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Abstract
Adult Mantispidae are general predators of arthropods equipped with raptorial forelegs. The three larval 
instars display varying degrees of hypermetamorphic ontogeny. The larval stages exhibit a remarkable life 
history ranging from specialised predators of nest-building hymenopteran larvae and pupa, to specialised 
predators of spider-eggs, to possible generalist predators of immature insects. Noteworthy advances in 
our understanding of the biology of Mantispidae has come to light over the past two decades which are 
compiled and addressed in this review. All interactions of mantispids with other arthropods are tabled and 
their biology critically discussed and compared to the current classification of the taxon. Additionally, the 
ambigous systematics within Mantispidae and between Mantispidae and its sister groups, Rhachiberothi-
dae and Berotidae, is reviewed. Considering the biology, systematics, distribution of higher taxonomic 
levels and the fossil record, the historical biogeography of the group is critically discussed with Gondwana 
as the epicenter of Mantispidae radiation.
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Overview

Neuroptera are a relatively small order of holometabolous insects that are thought to 
have originated during the Permian Period (Engel et al. 2018; Winterton et al. 2018). 
Larvae of Neuroptera are generally predators, while adults are either predacious or 
pollen-feeders, thereby fulfilling vital roles in the functioning of natural ecosystems 
(Mansell 2010). The ecological separation of adults and larvae, which occupy a wide 

Review

204206 2042060004800147.INDD   1 26-Mar-20   07:49:51 AM



Unco
rre

cte
d Proofs

	 L.P. Snyman et al. / Insect Systematics & Evolution (2020) 
2	 DOI 10.1163/1876312X-bja10002

range of habitats (e.g. arboreal, psammophilous, semi-aquatic, aquatic, inquilines) and 
exhibit many different life history strategies, make them ideal insect models for eco-
system health as well as environmental indicators (Aspöck 1992). Despite their great 
ecological importance, many families are comparatively poorly studied and knowledge 
of their taxonomy, biology, phylogeny, biogeography and conservation status, are in-
adequate (Ohl 2004, 2005).

Mantispidae are one of the neglected families of Neuroptera. Mantispids are eas-
ily recognised by their raptorial front legs, similar to those of the praying mantis. 
Mantispidae currently comprise four extant subfamilies, Symphrasinae, Drepanicinae, 
Calomantispinae and Mantispinae, with the biology of the most diverse subfamily, 
Mantispinae, best studied (Lambkin 1986a; Willmann 1990; Liu et al. 2015). The 
classification of the family, however, remains unsettled, with a recent phylogenomic 
study by Winterton et al. (2018), which included Berothidae, rendering Mantispidae 
paraphyletic. The authors suggested reviewing the status of Berothidae, Rhachiber-
othidae and Mantispidae as separate families. Here we do not suggest any changes to 
the status of Berothidae, Rhachiberotidae and Mantispidae and merely use the family 
status as it is widely accepted. The proposal from Winterton et al. (2018) may be ac-
cepted in time, but the authors did not present a formal breakdown of the classification 
and we therefore follow the findings of Liu et al. (2015).

Mantispid larvae are predators of either insect pupae (mainly from the orders Co-
leoptera, Lepidoptera and Hymenoptera) or, as in the case with the largest subfamily, 
Mantispinae, of spider eggs (Lambkin 1986b; Ohl 2011; Redborg 1998; Redborg & 
Macleod 1985). Some of the Mantispinae larvae display phoretic behaviour and board 
spiders to locate spider eggs (Haug et al. 2018; Ohl 2011; Redborg & Macleod 1983). 
While being transported on the spider, the larvae of some species may take blood 
meals and can therefore be considered as ectoparasites. Other members mimic wasps 
of the families Vespidae, Eumenidae and Sphecidae (various authors; Supplementary 
Table S1). It is possible that they use flowers as a platform for locating prey (Snyman 
et al. 2012). These platforms might make them vulnerable targets to predators and 
they may benefit by mimicking wasps that are equipped with a sting (Beck 2005; Hoff-
man 1992; O’Donnell 1996; Kauppinen & Mappes 2003; Rashed et al. 2005). This 
however, remains to be tested and clarified.

The behavioural ecology of Mantispidae and its associations with other taxa are also 
well worth looking into. Most of the reports published on this topic are only frag-
mented information. No studies have yet aimed to resolve the interspecific differences 
using comparative studies. It is unclear what cues mantispid larvae follow (olfactory or 
other) to reach their hosts. The same is true for the adult oviposition behaviour. The 
long suspected pheromonal release by adult males has also not been studied and might 
provide valuable information into mantispid behaviour and evolution (Batra 1972; El-
tringham 1932; McKeown & Mincham 1948; Redborg & Macleod 1985). The posi-
tions adopted by the planidial larvae on spiders as well as the ecological guild occupied 
by the spiders that are attacked, might have interspecific differences. This can provide 
interesting partitioning behaviour between sympatric species and result in a better un-
derstanding of the general ecology of mantispids. The mimicry present in several taxa 
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is also only superficially understood. Thus far, only Opler (1981) demonstrated the 
evolutionary and ecological significance of mimicry in this enigmatic family.

The biology of Mantispidae was last reviewed two decades ago (Redborg 1998). 
Since then, significant publications have elucidated key aspects of life-histories, be-
haviour and interactions with other Arthropoda. Significant fossil finds have also been 
reported with new subfamilies, genera and species recently described (Jepson 2015). 
The historical biogeography is, however, not well understood and the unconventional 
distribution of extant subfamilies and general lack of fossil data adds to the complexity.

This review aims to sumarise the biology of Mantispidae, review the fossil record 
and critically discuss the historical biogeography of Mantispidae in light of the current 
ambiguous classification of Mantispidae, Rhachiberothidae and Berothidae.

The life-history of Mantispidae

Mantispinae (Figs 1, 2)

The life history of the Mantispinae, compared to the other subfamlies, is well recorded, 
despite it being based on only a few species. Many fragmented reports from various 
authors are summarised in the supplementary material (Table 1) with initial note-
worthy reports come from the studies of Brauer (1852, 1855, 1869, 1887). Brauer 
explored the life history of Mantispa styriaca and subsequently deduced that spider-
eggs might be the obligatory food for mantispines. Thereafter McKeown & Mincham 
(1948) completed a detailed study on the life-cycle of the Australian mantispid Cam-
pion australasiae (then cited as Mantispa vittata) which provided foundational insights 
into the gregarious nature and overwintering behaviour of the first instar larvae. Mc-
Keown & Mincham (1948) also provided rearing techniques for mantispids in lab 
conditions, which were later improved by Davidson (1958) and Brushwein & Culin 

Fig. 1.  Behavioural diagram of the life-history of Mantispinae adults. The larval phase, indicated in the 
figure with an “*”, is presented in Fig. 2. Unsubstantiated hypotheses are denoted by a “?”.
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(1991). Bissett & Moran (1967) in turn documented the life history of a South African 
mantispid, Afromantispa cf. nana, laying emphasis on the cocoon spinning behaviour 
of the third instar. More recently, studies by Redborg (1982, 1983, 1985), Redborg & 
Macleod (1983a, b) and Hoffman & Brushwein (1989, 1992) added considerably to 
our understanding of mantispine behaviour, habitat and chemical ecology. A great deal 
of the life history of Mantispidae can be deduced from published works over the last 
two centuries as well as aspects that require further scrutiny.

