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ABSTRACT

Most topic models are constructed under the assumption that documents follow a multinomial

distribution. The Poisson distribution is an alternative distribution to describe the probability of

count data. For topic modelling, the Poisson distribution describes the number of occurrences

of a word in documents of fixed length. The Poisson distribution has been successfully applied

in text classification, but its application to topic modelling is not well documented, specifically

in the context of a generative probabilistic model. Furthermore, the few Poisson topic models

in literature are admixture models, making the assumption that a document is generated from a

mixture of topics.

In this study, we focus on short text. Many studies have shown that the simpler assumption of

a mixture model fits short text better. With mixture models, as opposed to admixture models, the

generative assumption is that a document is generated from a single topic. One topic model, which

makes this one-topic-per-document assumption, is the Dirichlet-multinomial mixture model. The

main contributions of this work are a new Gamma-Poisson mixture model, as well as a collapsed

Gibbs sampler for the model. The benefit of the collapsed Gibbs sampler derivation is that the

model is able to automatically select the number of topics contained in the corpus. The results

show that the Gamma-Poisson mixture model performs better than the Dirichlet-multinomial mix-

ture model at selecting the number of topics in labelled corpora. Furthermore, the Gamma-Poisson

mixture produces better topic coherence scores than the Dirichlet-multinomial mixture model, thus

making it a viable option for the challenging task of topic modelling of short text.

The application of GPM was then extended to a further real-world task: that of distinguishing

between semantically similar and dissimilar texts. The objective was to determine whether GPM

could produce semantic representations that allow the user to determine the relevance of new,

unseen documents to a corpus of interest. The challenge of addressing this problem in short text



from small corpora was of key interest. Corpora of small size are not uncommon. For example,

at the start of the Coronavirus pandemic limited research was available on the topic. Handling

short text is not only challenging due to the sparsity of such text, but some corpora, such as chats

between people, also tend to be noisy. The performance of GPM was compared to that of word2vec

under these challenging conditions on labelled corpora. It was found that the GPM was able to

produce better results based on accuracy, precision and recall in most cases. In addition, unlike

word2vec, GPM was shown to be applicable on datasets that were unlabelled and a methodology

for this was also presented. Finally, a relevance index metric was introduced. This relevance index

translates the similarity distance between a corpus of interest and a test document to the probability

of the test document to be semantically similar to the corpus of interest.
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CHAPTER ONE

INTRODUCTION

Topic modelling is a text mining technique used to uncover latent topics in large collections of

documents. Unlike supervised methods, such as regression and classification, most topic models

are able to draw topical information from documents that are unlabelled. Thus, such topic models

fall into the class of unsupervised learning techniques along with methods such as clustering and

dimensionality reduction. This means that a collection of documents can be analysed without

having any prior knowledge regarding what they may be about.

Traditional topic models have a proven history of success on long documents, such as news

articles and e-books. However, due to the increasing popularity of micro-blogging websites, social

media platforms and online shopping (which involves product reviews), text that is significantly

shorter has become increasingly relevant. Such sources of text potentially hold valuable infor-

mation that can be useful in many applications, such as event tracking (Lin et al., 2010), interest

profiling (Weng et al., 2010) and product recommendation (Zhang and Piramuthu, 2018).

1.1 MOTIVATION

Traditional topic models infer topics based on word co-occurrence relationships between words

(Yan et al., 2013). In order to extract meaningful topics, a topic model must successfully infer
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CHAPTER ONE INTRODUCTION

these relationships from a corpus. Per definition, short text contains few words and consequently

tends to contain less co-occurrence information than long text. This in turn has a negative impact

on the performance of traditional topic models and has created a need for topic models that are

able to overcome the challenges associated with topic modelling of short text.

Most topic models are constructed under the assumption that documents follow a multino-

mial distribution. The Poisson distribution is an alternative distribution to describe the probability

of count data. It has been successfully applied in text classification and has also been shown to

outperform its multinomial equivalent (Ogura et al., 2013). Despite this, its application to topic

modelling is not well documented, specifically in the context of a generative probabilistic model.

Furthermore, the few Poisson topic models in literature are admixture models, making the as-

sumption that a document is generated from a mixture of topics. Many studies have shown that

the simpler assumption of a mixture model fits short text better. With mixture models, as opposed

to admixture models, the generative assumption is that a document is generated from a single

topic. One topic model, which makes this one-topic-per-document assumption, is the Dirichlet-

multinomial mixture model (DMM) (Yin and Wang, 2014). However, this topic model is based on

a multinomial distribution. In light of the mixture model’s success on short text and the positive

results obtained in other Poisson-based text mining tasks, the objective of this research is to study

and derive new Poisson-based topic models for short text.

1.2 CONTRIBUTIONS OF THIS WORK

This thesis makes the following contributions.

1. It presents a unifying framework that describes the connection between topic models and

other well-known statistical techniques. It highlights how topic models possess characteris-

tics of both dimensionality reduction techniques and cluster analysis. A clear connection is

made between clustering and principal components analysis, thus making it apparent how

topic models are related.

2. This thesis introduces a new topic model for short text that has not been proposed before

in the literature, the Gamma Poisson mixture model (GPM). The GPM is a modification

of the Gibbs Sampling Dirichlet multinomial mixture model (GSDMM) of Yin and Wang

(2014). Instead of modelling text according to a multinomial distribution, as does GSDMM,
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GPM changes this assumption and assumes a Poisson distribution instead. On the datasets

considered, GPM was able to produce topics with better coherence scores than GSDMM.

3. It details the derivation of a collapsed Gibbs sampler for the estimation of the parameters

of the new topic model. Alternative estimation procedures such as the EM algorithm could

have been used. However, it is this estimation procedure that gives GPM the favourable

characteristic of being able to estimate the number of topics automatically.

4. Various experiments were conducted to investigate the characteristics of the new model and

the results are documented in this thesis. GPM was found to produce stable results with

small variances across different runs. Furthermore, unlike typical Gibbs samplers which

may need long burn-in periods, collapsed Gibbs sampler for the GPM converged quickly.

Just 15 iterations were suitable for the datasets that were used. Lastly, GPM not only pro-

duced better topic coherence scores than GSDMM, but the estimated number of clusters it

found for the labelled corpora was closer to the true value than the estimate of the GSDMM

in most cases.

5. In addition, an open source software package was produced based on this research. GPM is

available as a Python package at https://github.com/jrmazarura/GPM. More-

over, the GSDMM has also been included in this package, thus making the application and

comparison of these models easy and convenient.

6. This thesis also presents several experiments demonstrating the utility of the GPM in a real-

world application: determining the relevance of new, unseen documents to a collection of

documents of interest. The focus was on the challenging problem of handling short text from

small corpora which may also be noisy. Small corpora are not uncommon as they can easily

arise from emerging topics. For example, at the start of the Coronavirus pandemic limited

research was available on the topic. Furthermore, short text is not only challenging due to

the sparsity of such text, but some corpora, such as chats between people or comments, also

tend to be noisy. The performance of GPM was compared to that of word2vec under these

challenging conditions on labelled corpora. It was found that the GPM was able to produce

better results based on accuracy, precision and recall in most cases. In order to compare

results from the different models, a relevance index was also defined. Finally, a framework

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 3
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was then presented showing how GPM can be successfully applied in the unsupervised

context where documents were unlabelled, as is often the case in reality.

1.3 RESEARCH OUTPUT

Since starting with my doctoral studies, the following research output has been produced.

Conference presentations:

• 2016 South African Statistical Association (SASA) and awarded second prize in the 2016

SASA postgraduate paper competition, Capetown, South Africa

• 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics In-

ternational Conference, Stellenbosch, South Africa

• 2019 International Symposium in Statistics and Biostatistics, Pretoria, South Africa

Conference proceedings:

• Mazarura, J., and De Waal, A. (2016). A comparison of the performance of latent Dirichlet

allocation and the Dirichlet multinomial mixture model on short text. PRASA RobMech)

(pp. 1-6). IEEE.

• Mazarura , J., de Waal, A., and de Villiers, P. (2019). Semantic representations for under

resourced languages. Proceedings of the South African Institute of Computer Scientists and

Information Technologists (SAICSIT) 2019 (pp. 1-10)

• Another paper titled, Probabilistic Distributional Semantic Methods for Small Unlabelled

Text, has been accepted in the conference proceedings and will be presented early in 2021

at the Southern African Conference for Artificial Intelligence Research (SACAIR) 2020.

Journal publication:

• Mazarura, J., de Waal, A., and de Villiers, P. (2020). A Gamma Poisson Mixture Topic

Model for Short Text. Mathematical Problems in Engineering, 2020.
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1.4 CODES

The Python codes for the various experiments conducted in this research have also been made

available.

• The Python package used in the experiments in Chapter 5 at https://github.com/

jrmazarura/GPM.

• The codes to conduct the semantic similarity experiments from Chapter 6 are available at

https://github.com/jrmazarura/Similarity_Experiments.

1.5 THESIS STRUCTURE

The thesis is structured as follows.

• Chapter 2 begins with an introduction to topic modelling and highlights some of the con-

nections between topic models and other well-known statistical and mathematical methods.

This is then followed by a study of the literature on topic modelling of short text.

• Chapter 3 presents a study of the use of the Poisson and multinomial distributions in text

modelling. It also discusses some of the existing topic models based on these distributions.

The objective of this section is to provide motivation for the new topic model proposed in

this thesis.

• Chapter 4 presents the main contribution, the new Gamma-Poisson topic model for short text

topic modelling. The derivation of the associated collapsed Gibbs sampler is also presented.

• Many experiments were conducted to evaluate the utility of the model and the results are

presented and discussed in Chapter 5.

• Chapter 6 presents a further application of the new Gamma-Poisson topic model relating to

semantic similarity in text.

• Finally, the conclusions and discussion of future work are presented in Chapter 7.
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CHAPTER TWO

BACKGROUND

2.1 INTRODUCTION

Variables that are unobserved are often described as being hidden or latent. Models that try to

leverage associations between observed variables and latent variables are called latent variable

models, and these include models such as mixture models and techniques such as factor analysis

(Murphy, 2012). In the context of unsupervised topic modelling, the topics covered in a corpus are

not assumed to be known in advance. Topic models are considered latent variable models as they

try to use the words in documents (observed variables) to infer the hidden topics (latent variables)

contained in them.

The connection between topic modelling and other well-known statistical techniques, such as

clustering and principal component analysis, is not always clear from the literature. Therefore,

within the upcoming sections, a unifying framework that describes some of these relationships is

discussed. The focus of this research is on the application of topic models on short text. In light

of this, a study of the existing literature on short text is also presented. Before going into this

discussion, some background on the typical topic modelling procedure is first described.

6
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2.2 THE BASIC TOPIC MODEL

Topic models are statistical techniques for discovering topics within large collections of docu-

ments. By virtue of their being mathematical models, the first challenge is converting this unstruc-

tured and typically noisy textual data to a mathematically computable form. Most multivariate

datasets can be represented as fixed-size vectors. In the case of a corpus with varying-length docu-

ments, one way of representing a document as a fixed-size vector is by simply counting the number

of occurrences of each unique word (the vocabulary). Following this procedure transforms the cor-

pus into a document-by-word matrix of word frequencies. This representation is often referred to

as the bag-of-words representation and it implies that syntax and word order are completely ig-

nored (Inouye et al., 2017). These document vectors typically lie in high-dimensional spaces. The

vocabulary size (number of variables) is usually much larger than 1000, therefore motivating the

need for multivariate count-valued distributions, which are able to capture the rich dependencies

between variables.

In practice, a corpus can contain thousands of words, yet not all the words will occur in all the

documents. Consequently, document-by-word matrices tend to be very large and sparse. In order

to mitigate the dimensionality problem and improve the performance of such models there are

some common pre-processing strategies that are often applied prior to forming the document-by-

word matrix. One of the most important pre-processing procedures is the removal of stop words.

Stop words are words such as “and”, “is” and “but”, which do not provide any information about

the thematic content of a document. Another procedure which may also be useful in reducing

the vocabulary size and consequently the sparsity, is referred to as lemmatisation. In this process,

different forms (inflections) of a word are reduced to their root form. For example, inflections

such as “runs”, “ran” and “running” are all replaced by their base word, “run”. In some cases,

the removal of words which occur highly infrequently in the entire corpus may also be a useful

practice. These techniques help the models to perform better by combating the sparsity problem

and reducing the dimensionality of the corpus.

Consider the following example. Table 2.1 shows a manually created corpus of 10 (short)

documents. Each was created by selecting a few sentences from various webpages1 that fall under

1https://en.wikipedia.org/wiki/Cancer
https://www.cancerresearchuk.org/about-cancer/what-is-cancer
https://en.wikipedia.org/wiki/Donald Trump
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5 predetermined topics: cancer, Donald Trump, cats, broccoli and oil.

Table 2.1: Each cell in the table represents one document.

1 Cancer is a group of diseases involving abnormal cell growth with the potential to
invade or spread to other parts of the body.

2 Cancer is when abnormal cells divide in an uncontrolled way. Some cancers may
eventually spread into other tissues.

3 Donald John Trump (born June 14, 1946) is the 45th and current President of the
United States, in office since January 20, 2017.

4 Trump has his own star on the Hollywood Walk of Fame which he received for
the reality TV show The Apprentice.

5 The domestic cat is a small, typically furry, carnivorous mammal.
6 While not well known, the collective nouns used for cats and kittens are a clowder

of cats and a kindle of kittens
7 Broccoli is known to be a hearty and tasty vegetable which is rich in dozens of

nutrients.
8 On their own, broccoli has a stronger, greener flavor, while cauliflower is more

delicate.
9 What you know as oil is actually called petroleum or crude oil and may exist as a

combination of liquid, gas, and sticky, tar-like substances.
10 Oil and natural gas are cleaner fuels than coal, but they still have many environ-

mental disadvantages.

After data cleaning (stop word and special character removal) the first and second documents, for

example, become “cancer group disease involve abnormal cell growth potential invade spread part

body” and “cancer abnormal cell uncontrolled cancer eventually spread tissue”. The first 5 rows

and columns of the associated document-by-word matrix for the corpus in Table 2.1 thus become

https://www.unbelievable-facts.com/2016/10/facts-about-donald-trump.html
http://justfunfacts.com/interesting-fact-about-cats/
http://umi123456.blogspot.com/
https://timesofindia.indiatimes.com/life-style/health-fitness/diet/11-health-benefits-of-
broccoli/articleshow/30843390.cms
https://www.sheknows.com/home-and-gardening/articles/998289/broccoli-vs-cauliflower
https://www.dummies.com/education/science/environmental-science/what-is-the-environmental-impact-of-petroleum-
and-natural-gas/
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as follows:



cancer group disease involve abnormal

document 1 1 1 1 1 1 . . .

document 2 2 0 0 0 1 . . .

document 3 0 0 0 0 0 . . .

document 4 0 0 0 0 0 . . .

document 5 0 0 0 0 0 . . .
...

...
...

...
...

. . .


.

The group of all the unique words that occur in a corpus is referred to as the vocabulary. In this

case, the number of words in the vocabulary is 75. Thus, the full matrix contains 75 columns (one

for each word) and 10 rows (one for each document). The first column corresponds to the word

“cancer”. From rows 1 and 2, we see that the word cancer occurs in the first document once and it

occurs twice in the second document. Rows 3 to 5 indicated that the word “cancer” does not occur

in documents 3 to 5. The other cells are interpreted in a similar fashion.

In a typical topic model, the topics are then represented in the model by a latent variable

which can be estimated from the observed data, the document-by-word matrix. The output of

a topic model is then groups of words that describe a topic. A topic is defined as a probability

distribution over all the words in the vocabulary. During inference, each word in the vocabulary is

assigned a probability of belonging to each topic, and usually only the ten words with the highest

probabilities in a topic are then taken as the group of words which describe the topic. The name

of the topic is typically determined by human judgment based on the most probable words in that

topic. For example, if a topic model produces the following 3 most probable words in a topic

{lions, tigers, leopards}, one could label the topic animals or even wild cats. This part of the

process is clearly subjective.

In our example, a simple topic model was applied and Table 2.2 illustrates 3 of the 5 topics

that were discovered.

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 9



CHAPTER TWO BACKGROUND

Table 2.2: Examples of 3 topic models uncovered by a topic model. The group of words in

topics 1, 2 and 3 discovered by the topic model correspond to the cancer, cat and broccoli topics,

respectively.

Topic 1
Probability of

word in topic 1
Topic 2

Probability of

word in topic 2
Topic 3

Probability of

word in topic 3

cancer: 0.112 cat: 0.137 broccoli: 0.102

abnormal: 0.076 kitten: 0.093 flavor: 0.053

cell: 0.070 typically: 0.048 delicate: 0.049

spread: 0.056 small: 0.039 stronger: 0.041

tissue: 0.040 domestic: 0.021 nutrient: 0.037

As previously mentioned, most topic models are unsupervised. Analogous to the manner in

which the number of clusters must be specified prior to applying K-means clustering, it is usually

also necessary to specify the number of topics prior to applying the topic model. In this example,

the number of topics was assumed to be five. From Table 2.2, the group of words in topics 1, 2 and

3 clearly correspond to the cancer, cat and broccoli topics, respectively. In practice these labels are

typically not known in advance so the onus is on the user to determine the topic which corresponds

to the top words. Naturally, this creates challenges when it comes to evaluating the performance

of the topic model as the true topics will not be known in advance to make a comparison.

Lastly, most topic models also incorporate a parameter which determines the proportion of

each topic in a document. This can typically be represented by a document-by-topic matrix where,

each row represents a document and each column represents the proportion of the document that

belongs to each topic. Under the (strong) assumption that each document can only be about one
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topic, the document-by-topic word matrix for the toy dataset in Table 2.1 would be as follows.



topic

1 0 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 1 0

0 1 0 0 0

document 0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1


As expected, the first and second documents were both assigned to the same topic, topic 1

(cancer) in Table 2.2, and the fifth and sixth belong to topic 2 (cats).

Usually, the one-topic-per document assumption is too rigid for long texts such ebooks or news

articles, so topic models which relax this assumption and allow each document to contain multiple

topics are usually more preferable. In such cases, each element in the document-by-topic matrix

is a value between 1 and 0 and all the columns of each row sum to unity.

2.3 NOTATION

In the subsequent sections, topic modelling, as well as various related aspects, will be discussed

in more detail. Unless otherwise specified, the notation that will be used throughout this thesis is

listed and explained below.

• C denotes the corpus.

• M ∈ N is the number of documents in the corpus.

• V ∈ N is the size of the vocabulary. The vocabulary is defined as the list of all the unique

words in the corpus. Each word in the vocabulary is assigned a unique label number, v ∈

{1, 2, . . . , V }.
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• K ∈ N is the number of topics. In most topic modelling procedures the user needs to

assume a value of K beforehand.

• nm ∈ N is the length of m-th document where m = 1, 2, · · · ,M .

• xm = [xm1, xm2, . . . , xmV ] denotes the word occurrence row vector of the m-th document

and xmv is the number of times word v occurs in the document.

• X denotes the M × V document-by-word matrix whose rows are x1,x2, · · · ,xM . X′

denotes the transpose of X.

• Sometimes a document is represented as a sequence of words. The m-th document is then

denoted wm = [wm1, wm2, . . . , wmnm ] where wmn (for n = 1, 2, . . . , nm) is the label

number for the n-th word in document m after pre-processing.

• z = [z1, z2, . . . , zM ] denotes the vector of topic assignments for the documents in the corpus

where zm ∈ {1, 2, . . . ,K} denotes the topic assignment indicator variable of the m-th

document. In the context of topic modelling, this vector is a latent variable.

• Θ is used to denote the document-by-topic matrix. Each row is a vector, θm =

[θm1, θm2, · · · , θmk], where θmk denotes the proportion of the m-th document which is

about topic k ∈ {1, 2, . . . ,K}. Furthermore, it is assumed that 0 ≤ θmk ≤ 1 and∑K
k=1 θmk = 1 for all m.

• Φ will be used to denote the topic-by-word matrix. This is the matrix that is of most interest

in topic modelling. Each row, φk = [φk1, φk2, . . . , φkV ] is such that φkv is the probability

of word v belonging to topic k. It is also assumed that 0 ≤ φkv ≤ 1 and
∑V

v=1 φkv = 1 for

all k.

2.4 STATISTICAL APPROACHES TO TEXT ANALYSIS

In general, topic models bear some resemblance to some of the well-known techniques that are

commonly found in the statistical literature. In this section, various approaches towards gaining

deeper insight into the contents of a corpus are described. This discussion ultimately leads to an

exposition of where topic models fit in with other well-known statistical methods.
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2.4.1 CLUSTERING

Given a similarity (or dissimilarity) measure, clustering groups similar documents together, which

consequently reveals information regarding the relationships between documents Aggarwal and

Zhai (2012). The simplest form of clustering associates each document to exactly one cluster.

However, given the complex nature of documents, soft (or probabilistic) clustering techniques may

be more suitable as they allow a document to be associated with more than one cluster. In the con-

text of topic modelling, this clustering is achieved through the inference of the document-by-topic

matrix, θ. As previously discussed, each row represents the fraction of each topic contained in a

document. One weakness of clustering analysis is that labels for the clusters are not automatically

inferred.

2.4.2 DIMENSIONALITY REDUCTION

Owing to the vector representation of documents and the magnitude of the corpora of interest,

some dimensionality reduction techniques from applied mathematics and machine learning may

also be applicable.

2.4.2.1 CLASSICAL PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) (Jolliffe, 1986) is a well-known dimensionality reduction

technique. PCA tries to find a linear mapping of each data point, xm ∈ RV , onto an orthonor-

mal subspace {h1,h2, ...,hK}, that maximises the variability of the projections, x̂m, of the data

points.2 This subspace is called the principal subspace. It can be shown that the subspace used to

achieve this is made up of the eigenvectors of the sample covariance matrix of the data points. Di-

mensionality reduction is achieved by selecting the subspace containing the K < V eigenvectors

which correspond to the highest eigenvalues.

The principal subspace can also be interpreted as the orthonormal subspace that minimizes

the sum of the squared distances between the data points and their projections (or reconstruction

error),
∑M

m=1 ||xm − x̂m||2 (Bishop, 2006). If H denotes an orthogonal V × K dimensional

weight (or loading) matrix and zm ∈ RK denotes a set of real-valued latent variables correspond-

ing to the m-th data point, then x̂m = Hzm (Murphy, 2012). According to Theorem 12.2.1 in

2For notational simplicity it is assumed that each data point, xm, is first centred around 0 before applying PCA.
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Murphy (2012), the optimal solution is found by setting the columns of H to be the eigenvectors,

{h1,h2, ...,hK}, corresponding to the K highest eigenvalues of the sample covariance matrix.

Consequently, the optimal linear reconstruction of xm, is ẑm = H′xm (Tipping and Bishop,

1999).

Subramanian (2015) refers to PCA as a one-mode factor analysis because the input is a matrix

of associations relating only a single entity (for example, in our context (Borko and Bernick,

1963) the single entity would be a document). Although, PCA enables the user to find a reduced

representation of the corpus, the new dimension onto which the documents are projected are not

always easily interpretable thus limiting the usefulness of this technique.

