which makes identification of poor performers less effective,

despite some models clearly underrepresenting general SIT

patterns described below.

Six of 12 CMIP6 models (CanESM5, CESM2, CESM2-

WACCM, FGOALS-f3-L, IPSL-CM6A-LR, and MIROC6)

demonstrate a reasonable pattern of SIT relative to the

PIOMAS SIT distribution reference. This means that generally

they correctly locate the thickest (at least 3.5m) Arctic sea ice

along the CAA and north of Greenland, as well as thinner

March sea ice located along the Eurasian shelf (Fig. 2). For

September, the same six models also maintain an appreciable

amount of thick ice (at least 3.0m) along the CAA and

northern Greenland. In contrast, four of the 12 CMIP6 models

(CNRM-ESM2-1, GFDL-ESM4, GISS-E2.1H, and MPI-ESM1.2-

HR) fail to maintain an appreciable amount of sea ice that is

greater than 2.0m at the September sea ice minimum (Fig. 3).

On the other hand, UKESM1.0-LL (Figs. 2l and 3l) is laden

FIG. 1. Seasonal cycles of (a) SIE and (b) SIV for CMIP6 models

and RASM-G with combined passive microwave observations and

PIOMAS for the period 1979–2014. The CMIP6 multimodel mean

and standard deviation are displayed by a red line and gray shading,

respectively.
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FIG. 2. March-mean sea ice thickness distribution for (a)–(l) CMIP6 models (1979–2014), (m) the

RASM-G simulation (1980–2014), and (n) PIOMAS (1979–2014). Magenta contours indicate the av-

eraged March NSIDC sea ice edge for the same period. Spatial pattern correlation coefficients (r) and

root-mean-square error (RMSE) for individual models against PIOMAS reanalysis are included in the

upper-left corner of each panel.
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FIG. 3. September-mean sea ice thickness distribution for (a)–(l) CMIP6models (1979–2014), (m) the

RASM-G simulation (1980–2014), and (n) PIOMAS (1979–2014). Magenta contours indicate the av-

eraged September NSIDC sea ice edge for the same period. Spatial pattern correlation coefficients (r)

and root-mean-square error (RMSE) for individual models against PIOMAS reanalysis are included in

the upper-left corner of each panel.
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with sea ice greater than 3.5m throughout the analysis period

and it covers a much larger area.

Turning toward the period of satellite-derived SIT obser-

vations and following Stroeve et al. (2014), we show spatial

pattern correlations and RMSE between models, ICESat, and

CryoSat-2 in Fig. 4, and difference plots in Figs. 5 and 6. For the

period 2003–08, models show low correlations against ICESat

(all of which are significant at the 99% confidence interval)

ranging from r 5 0.18 to 0.46 and RMSE from 0.73 to 1.38m

(Figs. 4a,c). Overall, models tend to underestimate SIT along

the CAA and north and east of Greenland, and overestimate

SIT over the Beaufort andChukchi Seas and along the Siberian

coast (Fig. 5). Nine of 12 CMIP6models exhibit overestimation

of SIT throughout the western Arctic (Fig. 5), which may be in

part the result of the timing of ICESat collected observations

(i.e., late February through early March) and the historically

low sea ice cover during the collection years (Stroeve et al. 2014).

In comparison against CryoSat-2 for the later period 2011–14,

all models show larger correlation ranging from r 5 0.47 to

0.65 and smaller RMSE from 0.63 to 0.92m than against

ICESat (Figs. 4b,d). Regional SIT differences between models

and CryoSat-2 are consistent with those against ICESat but are

less pronounced (Fig. 6).

The RASM-G simulated SIT agrees well with PIOMAS

(Figs. 2m and 3m), and ICESat and CryoSat-2 (Figs. 5 and 6,

respectively). In comparison with PIOMAS, RASM-G mean

SIT along the Eurasian shelf is thinner for both March and

September. Additionally, RASM-G maintains a larger area

of thick (.3.5m) September sea ice along and within the CAA

and north of Greenland. Evaluated against ICESat andCryoSat-2

(Fig. 4), the RASM-G spatial pattern (correlation and RMSE)

is highly correlated with PIOMAS reanalysis and is similar to

the better-performing CMIP6models. Overall, we find that the

RASM-G simulated SIT distribution represents a comparable

skill to PIOMAS.

c. Sea ice edge

The final metrics we present for CMIP6 sea ice analysis are

the SPS and the IIEE. For our subset of CMIP6 models, all

but GFDL-ESM4 includes multiple ensemble members, and

therefore we present the majority of our main text findings

and figures from the SPS analysis. However, we show that

IIEE is also an appropriate technique to compare the

simulated ice edge across a spectrum of ensemble model

classes (i.e., single through small to large ensemble models).