Fig. 2.  Behavioural diagram of the life-history of Mantispinae larvae. The adult phase, indicated in the 
figure with an “*”, is presented in Fig. 1.

Table 1.  Distribution of extant subfamilies belonging to Mantispidae, Rhachiberothidae and Berothidae. 
(AFRO = Afrotropics; AUS = Australasia; NEA = Nearctic; NEO = Neotropics; ORT = Orient PAL = 
Palearctic).

AFRO AUS NEA NEO ORT PAL

Calomantispinae ● ● ●
Drepanicinae ● ● ● ●
Mantispinae ● ● ● ● ● ●
Symphrasinae ● ●
Berothinae ● ● ● ● ● ●
Cyrenoberothinae ● ●
Nosybinae ● ●
Nyrminae ● ●
Protobiellinae ●
Trichomatinae ●
Rhachiberothidae ●
Mantispidae subfamilies 1 3 3 4 2 1
Rhachiberothidae 1
Berothidae subfamilies 3 3 1 4 1 2
Total subfamilies present 5 6 4 8 3 3
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As far as is known, female mantispines lay batches of elongate stalked eggs approxi-
mately 70-90 hours after copulation (Batra 1972; Minter 1990; Redborg & Macleod 
1985). The eggs of some species have distinct anterior micropylar “caps” present that 
probably play a role in larval emergence (Batra 1972; Kuroko 1961; Minter 1990; 
Redborg & Macleod 1985). The batches can be circular (Bisset & Moran 1967) or 
square-like when composed of regular rows or completely irregular in form (McKeown 
& Mincham 1948). The size and number of batches laid by a single female exhibits 
great variation. McKeown & Mincham (1948) reported 100-3000 eggs laid by a single 
female for Campion australasiae. Reports for Dicromantispa sayi suggest eggs per female 
to be in the range of 2000 (Smith 1934), whereas Dicromantispa interrupta range from 
1300-2400 with averages closer to 1500 per female (Hungerford 1939; Viets 1941). 
Bissett & Moran (1967) reported a mean of 836 eggs per batch with the maximum at 
1650 and minimum at 214 eggs per batch (n = 16 batches) for A. cf. nana. Unfortu-
nately, the authors did not record the mean number of batches laid by a single female. 
The number of eggs laid by female Climaciella spp. seem to be quite varied with reports 
ranging from 250-3340 (Batra 1972; Hoffmann 1936). Kuroko (1961) recorded the 
variable number of eggs for Tuberonotha strenua (as Climaciella magna) females, laying 
anywhere between 1791 and 8121 eggs in one or two batches: with an average of 3994 
eggs per female (n = 5) and an average of around 2852 per batch (n = 7). Mantispilla ja-
ponica (as Mantispa japonica) in turn laid 956-1553 eggs in one to four batches with an 
average of about 1384 eggs per female (n = 8) and an average of around 503 per batch 
(n = 22). Eggs generally hatch 9-16 days after oviposition takes place (Bissett & Moran 
1967; Davidson 1958; Kuroko 1961; Smith 1934). However, the study by Kuroko 
(1961) indicated that hatching times can be greatly altered by temperature fluctua-
tions. Under a constant temperature of 27°C, eggs of T. strennua hatched within 15-16 
days. However, under a fluctuating range of temperatures (10.4-28.7°C), eggs only 
hatched after 25-27 days (Kuroko 1961). Without reporting specific temperatures, 
eggs only hatched 45 days after oviposition under “natural temperature conditions”. 
Under the same “natural temperature conditions” M. japonica eggs in turn hatched 
after 13-28 days but took only 7-9 days to hatch with a constant temperature of 27°C 
(Kuroko 1961). It can therefore be assumed that the time to hatching will not only be 
species specific, but be subject to environmental conditions as well.

A planidium, campodeiform larvae emerges from the eggs. Some authors have erro-
neously referred to the first instar of mantispids as triungulin and campodeiform. The 
term triungulin was derived from the Latin “tri”, meaning three and “ungula”, mean-
ing claw. It specifically refers to the first instar of the Meloidae (Coleoptera) which 
possesses three tarsal claws. The term “planidium”, however, (derived from Greek “pla-
nos”, meaning roaming) refers to a highly sclerotised, flattened and mobile parasitoid 
larvae searching for hosts. It therefore includes the first instar of meloids as well as 
mantispids, whereas triungulin excludes mantispid larvae which possess a single tarsal 
claw. The newly emerged larvae either disperse or display gregarious behaviour. Brauer 
(1869), and later McKeown & Mincham (1948), observed the lack of dispersion when 
larvae hatch before the coming of winter and suggested that the larvae “hibernate” 
on, or close to, the egg mass in large numbers and in a gregarious nature. It should, 
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however, be noted that “hibernate” is probably not the correct term. Mantispids are 
probably ectotherms and therefore cannot hibernate. There is a general lack of physi-
ological evidence in mantispines to clearly define the process, and “overwintering” is 
therefore probably more accurate. Some larvae have an overwintering period of 5-6 
months before finally dispersing (McKeown & Mincham 1948). Dispersion of the 
gregarious larvae could be induced by warming them in the sun or with artificial heat 
such as lightbulbs (McKeown & Mincham 1948). This opposes the hypothesis that 
stalked eggs, as found in Chrysopidae (Neuroptera), evolved to reduce cannibalism 
(Fréchette et al. 2006). The gregarious nature of first instars has also been observed in 
Ascalaphinae (Neuroptera: Myrmeleontidae) which produce sessile eggs (pers. comm. 
M.W. Mansell). An argument can, therefore, be made that the stalked eggs probably 
evolved as a defensive response to predation and not to reduce cannibalism (Hayashi 
& Nomura 2014).

All mantispine larvae need spider eggs for hypermetamorphic development to the 
second and finally third instar stages (Bissett & Moran 1967). Redborg (1998) ex-
pressed concern with respect to the term “hypermetamorphosis” in relation to man-
tispid ontogeny as described by Brauer (1869b). Understandably, the hypermetamor-
phism expressed by mantispids is not as pronounced as that which is exemplified by 
the Meloidae beetles with their unique coarctate stage. However, neither is the on-
togeny exhibited by other taxa such as the dipteran families Acroceridae, Bombilidae 
and Nemestrinidae, the order Stresiptera and the parasitic wasp family, Eucharitidae. 
The metamorphosis found in these taxa is certainly more pronounced than what is 
found in the non-hypermetamorphic citrus swallowtail (Papilio demodocus). These taxa 
are “lost” between the complex “true” hypermetamorphic Meloidae ontogeny and the 
non-hypermetamorphic swallowtail.