In the field of text mining, PCA is closely related to a well-known technique called latent

semantic indexing (also called latent semantic analysis) (Deerwester et al., 1990), which was ini-

tially developed for information retrieval. Instead of applying PCA to the covariance matrix of

the data, latent semantic indexing (LSI) is performed by applying PCA directly to the data matrix,

X, via a singular value decomposition (SVD). This approach is regarded as a two-mode factor

analysis as it allows for the analysis of two variables, namely documents and words, instead of

just one as in PCA (Deerwester et al., 1990). The data matrix is then factorised into a product

of 3 matrices. When the SVD is applied directly to the word by document matrix, the resulting

matrices allows for word to word comparisons, document to document comparisons and document

to word comparisons. The reader is referred to (Deerwester et al., 1990) for further details.

2.4.2.2 EXPONENTIAL FAMILY PRINCIPAL COMPONENT ANALYSIS

Exponential family principal component analysis (ePCA) (Collins et al., 2001) is a generalisation

of PCA which is better suited to dimensionality reduction in discrete data. The generalisation is

analogous to the manner in which generalised linear models expand regression to other members

of the exponential family of distributions. Suppose each observed data point, xm, is assumed

to belong to an unknown distribution in the exponential family, xm can be regarded as a noise-

corrupted version of the true points x̂m, where x̂m denotes the natural parameter of the exponential

family. Consequently, the objective of PCA becomes finding the parameters, x̂m, which lie in a

lower dimensional space that maximises the likelihood of the data.

This “probabilistic” interpretation is equivalent to the minimisation of the sum of the squared

distances interpretation of PCA if the data is assumed to follow a unit Gaussian distribution (stan-
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dard normal distribution). This is due to the fact that the negative log-likelihood under a unit

Gaussian model (ignoring constants) is equal to the loss function,
∑M

m=1 ||xm − x̂m||2, which

is minimised under classical PCA. When the data is assumed to follow a different distribution,

which is also a member of the exponential family, the form of this loss function is different and

the x̂m typically no longer lie in a linear subspace. Furthermore, where it is inappropriate to as-

sume normally distributed data, such as for binary or integer-valued data, it can be advantageous to

assume other distributions such as the Poisson or Bernoulli distributions, and apply ePCA instead

of classical PCA (Collins et al., 2001).

Exponential family PCA falls into the class of deterministic latent variable models, along with

classical PCA (Welling et al., 2008). As ePCA is prone to overfitting, a probabilistic equiva-

lent, Bayesian ePCA, was proposed (Mohamed et al., 2009). The Bayesian ePCA formulation

leads to an elegant generative model.3 Let W denote a V ×K dimensional matrix with columns

{w1,w2, . . . ,wK} and Z denote an M ×K dimensional matrix with columns {z1, z2, . . . , zK}.

Bayesian PCA assumes that the natural parameter of the distribution of the data, X′, can be repre-

sented by the product WZ′. The data-independent matrix, W, is called the factor loading matrix.

It is similar to the H matrix introduced in classical PCA, but the columns are not necessarily

eigenvectors. The matrix Z denotes the factor score matrix which represents the reduced vectors.

Z and W are both latent variables which can be estimated via Monte Carlo sampling methods.

In the generative process, it is first assumed that parametersµµµ and ΣΣΣ are first randomly selected

from a normal and inverse gamma distribution, respectively. Then for each data point, xm, a lower

dimensional score, zm, is randomly drawn from

zm ∼ N(µµµ,ΣΣΣ).

The data is then sampled from the conditional distribution

xm|zm,W ∼ Expon(Wzm),

where the notation Expon(θ) denotes any member of the exponential family with corresponding

natural parameter θ. It is also assumed that the columns of W are selected from an appropriate

3A generative model is a statistical model that represents the process by which data is assumed to have been formed.
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conjugate distribution. If zm ∼ N(0, I) and xm|zm,W ∼ N(xm|Wzm, σ
2I), this is known as

probabilistic PCA (Tipping and Bishop, 1999).

Under this formulation of ePCA, the appropriate member of the exponential distribution for a

document would be a multinomial distribution. Thus

xm|zm,W, nm ∼Mult(nm, S(Wzn)),

where nm denotes the length of the m-th document and S(·) denotes the softmax function which

is used to convert the natural parameter of the multinomial distribution to the dual parameter4.

Under this formulation, it can be seen that the latent variable becomes embedded in the nat-

ural parameter of the distribution. However, reformulating these results with a focus on the dual

parameters produces useful results, which form the basis of some of the most widely used and

effective topic models.

2.5 TOPIC MODELS: WHERE CLUSTERING AND DIMENSIONALITY

REDUCTION MEET

Topic models are very powerful tools as they possess characteristics from both clustering and

dimensionality reduction techniques:

1. A corpus is represented in a lower dimensional form by a set of topics. Assuming K < M ,

then the M × V dimensional corpus is summarised by the lower dimensional K × V topic-

by-word matrix.

2. Similar to clustering, each document is associated with a single topic or multiple topics,

depending on the model. This aspect is captured by the document-by-topic matrix. Unlike

clustering, “labels” for each cluster are also produced in the form of topics.

In order for topic models to be useful, they must not only provide data compression, but also

produce topics which are interpretable. In the following sections, a few basic topic models will be

discussed so as to demonstrate how clustering and dimensionality are performed in a single model.

4The dual parameter of a distribution which is a member of the exponential family tends to be the parameter which
is more commonly known. For instance, the natural parameter for the multinomial distribution is the vector of log odds
whereas the dual parameter is the probability vector, p. Similarly the natural parameter of the Poisson distribution is
the log of the mean whereas the dual parameter is the mean, λ.
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2.5.1 MULTINOMIAL PRINCIPAL COMPONENT ANALYSIS

Multinomial principal component analysis (mPCA) (Buntine, 2002) is a topic model which draws

heavily from probabilistic PCA (PPCA) (Tipping and Bishop, 1999), a variant of the Gaussian

version of ePCA. One of the key differences between ePCA and mPCA, is that ePCA models

Wzm as the natural parameter whereas mPCA models it as the dual parameter. Owing to this,

constraints are added to Wzm so as to ensure it falls in the correct domain. Multinomial PCA

assumes a likelihood similar to that of ePCA, however, the softmax function is omitted, as Wzm

represents the dual parameter of the multinomial distribution. If it is assumed that there are K

classes, the dual parameter must lie in the K-dimensional simplex.

Instead of assuming a Gaussian prior, the latent variable, zm, is assumed to follow a K-

dimensional Dirichlet distribution.5 Such a prior has the advantage of adding computational ease

due to its conjugacy to the multinomial distribution.6 More importantly, when the latent variable is

defined in this manner, it captures the proportion of each document belonging to each topic. This

aspect of the model brings in the “clustering” aspect of the topic model.

Lastly, the matrix which was previously referred to as W is constrained so that the columns all

sum to 1 and each entry lies between 0 and 1. The matrix W is a V ×K dimensional matrix which

denotes the word-by-topic matrix described in Section 2.1. It is from this matrix that topics similar

to those given in Table 2.2 are derived. As these topics can be regarded as lower dimensional

representations of the documents, this aspect of the model brings in the “dimensionality” reduction

aspect of the topic model.

So as to clearly differentiate between the unconstrained version of W and zm, the constrained

versions will be denoted as B and πππm, respectively. Letting α denote the hyper-parameter of the

5The K-dimensional Dirichlet distribution has the following probability density function,

p(θ|~α) =

∫
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θ
αk−1
k ,

where Γ(x) denotes the gamma function, θ = [θ1, θ2, ..., θK ] and α = [α1, α2, ..., αK ] are both K-dimensional
vectors whose elements have the following properties: θ ≥ 0,

∑k
k=1 θi = 1 and αi > 0. The Dirichlet distribution is

a member of the exponential family of distributions and is conjugate to the multinomial distribution.
6Suppose Q ∼ F and X|q ∼ G. Q is said to be conjugate to X if Q|X follows a distribution in the same family as

Q.
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Dirichlet distribution, mPCA assumes a prior of the form

πππm|α ∼ Dir(α), (2.1)

and a likelihood of the form

xm, nm|πππm ∼Mult(nm,Bπππm). (2.2)

2.5.2 LATENT DIRICHLET ALLOCATION

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is the most popular and widely studied of

all topic models due to its long record of success. Since its inception, much of the development

in the field has been in producing modifications and extensions of the model. It is a three-level

hierarchical Bayesian model (Blei et al., 2003) which is very similar to mPCA. The main differ-

ence is the assumed representation of the data, and hence the form of the likelihood. Instead of

representing each document as a vector of word counts, the m-th document, is represented as a

variable sequence of words wm = [wm1, wm2, . . . , wmnm ] where nm denotes the length of the

document. If all the words in the vocabulary are uniquely labelled from 1 to V , then each element

in wm is such that wmn ∈ {1, 2, . . . , V } where n = 1, 2, . . . , nm.

The natural choice of likelihood for such a distribution is a categorical (or multinoulli) dis-

tribution. Under LDA, the prior is the same as that of mPCA given in Equation (2.1), but the

likelihood is

p(wm|πn) =

nm∏
n=1

Cat(wmn|Bπππm). (2.3)

When applying LDA, an assumption regarding the number of topics contained in the corpus, K,

must be made prior to fitting the model. The latent parameter, πππm = [πm1, πm2, ..., πmK ], is

constrained such that 0 ≤ πmk ≤ 1 for all k = 1, 2, ...,K and
∑K

k=1 πmk = 1 and, it represents

the topic distribution of the m-th document. In other words, the proportion of the m-th document

belonging to topic k is πmk. Similarly, the columns of the matrix B, {b1,b2, ...,bK}, denote the

topic distribution of topic k where the sum of the elements of bk all lie between 0 and 1, and sum

to unity.

LDA is related to the multinomial mixture model, which is merely a special case of the well-
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known mixture model theory applied in statistical theory. Section 2.5.2.1 will highlight this rela-

tionship.

2.5.2.1 MIXTURE MODELS

Mixture models are amongst the simplest latent variable models. They too have been considered

for the problem of text analysis – especially the multinomial mixture model which can be regarded

as a more restrictive version of LDA.

In the context of topic modelling this approach is typically referred to as the mixture of uni-

grams model (Nigam et al., 2000) or Dirichlet multinomial mixture model (DMM) (Yin and Wang,

2014). In order to easily see the relationship between LDA and the mixture models, we look at the

form of the complete data distribution. Let zm denote a discrete latent indicator variable so that

the complete data distribution is

p(wm) =
∑
z

p(wm|zm)p(zm). (2.4)

(Note, the summation is replaced with an integral if zm is continuous.) In both LDA and mixture

models, the likelihood p(wm|zm) is assumed to follow a product of categorical distributions as in

Equation (2.3). The key difference is in the form of prior. Latent Dirichlet allocation assumes a

Dirichlet prior (thus replacing the summation in Equation (2.4) with an integral) whereas mixture

models always assume a categorical prior (Murphy, 2012).

The implication of this difference is that the mixture model uniquely assigns each document

to a single topic, whereas the LDA possesses the flexibility of allowing each document to contain

multiple different topics in different proportions. It is for this reason that LDA is sometimes

referred to as an admixture model (Erosheva et al., 2004). In practice, there are many instances

where the LDA assumption is more sensible, which is part of the reason for its popularity.

The focus of this thesis is on topic modelling with a special focus on short text. Section 2.6

will now draw attention to some of the research that has been conducted over the years in this

field.
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2.6 RECENT RESEARCH ON TOPIC MODELLING OF SHORT TEXT

Traditional topic models have a proven history of success on long documents, such as news articles

and e-books. However, texts that are significantly shorter have become of increasing relevance

over recent years. Short text is prominent on the Internet and arises in many forms, such as

tweets or status updates on social media platforms, web page snippets, news headlines and product

reviews. Such sources of text potentially hold valuable information that can be useful in many

applications, such as event tracking (Lin et al., 2010), interest profiling (Weng et al., 2010) and

product recommendation (Zhang and Piramuthu, 2018).

Traditional topic models typically infer topics based on word co-occurrence relationships be-

tween words (Yan et al., 2013). In order to extract meaningful topics, a topic model must suc-

cessfully infer these relationships from a corpus. Per definition, short text contains few words

and consequently tends to contain less co-occurrence information than long text. As a result, this

sparsity makes it difficult for traditional topic models to uncover the relationships between words

and hence, extract meaningful and coherent topics (Cheng et al., 2014). This has created a need

for tools and techniques that can effectively overcome the challenges posed by short texts. The

remainder of this chapter is an analysis of the existing literature on the subject of short text topic

modelling.

Much research has been conducted to address different aspects of the complications that typ-

ically arise in the application of topic models to short text. In order to systematically analyse the

literature, the topic models are divided according to the approach that the researchers proposed to

overcome these challenges. Where a model incorporates more than one approach, it is discussed

under the section that best describes the prominent idea. Only probabilistic topic models for short

text are considered.

2.6.1 POOLING OR AGGREGATION OF SHORT TEXTS INTO LONGER

DOCUMENTS

One common approach that has been explored by researchers is aggregating short texts into longer

pseudo-documents. Pooling approaches try to address the sparsity problem of short text by cre-

ating word co-occurrence information. One of the earliest and most popular works following

this approach involved pooling tweets according to hashtag (Mehrotra et al., 2013), then applying
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traditional LDA. Other pooling schemes include pooling according to author (Weng et al., 2010),

common terms (Hong and Davison, 2010), time or trending topics (Mehrotra et al., 2013). Despite

the favourable results observed, such methods have the flaw of being data dependent as texts must

have appropriate meta-data to allow for sensible aggregation (Mehrotra et al., 2013). However,

such auxiliary information is not always available or easy to access.

In order to address the aforementioned shortcoming, some researchers proposed another class

of aggregation-type topic models which assume that each short text is linked to some longer latent

document. The self-aggregation based topic model (SATM) (Quan et al., 2015) is one such model.

As the name suggests, it tries to automatically aggregate texts independently of the availability of

suitable meta-data, thus making it a form of “generalisation”. SATM is a generative model which

assumes that each short text originally belonged to a single longer latent document. It was shown

to outperform several baselines on artificially generated text (Quan et al., 2015). However, it is

plagued with several problems, including overfitting and severe high time complexity (Zuo et al.,

2016a), (Li et al., 2016a).

The pseudo-document-based topic model (PTM) (Zuo et al., 2016a), which is another

aggregation-based approach to topic modelling of short text, was proposed to overcome these

challenges. It also does not depend on the availability of auxiliary information. PTM overcomes

the overfitting problem of SATM by assuming that each short text is generated by sampling a word

from the topic distribution of a longer document, instead of the word distribution of the longer doc-

ument, as is the case with SATM. The sparsity-enhanced PTM (SPTM) was also proposed as a

sparsity-enhanced version of PTM. It was specially designed to be applied when the size of the

latent pseudo-document corpus is assumed to be small. This variation of PTM was achieved by

incorporating a Spike and Slab prior (Ishwaran and Rao, 2005) in order to induce sparsity. The la-

tent topic model (LTM) (Li et al., 2017b) is another topic model which is almost identical to PTM,

only differing in that it does not define a prior for the distribution of the document assignments of

the short texts. Both PTM and LTM were shown to outperform SATM as well as other baselines,

thus making them competitive modelling procedures for short texts (Zuo et al., 2016a; Li et al.,

2017b).

The self-aggregating dynamic topic model (SADTM) is another model based on self-

aggregation, but it goes a step further by also accounting for the time-varying nature of dynamic

short texts, such as those commonly found in social media. As many topic models are designed for
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static corpora, SADTM (Shi et al., 2019) was designed to be a more suitable model for short texts

whose topics vary over time. Despite the success of these models, one common problem which is

inherent to models that assume short texts are formed from longer pseudo-documents is determin-

ing the optimal number of pseudo-documents as this has an impact on model performance (Zuo

et al., 2016a). This choice is difficult due to the fact that these pseudo-documents are regarded as

latent (unobserved).

2.6.2 ASSUMING EACH DOCUMENT BELONGS TO A LIMITED NUMBER OF

TOPICS

Traditional topic models often assume that each document contains multiple topics. It has been

shown that this assumption is not always suitable as some texts are so short it is more likely that

they focus on only a single topic (Lin et al., 2014; Mazarura and de Waal, 2016). This assumption

can easily be modelled via the use of a mixture model. The mixture of unigrams model (Nigam

et al., 2000) assumes that the corpus can be modelled as a mixture of documents (multinomial

observations) where each cluster component represents the distribution over words of a topic.

This model is sometimes referred to as the Dirichlet multinomial mixture (DMM) model due

its use of Dirichlet priors. In the original model by Nigam et al. (2000), parameter estimation

was performed using an EM algorithm, but it was later adapted to use a Bayesian approximation

method by Yin and Wang (2014) who proposed a collapsed Gibbs sampler version, GSDMM

(Gibbs Sampler DMM). It was a significant improvement upon DMM as it not only converged

quickly, but also had the favourable property of being able to automatically infer the number of

topics/clusters in the corpus. Twitter-LDA (Zhao et al., 2011) is another topic model that only

allows each document (tweet) to belong to one topic. Unlike the other one-topic-per-document

topic models, it is regarded as an extension of LDA (Zhao et al., 2011).

In general, most researchers in the short text topic modeling field tend to avoid making the

one-topic-per-document assumption as they feel that it is too restrictive and may not hold for all

short texts. In light of this, the Poisson-based Dirichlet multinomial mixture model (PDMM) (Li

et al., 2017a) was proposed as an extension to DMM which relaxed the one-topic assumption. It

models the number of topics in each short text according to a Poisson distribution and only allows

each one to belong to either 1, 2 or 3 topics. By allowing for this flexibilty, PDMM was able to

outperform standard DMM with respect to topic coherence.
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2.6.3 MODELLING INNOVATIVE DOCUMENT REPRESENTATIONS

When researchers deviate from traditional ways of modelling short text, it creates room for innova-

tions in the field. Typically, topic models such as LDA and DMM model the document generation

process and, only implicitly, model document-level word co-occurrences. The biterm topic model

(BTM) (Yan et al., 2013) deviates from this by modelling the global word co-occurrence patterns

in the corpus instead of document co-occurrence. BTM directly models the generation of biterms7

in the global corpus (Yan et al., 2013). Given its widespread success, BTM is regarded as one of

the state-of-the-art models for short text. However, it has the unfavourable weakness of having a

high time complexity (Liang et al., 2018). Another competing method which is able to outperform

BTM is the word network topic model (WNTM) (Zuo et al., 2016b). Unlike LDA which models

the topic distribution of each document, WNTM models the distribution over topics for each word

(Zuo et al., 2016b). Instead of representing a documents as a bag-of-words as in LDA and DMM,

under WNTM each document is represented as a network depicting the number of other words in

the vicinity of each word based on a sliding window across each document. Such a representation

deals with the sparsity issue as the word-word space is denser than the document-word space (Zuo

et al., 2016b).

Zhou and Yang (2018) proposed using LDA with a pattern set-based text representation

(PSTR) to create a new topic model, LDA-PSTR. LDA-PSTR is a probabilistic topic model that

uses frequent pattern mining to represent documents as pattern frequency vectors as opposed to

a bags-of-words. The representation addresses the sparsity problem in that it explicitly captures

co-occurrence patterns and semantic relations of words on a corpus-level (Zhou and Yang, 2018).

More recently, Chen et al. (2020) proposed a new biterm-based topic model, the Dirichlet

process biterm-based mixture model (DP-BMM). Their model differs from previous biterm-based

topic models in that it models biterms at a document level, it can directly obtain document-topic

distributions and assumes each document belongs to a single topic (Chen et al., 2020).

2.6.4 ENRICHING SHORT TEXTS WITH AUXILIARY INFORMATION

In an attempt to alleviate the data sparsity problem in short text, another approach that has been

widely investigated is that of expanding short texts with suitable external knowledge to create more

7A biterm is defined as an unordered pair of words that co-occur in a window.
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co-occurrence information and context in short text. Phan et al. (2011) proposed a framework

that uses topics from a larger, more diverse “universal corpus”, such as Wikipedia articles, to

enrich short texts. Other researchers noticed that some short texts are sometimes followed by a

thread of related posts. LeadLDA (Li et al., 2016b) tries to leverage this auxiliary information by

incorporating it into its prior.

There are also topic models which incorporate word embeddings. Word embeddings are a

group of language modelling techniques that map words to vectors in a manner that retains the

contextual information of the words as well as semantic and syntactical relationships (Li et al.,

2016a). Latent feature DMM (LF-DMM) (Nguyen et al., 2015) incorporates word embeddings

by the inclusion of a Bernoulli indicator variable which determines whether a word is generated

from a Dirichlet multinomial distribution or a probability distribution dependent on pre-trained

word embeddings. Li et al. (2016a) also identified the utility of word embeddings in short text

topic modelling and proposed extensions of DMM and PDMM, namely the generalised Pólya

urn DMM (GPU-DMM) and generalised Pólya urn PDMM (GPU-PDMM). They incorporated

information about the relatedness of words based on word embeddings through the generalised

Pólya urn model (Mahmoud, 2008). The Pólya urn captures the relatedness of words by pro-

moting semantically related words in a topic. These models were proposed as improvements to

LF-DMM and were shown to perform better with respect to topic coherence (Li et al., 2016a).

Furthermore, it was observed that GPU-DMM was generally outperformed by GPU-PDMM, but

this superior performance came at the expense of significantly higher computational costs. More

recently, prompted by the success of these DMM and PDMM variants, Guo et al. (2020) proposed

the generalised Pólya urn biterm topic model (GPU-BTM).

Since word embeddings are trained on large sets of external corpora there is a risk of in-

troducing irrelevant information. In order to lower this risk, Zhang et al. (2018) proposed an

improvement to the GPU-based models, which uses Point Mutual Information between words to

filter semantic relatedness in the word embeddings. Furthermore, unlike DMM which assumes

all the words in a document are associated with one topic, their model is more similar to Twitter-

LDA which assumes each document belongs to one topic, yet each word is either related to this

topic or some other global background topic (Zhang et al., 2018). Liang et al. (2018) later pro-

posed a global and local word embedding-based topic model, GLTM, that also tries to ensure that

the incorporated word embeddings are suitable. Unlike the model of Zhang et al. (2018), GLTM
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uses local word embeddings from the training corpus in addition to the global word embeddings

from the external corpus. Overall, incorporating word embeddings is a very popular approach

amongst researchers. Other topic models that take advantage of word embeddings for short text

topic modelling include Li et al. (2019); Gao et al. (2019) and Huang et al. (2020).

The ULW-DMM model (Yu and Qiu, 2019) is another more recent contribution to short text

topic modelling. This model was built based on the premise that the strengths of three different

approaches can be leveraged by their combination, whilst their individual weaknesses are simul-

taneously overcome. ULW-DMM is based on DMM, yet it also incorporates both external infor-

mation via the use of word-embeddings and internal information by modelling texts according to

user. The model was shown to outperform baselines such as DMM, LDA and LF-DMM (Yu and

Qiu, 2019).

Although taking advantage of external sources of information has been shown to improve

topic model performance, this approach may not always be viable for short texts that lack suitable

external data sources to exploit. In the cases where external data can be identified, there is no

standard way of determining the extent to which the external data is appropriate and there is also

a risk that its incorporation can introduce noise into the short text corpus.

2.6.5 INDUCING SPARSITY INTO TOPIC MODELS

Most topic models assume that the corpus contains K topics and they assign probability across

these K topics for each document. Similarly, for each topic, probabilities are assigned to each of

the V words in the vocabulary. LDA, for instance, assigns non-zero probabilities to all topics and

all words. However, in practice individual topics tend to contain a few main topics as opposed to

all K topics and only a smaller subset of the vocabulary is relevant to a topic (Lin et al., 2014).