Additional IIEE results are shown in the online supplemental

material.

First, we analyze the SPS for the whole pan-Arctic (Fig. 7),

defined here as all areas within the NSIDC SIPS North

25 km 3 25 km grid with the exception of Hudson Bay, and

FIG. 4. (a),(c) Spatial pattern correlations and (b),(d) root-mean-square error (RMSE) ofMarch sea ice thickness

between CMIP6 models, PIOMAS and RASM-G with ICESat for the period of 2003–08 and CryoSat-2 for the

period of 2011–14, respectively [following Stroeve et al. (2014)].
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FIG. 5. March sea ice thickness differences for the period 2003–08 between (a)–(l) CMIP6 models, (m) RASM-G,

(n) PIOMAS and ICESat. (o) ICESat data.
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FIG. 6. March sea ice thickness differences for the period 2011–14 between (a)–(l) CMIP6 models, (m) RASM-G,

(n) PIOMAS and CryoSat-2. (o) CryoSat-2 data.
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for the 11 subregions (Figs. 8 and 9). Second, we apply

the SPS analysis and examine the local Brier score in

order to identify regions where CMIP6 models com-

monly have difficulty in reproducing sea ice coverage

skillfully (Figs. 10 and 11). We restrict our SPS analysis to the

long-term mean errors, avoiding interannual comparisons, of

which no CMIP6 models from our subset show predictive SIE

skill (Fig. S3).

The resulting pan-Arctic SPS exhibits a strong mean annual

cycle (Fig. 7a). Over the 35-yr record (1980–2014), most

CMIP6 models have a relatively steady SPS during the colder

months of December through April, with relatively better-

performing models showing SPS ranges between 0.73 106 km2

and 1.03 106 km2 (CESM2, CNRM-ESM2-1, IPSL-CM6A-LR,

MIROC6, MPI-ESM1.2-HR, and UKESM1.0-LL). All models,

except CanESM5, experience increased SPS during the

warmer summer/autumn months (July through October)

ranging from 0.83 106 km2 to 2.53 106 km2. FGOALS-f3-L

and GISS-E2.1H have less dramatic seasonal cycles due to

their colder season SPS remaining high, when their mini-

mum ranges from 1.93 106 km2 to 2.33 106 km2. The timing

of individual model SPS peak ranges from July through

October, with the majority of CMIP6 models peaking in

August (five models) or October (three models). GISS-

E2.1H has the largest single month SPS, near 2.5 3 106 km2

in October. The lowest single month SPS values, near

0.7 3 106 km2, occur in May (MIROC6) and November

(UKESM1.0-LL).

Compared against the SPS, the pan-Arctic mean IIEE

magnitude is always larger, by annual mean factor ranging

between 1.2 (GISS-E2.1H) to 1.7 (IPSL-CM6A-LR), for all

models with multiple ensemble members (Fig. 7b). Additionally,

the shape of a model’s mean annual cycle and relative per-

formance against other models remains largely consistent be-

tween the chosen metrics (except the shape of GISS-E2-1H).

Note that the single ensemble member GFDL-ESM4 SPS and

IIEE are the same.

In Fig. S5, we show the individualmodel ensemblemember’s

IIEE alongside their mean IIEE and SPS. This detailed look

illustrates the IIEE spread about the model’s mean across the

whole seasonal cycle, which is not evident from the SPS alone.

The individual model spread between ensemble realizations

can be interpreted as the model internal variability in simu-

lating the sea ice edge.

In Fig. 7c, the two separate components of pan-Arctic

SPS, overestimation (SPS-O) and underestimation (SPS-U),

are further examined. For December through April, SPS-O

has a greater intermodel spread than SPS-U. Neither com-

ponent of SPS has much change from month to month dur-

ing this period. However, during the spring melt through

autumn freeze up, individual models do show considerable

temporal variability in SPS (i.e., variability in the position of

the sea ice edge). Magnitudes of SPS-O in five of 12 CMIP6

models (CanESM5, CNRM-ESM2-1, GFDL-ESM4, IPSL-

CM6A-LR, and MPI-ESM1.2-HR) exhibit relatively small

(,0.4 3 106 km2) changes from June through November

(Fig. 7c). However, MIROC6, UKESM1.0-LL, and GISS-

E2.1H have increased values of SPS-O during the same

period, suggesting that the simulated sea ice is not melting in

the right regions and/or as fast as observed. On the other

hand, E3SM 1.0, FGOALS-f3-L, and CESM2-WACCM

models have decreased values of SPS-O. In contrast, most

CMIP6 models (all except UKESM1.0-LL and CanESM5)

have distinct seasonal surges of SPS-U for June through

November. Four of 12 CMIP6 models have peak SPS-U in

July/August and six models peak in September/October.