Redborg’s (1998) concerns about the feeding mechanisms are somewhat validated. 
The feeding mechanisms differ in meloid ontogeny but not in any of the other hyper-
metamorphic taxa mentioned. However, the larval “microhabitat” and lifestyle differ 
significantly between the first and second plus third instars in mantispids. Hypermeta-
morphosis remains an analogous characteristic and not a homologous one. Meloidae 
beetles are obviously unique and hypermetamorphosis is expressed best by them. In 
order to resolve this, “parametamorphosis” or “parametamorphic ontogeny” could be 
useful terminology to describe the taxa between “normal” metamorphosis and the true 
hypermetamorphic ontogeny exhibited by meloids.

Redborg & Macleod (1985) described two main strategies utilised by the first instar 
larvae for locating spider eggs: (1) actively searching for spider egg-sacs deposited in the 
environment and penetrating the wall of the sac, or (2) by boarding a spider and enter-
ing the egg-sac while the sac is under construction by the spider. Facultative penetra-
tors or facultative boarders are the most common behaviour exhibited and probably 
the ancestral state. The larvae can thus employ both strategies, depending if an egg sac 
or a spider is encountered first. However, specialists occur on both sides with obligate 
penetrators as well as obligate spider boarders. Zeugomantispa virescens, Mantispa styri-
aca as well as Campion australasiae seem to be obligate penetrators and display no inter-
est in spiders in confined spaces and have also not been found on spiders in the field 
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(Brauer 1869b; McKeown & Mincham 1948; Redborg & Macleod 1985). Climaciella 
brunnea is an example of an obligate spider boarder which exhibit specilised behaviour 
to facilitate boarding. First instar C. brunnea larvae assumes a phoretic position before 
a spider is boarded (Redborg & Macleod 1983a). The larvae use a caudal sucker on the 
apex of the abdomen (discussed below) which it can attach to a substrate to lift its body 
from the ground. In this vertical position, with legs outstretched and swaying slightly, 
the larvae waits for a spider to run past or over it so that it can attach itself to the spider 
(Redborg & Macleod 1983a). It is not known if other mantispines employ a similar 
strategy. Dicromantispa sayi and D. interrupta are both facultative spider boarders and, 
so far, have not been recorded exhibiting the phoretic posture. Several other notes pub-
lished on mantispine behaviour are inadequate to assign them to either of these groups 
(Supplementary material, Table 1).

Once inside the egg sac, feeding commences. Similar to several other basal members 
of Neuroptera, grooved maxillae and mandibles are united into a straight sucking tube 
(Winterton et al. 2018). The mouthparts are simply inserted into the egg by piercing 
the chorion where extracellular digestion allows the larva to ingest a liquid. The above-
mentioned caudal sucker, if present, can then be used to grip the spider eggs during 
feeding (McKeown & Mincham 1948). Hoffmann (1936) was the first to describe a 
caudal sucker on the first instar of Climaciella brunnea var. occidentalis. Subsequent 
studies by Batra (1972) and Redborg & Macleod (1983) described the importance 
of the caudal sucker as a mechanism for boarding spiders. However, McKeown & 
Mincham (1948) described a caudal sucker on the abdomen of Campion australasiae, 
a mantispid that is thought of as an obligate egg-sac penetrator. Instead of using the 
sucker for attaching the larva to a substrate to assume the “phoretic position” as with 
C. brunnea, both Campion australasiae and A. cf. nana seem to use it for attaching the 
larvae to the smooth surface of the eggs while feeding. Contradicting accounts from 
Bissett & Moran (1967) and Minter (1990) add to this. Bissett & Moran described 
an Afromantispa cf. nana with a caudal sucker, whereas Minter (1990) described an A. 
capeneri with the terminal segment as bifid. Hoffman & Brushwein (1992) did not 
mention a caudal sucker in their descriptions of some Nearctic mantispid larvae, how-
ever, from their figures, abdominal segment X seem similar to the suckers described 
by Brauer (1869), McKeown & Mincham (1948) and Bissett & Moran (1967). These 
authors described the caudal sucker as important during both the emergence from the 
egg as well as feeding whilst inside the egg-sac instead of a specialised structure for spi-
der boarding behaviour. An indepth morphological comparison of the caudal suckers 
will prove valuable and might resolve these conflicting reports. One might argue that 
the structure is a pleisomorphic one, evolved for either emergence or feeding and an 
example of a behavioural exaptation in the case of C. brunnea.

It is apparent that the time it takes for the first campodeiform instar to moult into 
the second more sluggish and less mobile second instar differs greatly among man-
tispid species (Bissett & Moran 1967; McKeown & Mincham 1948; Redborg & Ma-
cleod 1985). Moulting also seems to be a difficult transitional period for larvae, and 
death occurs frequently during the moulting phases (McKeown & Mincham 1948). 
After commencement of feeding, the first instar of Campion australasiae moults into 
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the second instar larva after approximately 24 days (McKeown & Mincham 1948). 
The first moult in A. cf. nana Bissett & Moran (1967) occurs approximately five to 
nine days after commencement of feeding. Dicromantispa sayi (cited as Mantispa uh-
leri) moults after an average of 7.4 ± 0.3 days (Redborg & Macleod 1985).

The growth during the second instar is rapid and the second moult occurs quite 
soon after the first. Afromantispa cf. nana almost double in width during the two to five 
days before moulting to the final instar (Bissett & Moran 1967). Campion australasiae 
moults to the third instar after five days (McKeown & Mincham 1948) and D. sayi 
takes 2.3 ± 0.1 days to moult to the third instar (Redborg & Macleod 1985). A few 
hours before the moult, the larva stops feeding, the cuticle becomes visibly sticky and 
peristaltic movements follow until the larva can exit the exuviate head first. It is known 
that second and third instar larvae will mortally wound each other, and even feed on 
each other if the egg-sac contains several larvae, but not enough food for all to mature 
(McKeown & Mincham 1948).

The final instar is creamy white, grub-like with legs that are basically functionless 
and very small. Additionally, it seems clear that the third and final immobile and scara-
baeiform (referred to as eruciform by Cannings & Cannings 2006) instar exhibit the 
highest growth rate. Larvae measured by Bissett & Moran (1967) more than doubled 
in width in two to six days and started spinning a cocoon when the food was depleted. 
Redborg & Macleod (1985) divided the time into 2.5 ± 0.2 days for pre-spinning and 
5.7 ± 0.1 for post-spinning based on observations of Dicromantispa sayi (as M. uhleri).

By the end of the third instar, the parametamorphosis is complete. A spherical, 
sometimes oval, silken cocoon is spun before pupation inside the spider egg sac. The 
colour ranges from light cream to light green to yellow. Cocoon spinning behaviour 
may be divided into an “initial phase”, an “ntermediate phase” and a dominant “final 
phase” (Bissett & Moran 1967; Redborg & Macleod 1985). The cocoon is composed 
of a series of layers that are spun by the larvae following a “figure of eight” motion. 
Bissett & Moran (1967) described the spinning behaviour of A. cf. nana in great detail 
and Redborg & Macleod (1985) did not record any variation for Dicromantispa sayi 
(As M. uhleri). In A. cf. nana a period of 9-15 days quiescence follows, after which the 
pupa forms and the imago emerges 20-28 days later (Bissett & Moran 1967).