This is especially true for short text. One intuitive, but unfortunately ineffective, approach to

inducing this sparsity is selecting smaller values for the hyperparameters of the Dirichlet priors in

LDA (Zhu and Xing, 2011). Sparse topical encoding (STC) (Zhu and Xing, 2011) on the other

hand, is able to effectively induce this sparsity by introducing a Laplace prior, which is possible

due the non-probabilistic nature of the model. Although it is the state-of-the-art non-probabilistic

model that induces the this sparsity, it is generally outperformed by its probabilistic counterpart,

the dual sparse topic model (DSTM) (Lin et al., 2014). DSTM is of special interest as it has

also proven to be an effective model for topic extraction in short text (Lin et al., 2014). DSTM
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is a variation of LDA which modifies traditional LDA by incorporating a spike and slab prior to

induce sparsity into the topic distribution of the document and word distribution of the topics.

Despite the positive results reported in the original paper, the model does not always perform well

on all short text (Lin et al., 2014). This may be because the assumption that each document only

contains a few prominent topics may not always be valid for a given corpus of short text. In the

cases where the each document was indeed about a single topic, DSTM was outperformed by the

DMM model (Lin et al., 2014). Lastly, the conditional Gamma-Poisson model (CGP) Buntine

and Jakulin (2006) is an extension of the Gamma-Poisson model proposed by Canny (2004). This

model incorporates a zero inflated gamma distribution in its design so as to account for excess

zeros in the score matrix.

2.7 CONCLUSION

This chapter began with an introduction to topic models. The basic application and features of

typical topic models were demonstrated with a small toy corpus. This was then followed by a

unifying framework that described the connection between topic models and other well-known

statistical techniques. This lead to the exposition that topic models possessed both dimensionality

reduction and clustering characteristics.

It was then shown, through a literature study, that there is still no universal solution to address-

ing the short text problem in topic modelling, as every model presents its own challenges. Some

models depend on the availability of external information in order to be applicable; yet, such in-

formation is not always readily accessible for all texts. Others introduce new parameters for which

the selection of optimal values is difficult. Upon evaluation of the experimental results presented

in the literature, it was often seen that the performance of models was not always consistent.

It is clear that topic modelling of short text is still an active and open area for further research

as there is a need for topic models that are both flexible and robust8. In other words, they should

still be applicable and perform well across different types of documents. In addition, such meth-

ods need to be simple in order to promote their widespread use and they also need to be fast to

effectively handle the large datasets that are prevalent in practice.

8In statistics, a statistical method is said to be robust if it can operate well under violations of its underlying
assumptions.
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CHAPTER TWO BACKGROUND

Now that the basics have been covered, Chapter 3 will now present the foundations of the new

topic model presented in this thesis.
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CHAPTER THREE

MOTIVATION FOR POISSON-BASED TOPIC

MODELS

3.1 INTRODUCTION

Topic models are closely related to classification (supervised learning) and cluster analysis (unsu-

pervised learning). In the literature, their performance is mostly assessed based on topic quality,

classification performance and, occasionally, clustering ability. Most topic models are constructed

under the assumption that documents follow a multinomial distribution. The Poisson distribution

is an alternative distribution to describe the probability of count data. It has been successfully

applied in other text mining fields, such as text classification, but its application to topic modelling

is not well documented, specifically in the context of generative probabilistic models.

The new topic model for short text proposed in this thesis combines the strengths of both the

Poisson distribution and mixture modelling. The aim of this chapter lays the foundation of this

innovation. More specifically, the multinomial distribution and Poisson distribution are discussed

in detail with a focus on their application in text mining. This then leads to the motivation for

the choice of using the Poisson distribution with mixture models. This chapter is concluded by a

study of the empirical characteristics of short text in relation to the Poisson distribution.
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3.2 DISTRIBUTIONS FOR COUNT DATA IN TOPIC MODELLING

The bag-of-words representation is a common and simple way of representing text. Under this

representation, each document is represented as a V -dimensional vector of word frequencies. A

direct consequence of this is that the corpus becomes a collection of discrete multivariate data.

Natural choices for modelling count data include the multinomial and Poisson distributions which

shall be discussed in the following sections.

3.2.1 THE MULTINOMIAL DISTRIBUTION

Under the bag-of-words representation, each of the M documents is represented as a vector,

xm = [xm1, xm2, . . . , xmV ], where xmv is the frequency of word v in the m-th document for

v ∈ {1, 2, ..., V } and m ∈ {1, 2, ...,M}. Assuming that each document belongs to exactly one of

the K topics, the topic assignment of the m-th document is denoted by zm ∈ {1, 2, . . . ,K}. The

topic assignments for the entire corpus is given by the latent vector z = [z1, z2, . . . , zM ].

Under the multinomial distribution, a topic is defined as a multinomial distribution over words

and each document is assumed to be a draw from a multinomial distribution conditioned on the

topic. In the K × V topic-by-word matrix, Φ, each row, denoted φk = [φk1, φk2, . . . , φkV ],

corresponds to a topic k ∈ {1, 2, . . . ,K} and φkv is the probability of word v belonging to topic

k. Thus, the probability of the document xm given the topic is given by

p(xm|z,Φ) = (
V∑
v=1

xmv)!
V∏
v=1

φxmvkv

xmv!
. (3.1)

The multinomial distribution models the assumption that words are generated independently given

the topic. This assumption is generally not valid for real-world text, however the assumption is

commonly made as it greatly simplifies computation, and text mining tasks built on this assump-

tion have often proven to still produce satisfactory results despite the violation of the assumption

(eg. multinomial naı̈ve Bayes text classification (Eyheramendy et al., 2003)). The multinomial is

also a convenient choice due to its simplicity even in the presence of high dimensional data.

When the number of trials is fixed and known, the multinomial distribution is a member of

the exponential family of distributions. The multinomial distribution has the favourable prop-

erty of having a conjugate prior, the Dirichlet distribution, which is computationally convenient
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and simplifies the derivation of the posterior distribution. In some applications, researchers have

discovered other benefits of imposing a Dirichlet prior. For instance, the Dirichlet-multinomial

is able to model burstiness in text whereas the traditional multinomial distribution fails to do so

as effectively (Madsen et al., 2005). The term burstiness is used to describe the phenomenon in

which rare words appear many times in a single document (Church and Gale, 1995). In light of

the sparsity of a typical document-by-word matrix, it is clear that most words will not occur in a

document. However, if a word occurs once, there is a considerable chance of the word occurring

multiple times in the same document, i.e. words appear in bursts (Madsen et al., 2005).

3.2.2 THE POISSON DISTRIBUTION

The Poisson distribution is a member of the exponential family whose conjugate prior is the

gamma distribution. It models the distribution of the number of events in a fixed interval given the

average number of occurrences for the interval. In the context of text modelling, the Poisson dis-

tribution can be used to model the number of occurrences of a word in documents of fixed length.

Similar to the multinomial, the Poisson models the assumption that words occur independently.

The parameter of the multinomial distribution is a vector containing the probabilities of each

word belonging to a topic. In contrast, the Poisson parameter is the expected number of occur-

rences of a word in a topic. Let λkv denote the expected frequency of word v in topic k. Assuming

that each document belongs to exactly one topic and that the frequencies of the words in a docu-

ment are independent given a topic, the distribution of a document xm is given by

p(xm|z,λ) =

V∏
v=1

λxmvkv e−λkv

xmv!
, (3.2)

where λ is a K × V matrix whose rows are λk = [λk1, λk2, . . . , λkV ].

One of the important differences between the multinomial and Poisson distributions, is that

the multinomial distribution models counts in documents of arbitrary length whereas the Pois-

son models counts in documents of fixed length. Failure to normalise document length prior to

the application of the Poisson distribution can result in poor performance in some text mining

applications (Ogura et al., 2014).

Despite it being an option for modelling count data, the Poisson distribution is often disre-

garded. One reason for the limited research in generative models based on the Poisson distribution
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could be the work of Church and Gale (1995) who showed empirically that the Poisson distribu-

tion was inappropriate for modelling natural text. The Poisson assumes that the mean and variance

of the count data are equal, yet in real data, the variance for most words tends to be greater – a

phenomenon commonly referred as overdispersion (Ogura et al., 2013). The negative binomial

distribution is a suitable alternative in this situation as it has an additional parameter which al-

lows it to account for overdispersion. The frequency of a word in a corpus depends on latent

factors such as genre, time, author and topic. The systematic error in the variance estimate when

using a Poisson to model word frequency may be due to the assumption that there are no such

latent dependencies between words (Church and Gale, 1995). Church and Gale (1995) proposed

the K-component mixture of Poissons as a more suitable alternative model for individual word

frequencies.

3.3 THE POISSON DISTRIBUTION IN CLASSIFICATION

The conclusion of Church and Gale (1995) regarding the unsuitability of the Poisson distribu-

tion for modelling text was further supported in other research such as that of Eyheramendy

et al. (2003) and Bouguila (2010). They clearly showed that the multinomial-based supervised

classifiers were better for classification than the Poisson-based equivalents. However, in spite of

their poor findings, Ogura et al. (2013) and Ogura et al. (2014) were able to create Poisson and

Gamma-Poisson naı́ve Bayes classifiers that outperformed the multinomial-based classifiers upon

identifying the need for appropriate document length normalisation. The Poisson classifier was

also shown to be able to outperform the negative binomial and K-component mixture of Poissons

classifier equivalents (Ogura et al., 2014). Furthermore, the Gamma-Poisson classifier was able to

achieve classification performance similar to that of the state-of-the-art classifier, support vector

machines (SVM) (Ogura et al., 2013).

As previously mentioned, topic models can be thought of as a combination of dimensionality

reduction and clustering. The clustering aspect is captured by the document-by-topic parameter

that is learned during the modelling process. The aim of clustering is to group data points into

clusters in such a way as to ensure that data points in the same cluster are similar to each other

yet as different as possible to data points in other clusters. As the true groupings are not known in

advance, clustering can be described as an unsupervised method. In fact, clustering is also called
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unsupervised classification (Gámez et al., 2006). On the other hand, when labels for the training

dataset are available, supervised classifiers, such as the naı̈ve Bayes classifier and SVMs, become

applicable. It has been shown that Poisson-based supervised classifiers for text can outperformed

their multinomial counterparts in spite of the poor reputation of the Poisson distribution in text

modelling. It is the belief that the success of the Poisson-based supervised classifiers may be

transferable to topic models that forms part of the motivation for the consideration of Poisson-

based topic models.

3.4 EMPIRICAL ANALYSIS OF WORD OCCURRENCES IN SHORT TEXT

3.4.1 DISTRIBUTION OF WORD OCCURRENCES ACROSS SHORT TEXT

DOCUMENTS

One of the ways in which Church and Gale (1995) demonstrated the inappropriateness of the

Poisson distributions for modelling word frequencies involved analysing the distribution of word

frequency in a corpus that they referred to as the Brown Corpus (Frances and Kucera, 1982). They

began by selecting a word from their corpus, specifically the word “said”, and then recording the

number of documents in which the word was used 0, 1, 2, ..., or 32 times. Figure 3.1 shows a graph

of their results. The curve shows the predicted number of documents from a Poisson distribution

calculated using the maximum likelihood estimate of the parameter. It is clear from Figure 3.1 that

the Poisson does not provide a good fit, thus they proposed the mixture of Poisson distributions or

negative binomial distribution as more suitable alternatives.

It is important to note that the documents that were under consideration were long and dif-

ferent results are observed when the same graph is plotted for a word in a short text corpus. To

demonstrate this, I selected one of the short text corpora that was selected for this research. The

word “jet” was selected and analysed in the documents belonging to class 0 in the Pascal Flickr

corpus.12 A similar graph to Figure 3.1 was plotted for the word “jet” and the results obtained are

shown in Figure 3.2. The length of the documents belonging to Brown Corpus considered in Fig-

ure 3.1 was approximately 2 000 words per document whereas the average length of a document

1The Pascal Flickr corpus is discussed in detail in Chapter 5 and summary statistics are given in Table 5.1.
2Only documents belonging to a single class are considered because the topic modelling process allocates each

document to a class and the parameters are estimated for each topic based on the documents in the class. It is assumed
that each document belongs to a single class and that each class corresponds to a “topic”.
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Figure 3.1: The circles show the number of documents that contain the word “said” for different
frequencies. The curve denotes predicted frequencies from a Poisson distribution fit to the data.
Adapted from (Church and Gale, 1995). Copyright by Cambridge University Press 1995.

in the Pascal Flickr corpus was merely 5 words with a minimum and maximum length of 1 and

19 words, respectively. Taking this into consideration, it is highly unlikely that large frequencies

would be observed. From Figure 3.2, the maximum frequency of the word “jet” is 1 and, as we no

longer have heavy tails, the predicted values from the Poisson distribution (solid line) are close to

the observed values.

The observed frequencies of the all the words in the vocabulary of the Pascal Flickr corpus are

shown in Figure 3.3. The Pascal Flickr (class 0) corpus represents 236 of the documents in the full

corpus and the full vocabulary contains is 3 132 unique words. The distribution of the different

words shown in Figure 3.3 is similar to that of the word “jet” shown in Figure 3.2. The long tails

observed in the word “said” from the Brown corpus are not present in this corpus and that the

Poisson distributions fit the data well in the majority of cases. Similar results were observed when

similar plots were made for other short text datasets that were considered and the results are shown

in Section I of the Appendix. It is clear from this analysis that document length has an impact on

whether the Poisson distribution will be appropriate for a dataset or not.
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Figure 3.2: The circles show the number of documents that contain the word “jet” for different
frequencies in the Pascal Flickr dataset. The curve denotes predicted frequencies from a Poisson
distribution fit to the data.

Figure 3.3: The circles represent the number of documents in which each of the words appears 0,

1, 2, ..., 5 times in class 0 of the Pascal Flickr corpus with straight lines indicating the predicted

Poisson distribution for each word.

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 34



CHAPTER THREE MOTIVATION FOR POISSON-BASED TOPIC MODELS

3.4.2 OVERDISPERSION

Church and Gale (1995) stated that, in their experience “the observed variance of the frequency of

a word (or ngram) across documents is almost always larger than the mean, and therefore, larger

than what would be expected under either the binomial or the Poisson.” In the presence of such

overdispersion, a natural alternative choice is the negative binomial as it relaxes the assumption

made by the Poisson distribution that the mean and variance are equal. Upon fitting a negative

binomial distribution to the Brown corpus, Church and Gale (1995) observed the results shown in

Figure 3.4 which clearly substantiate the use of a negative binomial distribution.

Figure 3.4: This graph shows the number of documents that contain the word “said” for different
frequencies (circles) and predicted frequencies from a negative binomial distribution fit to the data
(line). Adapted from (Church and Gale, 1995). Copyright by Cambridge University Press 1995.

To assess the extent to which overdispersion was a factor in short text, a comparison of the

means and variances for various words from the Pascal Flickr (class 0) corpus that was considered

in the previous section was performed. The variance and mean of the occurrences of each word

across the corpus are shown in Figure 3.5. Most points fall on or below the 45 degree line, indi-

cating that the variances are mostly less than the mean and, hence, overdispersion may not be a

concern in this corpus. In fact, only 3 of the 3 132 words in the vocabulary have occurrences whose

variance is larger than the mean. As an example, consider the word “jet” in the Pascal Flickr (class

0) corpus. It occurs 48 times in the 236 documents and the mean and variance of its occurrences
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are 0.203 and 0.162, respectively. The absolute difference between the mean and variance is only

0.041. Of the 3 132-word vocabulary, only 300 of the words occur in the 236 documents that make

up the Pascal Flickr (class 0) corpus and the average of the absolute differences between the means

and variances is only 0.0014. Similar results were observed for other corpora and the results are

presented in Section II of the Appendix. In conclusion, overdispersion may not be as much of a

concern in short text corpora as it may be in long text corpora. The use of the negative binomial

distribution does not appear necessary as the simpler Poisson distribution seems appropriate. In

fact, it is ill-advised to use the negative binomial distribution on data whose mean is larger than its

variance (ie. in the presence of underdisperseion) (Johnson et al., 2005).

Figure 3.5: Each point represents a word in the vocabulary and the corresponding mean and
variance of its occurrences across the documents in class 0 of the Pascal Flickr dataset.

3.4.3 BURSTINESS

The final characteristic that was evident in the Brown corpus was that of burstiness. Bursty words

can also be described as being contagious. Such words only appear in a few documents/genres, yet

they tend to occur in abundance within the documents that they do appear (Church and Gale, 1995).

In the Brown corpus, bursty words were identified to be those which tended to be concentrated in

a few documents. Table 3.1 is an excerpt of the results. Each of the words considered occurred
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140 or 141 times in the entire corpus, yet only appeared in 38 to 97 documents. Upon fitting a

Poisson distribution, it overestimated the number of documents that would be expected to contain

these words. The bottom row of Table 3.1 shows the predicted number of documents to be 122.

Table 3.1: Table showing the number of documents which contain words occurring 140 or 141

times in the Brown corpus. Adapted from (Church and Gale, 1995). Copyright by Cambridge

University Press 1995.

Word Frequency Document frequency (df)

Kennedy 140 38

East 141 62

letter 140 68

production 140 71

son 140 75

Well 140 82

statement 141 83

increased 141 90

results 141 90

thinking 140 97

Predicted df from Poisson distribution 122

A similar analysis on the Pascal Flickr (topic 0) corpus yielded the results in Table 3.2. The

word “plane” occurred the most in the corpus, followed by “airplane”, “jet” and so on. In contrast

to the Brown corpus, the number of documents containing these highly frequent words is close to

the number of occurrences of each word. Thus, there does not appear to be the same burstiness

effect as was observed in the Browns corpus. Further more the predicted number of documents

predicted by the Poisson is close to the observed document frequency. The average difference

between observed and predicted document frequency is 4 for the 10 words shown in Table 3.2,

but the average difference for the 300 words that occur in the corpus is 0. Similar results were

observed with other corpora and are shown in Section III of the Appendix.
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Table 3.2: Table showing the number of documents which contain the top 10 occurring words in

the Pascal Flickr (topic 0) corpus.

Word Frequency Document frequency

(df)

Predicted df from

Poisson distribution

|df− predicted df|

plane 86 85 72 13

airplane 59 59 52 7

jet 48 48 43 5

white 44 44 40 4

flying 43 42 39 3

blue 38 35 35 0

parked 36 36 33 3

sky 32 32 30 2

small 30 30 28 2

runway 27 27 26 1

3.5 DISCUSSION OF EMPIRICAL STUDY

Perhaps it is understandable why Church and Gale (1995) observed the results they did. Word

frequency in text is influenced by different factors, such as topic, genre and time. Considering

the influence of topic, it makes sense that the frequency of the word “dog”, for example, is more

likely to have a higher frequency amongst documents about domestic animals than documents

that are about finance. When a word is modelled with a single Poisson across the entire corpus,

dependency on topic is not accounted for. Most topic models such as, LDA and DMM, introduce

a latent variable which accounts for topic dependency. The result is that, even though a single

distribution is used to model a word, only documents that belong to the same topic are used

to estimate the associated parameters. Church and Gale (1995) used the entire corpus of 500

documents which came from 9 very different topics/genres: Press, Religion, Hobbies, Popular

Lore, Belle-Lettres, Government and House Organs, Learned, Fiction, and Humor.

It is also not surprising that “Kennedy”, who was president at the time the Brown corpus was

collected, was more concentrated in the Press documents than other topics/genres, such as Religion

or Fiction. The estimate for the Poisson parameter used in Table 3.1 was calculated by dividing

the frequency by the number of documents. They used all 500 documents contained in the Brown
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corpus to get their estimate and ultimately their prediction of 122. Whereas, to get the predictions

in Table 3.2 only the 236 (of 4 834) documents that belonged to the Pascal Flickr (topic 0) corpus

were used to estimate the Poisson parameter. Had Church and Gale (1995) only considered the 89

documents from the Press genre, the word “Kennedy” would have had a frequency and document

frequency of approximately 118 and 30 respectively. This would have resulted in a predicted

document frequency of 65 which is significantly closer to 30 than 122 is to 38. It is likely that this

estimate would improve if time was also accounted for in the modelling process.

In conclusion, from the findings of Church and Gale (1995) and other researchers, it is com-

prehensible that the multinomial distribution would be a preferred choice for modelling text over

the Poisson distribution. However, from this previous analysis it is shown that the unfavourable

behavior of the Poisson distribution that was identified in long texts does not necessarily occur in

short text. In the long text corpus of Church and Gale (1995), the Poisson distribution did not fit

individual word occurrences very well and it did not fair well in the presence of overdispersion

and burstiness. Yet, the Poisson distribution fitted short text word occurrences better and there was

no significant evidence indicating that overdispersion or burstiness were factors.

In remainder of this chapter, the application of the multinomial and Poisson distributions in

the field of topic modelling is considered.
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3.6 THE POISSON AND MULTINOMIAL DISTRIBUTIONS IN TOPIC

MODELLING

Owing to the discrete nature of textual data while using the bag-of-words representation, expo-

nential family PCA (ePCA) is preferred over traditional PCA. When a document is represented as

a vector of counts (or sequence of words) it is sensible to assume documents follow a multinomial

distribution or product of categorical distributions3. Topic models such as LDA and DMM adopt

this representation (Buntine and Jakulin, 2006). However, the Poisson distribution is another natu-

ral approach to modelling word counts. Models such as the Gamma-Poisson (GaP) model (Canny,

2004) and the Poisson decomposition model (Jiang et al., 2017) follow this approach.

In the sections that follow, a few different topic models are discussed as well as classified

according to how they model the observed data. Only models that are probabilistic and assume

documents follow either a multinomial (or categorical) distribution or a Poisson distribution are

considered.

3.7 MULTINOMIAL-BASED TOPIC MODELS

Two important multinomial-based topic models will be presented in more detail: LDA, as one of

the most important state-of-the-art topic models, and GSDMM, which forms the basis of the new

short text topic model proposed in this thesis.

3.7.1 LATENT DIRICHLET ALLOCATION

LDA (Blei et al., 2003) is a three level hierarchical Bayesian model which models the assumption

that each document is formed through the following generative process (Blei et al., 2003):

1. For all topics, randomly choose φk ∼ Dirichlet(β).

2. For each document, randomly choose a topic distribution, θm ∼ Dirichlet(α).

3. For each word, wmn, in document m:

3The product of categorical distributions is equivalent to the multinomial representation as they only differ by a
constant. The only difference is that in the product of categorical distributions formulation the combinatoric term,

nm!
xm1!···wmV !

, from the multinomial distribution is dropped (Buntine and Jakulin, 2006).
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a) Randomly choose a topic assignment, zmn ∼Multinomial(θm).

b) Randomly choose a word, wmn ∼Multinomial(φzmn).

This generative process can easily be summarised visually in a graphical model as in Figure 3.6.

Observed variables are represented by shaded circles (nodes) whereas unobserved variables are

Figure 3.6: Graphical model for LDA. Observed variables are represented by shaded circles
(nodes) whereas unobserved variables are represented by unshaded ones. The arrows (edges)
represent possible conditioning between variables. The rectangles (plates) indicate a replicated
structure.

represented by unshaded ones. The arrows (edges) represent possible conditioning between vari-

ables. For example, in Figure 3.6, the arrow between zmn and wmn indicates that the word, wmn,

is conditioned on the topic zmn. The rectangles (plates) indicate a replicated structure, such as

the repeated generation of words for the each document, which is indicated by the nm plate. In

practice, symmetric Dirichlet priors are typically used with fixed concentration parameters, α and

β, but it is possible to estimate them from the data.