Models with larger SPS-U early in the melt season (July/

August) suggests that sea ice is removed by melting or advec-

tion faster than observed. Models with peak underestimation

occurring later into the freeze up season (September/October)

suggest that sea ice is not growing quick enough in their

simulations.

Figure 8a shows the 35-yr mean monthly SPS-O/U for in-

dividual models and the relative contribution per Arctic sub-

region (defined in Fig. 8b) for March. During both winter and

spring (December through May; Fig. S6), the areas that con-

tribute to SPS are predominantly limited to the sub-Arctic seas

(i.e., the Bering Sea, Nordic seas, and Baffin Bay) because the

ice-coveredArctic interior is all frozen and well represented by

all CMIP6 models during this period. The majority of the SPS

is composed of overestimations across the Greenland and

FIG. 7. Pan-Arctic monthly mean (a) SPS and (b) IIEE for the

period 1980–2014 for CMIP6models and RASM-G. (c) Pan-Arctic

monthly mean SPS subdivided into two components: overestimation

(positive) and underestimation (negative).
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Barents Seas and underestimations for the Bering Sea. We use

stacked SPS bar charts in Figs. 8 and 9 to identify the common

regions of large SPS-O/U, as well as diagnose differences

between the seasonal evolution of individual model SPS. For

example, CanESM5 and GISS-E2.1H have the same region

of primary overestimation over the Greenland Sea, but have

different secondary error regions; for CanESM5 it is the

Baffin Bay, whereas for GISS-E2.1H it is the Barents

Sea (Fig. 8a).

Figure 10 displays the mean local Brier score for March

and clearly depicts individual model regions contributing

to the total SPS. However, because the Brier score is the

squared difference, it does not distinguish between over-

estimation or underestimation of the ice edge. GISS-E2.1H,

E3SM 1.0, FGOALS-f3-L, and CanESM5 have particularly

high winter SPS values, which can be attributed to a sub-

stantial overestimation of the ice edge position in the

Greenland Sea (Figs. 8a and 10). Additionally, GISS-E2.1H

and FGOALS-f3-L notably overestimate the Barents Sea

ice edge, and E3SM 1.0, FGOALS-f3-L, and CanESM5 over-

estimate the position of the Baffin Bay ice edge. On the other

hand, MIROC6 is identified as having the largest SPS-U dur-

ing this period, which can be attributed to a large underesti-

mation of ice edge in both the Greenland and Bering Seas

(Figs. 8a and 10).

Next, we examine the remaining, mostly warmer Arctic

months of June through November (Fig. 9). Three principal

regions can be identified as the largest contributors of SPS for

each month. As sea ice retreats poleward, the number of re-

gions that contribute to SPS increases and evolves in time. In

June (Fig. 9a), the Greenland and Barents Seas and Baffin Bay

are the regions of primary SPS (predominantly overestima-

tion). This suggests that as the observed sea ice is retreating,

the CMIP6 models tend to melt sea ice too slowly. In July

(Fig. 9b), Barents Sea overestimation decreases (but still

remains a substantial error source) and the underestimation of

Baffin Bay and the Kara Sea is increasing. This suggests that

the simulated sea ice over the Barents Sea is catching up (i.e.,

accelerating modeled sea ice retreat) from a slow start of sea

ice melt, and that sea ice over Baffin Bay and the Kara Sea

reduces faster than the observed retreat. August is dominated

by SPS-U across the East Siberian and Kara Seas, and CAA

(Figs. 9c), implying that simulated sea ice along the Arctic

periphery generally melts quicker than observed. In September

(Figs. 9d and 11), the CAA and central Arctic Ocean ice

edges are generally underestimated by CMIP6 models. On

the other hand, the East Siberian Sea is nearly split among

ice edge overestimation and underestimation. October ice

edge errors are dominated by underestimation over the East

Siberian, Kara, and Beaufort Seas (Fig. 9e), suggesting that

sea ice growth is slower in a number of model simulations

relative to observations. November SPS (Fig. 9f) is domi-

nated by overestimation of the Greenland and Barents Seas,

and underestimation of the Chukchi Sea. This suggests

the CMIP6 models are over efficient in sea ice growth over the

Greenland and Barents Seas and have slow growth over the

Chukchi Sea.