Symphrasinae (Fig. 3)

It has been suggested that the symphrasine larvae are generalist predators of insect 
pupa. This is mainly due to several no-choice feeding experiments from a single study 
(Macleod & Redborg 1982) as well as isolated instances where cocoons were found 
in proximity of pupal exuviae from insects other than Hymenoptera (Woglum 1935; 
Werner & Butler 1965) (Supplementary Table S2). Apart from these cases, the major-
ity of evidence supports a very close relationship with nest-building Hymenoptera 
(Supplementary Table S2). Most of the evidence indicates a strong relationship where 
the mantispids (pupal predators) feed on Hymenoptera (hosts). Mimesis is not as ap-
parent in this subfamily as in some mantispine members and if present, the mantispid 
is the mimic and the hymenopteran the model (Penny & Da Costa 1983; Machado 
2018).
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Fig. 3.  A behavioural diagram of the life-history of Symphrasinae adapted from Maia-Silva et al. (2013). 
Unknown phases or behaviours are indicated by a “?”.

Similar to the mantispines, the symphrasines undergo parametamorphic ontogeny 
over three larval instars, followed by spinning a cocoon inside the host nest. The dura-
tion of the instars as well as the development is unknown. The Plega cocoon is gener-
ally oval in shape, whereas the cocoon of Anchieta seems to be elongated or cylindrical 
(Buys 2008; Maia-Silva et al. 2013). Due to the tight-fitting cocoon spun in the hy-
mentoteran brood cell, the oval or cylindrical shape is probably due to the shape of the 
brood cell, and not indicative of the spinning behaviour of the symphrasine larva (see 
Maia-Silva et al. 2013: Fig. 1).

Maia-Silva et al. (2013) suggested three possible life-cycle strategies in Symphrasi-
nae: (1) larval phoresy, (2) larval nest entry and (3) adult nest entry (Fig. 3).

The first involves a random ovipositioning site (probably on plant surfaces). Each 
larva subsequently searches for a suitable phoretic host which can transport the it back 
into the nest of the host. Once inside the host’s nest, the larva dismounts the phoretic 
host and searches for a brood cell. With the second strategy, the female has directional 
choice during ovipositioning, and will choose a site close to the nest of the host. The 
larvae can then disperse and enter the nest and subsequently a brood cell without any 
assistance. The third strategy involves the adult female entering the nest of a host and 
ovipositing inside, either the nest, or a brood cell.

Unfortunately, few studies have explored any of these strategies and all can be 
viewed as equally likely. Dejean & Canard (1990) and Dejean et al. (1998) recorded 
adult Trichoscelia santareni flying near the eusocial wasps Polybia diguetana and Polybia 
scrobalis surinama (Vespidae). Even though no symphrasine has been observed entering 
a host nest, Dejean & Canard (1990) described more than 40 adult males and females 
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of Trichoscelia santareni congregated outside the nest of Polybia diguetana. After mat-
ing, the females groom themselves and can enter the nests of the wasps undetected. 
The authors could not comment on the time the symphrasines spent in the nest, due 
to the fall of darkness and it is unknown if ovipositing occured. Similarly, Dejean et al. 
(1998) reported “parasitic mantispids” flying in the vicinity of two nests of Polybia 
scrobalis surinama in the Neotropics. Not much was discussed in the report except that 
the mantispids also entered the nest after mating. This conforms to the third strategy 
proposed by Maia-Silva et al. (2013). The presence of an ovipositor in symphrasines 
suggests that it might be used to lay eggs inside the brood of the hymenopteran hosts.

In contrast to these reports, Maia-Silva et al. (2013) studied Plega hagenella mass-
infesting colonies of the eusocial stingless bee Melipona subnitida in Brazil. The authors 
made their observations from already infested bee-colonies and could therefore not re-
port on the mating or oviposition behaviour of adults, nor the first instar larvae, but 
only on the second, third and adult phases. Even though the adults were observed close 
to, or even on the nest of the bees, all adults entering the nests were attacked and killed 
by the worker bees. The second and third instars were found feeding on pupa inside the 
brood cells of the bees and subsequently spun silken cocoons inside the cells. The large 
number of cells containing Plega hagenella larvae in each of the two nests suggests that 
many larvae emerged quite close to the colony and could gain access without the female 
having to enter the bee nest. Hook et al. (2010) found Plega hagenella eggs attached to a 
mud nest of the crabronid wasp Trypoxylon manni being reused by Hylaeus (Hylaeopsis) 
sp. (Colletidae). The egg chorions were found as clusters inserted into crevices formed 
by the mud nest. It is, therefore, reasonable to argue that the adults find nests of suit-
able hosts, and lay eggs on the nests of the host leaving the larva to find the entrance to 
the nest and brood cells by themselves. The authors suggested that Hylaeus should be 
regarded as a novel food source and target species for the larvae of P. hagenella.

The report by Hook et al. (2010) is difficult to interpret and subsequently may sup-
port any of the hypotheses presented by Maia-Silva et al. (2013). Trypoxylon is a pos-
sible host genus of Plega as reported by Parker & Stange (1965), Macleod & Redborg 
(1982) and Penny (1982), but so are bees from Apidae (Linsley & MacSwain 1955; 
Maia-Silva et al. 2013) and Megachilidae (Parker & Stange 1965). If the arguments 
of Hook et al. (2010) are correct, and P. hagenella target nests of Colettidae and not 
Trypoxylon (Crabronidae), then the larval nest entry strategy is favoured, despite the 
presence of an ovipositor on female P. hagenella.

Notwithstanding the well-rounded argument from Hook et al. (2010), it is pos-
sible that the gravid female could have mistakenly identified the nest as occupied by 
Trypoxylon manni, but could not penetrate the hardened mud shell with her oviposi-
tor. This might have resulted in the ovipositing of eggs deep in crevices, mistaken for 
successfully penetrating the brood cell of T. manni. This, in turn, will fit with the third 
strategy, where adult mantispids enter host nests.

Different from the mantispines, motile pharate adults (an adult insect prior to 
emerging from the pupa but prior to the final ecdysis) seem to play an important 
part in both Symphrasinae and Drepanicinae. In mantispines, motile pharate adults 
emerge from the cocoon and eclose some distance from the cocoon (Maia-Silva et al. 
2013). However, if Plega hagenella ecloses in the eusocial host nest, the imago adult 
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(an adult insect post-emergence from the pupa or following final ecdysis) is killed, as 
the pharate adult is motile, it will either exit the nest on its own or will be removed 
by the eusocial host (Maia-Silva et al. 2013). The final ecdysis occurs after the pharate 
adults exit the bee nest. When a pharate adult was placed in an enclosed petri dish with 
worker bees, the bees ignored the mantispid. However, when an imago was placed in 
the petri dish with worker bees, the mantispid was immediately recognised, attacked 
and killed by the bees. Motile adults are not uncommon in lacewings. Dorey & Mer-
ritt (2017) describe motile adults emerging from the soil and moving, probably using 
negative geotaxis and/or sight, to climb a substrate, only to undergo final ecdysis well 
above ground level. This strategy is quite common in Neuroptera and is shared by the 
closely related Berothidae as well as members of Hemerobiidae, Myrmeleontidae and 
the snakefly, Raphidia bicolor (Aspöck et al. 2012; Brushwein 1987; Dorey & Merritt 
2017; Kovarikl et al. 1991).