GSDMM assumes all the words in a document belong to a single topic which is dependent on

the topic proportions for the entire corpus. LDA, on the other hand, assumes that each word in a

document is selected from its own distribution which is dependent on the document-specific topic

proportions (Murphy, 2012). Thus, LDA introduces more flexibility than GSDMM as it allows a

document to be about multiple topics as opposed to only a single topic. It is for this reason that

LDA is referred to as an admixture model or mixed membership model (Murphy, 2012). In many

cases, especially with longer documents such as books and journal articles, it is more sensible to

assume that multiple topics are covered in the body of text as opposed to only a single topic.

The document-by-topic and word-by-topic matrices are the main parameters of interest when

fitting the LDA model. This can easily be achieved via Gibbs sampling or variational inference,
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but a convenient option that is applicable to LDA is collapsed Gibbs sampling. Typically, a “full”

Gibbs sampler would involve sampling all parameters/variables, however collapsed Gibbs sam-

pling provides a simpler estimation procedure as it only involves sampling zm. The estimates for

the parameters θ and Φ can then be inferred after these assignments as they only depend on the

word counts that will arise from the sampled topic allocations. The collapsed Gibbs sampler ap-

proach involves sampling topic assignments for each word according to the following distribution

(Griffiths, 2002; Heinrich, 2005):

p(zmn = k|z(n)
m ,wm) ∝

n
(n)
kv + β

n
(n)
k + V β

×
n

(n)
mk + α

n
(n)
m +Kα

, (3.3)

where

1. z
(n)
m denotes the vector containing the topic assignments of each of the words in the m-th

document except that of the current word under consideration, wmn,

2. n(n)
kv denotes the number of times word v is observed with topic k excluding wmn,

3. n(n)
k denotes the total number of words in topic k not including word wmn,

4. n(n)
mk denotes the number of words in document m that are allocated to topic k excluding the

word wmn and

5. n(n)
m denotes the number of words in document m excluding word wmn.

The topic assignments are sampled repeatedly and after a sufficient burn-in period is observed, the

elements of the parameters Θ and Φ are then inferred based on the final assignments as follows:

φkv =
nkv + β∑V

v=1 nkv + V β
, (3.4)

and

θmk =
nmk + α∑K

k=1 nmk +Kα
, (3.5)

where nkv denotes the number of times word v is observed with topic k and nmk denotes the

number of times words in the m-th document are allocated to topic k.
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3.7.2 GIBBS SAMPLER DIRICHLET MULTINOMIAL MIXTURE MODEL

GSDMM (Yin and Wang, 2014) is one of the simplest modelling techniques that can be used to

uncover the latent topics in a collection of documents. Yin and Wang (2014) termed it GSDMM

as they proposed a variant of DMM which made use of a collapsed Gibbs sampler as opposed to

the EM algorithm originally used by (Nigam et al., 2000). Owing to GSDMM’s assumption that a

document can only belong to a single topic, it is often a better option for short text than LDA (Lin

et al., 2014; Mazarura and de Waal, 2016). Under this model, the probability of a document, wm,

is expressed as

p(wm) =
K∑
k=1

p(wm|zm = k)p(zm = k), (3.6)

where zm denotes the topic label for the m-th document in the corpus. GSDMM makes the naı̈ve

Bayes assumption that words in a document are conditionally independent given the topic. It also

assumed that words are exchangeable.4 Consequently, the probability of a document generated

from topic k is given by

p(wm|zm = k) =
∏

wmn∈wm
p(wmn|zm = k). (3.7)

It is assumed that

θ ∼ Dirichlet(α),

Φ ∼ Dirichlet(β),

zm|θ ∼Multinomial(θ)

and

wmn|zm,Φ ∼ Categorical(φzm).

The generative process associated with GSDMM is summarised as follows:

1. For all topics, randomly choose a distribution over words, φk.

4The random variables X1, X2, . . . , Xn are said to exchangeable if P (x1, x2, . . . , xn) =
P (xπ(1), xπ(2), . . . , xπ(n)) for all permutations π ∈ S(n) where P denotes the joint distribution of X1, X2, . . . , Xn
and S(n) is the group of all permutations acting on {1, 2, . . . , n} (Niepert and Domingos, 2014).
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2. For the entire corpus, randomly choose a topic distribution, θ.5

3. For each of the m documents in the corpus:

a) Randomly choose a topic assignment, zm.

b) Randomly choose a word, wmn.

Figure 3.7 gives a graphical representation of this generative process. The GSDMM graphical

Figure 3.7: Graphical model for GSDMM. Observed variables are represented by shaded circles
(nodes) whereas unobserved variables are represented by unshaded ones. The arrows (edges)
represent possible conditioning between variables. The rectangles (plates) indicate a replicated
structure.

model is similar to that of the LDA graphical model in Figure 3.6. The GSDMM graphical model

differs in that it is missing the nm plate which accounts for the assignment of individual words in

the same document to different topics. In addition, the M plate in the LDA graphical includes θm.

This corresponds to the assignment of different topic proportion for each document. On the other

hand, the GSDMM graphical model does not include θ in a plate as it is assumed to be sampled

only once for the entire corpus. Unlike LDA, GSDMM assigns each document to a single topic

and θ contains the proportion of each topic across the entire corpus.

The collapsed Gibbs sampler for GSDMM involves sampling topic assignments for each doc-

ument repeatedly until convergence. These topic assignments are sampled from

p(zm|z(m),X) ∝
m

(m)
k + α

M − 1 +Kα

∏
w∈wm

∏nmv
j=1 (n

(m)
kv + β + j − 1)∏nm

i=1(n
(m)
k + V β + i− 1)

, (3.8)

where

1. zm denotes the topic assignment of the m-th document, wm,

5This definition of θ differs slightly from the definition given in the notation list. Instead of denoting per document
topic proportions (as in LDA) it represents the global topic proportions for the entire corpus.
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2. z(m) is the vector of topic assignments for each document excluding wm,

3. m(m)
k denotes the number of documents in topic k excluding wm.

4. nm denotes the number of words in document wm,

5. nmv denotes the number of times word v occurs in document wm,

6. n(m)
kv denotes the number of occurrences of word v in topic k excluding wm and

7. n(m)
k denotes the number of words in topic k excluding wm.

Based on the final document assignments, the parameter estimates for the elements of Φ and θ can

then be calculated as

φkv =
nkv + β∑V

v=1 nkv + V β

and

θk =
mk + α∑K

k=1mk +Kα
,

where nkv denotes the number of occurrences of word v in topic k and mk denotes the number of

documents assigned to topic k.

3.8 POISSON-BASED TOPIC MODELS

The focus of this section is to investigate the usage of the Poisson distribution in the context of

topic models.

3.8.1 GAMMA-POISSON MODEL

Non-negative matrix factorisation (NMF) (Lee and Seung, 2001) is regarded as a precursor of the

gamma-Poisson (GaP) model (Canny, 2004). The objective under NMF is to display a matrix, the

word-by-document count matrix in this case, as a product of two matrices whose values are re-

stricted to be non-negative. In the case of text, these two matrices would be the word-by-topic and

topic-by-document matrices. However, unlike the Gamma-Poisson model, NMF is not a proba-

bilistic generative model (Murphy, 2012). As the focus is on probabilistic topic models this model

will not be discussed further and attention will be drawn to the GaP model instead.
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Under the GaP model, word counts are assumed to come from Poisson distributions and the

expected value of the word-by-document frequency matrix is factorised into a product of two

matrices, Λ and L. The GaP model, as well as several other models (such as LDA and NMF) all

have the following in common: (1) they assume observations are described by a number of discrete

variables (2) they try to uncover useful relationships in the data by inferring latent variables for

each observation, and relating latent variables to observed variables (Buntine and Jakulin, 2006).

Collectively, these groups of methods have been termed discrete components analysis (Buntine

and Jakulin, 2006). In general, under discrete components analysis, it is assumed that, for the

word-by-document matrix X′,

EX′|Λ,L[X′] = ΛL,

where Λ is a V ×K word-by-topic matrix and L is a K ×M topic-by-document matrix (Buntine

and Jakulin, 2006).6 Under this formulation, the matrix Λ makes it possible for topics to be

inferred as is the objective of topic modelling.

An important difference between the GaP model and NMF is that the GaP model assumes a

gamma prior on L whereas NMF assumes no prior (Buntine and Jakulin, 2006). In other words,

GaP can be regarded as a Bayesian version of NMF under Kullback-Leibler scoring (Buntine,

2015). It is important to also note the relationship between LDA and GaP. Despite differences in

representation, these models are equivalent except that under LDA document length is assumed to

be known (Murphy, 2012).

3.8.2 POISSON DECOMPOSITION MODEL

The Poisson decomposition model (PDM) is another Poisson-based alternative for topic modelling

(Jiang et al., 2017). PDM models the number of times a topic has been chosen in a document and

it models them as variables instead of parameters (Jiang et al., 2017). The GaP model, on the other

hand, models each topic’s contribution to a document as a non-negative gamma random variable

(Canny, 2004). Under the PDM model, a document is represented as a word count matrix as

6Discrete components analysis can be regarded as a form of independent components analysis (ICA) which is
customised for document data and is more relaxed as it assume E[X′] = ΛL rather than X′ = ΛL (Buntine and
Jakulin, 2006; Canny, 2004).
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follows

xm =

 xm11 · · · xm1V

· · · xmkv · · ·
xmK1 · · · xmKV

 ,
where ymkv denotes the number of times that word v is assigned to topic k in document m.

Furthermore, it also assumed that

xmkv ∼ Poisson(λmkv), (3.9)

where λmkv = λm × θmk × φkv. λm is a document specific constant and it can be shown that

the maximum likelihood estimate of λm is the length of document m. Each λmkv is thus directly

proportionate to the product of θmk and φkv, which denote the proportion of topic k in document

m and the probability of word v in topic k respectively. Under the assumption that θ and φ

have symmetric Dirichlet priors with parameters α and β respectively, the following maximum a

posteriori estimators are

θmk =

∑V
v=1 xmkv + α∑K

k=1

∑V
v=1 xmkv +Kα

(3.10)

and

φkv =

∑M
m=1 xmkv + β∑M

m=1

∑V
v=1 xmkv + V β

. (3.11)

3.9 CONCLUSION

The purpose of this chapter was to reintroduce the Poisson distribution as a possible distribution

for building new topic models, as well as provide motivation for its use. This chapter addressed

the concerns of Church and Gale (1995) by showing the validity of the Poisson distribution for

short text. It showed that, unlike the long text considered by Church and Gale (1995), short texts

do not necessarily possess issues of overdispersion and burstiness.

This chapter also provided an overview of some of the existing topic modelling strategies. The

Poisson-based topic models that have been considered can be classified as long text topic models.

The ultimate goal is to produce new models that are suitable for short text. Consequently, this

chapter forms the foundation for the new topic model that is presented in Chapter 4.
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THE GAMMA-POISSON TOPIC MODEL FOR

SHORT TEXT

4.1 INTRODUCTION

Under the multinomial distribution, zero word counts are not modelled directly (Inouye et al.,

2014); instead they are implicitly modelled in the term probabilities (McCallum and Nigam, 1998).

In contrast, the Poisson distribution models them directly as it treats them as observations (Gopalan

et al., 2014). In the context of topic modelling, especially with regards to short text, zero counts

are a relevant aspect due to the sparsity of such data. The advantage of the Poisson approach to

modelling documents is that it is able to capture the numerical characteristics of the documents

(Jiang et al., 2017). Another difference between the two models is that the multinomial distribution

assumes document length is known whereas the Poisson distribution relaxes this assumption and

does not model document length explicitly (Murphy, 2012). This could potentially introduce more

flexibility for topic models that are based on the Poisson model. In light of this and the empirical

evidence observed in Chapter 3, the new Poisson-based topic model for short text will now be

presented.
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4.2 THE GAMMA-POISSON MIXTURE MODEL

Table 4.1 shows a summary of the notation that will be used throughout this chapter.

Table 4.1: Notation.

Symbol Description

M number of documents in the corpus

V size of the vocabulary

K number of topics

nm length of m-th document where m = 1, 2, . . . ,M

x collection of documents in the corpus

xm m-th document in the corpus

xmv number of times word v occurs in the m-th document where v = 1, 2, . . . , V

z vector of topic assignments of each document

zm topic assignment of m-th document

mk number of documents in topic k where k = 1, 2, . . . ,K

nkv number of times word v is observed in topic k

nk number of words in topic k

a(m) if a is a quantity that describes a characteristic of the corpus, a(m) denotes the same

characteristic of the corpus excluding the m-th document

The Gamma-Poisson mixture (GPM) topic model is a hierarchical Bayesian model for topic

modelling of short text. It assumes that the frequencies of words in a document are independent of

each other and that the corpus is a mixture of documents, which belong to different topics. Mixture

models are amongst the simplest of latent variable models. Considering the success of GSDMM

on short text (Erosheva et al., 2004; Mazarura and de Waal, 2016; Zhao et al., 2011), the GPM

topic model makes similar assumptions: (1) Documents are formed from a mixture model and (2)

each document belongs to exactly one topic (cluster). This embodies the following probabilistic

generative process for a document, xm:

1. A topic, k, is randomly selected depending on mixing weights p(z = k).

2. A document is then randomly selected from p(xm|z = k).
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Consequently, the likelihood of a document is given by

p(xm) =
K∑
k=1

p(xm|z = k)p(z = k),

where K denotes the total number of topics in the corpus. Similar to GSDMM, GPM makes

the Naı̈ve Bayes assumption: given the topic, the frequency of the words in the document are

independent of each other. Thus, under GPM the conditional probability of a document given a

topic is given by

p (xm|z = k) =

v∏
v=1

p (xmv|λkv) ,

where xmv denotes the frequency of word v in document xm, and λkv denotes the expected fre-

quency of word v in topic k. The key difference between GPM and GSDMM arises at this point.

The GPM assumes the frequencies, xmv, are modelled according to independent Poisson distribu-

tions as opposed to modelling the joint distribution of the counts with a multinomial distribution

as in the GSDMM. In addition, due to its conjugacy, a gamma prior with shape parameter αk and

scale parameter βk is imposed on λkv.

Under GPM, the mixing weights represent the proportion of each of theK topics in the corpus.

The topic assignment z of each document is modelled by a multinomial distribution. Thus, p(z =

k) = πk where 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. Furthermore, a Dirichlet prior with parameter

γ is imposed on πππ = [π1, π2, . . . , πK ]. As GPM is inherently a mixture model, this part of

the model is the same as GSDMM. The generative process of GPM can be summarised in a

graphical model as in Figure 4.1. Shaded squares are used to indicate fixed parameters. Shaded

Figure 4.1: Graphical model of GPM. Shaded squares are used to indicate fixed parameters.
Shaded circles denote observed variables and unshaded circles represent latent variables. Rectan-
gles represent repeated structures, whereas arrows indicate conditioning.

circles denote observed variables, such as a document, xm, and unshaded circles represent latent
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variables, such as the topic distribution, λk. Rectangles represent repeated structures, whereas

arrows indicate conditioning, such as the conditioning of documents on both topic distribution and

topic assignment. The only random variable that is observed is the corpus, whereas all others are

latent variables. In the following section, we will discuss the estimation procedure for the GPM.

4.2.1 THE COLLAPSED GIBBS SAMPLER

A typical Gibbs sampler (Geman and Geman, 1984) requires that each parameter be sampled

in turn conditioned on all the other parameters. As the topics are only dependent on the topic

assignment of each document, it is only necessary to sample the topic assignments. The conjugacy

of the chosen priors introduces analytic tractability that makes it possible to easily integrate out

the other parameters that would otherwise need to be sampled. This reduced sampling scheme is

called a collapsed Gibbs sampler. One of its advantages is that it tends to be more efficient than

its uncollapsed counterpart as the sampling is conducted on a lower dimensional space (Murphy,

2012).

Other estimation techniques, such as the Expectation-Maximisation (EM) algorithm, could

have also been considered. However, another benefit of the use of the collapsed Gibbs sampler is

that it gives the model the favourable property of being able to automatically select the number

of topics. The explanation for how the model is able to do this is discussed in Section 4.3.2.2.

In practice, one popular way of selecting the number of topics is achieved via the use of non-

parametric topic models (Teh et al., 2006). Thus, although parametric in nature, the GPM model

somewhat displays this “non-parametric” behaviour.

In order to estimate the model parameters, the collapsed Gibbs sampler assigns each document

to a single topic. This is achieved by sampling from the conditional probability of document xm

belonging to a class, p
(
zm = z|z(m),x,α,β, γγγ

)
, which is given by

p
(
zm = z|z(m),x,α,β, γγγ

)
=

p(x, z|α,β, γγγ)

p
(
x, z(m)|α,β, γγγ

) ∝ p(x, z|α,β, γγγ)

p
(
x(m), z(m)|α,β, γγγ

) , (4.1)

where the superscript (m) is used to denote that document xm is excluded. α = [α1, α2, . . . , αV ]

and β = [β1, β2, . . . , βV ] are the hyperparameters of the gamma prior, whereas

γγγ = [γ1, γ2, . . . , γK ] denotes the hyperparameter of the Dirichlet prior.

In order to sample a topic assignment for each document according to Equation 4.1, only the
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joint distribution, p(x, z|α,β, γγγ), is required:

p(x, z|α,β, γγγ) =
∆(m+ γγγ)

∆(γγγ)

K∏
k=1

V∏
v=1

Γ (nkv + αv)

x!Γ (αv)
× βnkvv

(mkβv + 1)nkv+αv
. (4.2)

By substituting Equation 4.2 into Equation 4.1, under the assumption that αv = α, βv = β and

γk = γ for all v and k, it follows that Equation 4.1 can be expressed as

p
(
zm = z|z(m),x,α,β, γγγ

)
∝ m

(m)
z +γ

M−1+Kγ ×
βnm

xm! ×
(
m

(m)
z β+1

)n(m)
z +V α

(
m

(m)
z β+β+1

)n(m)
z +nm+V α

×
∏V
v=1

∏xmv
j=1

(
n

(m)
zv + α+ j − 1

)
.

(4.3)

Thus, for each document, a topic is sampled repeatedly until convergence is achieved. Full details

of the derivations of Equations 4.1 and 4.3 are shown in Section 4.2.1.1.

Topic k is given by the parameter λk = [λk1, λk2, . . . , λkV ] where λkv denotes the expected

frequency of word v in topic k and λkv ≥ 0 for all v and k. These parameters are estimated by

λ̂kv =
nkv + αv(
mk + 1

βv

) . (4.4)

The top words that describe topic k are the words with the highest estimated expected frequencies,

λ̂kv. The derivation of Equation 4.4 is shown in Section 4.2.1.2.

The collapsed Gibbs sampler for the GPM can be summarised as in Algorithm 1. Firstly,

the counts mz , nz and nzv are initialised to zero. Each document is then randomly assigned to

a topic and the aforementioned counts are updated accordingly. From here the algorithm cycles

through each document one at a time. Suppose document xm is the current document under

consideration, its current topic label is noted and its contribution to the counts mz , nz and nzv are

removed accordingly. A new topic assignment is then sampled from Equation 4.3 and the counts

are updated. The process must be repeated across the entire corpus until convergence is reached.

At this point, the topics can then be found from Equation 4.4.

It was stated earlier that topic models possess characteristics from both clustering and dimen-

sionality reduction techniques: (1) A corpus is represented in a lower dimensional form by a set

of topics and, (2) similar to clustering, each document is associated with a single topic or multiple

topics depending on the model. The GPM topic model possesses both of these qualities. The first
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Algorithm 1: Collapsed Gibbs sampler for GPM.
Data: Corpus, x
Result: Topic labels, z
begin

Initialise mz , nz and nzv to zero for each topic z;
for each document xm, m = 1, 2, . . . ,M do

randomly sample a topic for xm;
zm ← z ∼ Categorical(1/K);
mz ← mz + 1 and nz ← nz + nm;
for each word frequency xmv in xm do

nzv ← nzv + xmv

for i = 1, 2, . . . , I iterations do
for each document xm, m = 1, 2, . . . ,M do

record the current topic of document
xm : z = zm;
mz ← mz − 1 and nz ← nz − nm;
for each word frequency xmv in xm do

nzv ← nzv − xmv
sample a new topic for xm;
zm ← z ∼ p

(
zm = z|z(m),x

)
(Equation 4.3);

mz ← mz + 1 and nz ← nz + nm;
for each word frequency xmv in xm do

nzv ← nzv + xmv

end

property is captured by the λk parameters. The second is satisfied in Equation 4.3. The upcoming

sections give details of the derivation of the collapsed Gibbs sampler.

4.2.1.1 DERIVATION OF THE COLLAPSED GIBBS SAMPLER

Since the topic estimates are only dependent on the topic assignments, it is only necessary to

sample the topic assignment for each document. This is achieved by sampling from the conditional

probability of a document belonging to a class,

p
(
zm = z|z(m),x,α,β, γγγ

)
=

p(x, z|α,β, γγγ)

p
(
x, z(m)|α,β, γ

) ∝ p(x, z|α,β, γγγ)

p
(
x(m), z(m)|α,β, γγγ

) . (4.5)
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In order to define Equation 4.5, we need to find p(x, z|α,β, γγγ). Owing to conditional indepen-

dence between x and z, it follows that

p(x, z|α,β, γγγ) = p(x|z,α,β)p(z|γγγ). (4.6)

Since it is assumed that p(z|πππ) is a multinomial and p(πππ|γγγ) is a Dirichlet distribution, the second

term on the right-hand side of Equation 4.6 can be expressed as follows:

p(z|γγγ) =

∫
p(z|πππ)p(πππ|γγγ)dπππ

=

∫
1

∆(γγγ)

K∏
k=1

πmk+γk−1
k dπk

=
∆(m+ γγγ)

∆(γγγ)
, (4.7)

where m = [m1,m2, . . . ,mK ] and mk denotes the number of documents assigned to the k-

th topic, ∆(γγγ) =
∏K
k=1 Γ(γk)

Γ(
∑K
k=1 γk)

and ∆(m + γγγ) =
∏K
k=1 Γ(mk+γk)

Γ(
∑K
k=1(mk+γk))

. The integral is solved by

multiplying the equation by ∆(m+γγγ)
∆(m+γγγ) , which results in an integral over a Dirichlet distribution with

parameterm+ γγγ.

The first term on the right-hand side of Equation 4.6, can be expressed as

p(x|z,α,β) =

∫
p(x|z,λ)p(λ|α,β)dλ. (4.8)

Under GPM, documents and words are assumed to be independent. In addition, the word counts

are assumed to follow a Poisson distribution. Thus, given the topics, the corpus can be modelled

as

p(x|z,λ) =
M∏
m=1

V∏
v=1

p (xmv|λkv) =

M∏
m=1

V∏
v=1

λxmvkv e−λkv

xmv!
. (4.9)

From Equation 4.9, notice that the term p(x|z,λ) in Equation 4.8 is a product over M and V .