Details of model specific regional SPS evaluation are sum-

marized in Table 3, which shows the regional SPS-O/U values

accumulated over themonths of greatest SPS spatial variability

within the Arctic, June through November. The regions of the

Barents Sea and Baffin Bay account for nine of 12 CMIP6

models largest SPS-O during this 6-month period, while the

Greenland Sea accounts for the other three models (CESM2,

CNRM-ESM2-1, and MIROC6). The regions with the largest

SPS-Uare theKara Sea (CanESM5,CESM2-WACCM,E3SM1.0,

IPSL-CM6A-LR, and UKESM1.0-LL), the East Siberian Sea

(CESM2 and CNRM-ESM2-1), and Baffin Bay (GFDL-ESM4

andGISS-E2.1H). Restricting analysis in Table 3 to the extended-

interior Arctic (excluding the Barents and Greenland Seas and

FIG. 8. (a) March monthly mean SPS overestimation and underestimation for the period 1980–2014 from CMIP6

models and RASM-G and the relative contribution of the Arctic subregions. (b) Arctic regional mask defined in

this study: KS5Kara Sea; LAP5 Laptev Sea; ESS5East Siberian Sea; CS5Chukchi Sea; BEA5Beaufort Sea;

CAA5CanadianArctic Archipelago; CEN5Central Arctic; BAF5Baffin Bay; GRE5Greenland Sea; BAR5
Barents Sea; BS 5 Bering Sea) (adapted from Meier et al. 2007).
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Baffin Bay), we find that the Kara and East Siberian Seas are

the regions with the largest SPS, either for overestimation

or underestimation, for most of the CMIP6 models. Of note,

four of 12 CMIP6 models (CESM2, E3SM 1.0, MIROC6, and

UKESM1.0-LL) have an inverse relationship between regions

with largest SPS-O and largest SPS-U in the Kara and East

Siberian Seas; that is, the Kara (East Siberian) Sea is most

overestimated and the East Siberian (Kara) Sea is most

FIG. 9. Monthly mean SPS overestimation and underestimation for the period 1980–2014 from CMIP6 models and

RASM-G and the relative contribution of the Arctic subregions (see Fig. 8b) for (a) June–(f) November.
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underestimated. The other regions of peak SPS are the Chukchi

Sea (CanESM5 and GFDL-ESM4) and the Beaufort Sea

(IPSL-CM6A-LR) for SPS-O, and CAA (GFDL-ESM4 and

MPI-ESM1.2-HR) for peak SPS-U.

The RASM-G sea ice simulation shares the strong SPS and

IIEE seasonality observed in the majority of CMIP6 models

and has a peak in August (Fig. 7). However, compared to those

models its IIEE is notably lower, by 0.5–1.0 3 106 km2,

FIG. 10. March mean local Brier score for (a)–(l) CMIP6

models and (m) RASM-G for the period 1980–2014. Magenta

contours indicate the averaged March NSIDC sea ice edge for

the same period.
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throughout the year (Fig. 7b). The RASM-G simulation has a

relatively steady SPS-O of 0.3–0.4 3 106 km2 throughout the

year, and a slightly smaller baseline SPS-U from December

through April (Fig. 7c). The region that contributes the

greatest ice edge error for the RASM-G simulation from June

through November is the Greenland Sea (Table 3). Limiting

our scope to the extended-interior Arctic (defined above), we

find the regions with greatest errors in RASM-G are SPS-O of

FIG. 11. As in Fig. 10, but for September.
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0.223 106 km2 across the Kara Sea and SPS-U of 0.683 106 km2

across the East Siberian Sea (Table 3).

4. Discussion and conclusions

In light of modest improvements of sea ice simulation in

CMIP6 models over previous CMIP phases (Davy and Outten

2020; Shu et al. 2020; Notz and SIMIP Community 2020; Shen

et al. 2021), we investigated how these models represent the

spatial patterns of ice thickness and ice edge. While standard

sea ice integrated analyses are good in identifying highly biased

models, we caution against the potential for seemingly ‘‘good’’

models arriving at the ‘‘right’’ answer for the wrong reasons,

especially without ensuring that the responsible physics to get

the state correct is reasonably resolved and not by chance of

internal variability (Stroeve and Notz 2015; Jahn et al. 2016).