In conclusion, the life history of Symphrasinae requires further elucidation before 
making robust hypotheses. Currently, symphrasines might be actively seeking out eu-
social and social bees, rather than being a brood parasite of any nest building hy-
menopteran (Supplementary Table S2). Furthermore, the presence of the ovipositor 
remains somewhat of a mystery if the female symphrasines soley need to deposit sessile 
eggs in proximity to a host nest, unless the ancestral behaviour is as was observed by 
Dejean & Canard (1990) and females regularly enter the nest of a host undetected.

Drepanicinae (Fig. 4)

The life history of Drepanicinae is the least known of all the sub-families. A recent study 
by Dorey & Merritt (2017) reported the first substantial record on the life history of 

Fig. 4.  A behavioural diagram of the life-history of Drepanicinae. Unknown phases or behaviours are 
indicated by a “?”. Information largely based on Dorey & Merritt (2017).
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the subfamily based on observations of Ditaxis biseriata. The authors described an ap-
parent annual synchronisation event (n = 2 years) of mass emergence of motile pharate 
adults in a Macadamia orchard in proximity to subtropical rain forests in New South 
Wales, Australia. The pharate adults emerge from the soil, presumably after emerging 
from a subterranean cocoon, climb up/onto a tree trunk, or other vertical structures, 
and eclose, similar to Cicadidae (Hemiptera). After wing inflation, the adults fly to 
the canopy, presumably for mating. The authors did not report on any mating rituals, 
but pregnant females were collected at the sites during the annual emergence event. 
Females lay clusters of ±120 (n = 1) lime-green elliptical eggs, suspended from a cord 
of diffuse silken threads. The planidium, campodeiform first instars emerge and after 
clinging to the empty egg-cases for a while, drop to the ground and burrow into the 
soil. It seems as if all the larval stages are subterranean, since the pharate adults also 
emerge from the soil.

Currently, the only known larval association of Drepanicinae was published by 
Austin (1985). The author merely reports on an interaction between an unidentified 
Theristria (cited as Theristia sp. (M) [sic]) and Achaearanea (Theridiidae) species in 
Australia. The study only refers to the interactions as “parasitoids and predators re-
corded as feeding on spider eggs in Australia” without any additional information.

Apart from these two reports, nothing is known from the life history of Drepan-
icinae. If the subterranean lifestyle of Drepanicinae is true for all species, Dorey & 
Merritt (2017) rightly suggested that it might be the reason for the general lack of 
information regarding the larval phase of Drepanicinae.

Calomantispinae

Our knowledge of the Calomantispinae life cycle is limited to a report by Macleod & 
Redborg (1982) which involved rearing Nolima pinal under lab conditions (Supple-
mentary Table S3). The authors managed to rear first instars to adulthood using spiders 
(eggs and paralysed spiders obtained from a sphecid nest), insect pupa (Coleoptera, 
Diptera and Lepidoptera) and insect larvae (Coleoptera and Hymenoptera). Further-
more, the larvae did not undergo the characteristic parametamorphic ontogeny like the 
Mantispinae, and remained ambulatory in both the second and third instars.

Mating and oviposition

Mating

The mating ritual of Mantispinae is relatively well understood (Batra 1972; Eltringham 
1932; McKeown & Mincham 1948; Redborg & Macleod 1985). Eltringham (1932) 
was first to describe a possible pheromonal release by male mantispines via an extrusi-
ble organ between the abdominal tergites (usually tergites V & VI). It is now under-
stood that the organ as well as the pheromonal release mechanism might vary between 
taxa (Hoffman 1992). Mantispa styriaca has a large “sac” that is extruded during the 
mating ritual. Afromantispa seems to have the same structure (Snyman et al. 2012). 
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Other taxa have a reduced “sac” accompanied with pores on the anterior tergal margins 
(Hoffmann 1992; Machado & Rafael 2010; Snyman et al. 2018). It is thought that 
these pores are used for pheromonal release (Hoffman 1992).

Males approach females with caution since cannibalism has been observed in both 
sexes (Redborg 1998). When the female notices the male, wing fluttering by the male 
can be observed in accordance with a pulsating abdomen (and if present, extrusible 
gland). It has been suggested that the fluttering of the wings distributes the pheromone 
(Eltringham 1932). This is also supported by the omission of fluttering in the Sym-
phrasinae which do not have a glandular structure. Both sexes then extend a raptorial 
leg to full length and close the tibia onto the femur again (also referred to as leg fold-
ing). This movement is identically copied by the other leg and afterwards reciprocated 
by the opposite sex. Some species, such as Zeugomantispa virescens, include scissor-like 
movements with the tibia and femur.

Copulation occurs side by side. The male twists its abdomen through 180 degrees 
to initiate copulation. After copulation is achieved, the male turns away from the fe-
male. The final orientation is when both sexes face away from each other. Copulation 
time among species varies considerably: with M. styriaca recorded as taking an hour 
or less, Campion austarasiae taking up to three hours and Climaciella brunnea taking 
approximately 24 hours (Batra 1972; Dejean & Canard 1990; McKeown & Min-
cham 1948). Post-copulation, a whitish, globular spermatophore is seen attached to 
the female terminalia. The spermatophore is completely absorbed after 24 to 48 hours.  
C. austarasiae oviposit five to seven days after copulation (McKeown & Mincham 
1948) and C. brunnea three to four days (Batra 1972).

The most detailed Symphrasinae mating ritual recorded is based on Trichoscelia san-
tareni by Dejean & Canard (1990) (n = 9). Prior to mating, males approach females in 
what the authors refered to as a mantispid “cloud”, or loose swarming of females. These 
“clouds” are apparently found outside of a suitable Hymenoptera host nest.

A male and female “pair” in the cloud and land nearby. The female is reported to 
land first and sit motionless. The male lands soon after and cautiously approaches her, 
antennating. When near to the female, reciprocating leg extension and folding between 
the sexes commences, much like mantispines. Since the symphrasine males do not 
have any pheromonal gland, the fluttering of the wings is omitted (Lambkin 1986a). 
Copulation then occurs venter to venter. After approximately two to five minutes, the 
pair rotates until facing away from one another, remaining attached to one another for 
40 to 60 minutes. Dejean & Canard (1990) did not comment on the spermatophore 
absorption, but it seems to take much less time than mantispines. After grooming for 
4-9 minutes, the female flies into the wasp nest, presumably for egg-laying.

The mating rituals of both Drepanicinae and Calomantispinae are currently 
unknown.