However, the term p(λ|α,β) in Equation 4.8, which is assumed to be a product of independent

gamma distributions, is a product over K and V . In order to simplify Equation 4.8, it is neces-

sary to re-express p(x|z,λ) as a product over K and V . By expanding these product terms and

carefully analysing the relationship between the terms, it was found to be possible to re-express

Equation 4.9 in this manner by introducing mk, the number of documents assigned to the k-th
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topic, and nkv, the number of times word v is observed in topic k. Thus, Equation 4.9 becomes

p(x|z,λ) =
K∏
k=1

V∏
v=1

λnkvkv e
−mkλkv

x!
, (4.10)

where x! =
∏M
m=1

∏V
v=1 xmv. By assuming a gamma distribution for λ and substituting Equation

4.10 into Equation 4.8, we obtain

p(x|z,α,β) =

∫ ∞
−∞

p(x|z,λ)p(λ|α,β)dλ

=

∫ ∞
−∞

K∏
k=1

V∏
v=1

λnkvkv e
−mkλkv

x!
×
λαv−1
kv e

−λkv
βv

Γ (αv)β
αv
v

dλkv

=
K∏
k=1

V∏
v=1

1

x!Γ (αv)β
αv
v

∫ ∞
0

λnkv+αv−1
kv e

−λkv
(
mk+ 1

βv

)
dλkv

=

K∏
k=1

V∏
v=1

1

x!Γ (αv)β
αv
v
× Γ (nkv + αv)

(
βv

mkβv + 1

)nkv+αv

=
K∏
k=1

V∏
v=1

Γ (nkv + αv)

x!Γ (αv)
× βnkvv

(mkβv + 1)nkv+αv
. (4.11)

The integral is solved by multiplying the equation by a constant equal to 1, which is

Γ (nkv + αv)
(

βv
mkβv+1

)nkv+αv
divided by itself in this case. The result is an integral over

a gamma distribution with parameters nkv + αv and βv
mkβv+1 . By substituting Equation 4.7 and

4.11, Equation 4.6 can now be written as

p(x, z|α,β, γγγ) = p(x|z,α,β)p(z|γγγ)

=
∆(m+ γγγ)

∆(γγγ)

K∏
k=1

V∏
v=1

Γ (nkv + αv)

x!Γ (αv)
× βnkvv

(mkβv + 1)nkv+αv
. (4.12)

The derivation of the conditional distribution in Equation 4.5 can now be concluded by substituting
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Equation 4.12 and applying the property of the Γ function, Γ(x+m)
Γ(x) =

∏m
j=1(x+j−1), as follows

p
(
zm = z|z(m),x

)
∝ p(x, z|α,β, γγγ)

p
(
x(m), z(m)|α,β, γγγ

)
=

∆(m+ γγγ)

∆
(
m(m) + γγγ

) × V∏
v=1

 Γ (nzv + αv)

Γ
(
n

(m)
zv + αv

)
( βnzvv

βn
(m)
zv

v

)(
x(m)!Γ (αv)

x!Γ (αv)

)

×


(
m

(m)
z βv + 1

)n(m)
zv +αv

(mzβv + 1)nzv+αv


=

m
(m)
z + γz

M − 1 +
∑K

k=1 γk
×

V∏
v=1

xmv∏
j=1

(
n(m)
zv + αv + j − 1

)
× βxmvv × 1

xm!

×

(
m

(m)
z βv + 1

)n(m)
zv +αv

(
m

(m)
z βv + βv + 1

)n(m)
zv +xmv+αv

, (4.13)

where nzv = n
(m)
zv + xmv and mz = m

(m)
z + 1. If it is assumed that αv = α, βv = β and γk = γ

for all v and k, then Equation 4.13 simplifies to

p
(
zm = z|z(m),x

)
∝ m

(m)
z +γz

M−1+Kγ ×
βnm

xm! ×
(
m

(m)
z β+1

)n(m)
z +V α

(
m

(m)
z β+β+1

)n(m)
z +nm+V α

×
∏V
v=1

∏xmv
j=1

(
n

(m)
zv + α+ j − 1

)
,

where nm is the length of the m-th document and
∑V

v=1 nzv = nz denotes the total number of

documents in topic k. This concludes the derivation of Equation 4.3.

4.2.1.2 DERIVATION OF TOPIC REPRESENTATION

After sampling from Equation 4.3 until convergence, the λ parameters, which produce the topic

distributions, are estimated by the posterior means. The posterior is given by

p (λkv|x, z,α,β) ∝ λnkv+αv−1
kv e

−λkv
(
mk+ 1

βv

)
.
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It follows that λkv ∼ GAM
(
nkv + αv,

βv
mkβv+1

)
and the topic distribution estimates are given by

λ̂kv =
nkv + αv(
mk + 1

βv

) .
The top words that describe topic k are the words with the highest expected frequencies, λ̂kv.

4.3 DISCUSSION

This section presents a discussion of the important aspects related to the application of the GPM.

It also highlights the impact of the different parameters that are used in the model.

4.3.1 DOCUMENT LENGTH NORMALISATION

Since the Poisson distribution gives the probability of observing a given number of events in a fixed

interval, it is necessary to normalise the lengths of the documents. There are different strategies

that can be used to achieve this. Two strategies are discussed and compared below.

4.3.1.1 METHOD 1: DIRECT DOCUMENT LENGTH NORMALISATION

This strategy involves replacing the word frequencies, xmv, with

xnew
mv =

Nxmv∑V
v=1 xmv

,

where N denotes a predefined length (Ogura et al., 2013). The impact of this normalisation is

that each document will have a length of N words. In order to investigate the performance of

the model under different choices of N , specifically N = 10, 20, 30, the GPM was applied to the

Tweet, Pascal Flicker and Search Snippets datasets (discussed in Section 5.2).

The performance of the model was assessed based on two measures. The first involves com-

paring the number of topics found by the model against the number of topics found by the human

annotators who were used in the compilation of the datasets (this value will be referred to as the

true K). The second performance measure is average topic coherence (discussed in Section 5.4),

which measures topic quality. The higher the score, the better the performance.

Figure 4.2 shows the number of topics found, coherence and runtime (in minutes) of the GPM
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Figure 4.2: Number of topics found, average coherence and runtime of the GPM on the Pascal
Flickr corpus for N = 10, 20, 30. The runtime of the model is not significantly affected by N .
However, asN increases, the average coherence scores improve whilst the number of topics found
moves further away from the true K.

for the different values of N for the Pascal Flickr corpus. In general, the runtime of the model is

not significantly affected by N . However, as N increases, the average coherence scores improve

whilst the number of topics found moves further away from the true K. The results for the other

datasets are shown in Section IV of the Appendix.

Based on these results and those observed on the other datasets, N = 20 appears to result in

a good trade-off between the different performance measures across the different datasets. Thus,

going forward all experiments performed with the GPM with this normalisation are performed

with N = 20 (with each xnew
mv rounded to the nearest integer).

4.3.1.2 METHOD 2: MODELLING DOCUMENT LENGTH IN THE TOPIC MODEL

The second normalisation method can be found in the paper of Church and Gale (1995). This

approach involves modelling the frequency of each word, xmv, as

xmv|z = k ∼ Poi(Nmλkv),
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where Nm denotes the number of words in the m-th document, as opposed to

xmv|z = k ∼ Poi(λkv)

as in the previously proposed derivation. This change affects the collapsed Gibbs sampler deriva-

tion. In the new derivation which can be found in Section V of the Appendix, Equation 4.3 would

then be replaced by

p
(
zm = z|z(m),x

)
∝ m

(m)
z +γz

M−1+Kγ ×
βnm

xm! ×
(
n
(m)
z +1

)n(m)
z +V α

(
n
(m)
z β+Nmβ+1

)n(m)
z +nm+V α

×
∏V
v=1

∏xmv
j=1

(
n

(m)
zv + α+ j − 1

)
,

(4.14)

where n(m)
z denotes the number of words assigned to topic z excluding the m-th document. Mod-

elling document length in this manner alleviates the need to select a value for N as in the previous

method. This simplifies its application.

4.3.1.3 COMPARISON OF NORMALISATION METHODS

Figure 4.3 shows a comparison of the performance of the different normalisation methods on the

Pascal Flickr dataset. The results on the other corpora are similar and are shown in Section VI

of the Appendix. On the datasets that were considered, normalisation method 1 ran faster than

method 2. Furthermore, normalisation method 1’s coherence was better and the number of topics

found was closer to the true K. In light of these results, normalisation method 1 was used in all

experiments going forward.

4.3.2 MEANING OF HYPERPARAMETERS

The GPM has 3 hyperparameters that must be selected prior to the application of the model:

α = [α1, α2, . . . , αV ] and β = [β1, β2, . . . , βV ] are the hyperparameters of the gamma prior,

whereas γγγ = [γ1, γ2, . . . , γK ] denotes the hyperparameter of the Dirichlet prior. Although it

is possible to estimate parameter values from the data, this can be computationally expensive.

Consequently, in practice researchers will often use symmetric fixed priors. In this section, the

meaning of each of the hyperparameters is discussed. In addition, recommendations for choosing
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Figure 4.3: Comparison of average coherence, number of topics found and runtime of GPM un-
der normalisation methods 1 (direct document length normalisation) and 2 (modelling document
length in the topic model) on the Pascal Flickr corpus (True K = 20).

their values are also made.

4.3.2.1 MEANING OF γ

The GPM topic model assumes

z ∼ Cat(πππ),

with a prior of the form

πππ ∼ Dir(γγγ).1

The topic assignment of a document is given by z. The selection of z is governed by πππ =

[π1, π2, . . . , πK ] where πk gives the proportion of the corpus that belongs to topic k. πk can also

be thought of as the probability of a document belonging to topic k. The implementation of a full

Gibbs sampler would have required that πππ also be sampled. However, πππ can be determined from

the sampled topic labels and it is simple to integrate out due to the conjugacy of the Dirichlet distri-

bution to the multinomial/categorical distribution. This makes it convenient to opt for a collapsed

1In (Yin and Wang, 2014), this γγγ is equivalent to the ααα used in GSDMM.
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Gibbs sampler and it means that one only needs to determine values for the hyperparameters.

As previously stated, γγγ = [γ1, γ2 . . . , γK ] is the hyperparameter of the Dirichlet distribution.

Values of γk less than 1 lead to a more sparse distribution of probability; that is, many of the πk

will be near zero whilst most of the probability is allocated to only a few of the πk. Conversely,

when the γk are larger, the result is a more uniform distribution of probability. This γk parameter

influences the prior probability of a document belonging to a topic. It appears in the first part

of Equation 4.3 in the term m
(m)
z +γ

M−1+Kγ . If all the γk are set to zero, a topic without a document

assigned to it will never be chosen. This is because an empty topic will have m(m)
z (the number of

documents contained in topic z) equal to zero. This will force the numerator to be zero for such

topics and make Equation 4.3 equal zero. On the other hand, as the γk increase the probability

of choosing an empty topic increases. Note, in all experiments, a symmetric Dirichlet prior was

used, i.e. all the γk (k = 1, 2, .., 3) were set to the same value, γ.

4.3.2.2 MEANING OF α AND β

The parameters αv and βv represent the shape and scale parameters of the gamma distribution,

respectively. For simplicity, it is assumed that αv = α and βv = β for all v. As previously

mentioned, each word count, xmv, is assumed to follow a Poisson distribution conditioned on the

document’s topic assignment,

xmv|z = k ∼ Poi(λkv),

with prior

λkv ∼ Gam(α, β).

The gamma distribution is a family of skewed distributions. Given the sparsity of the text data

under consideration, it makes sense that the expected frequencies of words be modelled by a

distribution that assigns most of its probability near zero.

Consider Equation 4.3:

p
(
zm = z|z(m),x

)
∝ m

(m)
z +γ

M−1+Kγ ×
βnm

xm! ×
(
m

(m)
z β+1

)n(m)
z +V α

(
m

(m)
z β+β+1

)n(m)
z +nm+V α

×
∏V
v=1

∏xmv
j=1

(
n

(m)
zv + α+ j − 1

)
.

This is the equation from which the topics are sampled.
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The scale parameter of a gamma distribution does not change the shape of the data, but simply

scales the graph. Consequently, the gamma parameter does not have significant impact on Equa-

tion 4.3 and hence, does not greatly impact the performance of the model. Empirical evidence of

this is shown in Section 5.5.4.

As the name suggests, the shape parameter, α, influences the shape of the gamma distribution.

The gamma distribution for different selections of α can be seen in Figure 5.10. If α is set to

equal zero, the last term in Equation 4.3 will equal zero if n(m)
zv = 0. In other words, if a topic

is missing even a single word that is contained in a document, then that document can never be

assigned to the topic even if the document is similar to other documents contained in the topic and

should actually be assigned to the topic. Fortunately, since α can take on any positive value, this

can be avoided by selecting a nonzero value. For small values of α, the probability of a document

belonging to a topic is more sensitive to nkv, the number of times word v is observed in topic k.

This means that, when a topic has more words in common with a document it is more likely to

be assigned to that topic. On the other hand, when α is large, the probability of being assigned

to a topic is less sensitive to nkv. Instead, the probability is influenced more by the first term in

Equation 4.3 which is dependent on mk, the number of documents in topic k. As a result, a topic

with more documents is likely to get larger since Equation 4.3 will assign more probability to

topics that contain more documents. Empirical evidence of this can be seen in Figure 5.9 where

the number of topics found is recorded for different values of α; for small values of α, GPM found

more topics whilst, for large values, it tended to assign all the documents to a single topic.

4.3.3 SELECTION OF PRIOR VALUES

Selecting optimal values for the hyperparamters can be challenging due to the unsupervised na-

ture of the topic model. However, for simplicity and also following the common practice in the

literature, specific fixed values were used in all experiments (Rigouste et al., 2007). Firstly, the γ

parameter was set to 0.1 as was proposed for the GSDMM, since this parameter is equivalent to

the α parameter in GSDMM. As for α and β, from the previous discussion and empirical results,

it is clear that the selection of α is of vital importance, whereas the choice of β is not as crucial.

In the Bayesian literature, the gamma distribution with shape and rate parameters both equal

to 0.001 is a commonly used non-informative prior (Lee and Wagenmakers, 2014). In the GPM

derivation, the gamma distribution is parameterised by shape and scale parameters. Despite using
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the scale-parameter instead of the rate-parameter formulation, it is shown empirically in Section

5.5.4 that setting both the shape and scale parameters to 0.001 yielded better results than the other

values that were considered. In fact, it is shown in Section 5.5.5 that for this choice of values, the

GPM outperformed GSDMM on the datasets that were considered. In light of this, α = 0.001 and

β = 0.001 are used in all experiments (unless specified otherwise).

4.4 RELATIONSHIP BETWEEN GPM AND DIFFERENT TOPIC MODELS

Many topic models can be considered as versions of discrete components analysis (Buntine and

Jakulin, 2006). Such models express the expected values of the document vector as a product of

matrices. This product typically consists of one matrix which captures the distribution of words

in a topic, and another which accounts for the contribution of each topic to the document. In this

section, this representation is explored in detail so as to demonstrate the relationships between

GPM and different models.

In general, many of the models assume each document, xm, can be regarded as having an

expected value of the form

E(xm) = θl =


θ11 · · · θ1K

... θvk
...

θV 1 · · · θV K



l1
...

lK

 . (4.15)

The matrix θ accounts for the word distribution of a topic whilst the vector l captures the contri-

bution of each topic to document xm. The different models make different assumptions regarding

xm, θ and l.

4.4.1 MULTINOMIAL-TYPE MODELS

4.4.1.1 MULTINOMIAL PCA

Multinomial PCA (mPCA) (Buntine, 2002) it is assumed that

xm ∼Multinomial(θl),
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where the columns of θ are assumed to be normalised such that 0 ≤ θvk ≤ 1 and
∑V

v=1 θvk = 1

for all k and v. It is also assumed that the elements of l are such that 0 ≤ lk ≤ 1 and
∑K

k=1 lk = 1

for all k, and that

θk = [θ1k, θ2k, · · · , θV k] ∼ Dirichlet(ω)

and

l ∼ Dirichlet(ψ)

where ω and ψ are the parameters for the Dirichlet distributions.

4.4.1.2 LATENT DIRICHLET ALLOCATION

LDA is the same as multinomial PCA except that each document is modelled as a sequence of

words instead of a vector of word counts. In other words, a document is represented as a product of

categorical distributions. Consequently, the only difference between the LDA and mPCA models

is that under the LDA model the combinatoric term, L!
w1!···wV ! , from the multinomial distribution

of mPCA is dropped (Buntine and Jakulin, 2006).

4.4.1.3 MULTINOMIAL MIXTURE MODEL

The multinomial mixture model can also be expressed the form equation 4.15. θ and xm are both

modelled in the same way as mPCA. However, l is a vector in which exactly one element is equal

to one and the rest are all zeros. This is often referred to as a 1-of-K or one-hot encoding. Thus, l

is modelled as

l ∼ Categorical(π),

where π denotes the parameter for the categorical distribution. It follows that

E(xm) = θk,

where θk denotes the k-th column of θ (Buntine and Jakulin, 2006).

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 64



CHAPTER FOUR THE GAMMA-POISSON TOPIC MODEL FOR SHORT TEXT

4.4.2 POISSON-TYPE MODELS

4.4.2.1 GAMMA-POISSON MODEL

The gamma-Poisson (GaP) model introduced by Canny (2004) should not be confused with the

GPM introduced in this thesis. The key difference between the models is that the GPM assumes

each document belongs to a single topic whereas the GaP model assumes multiple topics can

contribute to a document.

The gamma-Poisson model assumes that all of the elements of xm are independently Poisson

distributed. That is,

xmv ∼ Poisson((θl)mv),

where (θl)mv denotes the element in position (m, v) of θl. The matrix θ follows the same distri-

butional assumptions as mPCA. However, the elements of l, denoted lk, are such that

lk ∼ Gamma(αk, βk).

It can be shown that, if all the βk are equal, then the GaP model is equivalent to the mPCA model

(Buntine and Jakulin, 2006).

4.4.2.2 POISSON DECOMPOSITION MODEL

The PDM model assumes a similar representation as in 4.15 as it only differs by a constant.

E(xm) = λmθl. (4.16)

As was mentioned in section 3.8.2, PDM assumes

xmv =
∑
k

xmkv ∼ Poisson(
∑
k

λmkv)

where λmkv = λm × θmk × φkv. The distributional assumptions on θ and l are exactly the same

as in mPCA.
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4.4.2.3 GAMMA-POISSON MIXTURE TOPIC MODEL

GPM is similar to the multinomial mixture in that l will also be distributed according to a categor-

ical distribution. However, instead of assuming the data comes from a multinomial distribution,

the data is follows a Poisson such that

E(xm) = θk.

All of the models, including GPM can be summarised as in Table 4.2.

Table 4.2: Summary of the distributions of the data, θ and l assumed by each model.

Multinomial-type models
Model xm θk l

mPCA Multinomial(θl) Dirichlet(ω) Dirichlet(ψ)

LDA
∏
Categorical(θl) Dirichlet(ω) Dirichlet(ω)

Multinomial mixture Multinomial(θl) Dirichlet(ω) Categorical(π)

Poisson-type models
Model xmv θk lk

GaP Poisson((θl)mv) Dirichlet(ω) Gamma(αk, βk)

PDM Poisson((λmθl)v) Dirichlet(ω) Dirichlet(ω)

GPM Poisson((θl)v) Dirichlet(ω) Categorical(π)

4.5 CONCLUSION

In this chapter, the GPM was introduced as a new topic model for short text. It presented details

of the derivation of a collapsed Gibbs sampler, which was possible due to the conjugacy between

the chosen distributions. In addition, it gave the GPM the favourable characteristic of being able

to automatically estimate the number of topics contained in a corpus.

As previously mentioned, topic models display clustering and dimensionality reduction prop-

erties. In line with this, it was shown that the GPM displayed these characteristics through Equa-

tion 4.3 and Equation 4.4. By iteratively sampling topic lables for each document from Equation

4.3, the clustering aspect was satisfied. The dimensionality reduction aspect was covered via the

estimation of Equation 4.4, which results in a lower dimensional topical representation of the high

dimensional corpus.
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This section also investigated the impact of different document normalisation methods and

recommended normalising the document lengths prior to applying the GPM model as opposed to

incorporating the normalisation into the model. Moreover, the influence of the hyperparameters

on the performance of the GPM model was also explored and some recommendations were also

made.

Finally, the new GPM model was put in context with other existing topic models using a

discrete component analysis framework. The GPM model is unique in that it not only assumes

each document belongs to a single topic, but also models the counts by a Poisson distribution.

In order to demonstrate the GPM model’s utility, extensive experimentation on the model was

performed. The model was applied to different real-life data sets was done and various aspects of

the model were studied. Details of these experiments and the results obtained will be presented in

Chapter 5.
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EXPERIMENTS

5.1 INTRODUCTION

In order for a topic model to be useful, it must be able to uncover interpretable topics. As most

topic models are unsupervised, their evaluation poses a significant challenge. The true topics

are not known in advance, thus making it difficult to determine how good a job the model did

at uncovering the topics. Despite this, there are some measures that are typically considered to

evaluate a topic model’s performance. In this section, we perform experiments to compare the

performance of GPM with that of GSDMM (Yin and Wang, 2014) on different datasets.

5.2 DATASETS

The datasets on which the models were applied have been summarised in Table 5.1. All statistics

were collected from the datasets after basic pre-processing (removal of stop words, punctuation,

special symbols and numbers).

• The Tweet dataset (Yin and Wang, 2014) is a collection of tweets from the 2011 and 2012

Text REtrieval Conference. The most relevant tweets in 89 different categories were selected

to create this collection. Each tweet is regarded as an individual document.
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• The Pascal Flickr dataset contains captions of images from Flickr and the Pattern Analy-

sis, Statistical Modelling, and Computational Learning (PASCAL) Visual Object Classes

Challenge (Everingham et al., 2010). The captions are divided into 20 different classes and,

altogether, the corpus contains 4 834 captions which are each treated as individual docu-

ments.

• The Search Snippet dataset (Phan et al., 2008) was created by first selecting 8 different do-

mains: Business, Computers, Culture-Arts-Entertainment, Education-Science, Engineering,

Health, Politics-Society and Sports. For each domain, 11 to 118 related phrases were typed

into the Google search engine, and then the snippets from the top 20 to 30 results were

collected to create a corpus of 12 295 snippets.

Note, the original number of classes/categories for each dataset will sometimes be referred to as

the true number of topics/clusters or true K.

Table 5.1: Document statistics.

Corpus M V K Mean (Standard dev.)

of document length

Min. (Max.)

document length
Tweet 2472 5098 89 8.5 (3.2) 2 (20)

Pascal Flickr 4834 3132 20 4.9 (1.8) 1 (19)

Search Snippets 12295 4705 8 14.4 (4.4) 1 (37)

M = number of documents, V = size of vocabulary, K = number of topics

All datasets can be obtained from https://github.com/qiang2100/STTM.

5.3 EXPERIMENTAL DESIGN

All experiments were executed in Python 3.6 in Windows 10 on a computer with a 3.50 GHz quad

core processor and 16 GB RAM. The GPM topic model is publicly available as a Python package

at https://github.com/jrmazarura/GPM. It can also be installed using the Python ‘pip

install’ functionality. The package contains both the GPM and GSDMM models.

For the GSDMM, the parameter values were set to α = β = 0.1 and the algorithm was run

for 15 iterations, as in the original paper. For the GPM, the γ parameter plays the same role as the
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α parameter in GSDMM, thus it was also set to 0.1. Unless otherwise stated, the shape and scale

parameters, α and β, were both set to 0.001.