We argue that basic comparisons of time series of integrated

SIE and SIV are not enough to qualify model performance and

diagnose biases. Hence, we present spatial analysis techniques

to assist.

Qualitative examination of the SIT spatial distributions

showed that half of the analyzed CMIP6 models reasonably

simulated March and September SIT (Figs. 2 and 3) for the

period 1979–2014 against PIOMAS reanalysis. However, spa-

tial pattern correlation and RMSE (Fig. 4) do not clearly dis-

tinguish models with poor SIT patterns or lend themselves to

regional diagnostics. Because of the narrow range of val-

ues—for example, PIOMAS has ranges of r5 0.73 to 0.92 and

RMSE 5 0.43 to 0.81m (Fig. 2) and CryoSat-2 has ranges of

r 5 0.47 to 0.65 and RMSE 5 0.63 to 0.92m (Figs. 4b,d)—it is

difficult to classify meaningful SIT differences between models.

We performed an ice edge analysis and identified several

common ‘‘problem’’ regions, which may benefit from further

regional analyses at the individual model level. Note that the

analyses with SIA carry similar, if not larger, uncertainties

related to coarse resolution in both models and satellite mea-

surements, especially due to melt pond coverage during the

melt season, detection of thin ice (by passive microwave), and

the marginal ice zones (Ivanova et al. 2014; Yang et al. 2016;

Comiso et al. 2017). To our understanding, the limitation with

differentiating melt ponds and low SIC from open ocean sur-

face by passive microwave satellites is the primary reason why

the NSIDC and other centers choose SIE as their primary and

less uncertain diagnostics of summertime ice cover. Given the

above concerns with SIA, we find SPS and IIEE as reasonable

options to quantify regional errors in the simulated sea ice

cover and to narrow possible oceanic/atmospheric drivers

of such errors. Hence, given the continued challenges with

accurate SIA estimates the ice edge analysis appears to be a

promising methodology for diagnosing model biases related to

specific regional processes.

Our spatial analysis metrics identified Arctic regions with

large ice edge and ice thickness errors, therefore pointing to

limitations in or lack of representation of some physical pro-

cesses within individual CMIP6 models. We postulate that

many of them could be related to the oceanic forcing in the

marginal and shelf seas. For example, during the warmer

months, the SPS in the interior Arctic is generally largest over

the East Siberian and Kara Seas (Table 3), with many sea ice

simulations tending to respond slowly to the seasonal changes

(i.e., slow to melt or/and slow to grow). In case of errors of ice

growth in these regions, we hypothesize this may be the result

of models taking additional time to ventilate the excess heat

accumulated in the upper ocean through the summer, to cool

water down to freezing temperature in order to begin the ice

growth. Another related cause of such errors might be an over

estimation of the surface mixed layer depth, which would also

take more time to cool down before freezing. Note that these

two issues would affect a model representation of Arctic am-

plification hence more than just simulation of sea ice.

In the case of models that consistently underestimate the

position of the sea ice edge for the Barents and Kara Seas (e.g.,

GFDL-ESM4 and IPSL-CM6A-LR in Figs. 3g,i), possible

causes may be an overestimated transport of warm Atlantic

Water across or underestimated cooling over the Barents Sea

(Maslowski et al. 2012). The resulting excess of oceanic heat

transport could be accelerating ice melt and delaying freeze-up

over the Barents Sea and farther downstream, over the northern

Kara Sea (and beyond).

During the colder months, the majority of SPS are overes-

timations over the Greenland and Barents Seas and underes-

timations over the Bering Sea. On the European side, this

could again be related to variability in volume and heat fluxes

from the North Atlantic Ocean and their distribution between

the Labrador, Greenland, and Barents Seas, which may lead

to interrelated inaccuracies in simulated sea ice over those

regions. For example, if too much warm Atlantic Water is

diverted from entering the Labrador or easternGreenland Sea,

and instead enters the Barents Sea, we could expect an over-

estimation of ice melt in the latter region with underestimation

of melt in the former two regions (e.g., IPSL-CM6A-LR in

Fig. 2i). Onarheim et al. (2018) found that the Barents Sea,

considered a hotspot for recent climate change, contributes the

largest fraction of winter sea ice loss through 2016. Possible

explanations of the significant loss in the Barents Sea include

a decreased sea ice import and the impact on upper ocean

stratification (Lind et al. 2018) and greater control of the sea ice

cover after around 2003 by Atlantic Water ocean heat anom-

alies across the Nordic seas and Barents Sea (Schlichtholz

2019).We found that themajority of CMIP6models, consistent

with Shu et al. (2020), underrepresent the strength of March

SIC decline over the Barents Sea compared to NSIDC (not

shown), which is indicative of potential model limitations in

representing these dynamics.