Oviposition

The cues involved in chosing an oviposition site by female mantispids for oviposi-
tion are unknown. The excessively large number of eggs produced by females suggests 
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that only a small number of larvae survive to find a food source. It is therefore likely 
that the oviposition sites chosen by females must be somewhat non-random or direc-
tional. The surface itself need not be anything specific: leaves, rocks, buildings, poles, 
walls and tree trunks have all been recorded as surfaces chosen for oviposition sites. 
Wild caught females readily oviposit in vials or paper, if so contained. The eggs of 
the Afromantispa cf. nana (aptly named “the chestnut mantispid” by Bissett & Moran 
1967) are apparently only deposited on the adaxial surface of leaves of Cape Chestnut 
trees (Calodendrurn capense) in circular batches. The close relationship between this 
mantispid species and the Cape chestnut remains unsubstantiated needs to be further 
investigated. Campion australasiae females oviposit on trees, buildings and telephone 
poles, and apparently only when there were trees with foliage in approximation of the 
structures (McKeown & Mincham 1948). The authors also noted that eggs are found 
higher on the trunks due to the presence of ants closer to the ground. This finding 
has not been substantiated by experimentation and remains merely an observation. 
The authors mentioned the presence of wolf spider burrows found in the area, most 
notably Lycosa perinflata (Lycosidae). However, if the oviposition sites are found high 
in order to avoid predation by ants, the larvae will eventually have to cross paths with 
the ants in order to reach the ground and in-so-doing the lycosid host. Thus, the rea-
son for choosing the high ovipositioning sites is still unclear. McKeown & Mincham 
(1948) also described mass oviposition or communal oviposition behaviour exhibited 
by female C. australasiae on telegraph poles in Australia. Rice (1986) described a simi-
lar phenomenon in D. sayi (cited as M. fuscicornis) on picnic shelters in Texas, USA. 
The latter study postulated that the communal behaviour is due to the large number 
of spiders found on the wooden shelters and that the mantispids choose the sites to 
give an advantage to the larvae. Hirata & Ishii (1995) postulated that E. harmandi and  
M. japonica oviposit in sites where host spiders occur in large numbers and that ovipo-
sition is therefore non-random. It should be mentioned that this hypothesis was not 
tested and is merely based on observational data. Whether mantispid females lay eggs 
to avoid predators or in approximation of suitable spider hosts, remains a mystery: one 
that will hopefully soon attract the attention of entomologists.

Specificity of larval hosts in Mantispidae

The larvae of mantispids certainly exhibit high levels of specificity when choosing a 
suitable host. Even though C. brunnea have been observed boarding Hymenoptera un-
der lab conditions (Batra 1972) and a single study reporting a single L. pulchella larva 
that was recovered from an adult caddisfly, Oecetis inconspicua (Trichoptera, Leptoceri-
dae) (Hoffman & Hamilton 1988a), the accounts can be regarded as rare anomalies. 
Hoffman & Hamilton (1988) described the accounts as exploratory boarding and that 
mantispines need to be in contact with potential hosts before their suitability can be 
determined. The vast majority of the records show an obvious relationship between 
mantispines and spiders, and these boarding “mistakes” are not made often (Supple-
mentary Table S1).
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Neuroptera feeding on social insects

Neuroptera larvae that feed on the adults or immatures of social insects are quite rare. 
Principi (1943) described an association between the Italochrysa italica (then cited as 
Nothochrysa italica) (Chrysopidae). The larvae of the chrysopid apparently live inside 
the nests of the ant Crematogaster scutellaris Olivier (Formicidae). It is unknown if the 
larvae feeds on adults or immatures. Berothidae are probably specialist termitopha-
gous insects. Minter (1990) successfully reared larvae to the second instar of Podallea 
manselli (Berothidae) by feeding them immobilised worker caste termites. Möller et al. 
(2006) successfully reared P. manselli larvae to the third instar but did not successfully 
rear adults by feeding the larvae Cubitermes sp. (Termitidae). Möller et al. (2006), how-
ever, successfully reared Podallea vasseana adults from eggs using the same Cubitermes 
sp. as a food source. North American Berothidae species such as Lomamyia latipennis 
and L. hamata are also termitophagous (Dejean & Canard 1990). Both species lay 
eggs outside of the host nests, sometimes near the nest to facilitate the larvae in enter-
ing the nest. Larvae that emerge from the eggs are neonate and enter the host nest 
unfacilitated.

Larval hosts: preference and prevalence

Mantispinae

Aside from our knowledge that mantispines attack spiders belonging to the suborder 
Araneomorphae, we know little else. This is mainly due to the fragmented reports that 
are summarised in Table 1 in the supplementary material. Since the review by Redborg 
(1998), little substantial additional information has come to light and our view on the 
host ranges of mantispines remains the same.

Our knowledge of the preference and prevalence of mantispine hosts’ is biased, 
since most studies only mention spiders associated with larvae and not spiders caught 
without larvae. Studies that did include all preference and prevelance data are limited 
to Rice (1986), Rice & Peck (1991) and Redborg & Redborg (2000).

Rice (1986) and Rice & Peck (1991) conducted studies along the eastern coast of 
Texas (USA) including spiders with and without mantispids as well as spiders with dif-
ferent ecological guilds. Prevalence ranges were recorded from 12-77%, with Salticidae 
being the most prominent target group of the mantispid Dicromantispa sayi. Redborg 
& Redborg (2000) conducted a study in a woodland in Illinois, USA, focussing on 
larval prevalence on spiders in four microhabitats (bark, foliage, leaf litter, grass field). 
A frequency of 75%, 26%, and 27% was recorded for D. sayi (as M. uhleri) on Philo-
dromus vulgaris (Philodromidae), Metacyrba undata (Salticidae) and Hibana gracilis (as 
Aysha gracilis) (Anyphaenidae) respetively. A lower level of infestation was recorded for 
C. brunnea, with a frequancy of 19% on the lycosid genus Schizocosa.

Host records indicate that Zeugomantispa virescens favour web-dwelling spiders, 
most prominently Araneidae species. It is thought that Campion australasiae and Man-
tispa styriaca will possibly exhibit the same preference, however, nothing certain is 
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known from the literature (Redborg 1998). As suggested by Redborg (1998), egg-sac 
penetrators are likely to attack web-dwelling spiders and spider boarders, in turn, will 
most likely attack ground dwelling spiders.

Redborg & Macleod (1985) found 16 D. sayi (as M. uhleri) larvae associated with 
ground dwelling spiders of the superfamilies Lycosoidea and Clubionoidea. In contrast, 
no larvae were found on almost 3000 specimens of mostly plant and web-dwelling 
spiders. This is contrasted in a later study by Redborg & Redborg (2000) where  
D. sayi (as M. uhleri) was found on the plant dwelling spiders of the families Philodro-
midae, Salticidae and Anyphaenidae as well as on the ground dwelling lycosid Rabidosa 
punctulata.

Redborg (1998) erroneously suggested that C. brunnea has a narrow host range that 
is confined to Lycosidae, subsequently supported by findings in Redborg & Redborg 
(2000). However, Agelenidae and Salticidae, web-dwelling and plant-dwelling spiders, 
respectively are also recorded as hosts for C. brunnea (Redborg & Macleod 1983a).

What should be considered is that ovipositioning sites chosen by females might play 
a role in the host selection of the larvae. If the eggs are oviposited on a leaf for example, 
the first spiders that the larvae will likely encounter will probably be plant or web-
dwelling spiders. In contrast, if the female prefers rocks or old logs, ground-dwelling 
spiders will be the likely host.

So far, we have thus only started to understand the host selection of mantispines. 
Holistic ecological studies that can elaborate on ovipositioning, host range and preva-
lence of different mantispine species are in dire need to further our understanding.