5.4 TOPIC COHERENCE

To investigate the performance of the models, the average of the topic coherence score (Mimno

et al., 2011) for each topic was calculated. The coherence score for each topic, T , is given by

coherence(T ) =
∑

(vl,vj)∈T

log
D (vi, vj) + ε

D (vj)
,

where vi denotes the ith word in topic T,D (vi, vj) denotes the number of documents in which

words vi and vj co-occur andD (vj) denotes the number of documents in which word vj occurs. ε

is a smoothing parameter to prevent taking the logarithm of zero and it is set to equal 1 as proposed

in the original paper. As with most topic models, the GPM is an unsupervised technique. Model

evaluation is generally not a trivial task in the context of unsupervised learning as datasets lack

labels upon which evaluations can be based. The coherence score is a well-known measure of the

degree of interpretability of a topic and it has been shown to align well with human evaluations of

coherence (Mimno et al., 2011). Naturally, topics that are coherent are most desirable; therefore,

a higher average coherence score is preferable. Similar to GSDMM, our model has the special

characteristic of being able to automatically select the number of topics, thus, the coherence score

is only calculated on the topics found by the model.

5.5 RESULTS AND DISCUSSION

This section presents and discusses the results of various experiments investigating the influence

of several parameter settings on the topic model performance. These parameters are the starting

number of topics, number of sampling iterations and the hyperparameters, alpha and beta

5.5.1 INFLUENCE OF THE STARTING NUMBER OF TOPICS

Topic modelling is typically an unsupervised technique. Similar to K-means clustering, the num-

ber of topics (clusters), K, is a challenge to select as the value is not usually known in advance.

The GPM is able to infer the number of topics automatically provided that the starting value of
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K is large enough. This is due to the dependence of the topic assignment probability, Equation

4.3, on mk, which is the number of documents in topic k. This implies that a document is more

likely to be assigned to a topic which has documents assigned to it, than a topic that does not have

documents assigned to it.

As will be shown in the next section, the collapsed Gibbs sampler is quick to converge, thus the

Gibbs sampler was run for 15 iterations. As the GPM also provides stable and relatively consistent

results (as will be shown in the next section), experiments were repeated 3 times assuming K =

5, 10, 20, 30, 40, 50, 100, 200, 300, . . . , 800. The parameters were set to αv = βv = 0.001 for all

v and γk = 0.1 for all k. Table 5.2 shows the average number of topics found by the model for

some of the different starting values of K, whereas Table 5.3 shows the corresponding average

coherence scores.

Table 5.2: Average (and standard deviation) of the final number of topics found by GPM.

Starting value of K

Dataset True K 50 100 200 400 800

Tweet 89 42(2) 61 (3) 67 (7) 76 (5) 77 (5)

Pascal Flickr 20 14 (2) 26 (2) 33 (6) 33 (5) 39 (3)

Search Snippets 8 19(6) 16 (4) 25 (5) 26 (3) 32 (1)

Table 5.3: Average topic coherence score (and standard deviation).

Starting value of K

Dataset 50 100 200 400 800

Tweet -25.02 (0.91) -23.76 (1.65) -19.92 (1.47) -18.89 (0.06) -18.13 (0.58)

Pascal Flickr -37.01 (4.16) -34.50 (2.06) -33.85 (2.92) -30.39 (2.59) -31.53 (1.78)

Search Snippets -50.56 (1.85) -50.17 (2.06) -50.71 (2.26) -49.47 (4.15) -51.19 (1.81)

Figures 5.1 to 5.3 provide a visual summary of these results. According to Figures 5.1(a),

5.2(a) and 5.3(a), in all cases, the model approaches the true number of topics as the starting

number of topics increases. In most cases, the most accurate number of topics was found by

setting K to 400. For the Tweet dataset, the model converged to between 70 and 80 topics, which

is close to the true value of 89. For the other datasets, the model slightly over-estimated the

number of topics. On the Pascal Flickr dataset, at K = 400, the final number of clusters is over-
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estimated by about 10 topics (true K = 20) whereas on the Search Snippets dataset, the final

number of clusters was over-estimated by about 20 topics (true K = 8). One possible reason

for this difference could be that the human labelling may have been too rigid and documents

were classified into too few topics yet there may have been subtopics present. Consequently,

it is possible that such a discrepancy could also arise if different human reviewers were tasked

with labelling each document independently. In the context of topic modelling, this difference

is not usually a problem especially if the topics are interpretable, as the model may have simply

identified subtopics present in the corpus. Since the model does not differentiate between “main”

topics or subtopics, they would all be included together in the final topic count. Nonetheless, it

is still striking that in both cases, the model was able to automatically discard the extra 80-90%

of topics that were unnecessary. This greatly alleviates the challenge of selecting the appropriate

value of K and it avoids the additional computational complexity that is usually associated with

non-parametric methods which are use to determine K.

In topic modelling, one of the most important aspects is the interpretability of the uncovered

topics. Even if the final number of clusters found is not necessarily the same as what human

annotators would find, it is important that the words in the topics are coherent. Figures 5.1(b),

5.2(b) and 5.3(b) show that the coherence improved as the initial K increased. In fact, a point

was reached where there was almost no more improvement in average coherence when the initial

number of topics was increased. In most cases, there appears to be an insignificant improvement

to the coherence score when K is set to be greater than 200.

5.5.2 INFLUENCE OF THE NUMBER OF ITERATIONS

One of the challenges faced when using sampling methods to estimate parameters is determining

the appropriate number of sampling iterations to perform. In order to investigate the performance

of the models with respect to the number of iterations, the average coherence and number of topics

found at each of 30 iterations was recorded. This was repeated three times for each dataset. From

the previous results, it was found that the number of clusters was close to the human annotated

number and the coherence scores reached their maximum when the model started with 400 topics,

thus this value was used in all the experiments. The results are shown in Figures 5.4 to 5.6. The

(a) graphs all show the number of clusters that the model found at each iteration, whereas the (b)

graphs show the topic coherence at each iteration. In general, similar patterns are observed. It
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(a) (b)

Figure 5.1: Tweet dataset: (a) Average final number of topics found by the model (b) Average
topic coherence scores.

(a) (b)

Figure 5.2: Pascal Flickr dataset: (a) Average final number of topics found by the model (b)
Average topic coherence scores.

is evident that convergence is reached quickly. In all cases, convergence is reached by the 15th

iteration and the variation in the results is typically relatively small.

5.5.3 INFLUENCE OF GAMMA

To investigate the influence of γ on the performance of the GPM, the model was applied to the

different datasets. α and β were both set to 0.001 and the starting number of topics was set to 400.

The results shown here are for the Pascal Flickr corpus, whilst the results for the other corpora can
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(a) (b)

Figure 5.3: Search Snippets dataset: (a) Average final number of topics found by the model (b)
Average topic coherence scores.

(a) (b)

Figure 5.4: Tweet dataset: (a) Number of topics found by the model per iteration (b) Average
topic coherence score per iteration.

be found in Section VII of the Appendix. The number of topics found and coherence scores for

γ = 0, 0.2, 0.4, 0.6, 0.8, 1 are shown in Figures 5.7 and 5.8, respectively. Based on these graphs,

the performance of the model is better for lower values of γ as the number of topics found is

closer to the true K of 20 and the coherence scores were higher. For the Tweet dataset, the value

of gamma does not have a significant impact on the performance of the model with respect to both

performance measures. On the Search Snippets dataset, the GPM was able to get closer to the true

K for values γ equal to 0 or 1. However, the variation in the number of topics found was higher
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(a) (b)

Figure 5.5: Pascal Flickr dataset: (a) Number of topics found by the model per iteration (b)
Average topic coherence score per iteration.

(a) (b)

Figure 5.6: Search Snippets dataset: (a) Number of topics found by the model per iteration (b)
Average topic coherence score per iteration.

for γ = 0. As with the Pascal Flickr corpus, the topic coherence scores are better for smaller

values of γ. This may be because Dirichlet distributions with smaller parameter values encourage

a more sparse distribution of probability that aligns with the sparse distribution of topics within

most of the considered corpora. In conclusion, these results provide empirical evidence in support

of setting γ = 0.1 for GPM.
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Figure 5.7: Influence of gamma on number of topics found.

Figure 5.8: Influence of gamma on average coherence.
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5.5.4 INFLUENCE OF ALPHA AND BETA

The hyperparameters αv and βv represent the shape and scale parameters of the gamma distri-

bution respectively, and γk represents the hyperparameter of the Dirichlet prior. We assume that

αv = α, βv = β and γk = γ for all v and k. The GPM was run on the Pascal Flickr dataset

for K = 40, γ = 0.1, α = 0.01, 0.05, 0.25, 0.5, 0.75, 1, 2 and β = 5, 2, 1, 0.5, 0.2,. Then the

final number of clusters found was recorded. The results on the Pascal Flickr dataset are shown in

Figure 5.9.

Owing to the computationally heavy nature of performing a grid search, each experiment was

run only once per pair of α and β values, with the starting number of topics set to be at least

20 more than the true value. Figure 5.9 shows a clear downward trend for all values of β, the

scale parameter. However, the final number of topics found is clearly influenced by the shape

parameter, α. On the Pascal Flickr dataset, the model was only able to get close to the true number

of topics (20) when α was chosen to be near 0.5. Similar downward trends were also observed

on the other two datasets and β was also found to be of minimal impact on the number of topics

found. However, for the Tweet dataset, α was required to be near 0.05 for the model to find close

to 89 topics, whereas the Search Snippets dataset required an α value close to 1.5 to find close to

8 topics.

Figure 5.10 shows the probability density functions of gamma distributions with these differ-

ent values of α and a fixed value of β = 0.5. These choices of alpha clearly produce skewed

distributions which place most of their probability near zero. Based on the chosen values of α

and β, the expected value of the gamma priors for the Tweet, Pascal Flickr and Search Snippets

datasets are 0.025, 0.25 and 0.75, respectively. Considering the short length of the documents

and the massive sizes of the vocabularies, it is not surprising that most words will have very low

observed frequencies. In fact, since many zeros are observed for each word, the estimates of the

Poisson parameters are also very small which results in most of the probability being loaded on

zero. For example, p(x) = 0.975 for x = 0 where X ∼ Poi(0.025).

A similar comparison to that of Figure 5.9 was also conducted to investigate the impact of α

and β on the coherence scores and the results from the Pascal Flickr dataset are shown in Figure

5.11. It can be seen that increasing the value of α decreases the number of topics the model tends

to find. Whereas decreasing α increases the number of topics found. (Interestingly, this behaviour
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Figure 5.9: Final number of topics found for different values of alpha and beta on the Pascal Flickr
dataset.

Figure 5.10: Probability density functions of the gamma distribution (denoted Gam(α,β)) for
α = 0.05, 0.5, 1.5 and a fixed value of β = 0.5.
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Figure 5.11: Average topic coherence of topics found for different values of alpha and beta on the
Pascal Flickr dataset. The labels at each point indicate the number of topics found by the model.

of α in GPM is similar to the behaviour that was observed with the β parameter of GSDMM

(Yin and Wang, 2014).) Figure 5.11 displays a general pattern; the coherence scores appear to

increase, then drop as α increases and, once again, β does not appear to have a significant impact.

The Tweet and Search Snippets datasets also displayed general patterns, but the pattern was not

necessarily the same across the datasets. This simply serves as an indication that the selection of

α is not a trivial task.

In practice, the number of clusters is not usually known in advance so it is not possible to use

the true K to choose a suitable value for α. Furthermore, the coherence is also not always highest

at the true number of clusters. In order to overcome this challenge, α and β are both fixed to 0.001

for all datasets. The motivation for this choice was discussed in Section 4.3.3. The top horizontal

line in Figure 5.11 shows the coherence score found by GPM under this prior. Note, although

this result is for fixed values of α and β, it is shown as a horizontal line across all α values to

emphasise that the GPM with this choice of parameter outperforms the GPM with other choices

of α and β. For ease of comparison, the results of the GSDMM are also indicated by a horizontal

line although its hyperparameters are also fixed. Figure 5.11 also shows that GPM outperforms

the GSDMM model (indicated by the lower horizontal line). In addition, the average number of
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clusters found by GPM was also closer to the true value (20).

In conclusion, it is clear that setting of α = β = 0.001 greatly simplifies the topic modelling

process for GPM. In addition, we have also seen that the model possesses the flexibility of allowing

the user to easily adjust the number of topics found by simply changing the value of α.

5.5.5 COMPARISON WITH DIRICHLET-MULTINOMIAL MIXTURE MODEL AND

THE BITERM TOPIC MODEL

The GSDMM model was originally presented as a clustering algorithm, as opposed to a topic

model, and was consequently assessed on its ability to cluster documents (Yin and Wang, 2014).

As the GPM is designed for topic modelling, it was assessed on its ability to extract meaningful

topics by investigating the topic coherence. The GPM is related to the GSDMM in that it also

makes the one-topic-per document assumption and is able to automatically select the number of

topics. Hence, the performances of GPM and GSDMM can be compared by looking at both

the topic coherence scores and the number of topics automatically found by the models. For

completeness, the performance of GPM will also be compared against the Biterm topic model

(BTM) (Yan et al., 2013) as it is one of the state-of-the-art topic models for short text.1 The

BTM does not have the ability to automatically infer the correct number of topics so it was trained

assuming the number of clusters found by the human annotators (true K). For this reason, BTM

is only assessed on topic coherence. The results are summarised in the figures and tables that

follow. On all the datasets, the GPM was run for 15 iterations starting with 400 initial topics

with αv = βv = 0.001 for all v and γk = 0.1 for all k. The GSDMM and BTM were run for

15 and 1000 iterations, respectively, which is in line with the values used in the original papers

for these models. Their respective parameters were also set to the default values proposed by the

original authors. All experiments were repeated 10 times. Figure 5.12 shows boxplots of the topic

coherence scores. It is evident that the GPM generally outperforms the GSDMM and BTM in all

three datasets, as the topic coherence of the topics obtained by the GPM is mostly larger those of

the GSDMM and BTM.

For completeness, the number of clusters found by each model are considered and shown in

Table 5.4. For the Tweet corpus, the true number of topics, as determined by human annotators,

1The code to run BTM is available in a Java based open-source library at https://github.com/qiang2100/
STTM.
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Figure 5.12: Coherence scores of the different models.

is 89. On average, the GSDMM was more inclined to find more clusters than the GPM. It is also

worthwhile to note that the results obtained for the GSDMM on the Tweet dataset are close to those

obtained in the original paper (Yin and Wang, 2014). On the Pascal Flickr and Search Snippets

datasets, both models tended to find more clusters than those determined by the human annotators.

However, the GPM was able to get closer to the true K value than the GSDMM. Interestingly, on

the Search Snippets corpus, the GSDMM found significantly more topics than were found by the

GPM. It is likely the case that the GSDMM found finer-grained topics, thus increasing the number

of topics found, whereas the GPM model discovered fewer, but more general, topics.

Table 5.4: Summary of number of topics found by each model.

GSDMM GPM

Dataset True K
Average Standard

deviation

Average Standard

deviation

Tweet 89 98 3.56 75 4.42

Pascal Flickr 20 48 4.58 35 5.68

Search Snippets 8 303 7.19 26 2.16

Let us now consider the actual topics found by the models in one of the data sets – specifically
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the Search Snippets – in order to observe what other topics were found by the GSDMM model

that were not found by the GPM. Table 5.5 lists some of the top words for each of the topics found

by the GPM (column 2), as well as possible labels for each topic (column 1). The labels were

assigned based on the original 8 topics of the dataset and then a possible subtopic label was added

in parentheses. This labelling and selection of subtopics was performed subjectively, so another

annotator’s assessment may produce different results.
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Table 5.5: Topics found by GPM.

Topic (subtopic) Top words

Business (software) trillian instant pro studios creators messenger accounting

Business (trade) import trade export leads business international global

Business (consumer) consumption consumer motives goals ratneshwar glen mick

CAE (Chris Pirillio) pirillo chris live internet broadcast podcast itunes streaming

CAE (music) lyrics song com archive searchable songs database search

CAE (painting) surreal leonardo del vinci picasso surrealism artlex artchive

CAE (videos) videos metacafe ping pong movies internet tags amazing clips

CAE (movies) imdb movies celebs title name diesel movie mtv aesthetic weapon

CAE (posters) posters allposters com prints custom professional framing

CAE (transformers) transformers movie world bay war alien directed races

Computers (networking) approach computer networking featuring ross kurose

Computers (root) root roottalk expression formula cern draw retrieve rene value

Computers (programming) computer programming software web memory wikipedia intel

Computers (code) formula expression kspread value user symbol log api input

Computers (connections) speed test com accurate flash cable speedtest dsl connections

ES (news) information com news wikipedia research edu home science

ES (history) eawc edu classic ancient exploration greece evansville anthony

ES (dictionary) dictionary online definition word christ merriam webster

Health (diet) calorie calories energy drink enviga counter nutrition picnics

Health (disease) treatment arthritis cause symptoms diagnosis lupus disease

PS (society) bombs smoke homepage police press blogspot accounting bank

PS (politics) party bob led revolutionary worker communist revolution

Sports (cars) wheels rims car custom chrome tires truck inch tire

Sports (tennis) match hits russia anna chakvetadze sania financial india

Sports (quad biking) quad china atv automatic reverse quads gear product showroom

Sports/Business goalkeepers cricket nasdaq information stock market security

CAE/Computer span painting election contractors staining servicemagic

* Key: CAE = Culture-Arts-Entertainment, ES = Education-Science, PS = Politics-Society

In assigning the topics to the predefined labels, one challenge faced was that some topics had

potential overlaps. For instance, a topic in the Engineering category could also have fallen in the

Education-Science category. By analysing the first column, we also observe that 7 out of the 8

original predefined topics appear to be represented in these results. According to our labelling, the
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missing topic is the Engineering topic. This is most likely due to the fact that only 369 of the 12

295 documents belonged to this topic, which is merely 3% of the entire corpus. The proportions

of each topic in the Search Snippets corpus are shown in Figure 5.13.

Figure 5.13: Relative frequency of documents belonging to each topic in the Search Snippets

corpus. The number above each bar is the frequency of documents belonging to each topic. The

corpus contains a total of 12 295 documents.

As was observed in Table 5.4, the GSDMM found more than 250 extra topics. Table 5.6 shows

two additional topics for each of the 8 predefined categories that were found by the GSDMM, but

not the GPM.

Since GSDMM found significantly more topics, it was able to uncover finer-grained topics.

Thus, in such cases where a brief overview is desired, the model producing the smaller number of

topics might be preferable. Where more detail is desired, one can opt for a model that produces

more topics.

5.6 CONCLUSION

Despite the lack of attention on the Poisson distribution in topic modelling, its utility in modelling

short text has been shown in the new topic model for short text, the Gamma-Poisson mixture
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Table 5.6: Selected topics found by GSDMM.

Topic Top words
Business (economics) gdp economy product domestic gross economic value market
Business (jobs) jobs job com search careerbuilder accounting marketing sales sites
CAE (fashion) fashion designers design designer clothing accessories milan clothes
CAE (famous places) ballet hollywood california angeles los universal florida studios
Computers (systems) systems theory analysis design information programming amazon
Computers (security) security computer network spam virus spyware viruses networking
ES (genetics) research national gov laboratory genetic home institute genome
ES (earth) earth structure interior edu crust tectonics model kids gov core
Engineering (physics) physics quantum theory theoretical solid edu research technology
Engineering (Einstein) einstein albert physics nobel eric literature weisstein world time
Health (aids) hiv aids prevention epidemic cdc information gov health infection
Health (medical care) hospital patient doctor medical care news information health
PS (elections) party democratic political communist socialist republican labor news
PS (army) force navy naval air mil commander news fleet web reserve
Sports (swimming) swimming swim swimmers help information coaching technique
Sports (football) football fans game nba playoff story players assault adidas university
* Key: CAE = Culture-Arts-Entertainment, ES = Education-Science, PS = Politics-Society

(GPM) topic model. This chapter presented the results of extensive experimentation on the GPM

model. It explored the influence of various parameter choices, identified key influential parameters

and proposed default values that can be use in practice.

As is well-known in the field of topic modelling, the selection of the appropriate number of

topics is a challenge. The GPM was shown to address this problem, which is one of the most

important contributions of the model. When the initial number of topics, K, is set to a high

enough value, the GPM is able to automatically select the number of topics. This is achieved via

the use of the collapsed Gibbs sampler. It was able to find estimates that were close to the true

number of topics on labelled corpora. A further benefit of the collapsed Gibbs sampler, is that

it also converges very quickly, thus evading the need for long burn-in periods as is typical in the

application of traditional Gibbs samplers.

It was also shown that the number of topics found by the GPM can be adjusting the changing

the value of β. This is a favourable characteristic as it gives the user flexibility and control over

the model output. A further benefit of the GPM is that is also tends to produce consistent results

with little variation. In addition, when compared with the GSDMM and BTM, it was shown

thet the GPM outperformed these models on the datasets that were considered: Firstly, using the
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recommended settings of 0.001 for α and β, the number of topics found by GPM was closer to

the true value than what was found by GSDMM. Secondly, the GPM was able to find topics with

higher average coherence scores, thus making it a good option for topic modelling on short text.

To further demonstrate the utility of the new GPM topic model, Chapter 6 presents an appli-

cation of GPM, where it is used to assess semantic similarity between texts in order to distinguish

between relevant and irrelevant documents in a corpus.
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PROBABILISTIC DSMS FOR SMALL

UNLABELLED TEXT

6.1 INTRODUCTION

Consider the scenario where a company, e.g. Discovery Ltd., wants to gather information on the

public perception of their services. This is a typical task for the resident data scientist who is

then tasked with scouring digital media for documents including the keyword ‘Discovery’. Digital

media includes social media posts, digital newspapers and blogs. Keyword search methods are

quite straightforward and output all documents in the search space containing the keyword. The

next step is to determine if all these documents actually relate to the intended keyword. Consider

the Discovery example. Whilst some documents may refer to the company, as is desired, others

may refer to the TV channel of the same name and others may simply contain the word discovery,

referring to a revelation or a finding. The question driving this research is:

Can one determine if a new text is semantically related to a corpus of interest based on

unstructured information only?

Let us refer to the corpus of interest as the reference corpus. For our Discovery example, this is

a set of documents that are known to have the correct context of interest. The question can be
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restated as follows: can one determine whether new texts (query corpus) are relevant or irrelevant

to the reference corpus? By assuming the validity of the manifold hypothesis, this problem can be

solved by transforming the corpus into a vector lying in a lower dimensional space and analysing

these vectors. According to the manifold hypothesis, real-world high-dimensional data tends to

lie within low-dimensional manifolds that lie within the high dimensional space (Fefferman et al.,

2016).

This is where the field of distributional semantics becomes relevant. Distributional semantics

is a sub-field of Natural Language Processing. Distributional semantic models (DSMs) explore the

meaning in language and aim to create semantic representations through learning by association.

DSMs are distributional in the sense that their parameters are learned through context from other

observed co-occurring words (Ó Séaghdha and Korhonen, 2014). They are based on the assump-

tion that the meaning of a word can be inferred from its usage in combination with other words;

an idea that was famously summarised by Firth (1957) in the saying, ‘You shall know a word by

the company it keeps.”