Sea ice edge and thickness distribution are also determined

by atmospheric forcing. Previous CMIP studies have shown

that inaccurate SIT patterns are often associated with model

deficiencies in simulating the observed Arctic sea level pres-

sure patterns and associated geostrophic winds (Schweiger

et al. 2011; Stroeve et al. 2014). Inaccurate simulations of the

position and/or strength of large-scale circulation patterns, like

the Beaufort high, can allow for sea ice convergence in regions

not generally observed (DeRepentigny et al. 2016). Additionally,

strong cyclones and anomalous circulation patterns can also

contribute to anomalous SIT and SIE patterns in model sim-

ulations. For example, atmospheric heat and moisture drawn
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into the high-latitudes can increase downward longwave radi-

ation, which inhibits sea ice growth (Cai et al. 2020). Also,

synoptic storms can excite inertial oscillations in sea ice

(Roberts et al. 2015), which can lead to increased deformation

rates and hence change in SIT.

Modeled SIT in the Bering Sea generally replicates observed

ice thickness patterns well, but models tend to underestimate

the SIE there. Given that sea ice in the Bering Sea melts

completely every summer, most of the CMIP6 models get the

SIT correct as long as they can replicate that seasonal retreat.

However, first-year sea ice is more susceptible to atmospheric

forcing and its variability (Rampal et al. 2011), hence the

problems with simulation of the ice edge there. Model limi-

tations in representing the Bering Sea dynamics also affect

the Chukchi and East Siberian Seas downstream, as those

marginal seas are tightly connected via the advection of Pacific

water (Maslowski et al. 2014). The northeastward transport of

warm Pacific summer water across Bering Strait into the East

Siberian Sea is another process likely to be difficult to repre-

sent in the CMIP6 models with coarse horizontal resolution

(e.g., the width of the Bering Strait is less than the single grid

cell size for all but three models examined here). Yet the

oceanic forcing of sea ice in the East Siberian Sea might play a

role in its negative concentration trend, which Onarheim et al.

(2018) identified as the largest in observed summer ice loss in

the Arctic through 2016.

The choice of CMIP6 ice edge analysis technique as a

model bias diagnostic was shown to be mostly arbitrary be-

tween the SPS and the mean IIEE. The exception to this is the

case of single member simulations. Because not all CMIP6

models provide multiple ensemble realizations, the determin-

istic models may appear less skillful by the SPS in representing

the ice edge than their ensemble model counterparts (see

GFDL-ESM4; Figs. 7a,b). While the benefits of using en-

semble models are beyond argument, our application of the

mean IIEE identified the same relative model biases as the

SPS, albeit with larger magnitudes. As such, the IIEE ap-

proach may provide a more equitable comparison of an indi-

vidual model’s skill in randomly representing the sea ice edge in

any single realization (Fig. S5).

RASM-G is examined alongside the CMIP6 models and

achieves favorable results in all categories, so it is reasonable to

consider it as a realistic alternative sea ice reference simulation

of the multidecadal evolution of the Arctic sea ice, especially

with regard to SIT and SIV. The RASM-G configuration is

similar to PIOMAS, in which both models use atmospheric

reanalysis to force the ocean and sea ice model components.

However, PIOMAS assimilates SIC and sea surface temperature

data in order to improve model performance of sea ice char-

acteristics. Yet, assimilated SIC fields come with passive mi-

crowave uncertainties (Yang et al. 2016), described earlier,

which might contribute to the reported PIOMAS SIT and SIV

biases and uncertainty in its trend estimates (Lindsay 2010;

Schweiger et al. 2011). RASM-Gdoes not use data assimilation

for its components and still performs remarkably well in rep-

licating observed SIE, as well as comparable to PIOMAS SIT

distribution and SIV time series over multiple decades. We

attribute this in part to the realistic atmospheric forcing, as well

as to a more realistic representation of sea ice relevant pro-

cesses (e.g., oceanic forcing along marginal ice zones) and high

spatial and temporal resolution. This lends confidence in the

RASM-Gmodel physics yielding correct depiction of themean

state and evolution of the Arctic ice pack.
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