Symphrasinae

Werner & Butler (1965) hypothesised that Plega banksi is a generalist predator of sub-
terranean insects. The hypothesis is based on two cocoons found in association with 
scarab pupae found in the soil in Arizona, USA. One scarab cocoon also contained the 
remnants of a robber fly (Asilidae) pupa, apparently also devoured by the symphra-
sine larva. Beyond their study, the majority of the available literature have reported a 
close relationship between Symphrasinae and Hymenoptera, most notably, aculeate 
Hymenoptera (Supplementary Table S2). Both records of Anchieta indicate a relation-
ship with aculeate hymenopterans as well as reports indicating possible mimicry of 
hymenopterans. Plega have the broadest range of hosts but are still mostly confined to 
aculeate Hymenoptera with Apidae, Colletidae, Crabronidae, Megachilidae, Spheci-
dae and Vespidae all reported hosts. All records of Trichoscelia are restricted to members 
of Polybia (Vespidae), except for the report of Woglum (1935) which cited Trichosce-
lia larvae feeding on and pupating in Lepidoptera exuviae during an apparent citrus 
cutworm, Xylomyges curialis, outbreak. The Woglum (1935) report is only ten written 
lines and thus holds very little information. The collected larvae were antlion like and 
the cocoons disk-shaped. After 14 months a mantispid emerged from one of the co-
coons and was identified as Symphrasis signata by a Mr. E.P. van Duzee. Unfortunately, 
the mantispid was not reported to be deposited in any science collection facility and 
can thus not be reviewed for accuracy of identification. If the rest of the literature is 
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accurate, Polybia (Vespidae) are the general hosts of Trichoscelia. If the Woglum (1935) 
specimen was correctly identified, it is possible that the opportunistic behaviour exhib-
ited by Trichoscelia was only due to the abundance of X. curialis pupae available during 
the outbreak, which is an important observation as well.

Drepanicinae and Calomantispinae

Aside from the single report of a Theristria (Drepanicinae) larva on an Achaearanea 
spider by Austin (1985) and the Dorey & Merrit (2017) hypothesis postulating that 
Ditaxis biseriata are generalist predators of subterranean arthropods, nothing is known 
from the prey or hosts of drepanicine larvae.

In the case of Calomantispinae, the same is true. Apart from no choice experi-
ments on Nolima pinal larvae in a laboratory environment, nothing is known from 
the prey or hosts of calomantispine larvae (Macleod & Redborg 1982). The no choice 
experiments suggested that calomantispine larvae are generalist predators of sedentary 
arthropods, possible pupae, since the ambulatory larvae could not immobilise moving 
prey. Unfortunately, this valuable report is not necessarily indicative of their true prey 
or hosts in the field.

Position of first instar larvae on spiders

Hirata & Ishii (1995) documented a preference for the pedicel as a position for first 
instar larvae of Mantispilla japonica (cited as Mantispa japonica). The larvae, without 
exception, wrapped dorsally around the pedicel, leaving little room for more than one 
larva per spider. This is possibly the reason why multiple larvae on a host have not 
been found in this species (see Hirata & Ishii 1995: fig. 1B). In contrast, larvae from 
Eumantispa harmandi were never found on the pedicel and most often encountered 
on the anterior part of the abdomen or the posterior part of the carapace. The Hirata 
& Ishii (1995) study is the first study that indicates a partitioning between both host 
selection and position on the spider by two associated mantispid species, M. japonica 
and E. harmandi. Both species showed no preference for the developmental phase 
or gender of the spider hosts. Both M. japonica and E. harmandi may be facultative 
boarders/penetrators due to several larvae found in a single egg sac of a clubionid spider 
(Kishida 1929; McKeown & Mincham 1948). Hirata & Ishii (1995), however, did 
express some degree of scepticism regarding the little information provided by Kishida 
(1929) and subsequent identification of the larvae by Esaki (1949). Hirata and Ishii 
(1995) suggested more investigation before claiming that either species are facultative 
in boarding and or penetrating. Redborg & Redborg (2000) reported similar results, 
D. sayi larvae also showed a preference for the pedicel with 93% of larvae attaching to 
the pedicel of P. vulgaris. The authors report that 87.5% of larvae are found alone on 
P. vulgaris specimens, leaving only 12.5% of boarded spiders with multiple larvae, but 
never exceeding three. Redborg & Macleod (1983a) found that in all their observa-
tions of C. brunnea on wild caught spiders, the larvae, without exception, positioned 
themselves on either the posterior or anterior carapace. When multiple larvae board a 
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single spider, the abdomen and legs were observed as alternate positions, however, all 
larvae moved to the edge of the carapace after a day. It is apparent that the position 
adopted on the spider host, post-boarding, is worth investigating and may lead to clear 
partitioning between sympatrically occurring mantispid species. Similar results for  
C. brunnea larva positioning were observed in the Redborg & Redborg (2000) study.

Spider behaviour

It seems that some spider species show a response to being attacked by mantispine 
larvae whereas others do not. Guarisco (1998) noted that a female Lycosidae ignored 
her egg sac approximately a week before the emergence of the mantispid M. inter-
rupta. The author noted that the spider, Gladicosa gulosa, detached the egg sac from 
the spinnerets and did not approach it again, apparently unconventional behaviour 
for lycosids. Similarly, Lycosa perinflata egg sacs containing the Australian mantispid,  
C. australasiae were discarded outside the spider-burrow (McKeown & Mincham 
1948). Fink (1987) reported contradicting results with a study of the green lynx spider, 
Peucetia viridans (Oxyopidae). Lynx spiders tend to guard egg sacs against ant preda-
tion and possible dislodgement from vegetation in a predictable fashion but continued 
to guard the egg sacs even after the mantispid larva within became visible to the hu-
man eye. According to Fink (1987), it is not known if lynx spiders abandon eggs sacs 
that are parasitised by taxa other than mantispids. Given the relatively high investation 
levels (7-32 % of egg sacs were attacked over three sites in Florida, USA), the author 
questioned why no anti-mantispid behaviour was seen. She attributed the behaviour to 
the hypotheses present at the time that postulated that lynx spiders were thought to be 
more closely related to web-dwellers than ground dwellers such as lycosids. Dissimilar-
ity in behaviour might therefore be expected. It is now believed that Oxyopidae are in 
fact higher lycosids and closely related to the above mentioned Lycosidae species that 
abandon infested egg sacs (Coddington 2005).