A vector-space approach is the most common DSM methodology and a very recent and suc-

cessful example is word embeddings, such as word2vec. Once words are represented in Euclidean

space, the applications are almost endless, ranging from collaborative filtering (Hofmann, 2004;

Wang and Blei, 2011), aspect-based sentiment analysis (Brody and Elhadad, 2010) and text clas-

sification (McCallum, 1999). Under the vector space approach, the acquired transformation fw is

defined as a vector for w ∈ C, where w is each word in the corpus vocabulary C. Models which

produce such representation of documents are called vector space models (VSMs). The tf-idf

(term frequency-inverse document frequency) model is an example of a VSM. Tf-idf creates a

vector-space representation of a document that tries to capture the importance of each word to the

document. Unfortunately, tf-idf produces vectors that are not only sparse, but also remain in the

same high-dimensional space as the original documents. Word2vec, on the other hand, is able to

produce short, dense vector-space representations that capture semantic properties between words.

A popular focus in the field of distributional semantics is determining similarity between lin-

guistic entities, such as words or documents. This application is based on the distributional hy-

pothesis which states that words with similar fw vectors have similar meaning (Levy et al., 2015).

The comparison between two vectors is made with similarity functions such as cosine similar-

ity (Murphy, 2012). With recent advances in deep learning, word embeddings such as word2vec
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(Mikolov et al., 2013) became popular distributional representations of words to such an extent

that pre-trained word embeddings have been developed and are available for open-source use.1

These pre-trained embeddings are trained on millions, if not billions, of words from web-based

corpora (Pennington et al., 2014) .

If the vector fw is normalised to unit sum, then it parameterises a discrete distribution which

can be defined as the conditional probability of observing a particular context given that word

w is observed (Ó Séaghdha and Korhonen, 2014). One does not need to search far for such a

probabilistic representation, as topic models such as the well-known Latent Dirichlet Allocation

(LDA) (Blei et al., 2003) and the recent Gamma-Poisson mixture (GPM) (Mazarura et al., 2020)

for short text, produce such representations. These topic models are examples of probabilistic

DSMs. They decompose high dimensional count vectors into two lower dimensional probability

distributions: one which acts as a clustering mechanism, and the other which acts as distributional

semantic representation for a document.

Returning back to the ‘Discovery’ example, suppose that the data scientist only had access to a

2 000-document corpus made up of social media posts, short reviews and comments from various

websites. This problem is plagued with various challenges.

1. Firstly, the corpus itself is small, so contains limited information. A vector space model like

word2vec may struggle in this scenario as it is well-known that it requires training on large

collections of data.

2. The fact that the collection of documents is made up of short text also creates further chal-

lenges as short text generally tends to provide very limited contextual information.

3. Lastly, such collections of data tend to be very noisy as they are often fraught with collo-

quialism, spelling errors and social media acronyms.

The Discovery example can be thought of as a supervised case due to the assumption that there

exists a pre-labelled corpus of training documents that are known to be about the Discovery Ltd.

This chapter takes this application a step further by making a contribution in an unsupervised case.

In this scenario, it is assumed that the researcher is presented with a collection of short documents

which are unlabelled as is often the case in real-life data. Consequent the contents of the corpus

1https://nlp.stanford.edu/projects/glove/
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is unknown in advance. The researcher would then want to determine the topics contained in this

corpus then, upon deciding on a topic of interest, she would then continue to determine whether

new documents are related to the topic of interest.

Ultimately, the objective of this chapter is to demonstrate the utility of the new GPM topic

model in distinguishing between semantically similar and dissimilar documents under such cir-

cumstances. In order to demonstrate this, the GPM’s performance will be compared to that of

word2vec on 3 datasets. The first two datasets represent applications that fall under the super-

vised scenario, similar to the Discovery example, whereas the third represents the unsupervised

scenario.

1. The first dataset contains a collection of news article titles that are labelled according to

the topic that they belong to. This collection is used to demonstrate how GPM is able to

perform well even with small corpora.

2. The second dataset is a labelled corpus of online conversations. Conversations are labelled

according to whether they are predatory or not and the objective is to identify whether a new

unseen conversation (query corpus) involves a sexual predator or not. This corpus has the

challenges of not only being short, but also being very noisy.

3. The last dataset is a collection of abstracts from COVID-19 papers. As the pandemic is a

fairly recent development, naturally there is a limited amount of data on the subject. As is

often the case in practice, this dataset is also unlabelled, which poses a further challenge.

In this application, the unsupervised nature of the topic model is exploited to provide labels

for the data. Finally, GPM and word2vec are used to address the problem of determining

the relevance of a query corpus to a reference corpus.

The following section provides details of the architecture of this application.

6.2 SEMANTIC SIMILARITY ARCHITECTURE

The objective of this section is to provide a breakdown of the tasks involved in establishing a

semantic similarity score. Figure 6.1 summarises the steps that will be followed to achieve this.

The white blocks represent input or output artefacts, such as corpora, matrices or scores. The em-

bedded grey blocks represent an algorithm or calculation. The dashed grey blocks contain section
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numbers which indicate the respective subsection explaining different aspects of the architecture

in more detail. In this architecture, the datasets are assumed to be pre-processed as discussed in

Section 6.3.2. In order to test the DSM’s generative abilities, the corpus is first split into a train-

ing and test set. The experimental workflow shown in Figure 6.1 can be summarised briefly as

follows:

1. Train the DSM on the training set. This will yield a semantic representation of the training

set. (Section 6.2.1)

2. If the documents are unlabelled, label them by taking the dominant topic2 of each document

from the semantic representation derived by the topic model. If the documents are pre-

labelled, this step is omitted.

3. Select a class of interest. Documents belonging to this class make up the reference corpus.

4. Index the test set and use the trained model to infer the topic distributions of documents in

the test set. This will yield a semantic representation of the test set. (Section 6.2.2)

5. Calculate the semantic similarities within the reference corpus and between between the

reference and query corpora. (Section 6.2.3)

6. For each document in the query set, calculate the probability of the semantic similarity

measure being obtained from the reference corpus semantic similarities. This probability

is then defines a relevance index score, which can then be used to determine whether a

document is in the query corpus is relevant to the reference corpus or not. (Section 6.2.4)

It is important to observe that the labels are not required for training, thus making this architec-

ture an unsupervised technique in practice. Their main purpose is to provide a baseline for the

evaluation of the results.

The different stages of the workflow will now be discussed in more detail in the subsequent

sections.

2This is simply the topic with the highest proportion in the document.
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Figure 6.1: Semantic similarity architecture.
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6.2.1 TRAIN DISTRIBUTIONAL SEMANTIC MODELS

The first task in the architecture is to train the DSM on the training corpus. Two DSMs will be

considered: GPM and word2vec. GPM has been discussed extensively and the theory behind

word2vec can be found in (Mikolov et al., 2013). After training the models, the output is a lower-

dimensional semantic representation for each document in the training corpus.

6.2.2 INDEX AND TRAIN DSMS ON TEST CORPORA

The next step is to index the test set. The pre-processing of the training set results in a vocabulary

of unique words and, in the case of topic models, with a bag-of-words transformation of the

unstructured documents. The test set may contain words which are not present in the training set

vocabulary. Therefore, we need to index the test set to the same bag-of-words representation as

the training set. After this is done, the DSMs can be trained on the test corpus. The result is a

semantic representation of the test set.

6.2.3 CALCULATE SEMANTIC SIMILARITY

To determine the similarity between documents, appropriate distance measures between the se-

mantic representations of the documents must be calculated. For the word2vec output, the soft-

cosine similarity metric will be used to calculate similarity scores. Since the output of the GPM

model yields doc-topic distributions of the corpus, it will assessed using Jensen-Shannon dis-

tances, which is a probabilistic measure. An overview of both distance measures is given below.

6.2.3.1 SOFT-COSINE SIMILARITY

Given two texts represented as vectors A and B, the cosine similarity between them can be calcu-

lated according to the formula

cos(A,B) =
A′ ·B√

A′ ·A
√
B′ ·B

, (6.1)

where 0 ≤ cos(A,B) ≤ 1. A value near 1 indicates high similarity whilst a value near 0 indicates

low similarity between documents (Charlet and Damnati, 2017; Jurafsky and Martin, 2019). One

weakness of this measure is that cos(A,B) = 0 when texts do not share any common words.
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This characteristic is undesirable as texts can be semantically related even when there are no

common words. This problem can be overcome by using the soft-cosine similarity. The soft-

cosine similarity measure achieves this by introducing a similarity matrix, S, into Equation 6.1

which yields,

softcos(A,B) =
A′ · S ·B√

A′ ·M ·A
√
B′ · S ·B

. (6.2)

Cosine similarity regards VSM features as being independent. Whereas, soft-cosine sim-

ilarity generalizes the concept of cosine similarity by also considering semantic similarity

between features (Sitikhu et al., 2019). The soft-cosine similarity measure can be eas-

ily calculated using the SoftCosineSimilarity function from the gensim Python package.

A tutorial detailing the application of word2vec for document similarity in the Python

package gensim is available at https://praveenbezawada.com/2019/03/22/

document-similarity-using-gensim-word2vec/.

6.2.3.2 JENSEN-SHANNON DISTANCES

A well-known analogue for vector-space similarity measures is the Kullback-Leibler (KL) diver-

gence Kullback and Leibler (1951). KL divergence measures the distance between two probability

distributions. KL divergence is not a distance metric as it is asymmetric and does not satisfy the

triangle inequality (Murphy, 2012). It can be symmetrised to produce the Jensen-Shannon diver-

gence, which is defined as

JS(P,Q) = 0.5 ·KL(P ||R) + 0.5 ·KL(Q||R),

where R = 0.5(P + Q) and KL(P ||M) denotes the KL divergence between probability vectors

P and Q.

Taking the square root of the Jensen-Shannon divergence produces a distance metric called the

Jensen-Shannon distance (JSD). In the context of this chapter, P and Q denote topic-distributions

(or semantic representations) of documents. Smaller JSD values indicate more similarity between

documents whilst larger values indicate less similarity. This is in contrast to the soft-cosine sim-

ilarity measure where small values indicate less similarity and larger values indicate more simi-

larity. In order to give the JSD-based measure the same interpretation, comparisons between the
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semantic representations were conducted using the adjusted Jensen-Shannon distances (AJSD),

where AJSD = 1-JSD. Consequently, very similar documents will have higher AJSDs whilst less

similar documents will have lower values.

6.2.4 CALCULATE RELEVANCE INDEX

JSDs and soft-cosine similarities are not directly comparable, thus there is a need for a suitable

conversion that will allow for the comparison of word2vec and GPM. To this end, a relevance

index will now be defined.

Consider the previously-introduced Discovery example. Suppose that a corpus of documents

that is known to be related to the company Discovery Ltd is isolated (reference corpus). If new

documents (query corpus) were to become available, one would want to determine whether or

not they are semantically related to the reference corpus. One way of doing this is by calculating

the mean similarity of the documents within the reference corpus and comparing them with the

mean similarity between the reference corpus and the query corpus. These distances between

the documents could be summarised visually in a histogram similar to those shown in Figure 6.1.

Naturally, it would be expected that distances between documents within a reference corpus would

be short. A relevance index can now be developed based on the answer to the following question:

“How likely is it to obtain a mean semantic similarity from the reference set that is less than or

equal to the mean similarity between the reference and query sets?”

Let µr denote the mean similarity between documents in the reference set. If µq,i denotes

the average distance between documents in the reference set and the i-th document in the query

set, then the relevance index is found by calculating the probability represented by shaded area

in Figure 6.2. This probability is estimated based on the observed average distances between

the reference set documents. If a hypothesis test was constructed where the null hypothesis was

that the new document was relevant (high similarity) and the alternative hypothesis was that is

was irrelevant (low similarity), the relevance index would be equivalent to the p-value for this

test. Consequently, high probabilities indicate high relevance and low probabilities indicate low

relevance.

The relevance indices can be displayed graphically to get a visual idea of the performance of

the DSMs. Since the documents are labelled (either using the topic model or pre-existing labels),

data points can then be labelled according to whether the corresponding document was related to
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Figure 6.2: Illustration of calculation of the relevance index. µq,i denotes the average distance
between the i-th query document and documents in the reference set.

the query set (blue) or whether it was irrelevant (red). Good performance indicators for the DSMs

are high relevance indices for ‘blue’ documents and low relevance indices for ‘red’ documents.

One can also go a step further and set a threshold value between 0 and 1, on the query set

relevance indices in order to calculate hard classification metrics such as accuracy, precision and

recall. Documents with relevance indices higher than the threshold are classified as relevant to

the query set and those below the threshold are classified as being irrelevant. If the results are

displayed graphically, then ‘blue’ documents would be expected to be above the threshold line,

whilst ‘red’ documents would be expected to be below the line if the DSMs were successful.

This means that ‘red’ documents above the threshold are regarded as false positives and ‘blue’

documents below the threshold are regarded as false negatives.

The following section will now provide details regarding the experimental setup.

6.3 EXPERIMENTAL DESIGN

The objective of the experiments is to compare vector-space (word2vec) and probabilistic (GPM)

DSMs in their ability to distinguish between semantically similar and dissimilar text. This sec-

tion covers various aspects of the experiments, such as parameter settings, pre-processing proce-

dures and data descriptions. Note, all experiments were executed in Python 3.6 in Windows 10
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on a computer with a 3.50 GHz quad core processor and 16 GB RAM. The codes to conduct

the experiments are available at https://github.com/jrmazarura/Similarity_

Experiments. Note, all experiments were repeated 10 times in order to provide averages and

standard deviations for the classification metrics.

6.3.1 PARAMETER SETTINGS

In this application, setting the parameter values for GPM to α = 0.001, β = 0.25 and K = 10

yielded good results. For word2vec, word vectors of size 200 were generated using the skip-gram

model from the gensim Python package.

6.3.2 PRE-PROCESSING

Prior to the application of the models, the corpora underwent standard pre-processing. This in-

cluded reducing uppercase words to lower case, the removal of stop words, numbers and special

characters, as well as stemming each word.

6.3.3 DATASETS

As previously mentioned, three datasets are considered. The first is a collection of news article,

which shall be referred to as the NEWS-2020 corpus. The second corpus is a collection of con-

versations labelled as either non-predatory or predatory. This corpus shall be referred to as the

PAN-2012 dataset. The third is a COVID-19 dataset, which shall be referred to as the CORD-19

corpus.

6.3.3.1 NEWS-2020

This dataset contains 108 774 news articles that come from one of 8 topics: Business, Entertain-

ment, Health, Nation, Science, Sports, Technology and World. This dataset is readily available as

an open-source dataset on Kaggle3. As the focus of this study is on short text, only the titles of the

news articles were considered. After pre-processing, the average length of the titles was 7 words

and the vocabulary size was 4 300 words. In order to test the DSMs on small corpora, two smaller

corpora were created by randomly selecting 10 000 and 5 000 documents, where each category

3https://www.kaggle.com/kotartemiy/topic-labeled-news-dataset
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was equally represented. The Health class was chosen as the class of interest. The test (query)

corpora was made by randomly selecting 20% of the Health titles and 20% of the Science titles

from the smaller corpus. The remaining documents made up the training corpus.

6.3.3.2 PAN-2012

The PAN-2012 dataset (Inches and Crestani, 2012) is a collection of 66 927 conversations labelled

according to whether the conversation involved a predator or not. This dataset was created for

researchers to have a common reference point to compare different approaches for identifying po-

tential sexual predators. After pre-processing, the corpus contained 61 243 conversations as some

documents ended up being empty. These conversations were made up of 59 456 non-predatory

conversations with an average length of 40 words per conversation (median 6), and 1 787 predatory

conversations with an average length of 86 words (median 23). The non-predatory and predatory

conversations were then split according to an 80-20 ratio. The training set was made up of the

two 80% portions from the non-predatory and predatory conversations, whilst the remaining 20%

portions made up the test set.

6.3.3.3 CORD-19

The COVID-19 Open Research Dataset4 (CORD-19) (Wang et al., 2020) is a growing collec-

tion of medical papers that was launched in March 2020. It was created with the objective of

allowing the global research community the opportunity to study the corpus and develop data

mining tools to generate new insights that may help fight the ongoing pandemic. The experi-

ments on this dataset were conducted on the abstracts associated with the ‘comm use subset’ and

‘noncomm use subset’ papers. We will refer to these short text corpora as the ‘comm abstracts’

corpus (training set) and ‘noncomm abstracts’ corpus (test set). Since, some papers did not have

abstracts, the ‘comm abstracts’ and ‘noncomm abstracts’ corpora only contained 8 750 and 1

830 documents, respectively. After pre-processing the average length of the documents in the

‘comm abstracts’ and ‘noncomm abstracts’ corpora was 104 and 92 respectively.

In previous experiments, GPM was applied to cleaned text that averaged 8 to 15 words per

document. In light of this, prior to the application of the GPM each document was truncated

4Data is available at https://www.kaggle.com/allen-institute-for-ai/
CORD-19-research-challenge

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 98

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge


CHAPTER SIX PROBABILISTIC DSMS FOR SMALL UNLABELLED TEXT

and only the first 10 words of each document were kept. As opposed to randomly selecting 10

words from each document or using more sophisticated feature selection methods, such as tf-idf,

this procedure ensures that the selected words originate from the first few sentences. Thus, if

the pre-processing was to be reversed, the selected words would be found in coherent sentences.

In addition, we also deemed it sensible to assume that most authors are likely to give careful

consideration to the first few sentences in their abstracts, thus we selected the first 10 words rather

than 10 words from elsewhere in the abstracts. This resulted in a vocabulary containing 9 777

unique words.

6.4 RESULTS

6.4.1 NEWS-2020 DATASET

The first step was to choose a class of interest. In this case, the ‘Health’ topic was chosen, thus

the reference set was made up of ‘Health’ documents from the training set. In order to compare

the performance of the models, the semantic representations of the documents that belonged to the

reference set were then compared with those of documents belong to two classes from the test set

(query sets). The first query set was made up of documents in the test set belonging to the same

class as the reference set, ie. ‘Health’. The second query set contained documents from a class that

was different to the class of interest. In this case, documents from the ‘Science’ topic were chosen

as the second query set. The distances between the reference and query sets were then calculated

and summarised in histograms. High values of these metrics indicate high similarity whereas low

values indicate low similarity.

The top graph in Figure 6.3 shows results from GPM. The GPM tends to produce semantic

representations whose distances tend to be either extremely large or extremely small. This is a

common characteristic of the GPM histograms, which is not only apparent in Figure 6.3, but will

also be observed in later graphs. The reason for this is that the GPM assigns documents to topics

in a manner akin to hard clustering due to its one-topic-per-document assumption. The yellow

histogram in Figure 6.3 shows the distribution of semantic similarities (adjusted Jensen-Shannon

distances) between ‘Health’ the reference set and the ‘Health’ query set. The expectation was

that, since these documents came from the same topic, their distances will generally be large,

indicating high similarity. In contrast, the blue histogram is expected to be centred near lower
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Figure 6.3: Distributions of distances between semantic representations of NEWS-2020 docu-
ments from GPM (top) and wordvec (bottom).

values as it shows the distribution of semantically dissimilarities sets, the ‘Health’ reference set

and the ‘Science’ query set. The results for word2vec are shown in lower graph of Figure 6.3. The

distribution of distances between the similar sets are shown in the red histogram, whilst that of

the dissimilar sets is shown in green. From the blue and green histograms, it is evident that both

models were able to produce semantic representations that captured the dissimilarity between the

‘Health’ and ‘Science’ sets. When it came to the similar sets, some of the distances were large as

expected, but there is some overlap with the dissimilar set distances. Overall, both models appear

to have performed well and will likely be useful for determining relevance for these topics.

The next step was to calculate relevance indices for the documents in the query sets. The

results are summarised graphically in Figure 6.4. Blue points correspond to documents belonging

to the relevant set, i.e. the ‘Health’ query set whilst red point indicate documents belonging to
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Figure 6.4: Relevance index results for GPM and word2vec on 10 000-document corpus from the
NEWS-2020 corpus.

the irrelevant set, i.e. the ‘Science’ query set. If a document is highly relevant, it should have

a high relative index value, whereas an irrelevant document should have a low relevance index.

Evidently, both models perform well as blue points predominantly have higher relevance values

whilst red points tend to have lower values.

As described in Section 6.2.4, the accuracy, precision and recall of each model can be calcu-

lated by comparing these relevance indices with a threshold value. For this application, the value

was chosen to be 0.1 and is indicated by the green horizontal line in Figure 6.4. Documents above

this line are then classified as relevant and documents below are classified as irrelevant. The exper-

iment was repeated 10 times, and the averages and standard deviations of the classification metrics

are shown in Table 6.1 under the 10 000 documents heading. Based on this threshold, the GPM

was able to classify documents according to relevance more accurately than word2vec. Precision
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Table 6.1: Averages (and standard deviations) of classification metrics for different models on the
NEWS-2020 corpus.

Metric
10 000 documents 5 000 documents

GPM word2vec GPM word2vec

Accuracy 0.820 (0.035) 0.775 (0.006) 0.824 (0.030) 0.611 (0)

Precision 0.738 (0.083) 0.689 (0.010) 0.756 (0.065) 0.624 (0)

Recall 0.883 (0.021) 0.834 (0.004) 0.877 (0.028) 0.614 (0)

F1 Score 0.801 (0.050) 0.755 (0.007) 0.810 (0.039) 0.619 (0)

tells us the proportion of the documents that were classified as relevant that were actually relevant

(ie. proportion of all points above the threshold line that are blue). In this context, precision is

the proportion of documents that were classified as being about ‘Health’ that were actually about

‘Health’. If there are no false positives, then the value of the precision will be 1. Recall gives us

the proportion of actually relevant documents that were correctly identified (ie. proportion of blue

dots that are correctly positioned above the threshold line). In other words, recall is the proportion

of actual ‘Health’ documents that were correctly identified. The F1 score is a trade off between

precision and recall and a higher value is generally preferable. The performance of GPM is better

with respect to all these measures at a threshold of 0.1.

The classification performance can also be summarised visually by ROC (Receiver Operating

Characteristics) curves as in Figure 6.6. Figure 6.6 shows results from a single run of the codes.

AUC (Area Under The Curve) values for each model are also indicated. The closer the AUC value

is to 1 the better the performance. An AUC value is 0.5 indicates poor performance as this means

that the model was unable to classify any point correctly. Figure 6.6(a) shows that both models

generally perform well, but the GPM is slightly better than word2vec.

Lastly, as mentioned previously, one of the problems that arises in practice is that of only

having small-sized datasets. To investigate the performance of the models on a smaller corpus,

the experiments were repeated again, but this time only 5 000 documents were randomly selected

instead of 10 000. These documents were selected in the same manner as described in Section

6.3.3.1. The relevance indices are plotted in Figure 6.5. It is evident that the performance of

word2vec severely deteriorated. Unlike GPM which generally produced high relevance values for

blue point and low values for red point, GPM struggled to make this distinction. The relevance
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Figure 6.5: Relevance index results for GPM and word2vec on 5 000-document corpus from the
NEWS-2020 corpus.

index values for red and blue points appear to be randomly scattered between 0 an 1 thus indi-

cating that the model struggled to distinguish between relevant and irrelevant documents. This is

also evident in the classification metrics shown in Table 6.1 under the 5 000 documents heading

as well as in Figure 6.6(b). For word2vec, the threshold was changed to 0.5 to find a balance

between precision and recall for the model. Table 6.1 shows a large decrease in performance for

word2vec, whereas the GPM performance only drops slightly. Furthermore, it is clear that the

GPM outperformed word2vec with respect to accuracy, recall, precision and F1 score by a large

margin. The ROC curve and AUC values shown in Figure 6.6(b) also support this. In conclusion,

for the smaller dataset, GPM is the better option.
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(a) (b)

Figure 6.6: ROC curves for NEWS-2020 corpora for (a) 10 000-document corpus and (b) 5 000-
document corpus.

6.4.2 PAN-2012 CORPUS

Like the NEWS-2020 dataset, the PAN-2012 corpus is also pre-labelled. However, this dataset

poses somewhat of a greater challenge than the NEWS-2020 dataset as it is a collection of conver-

sations. Conversations tend to be informal and contain colloquialism, spelling errors and social

media acronyms, which make this a very noisy dataset. This collection is labelled according to

whether the conversation threads were predatory or not. The reference corpus is thus chosen to

be predatory conversations as it is important to be able to identify such conversations in order to

detect potential predators.

Similar to the NEWS-2020 corpus experiments, relevance indices were calculated between

the reference set (predatory documents from the training set) and two query sets, a similar and a

dissimilar query set. The similar query set contained the predatory conversations from the test set

and the dissimilar query set was made of the non-predatory conversations from the test set. The

relevance index results are shown in Figure 6.7. Both models perform well as blue point tend to

have higher relevance indices whilst red points tend to have lower indices. The averages and stan-

dard deviations of classification metrics from 10 runs of the codes using thresholds of 0.25 and 0.1

for GPM and word2vec, respectively, are shown in Table 6.2. In this context, the precision gives

the proportion of conversations that were classified as predatory that were actually predatory. The
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Figure 6.7: Relevance index results for GPM and word2vec on PAN-2012 corpus.

average accuracy, precision and F1 score for both GPM and word2vec was approximately 82%,

80% and 83%, respectively. In this application, recall is actually more important. Recall gives the

proportion of true predatory conversations that were correctly identified. A higher recall is there-

fore desirable. For the selected threshold values, the GPM’s recall is 89.5% whilst word2vec’s

recall is 87%. The results for different choices of threshold are summarised in Figure 6.8.5 The

GPM generally outperforms word2vec.

6.4.3 CORD-19 CORPUS

Unlike the previous corpora, the CORD-19 corpus is unlabelled, which is a common occurrence

in real-life. This dataset will be used to demonstrate how one can pick a class of interest from an

5Figure 6.8 shows results from a single run of the codes.
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Table 6.2: Evaluation of GPM and word2vec PAN-2012 dataset.

Metric
PAN-2012

GPM word2vec

Accuracy 0.822 (0.029) 0.827 (0.003)

Precision 0.785 (0.048) 0.807 (0.005)

Recall 0.895 (0.014) 0.870 (0.002)

F1 Score 0.835 (0.021) 0.837 (0.002)

Figure 6.8: ROC curves for GPM and word2vec on PAN-2012 corpus.

unlabelled corpus and then determine the relevance of new documents. Word2vec will no longer

be considered here, due to that absence of labels.

As discussed in the Section 6.2, the first step is to train the GPM model on the training corpus.

By virtue of GPM being a topic model, the output will not only be a semantic representation of

the documents, but also a set of topics. From here, the user can then pick a topic of interest. Once

a topic of interest is chosen, the reference corpus is then chosen to be documents whose semantic

representations assign the highest probability to the topic of interest. From here, the user can

then follow the same procedure as before to determine relevance indices for new documents. The

remainder of this section investigates this process on the CORD-19 corpus.

GPM was first trained on the ‘comm abstracts’ subset of the CORD-19 dataset. Below are the

top 10 words for 3 of the 10 topics that were found by the GPM model and the topic labels are
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indicated in bold.6

• Virology: [‘use’, ‘sequence’, ‘study’, ‘method’, ‘gene’, ‘detect’, ‘protein’, ‘develop’,

‘genome’, ‘virus’]

• Pulmonology: [respiratory’, ‘coronavirus’, ‘syndrome’, ‘middle’, ‘east’, ‘severe’, ‘mer-

scov’, ‘cause’, ‘acute’, ‘human’]

• Immunology: [‘study’, ‘use’, ‘vaccine’, ‘effect’, ‘human’, ‘antibody’, ‘active’, ‘treatment’,

‘infect’, ‘virus’]

The topic labels, ‘Virology’, ‘Pulmonology’ and ‘Immunology’, were manually assigned which

is typically necessary in the application of topic models. Consequently, this makes the process

subjective as different users may arrive at different labels. The topic labels provided for the 3 topics

above were selected in consultation with a medical doctor. Based on the semantic representation

of each document, the training set was then labelled according to its dominant topic7. The test set

was then indexed against the trained GPM model, thus producing semantic representations of the

test set. It is at this stage that the user could select a topic of interest an then calculate relevance

indices.

In order to study the results in greater depth, let us go a step further and also label the test

corpus according to the dominant topic of each document. These labels will allow for the graphical

comparison of semantic representations for different topics as well as calculation of classification

metrics.

Suppose that ‘Virology’ documents from the test set are selected as the reference corpus. The

semantic representations can be compared with ‘Virology’ documents from the test corpus (sim-

ilar query set) and ‘Pulmonology’ documents from the test corpus (dissimilar query set). These

results are summarised in the top graph of Figure 6.9. The yellow graph shows the distribution

of semantic similarities (adjusted Jensen-Shannon distances) between the ‘Virology’ reference set

and the ‘Virology’ query set. The blue histogram, showing the distribution of semantic similari-

ties between the‘Virology’ reference set and the ‘Pulmonology’ query set. Similarly, in the bottom

6These three topics were specifically selected because they were the 3 topics into which the documents in the test
corpus, the ‘noncomm abstracts’ subset, were assigned by the GPM topic model.

7The dominant topic of a document is the topic with the highest proportion in the document based on its semantic
representation.
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Figure 6.9: Distributions of semantic similarities between semantic representations of different
documents from GPM.

graph of Figure 6.9, the red and green histogram shows semantic similarities for ‘Pulmonology’

(testing vs training) and ‘Immunology. (testing) vs ‘Pulmonology. (training), respectively. Ideal

results should show high AJSD values between corpora that are similar and lower values for those

that are dissimilar. In both graphs, most of the lower AJSD values arise from the comparison of the

dissimilar sets, which is a desirable result. There is some overlap visible in both graphs around the

lower AJSD values, which indicates that some of the semantic representations within the similar

sets had a low similarity. Despite this, there were some semantic representations from the similar

sets that produced high AJSD values. It is also interesting to note that there is very little overlap

around the higher AJSD values. In other words, AJSD values between the dissimilar sets generally

did not have high semantic similarity.
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Figure 6.10: Relevance index results for GPM on CORD-19 dataset.

The next stage is to calculate the relevance indices. Due to the presence of labels, the accuracy,

precision and recall of each model can be calculated by comparing these relevance indices with a

threshold value. For this application, the value was chosen to be 0.1. The results are summarised

graphically in Figure 6.10. The reference set in this example was ‘Virology’. Relevance indices

were then calculated between the reference corpus and the ‘Virology’ query set as well as the ‘Pul-

monology’ query set. As previously mentioned, if the models are performing well, then relevant

documents (blue) should appear above the green threshold line, whilst irrelevant documents (red)

should appear below it. It is clear from Figure 6.10 that the GPM performed well. This can be

quantified by looking at the classification metrics. The GPM model was run on the labelled docu-

ments ten times and the average and standard deviations of the classification metrics are shown in

Table 6.3. At a threshold of 0.1, the average accuracy is 70.5% and the average precision is 93.1%,

average recall is 63.6%.
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Table 6.3: Averages and standard deviations of classification metrics for GPM on the CORD-19
corpus.

Metric
CORD-19

Mean Standard Deviation

Accuracy 0.771 0.058

Precision 0.950 0.033

Recall 0.694 0.055

F1 Score 0.801 0.041

6.5 CONCLUSION

The objective of this chapter was to demonstrate the GPM model’s ability to successfully create

semantic representations that would produce high relevance indices for a test documents which

were semantically similar to a reference corpus. It was shown that the GPM, a probabilistic DSM,

was able to do this successfully. GPM and word2vec were applied to 3 different datasets and the

key findings were as follows:

1. It was shown that NEWS-2020 dataset, GPM was better than Word2vec at distinguishing

between new documents belonging to the ‘Health’ topic (relevant) and those belonging to

the ‘Science’. It was also shown on this dataset, that GPM was the better option when the

size of the corpus was small.

2. In the PAN-2012 dataset, GPM was able to perform well on this small corpus of noisey

short text. Furthermore, for similar precision, GPM had the better recall, thus making it the

better option for this application.

3. The most important contribution was in the CORD-19 application, which is a fully unsu-

pervised technique. It covers a scenario where a user may have a collection of unlabelled

documents whose topics are unknown. Based on what is discovered by the topic model, the

technique makes it possible for a user to then zoom in on a particular class of interest and

find other relevant documents when new, unseen documents become available.

Apart from the experimental results, an experimental workflow for evaluating DSMs was also

introduced. An important contribution s the definition of a relevance index, which is a normalized
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performance metric to compare different similarity measures.
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CONCLUSION

The study of topic models for short text remains an open area of research due the great abundance

of short text corpora and the vast applications that follow. In this thesis, a new topic model for

short text, the Gamma-Poisson mixture model was developed and a Python package for its imple-

mentation was created. The GPM was shown to outperform state-of-the-art topic models for short

text based on different evaluation metrics. Various experiments were performed and it was found

that GPM produced topics with better average topic coherence scores than GSDM and BTM on

three datasets. A collapsed Gibbs sampler for the GPM was derived and it proved to be of great

benefit to the model as it allowed for quick convergence and there was very little variation between

different runs of the model. More importantly, the collapsed Gibbs sampler gave the new topic

model the ability to automatically infer the number of topics contained in a corpus, which is typ-

ically a challenge in practice. When compared to GSDMM, the number of topics found by GPM

on various datasets was found to be closer to the number of topics found by human annotators.

The usefulness of the new topic model was then shown in a real-world application: deter-

mining the relevance of a new corpus to a collection of documents of interest. In doing so, a

framework for this was developed and a relevance index for the comparison of different similarity

measures was defined. It was shown that the GPM was able to successfully produce semantic rep-

resentations that allowed for the discrimination of relevant and irrelevant documents in short texts
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that were also small in size. Upon identifying the prevalence of unlabelled documents in reality,

a methodology for determining relevance in this unsupervised setting was proposed and shown to

be successful.

Other contributions of this work include, establishing the validity of the Poisson distribution

as a valid model for modelling short text. It was shown empirically that, contrary to popular belief,

the Poisson distribution was appropriate for modelling text from short documents, as such texts do

not necessarily display burstiness and over-dispersion. This formed part of the basis for the new

model. In addition, this thesis presented a unifying framework that situated topic modelling in the

wider context of other well-known statistical models. It was shown that topic models possess both

dimensionality reduction and clustering capabilities.

There are several areas for future work.

• One area of interest is extending the model to allow each document to contain 1, 2 or 3

topics. Li et al. (2017a) extended the Dirichlet multinomial mixture model to allow for this

more relaxed assumption and found that the performance of the model improved. As is,

the GPM only assumes one topic per document and introducing this variant will add some

flexibility that may be useful for documents that do not satisfy this assumption.

• GPM is not able to take advantage of external information about the relationships between

words that can be derived from word-embeddings. Given the success of other researchers

who incorporated such information via models such as the Generalised Pólya urn, it seems

promising that GPM would benefit from this modification.

• GPM was mainly compared with GSDMM due to their shared ability to detect the number

of topics automatically. Further experiments could still be performed comparing GPM to

other topic models such as LF-DMM and GPU-DMM.

• GPM’s performance was only compared with that of word2vec in the document similarity

experiments. These experiments can be expanded to compare GPM with other models such

as BTM and NMF.

• The focus of this research was on the topic modelling aspect of the models, but it is not un-

common to use short text topic models for clustering (Qiang et al., 2020). The performance

of GPM was not assessed on its clustering capability, yet in the original paper of Yin and
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Wang (2014), the GSDMM’s clustering performance was compared with other models such

as K-means (Jain, 2010) and DMAFP (Huang et al., 2012).

• It has been mentioned that selecting the number of topics can be achieved using non-

parametric topic models. The hierarchical Dirichlet process (Teh et al., 2006) is one such

model and it has be used for long text. Another area for further research would be the study

of non-parametric topic models for short text, leading into a comparison of such models

with GPM.

• Lastly, there is also room to expand the experiments around semantic similarity. This would

include using other corpus genres as well as other word embeddings, such as tf-idf and

GloVe, and Bidirectional Encoder Representations from Transformers (BERT).
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APPENDIX

I WORD FREQUENCY GRAPHS

Figures 7.1 to 7.3 show the distribution of different words across different corpora for different

classes. The corpora used here are described in Section 5.2. In each graph, the circles represent

the number of documents in which each of the words appears 0, 1, 2, ..., 5 times in the respective

corpus and the straight lines indicate the predicted Poisson distribution associated with each word.

Apart from a few words, the Poisson distribution appears to be a good fit. None of these graphs

displays the heavy tails that were observed by Church and Gale (1995) in the Brown corpus.

(a) Class 1 (b) Class 2

Figure 7.1: Pascal Flickr corpus.

II COMPARISON OF MEANS AND VARIANCES

Scatterplots of the means of word occurrences against their variances are shown in Figures 7.4 to

7.6. In most cases, means are less than variances. Only, Search Snippets corpus appears to display

overdispersion.
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(a) Class 99 (b) Class 88

Figure 7.2: Tweet corpus.

(a) Class 1 (b) Class 2

Figure 7.3: Search Snippets corpus.

(a) Class 1 (b) Class 2

Figure 7.4: Pascal Flickr corpus.
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(a) Class 99 (b) Class 88

Figure 7.5: Tweet corpus.

(a) Class 1 (b) Class 2

Figure 7.6: Search Snippets corpus.

III ASSESSMENT OF BURSTINESS IN OTHER CORPORA

Tables 7.1 to 7.3 give an indication of whether there is burstiness in the top 10 occurring words in

a few of the classes.

In the Pascal Flickr and Tweet corpora, there does not appear to be significant burtsiness. The

words in the Search Snippets corpus appear to display some burstiness. A possible reason for the

corpus displaying characteristics as that of the long text Brown corpus could be that the topics

are too broad. The 12 295 document corpus is divided into only 8 categories and these categories

can be subdivided further into subtopics. For instance, subtopics such as Swimming and Football

would fall under the Sports topic. Words such as “swim” or “pool” may not be common throught
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the entire corpus, but are likely to occur in high concentration in documents about swimming.

Thus, it is not surprising to observe burstiness in this dataset.

Table 7.1: Pascal Flickr corpus.

Word Frequency df Predicted df
bike 69 65 60
man 51 51 46
riding 43 43 39
person 28 28 26
wearing 17 17 16
front 15 15 15
girl 15 15 15
young 15 15 15
helmet 15 15 15
street 14 14 14

Class 1

Word Frequency df Predicted df
water 35 35 33
white 34 33 32
perched 31 31 29
small 30 30 28
sitting 25 24 24
standing 24 24 23
black 23 23 22
green 22 22 21
branch 21 21 20
blue 20 20 19

Class 2

Table 7.2: Tweet corpus.

Word Frequency df Predicted df
commercial 247 228 157
superbowl 162 160 119
super 86 83 73
bowl 85 82 72
ad 42 37 39
doritos 42 41 39
best 34 32 32
volkswagen 28 28 26
pepsi 26 23 25
youtube 23 23 22

Class 99

Word Frequency df Predicted df
king 141 122 92
speech 138 121 90
award 76 72 60
oscar 76 74 60
nomination 49 45 42
academy 28 27 26
best 27 22 25
sag 26 26 24
lead 22 22 20
win 22 18 20

Class 88
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Table 7.3: Search Snippets corpus.

Word Frequency df Predicted df
business 692 334 554
market 309 160 279
trade 258 109 237
stock 246 112 227
news 243 146 224
com 212 176 198
economic 205 120 192
information 202 168 189
finance 193 105 181
financial 179 124 169

Class 1

Word Frequency df Predicted df
computer 653 357 529
web 313 175 283
software 304 169 275
programming 253 120 233
wikipedia 216 105 201
memory 208 82 194
com 206 157 192
internet 198 120 185
intel 191 73 179
information 185 152 174

Class 2

IV PERFORMANCE MEASURES FOR NORMALISATION METHOD 1

Figures 7.7 and 7.8 show a comparison of the topics found, coherence and runtime for N =

10, 20, 30 on the Tweet and Search Snippets corpora, respectively, for normalisation method 1.

Figure 7.7: Number of topics found, average coherence and runtime of the GPM for N =

10, 20, 30 on the Tweet corpus.
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Figure 7.8: Number of topics found, average coherence and runtime of the GPM for N =

10, 20, 30 on the Search Snippets corpus.

V DERIVATION OF NORMALISATION METHOD 2

The topic estimates are only dependent on the topic assignments, thus it is only necessary to

sample the topic assignment for each document. This is achieved by sampling from the conditional

probability of a document belonging to a class,

p
(
zm = z|z(m),x,α,β, γγγ

)
=

p(x, z|α,β, γγγ)

p
(
x, z(m)|α,β, γ

) ∝ p(x, z|α,β, γγγ)

p
(
x(m), z(m)|α,β, γγγ

) . (A1)

Owing to conditional independence between x and z, it follows that

p(x, z|α,β, γγγ) = p(x|z,α,β)p(z|γγγ). (A2)

It was shown in Equation 4.7 that the second term on the right hand side of Equation A2 can be

expressed as

p(z|γγγ) =
∆(m+ γγγ)

∆(γγγ)
. (A3)
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where m = [m1,m2, . . . ,mK ] and mk denotes the number of documents assigned to the k-th

topic, ∆(γγγ) =
∏K
k=1 Γ(γk)

Γ(
∑K
k=1 γk)

and ∆(m+ γγγ) =
∏K
k=1 Γ(mk+γk)

Γ(
∑K
k=1(mk+γk))

.

The first term on the right-hand side of Equation A2, can be expressed as

p(x|z,α,β) =

∫
p(x|z,λ)p(λ|α,β)dλ. (A4)

Unlike normalisation method 1 (direct document length normalisation) which assumed the fre-

quency of each word, xmv, was modelled as

xmv|z = k ∼ Poi(λkv),

normalisation method 2 (modelling document length in the topic model) assumes

xmv|z = k ∼ Poi(Nmλkv),

where Nm denotes the number of words in the m-th document. Consequently,

p(x|z,λ) =

M∏
m=1

V∏
v=1

p (xmv|Nmλkv) =

M∏
m=1

V∏
v=1

(Nmλkv)
xmve−Nmλkv

xmv!
. (A5)

Equation A5 can be re-expressed by the introduction of nk, then number of words assigned to the

k-th topic, and nkv, the number of times word v is observed in topic k, as

p(x|z,λ) =
K∏
k=1

V∏
v=1

NNM
M λnkvkv e

−nkλkv

x!
, (A6)

wherex! =
∏M
m=1

∏V
v=1 xmv. By assuming a Gamma distribution forλ and substituting Equation
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A6 into Equation A4, we obtain

p(x|z,α,β) =

∫
p(x|z,λ)p(λ|α,β)dλ

=

∫ K∏
k=1

V∏
v=1

NNM
M λnkvkv e

−nkλkv

x!
×
λαv−1
kv e

−λkv
βv

Γ (αv)β
αv
v

dλkv

=
K∏
k=1

V∏
v=1

NNM
M

x!Γ (αv)β
αv
v

∫
λnkv+αv−1
kv e

−λkv
(
nk+ 1

βv

)
dλkv

=
K∏
k=1

V∏
v=1

NNM
M

x!Γ (αv)β
αv
v
× Γ (nkv + αv)

(
βv

nkβv + 1

)nkv+αv

=
K∏
k=1

V∏
v=1

Γ (nkv + αv)

x!Γ (αv)
×

NNM
M βnkvv

(nkβv + 1)nkv+αv
. (A7)

The integral is solved by multiplying the equation by Γ (nkv + αv)
(

βv
nkβv+1

)nkv+αv
divided by

itself. The result is an integral over a gamma distribution with parameters nkv + αv and βv
nkβv+1 .

By substituting Equation A3 and A7, Equation A2 can now be written as

p(x, z|α,β, γγγ) = p(x|z,α,β)p(z|γγγ)

=
∆(m+ γγγ)

∆(γγγ)

K∏
k=1

V∏
v=1

Γ (nkv + αv)

x!Γ (αv)
×

NNM
M βnkvv

(nkβv + 1)nkv+αv
. (A8)

The derivation of the conditional distribution in Equation A1 can now be concluded by substi-

tuting Equation A8 and applying the property of the Γ function, Γ(x+m)
Γ(x) =

∏m
j=1(x + j − 1), as
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follows

p
(
zm = z|z(m),x

)
∝ p(x, z|α,β, γγγ)

p
(
x(m), z(m)|α,β, γγγ

)
=

∆(m+ γγγ)

∆
(
m(m) + γγγ

) × V∏
v=1

 Γ (nzv + αv)

Γ
(
n

(m)
zv + αv

)
(NNm

m

NNm
m

)(
βnzvv

βn
(m)
zv

v

)(
x(m)!Γ (αv)

x!Γ (αv)

)

×


(
n

(m)
z βv + 1

)n(m)
zv +αv

(nzβv + 1)nzv+αv


=

m
(m)
z + γz

M − 1 +
∑K

k=1 γk
×

V∏
v=1

xmv∏
j=1

(
n(m)
zv + αv + j − 1

)
× βxmvv × 1

xm!

×

(
n

(m)
z βv + 1

)n(m)
zv +αv

(
n

(m)
z βv +Nmβv + 1

)n(m)
zv +xmv+αv

, (A9)

where nzv = n
(m)
zv +xmv and nz = n

(m)
z +Nm. If it is assumed that αv = α, βv = β and γk = γ

for all v and k, then Equation A9 simplifies to

p
(
zm = z|z(m),x

)
∝ m

(m)
z +γz

M−1+Kγ ×
βnm

xm! ×
(
n
(m)
z +1

)n(m)
z +V α

(
n
(m)
z β+Nmβ+1

)n(m)
z +nm+V α

×
∏V
v=1

∏xmv
j=1

(
n

(m)
zv + α+ j − 1

)
,

(A10)

thus concluding the derivation of Equation 4.14.

VI COMPARISON OF NORMALISATION METHODS 1 AND 2

Figures 7.9 and 7.10 compare the topics found, coherence scores and runtimes of normalisation

methods 1 (direct document length normalisation) and 2 (modelling document length in the topic

model).
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Figure 7.9: Comparison of average coherence, number of topics found and runtime of GPM under

normalisation methods 1 and 2 on the Tweet corpus (True K = 89).

Figure 7.10: Comparison of average coherence, number of topics found and runtime of GPM

under normalisation methods 1 and 2 on the Search Snippet corpus (True K = 8).
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VII INFLUENCE OF GAMMA

Figures 7.11 and 7.12 show the influence of the choice of gamma on the number of topics found

for the Tweet and Search Snippets datasets, respectively.

Figures 7.13 and 7.14 show the influence of the choice of gamma on the topic coherence scores

for the Tweet and Search Snippets datasets, respectively.

Figure 7.11: Influence of gamma on number of topics found.
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Figure 7.12: Influence of gamma on number of topics found.

Figure 7.13: Influence of gamma on average coherence.

136



Figure 7.14: Influence of gamma on average coherence.
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