Adult behaviour: vision, flight, food and fecundity

Generally, mantispids are thought of as weak-flying nocturnal insects. Ohl (2004), 
however, described opposite behaviour with the description of Euclimacia horstaspockii 
from Thailand. It is thought that this mantispid is an active, fast flying, diurnal insect. 
These findings are similar to several articles on C. brunnea which have been found on 
flowers during day time. C. brunnea visited flowers in Florida (Pascarella et al. 2001) 
and were found on Helianthus spp. sunflowers (Redborg & Macleod 1983a) as well as 
yellow-spined thistle (Banks 1912). C. brunnea probably uses flowers as a platform for 
capturing prey, similar to praying mantids (Mantodea) and crab spiders (Thomisidae). 
Communications with Simon van Noort, from Iziko Museum in Cape Town, RSA are 
also in agreement with much of what is described in the Ohl (2004) study. Van Noort 
described observations (pers. comm.) of the Afrotropical endemic genus, Pseudoclima-
ciella, gathering on indigenous flowers in dense vegetation in Tanzania.
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Meticulous work by Kral (1989, 1990, 2013), with the focus on the eye morphol-
ogy and function of some diurnal mantispids, may be in support of the diurnal activity 
of mantispids. Generally, nocturnal insects are equipped with superpositional eyes and 
not appositional eyes. However, Mantispa styriaca and M. scabricollis are equipped with 
refracting superpositional eyes that are modified for diurnal vision. A special tapetal 
layer at the base of the compound eye, consisting of flattened air-filled tracheoles (ta-
petum lucidum) in each ommatidium isolates it from the rest of the ommatidia. This 
structure improves the light-sensitivity or photon catch of the eyes. The resolution of 
this type of diurnal superpositional eyes are somewhat comparable to phototopic ap-
positional eyes but with higher light sensitivity (Kral 2013). This type of eye might 
be present in several other diurnal mantispid species and has also been described in 
Ascalaphinae (Schneider et al. 1978) and Chrysopidae (Horridge & Henderson 1976; 
Yang et al., 1998), both lacewing families (Neuroptera).

New & Haddow (1973) conducted a light trapping study in Entebbe, Uganda, 
trying to elucidate the nocturnal flying patterns of mantispids. A mercury-vapour 
light trap was used from one hour before sunset (±17h00) to one hour after sun-
rise (±07h00). The authors reported that most of the mantispids were caught before 
midnight and that mantispid activity peaks around 21h00. All the mantispids were 
caught and preserved, presumebly to avoid pseudoreplication. However, by removing 
all mantispids in a given area, it is difficult to conclude that the mantispid activity 
decreased after midnight. It is just as plausible that the activiy would have continued 
throughout the night if all mantispids were not caught. The reduction in mantispids 
caught after midnight might therefore be solely due to the decreasing numbers of un-
caught mantispids. The study does not document the “true” nocturnal flying patterns 
of mantispids, but rather just the number of mantispids caught in Entebbe, Uganda.

McKeown & Mincham (1948) recorded two periods of increased adult activity 
during the year where adults were found in high numbers. The first was late spring 
(October and November in Australia) and again in autumn (March and April in Aus-
tralia). This is likely because mantispids are secondary predators and need spiders to 
mate before they can reach adulthood. The first peak might be due to emerging pupae 
from the previous season. The second peak in early autumn might be due to the lag-
ging effect while spiders mature, mate and produce egg sacs. Alternatively, it might be 
bivoltine behaviour, mantispids producing two broods per season. It should be noted 
however, that overwinterting of mantispines as larvae and pupae are well documented 
as discussed earlier. Lastly, the perceived bivoltinity might be due to the ability of 
matispid larvae to either shorten or extend their delevopment inside an egg-sac and 
emerge when conditions are favourable. Redborg (1983) described the presence of an 
allomone produced by feeding mantispine larvae. Interestingly, another “aggressive” 
allomone has been described in the sister group of mantispids, Berothidae. Johnson 
& Hagen (1981) described Lomamyia latipennis larvae immobilising termite workers 
(Reticulitermes hesperus) with an allomone before feeding commenced. In the case of 
mantispids, the allomone is thought to prevent the spider eggs from hatching and turn 
the predatory larva into possible spider prey (Redborg 1983). However, the presence 
of such an allomone might just as well describe the perceived bivoltinity mentioned 
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by McKeown & Mincham (1948). Alternatively, the allomone is produced to ensure 
that the feeding larva sustains its food availibility in order to complete metamorphosis.

A detailed monograph by Redborg & Macleod (1985) theorised that a direct rela-
tionship between the amount of food ingested by the third instar larva and the body 
size of the adult exists. Dicromantispa sayi (cited as M. uhelri) that had food ad libitum 
resulted in adults nearly double the size of those that were fed only 50 Achaearanea 
eggs. In addition, the authors stated that third instar mantispid larvae, with limited 
food, will pupate as soon as all the eggs have been ingested and ignore all food pre-
sented to it after spinning is initiated. It was also proposed that the amount of food 
ingested by a female mantispid during the larval phase will not only affect size, but also 
fecundity. This hypothesis was tested by Hirata & Ishii (2001) in another mantispid 
species, Eumantispa harmandi. Females that were fed more often had a positive correla-
tion with both higher number of eggs laid as well as higher number of batches, whilst 
body size affected neither. The authors also noted a negative correlation between size 
and longevity but failed to provide a possible explanation of the correlate.

Biogeography: origins of Mantispidae and the break-up of Pangea

Mantispidae are currently divided into four extant subfamilies: Symphrasinae, Drepan-
icinae, Calomantispinae and Mantispinae (Lambkin 1986a; b; Lambkin & New 1994). 
Symphrasinae is generally regarded as the most pleisiomorphic subfamily and sister to 
the remaining subfamilies (Lambkin 1986a; b; Willman 1990; Lambkin & New 1994; 
Liu et al. 2015). The most apomorphic subfamilies, Calomantispinae and Mantispinae 
form a monophyletic group, with Drepanicinae as their sister clade (Lambkin 1986a, 
b; Lambkin & New 1994; Liu et al. 2015). There is a single extinct subfamily for-
mally described, namely Mesomantispinae and the possibility of an additional extinct 
subfamily comprising the genus Doratomantispa (Poinar & Buckley 2011) (Fig. 5). 
This arrangement was recently disputed in a phylogenomic study by Winterton et al. 
(2018) using anchored hybrid enrichment data. The phylogeny generated recovered 
Symphrasinae as sister to Rhachiberothidae and Berothidae as sister to the remaining 
Mantispidae. Due to the ambiguous results, the authors suggested the recognition of a 
single family, Mantispidae, with the berothids, rhachiberothids and dipteromantispids 
as specialised lineages within the family.

Jepson (2015) reviewed the fossils currently thought to belong to Mantispidae, and 
in so doing highlighted the current classification problems regarding fossil mantispids. 
The ancient Liassochrysa stigmatica (Liassochrysidae) is thought to be part of Man-
tispidae, however, the relationship is not clear (Jepson 2015; Liu et al. 2015; Shi et al. 
2019; Wedmann & Makarkin 2007). The type species and genus of Liassochrysidae,  
Liassochrysa stigmatica was erroneously placed in Chrysopidae (Ansorge & Schlüter 
1990) and later elevated to a monotypic family status with the possibility of being sister 
to mantispids. Liassochrysa stigmatica dates to the lower- and mid-Jurassic period and is 
regarded as the earliest fossil along with the closely related Promantispa similis from the 
upper Jurassic period (Jepson 2015). Similarly, Winterton et al. (2010, 2018), using 
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Liassochrysa stigmatica as a crown calibration for molecular divergence time analysis, 
found the age of Mantispidae to be approximately 150-200 million years ago (Mya). 
Wedmann & Makarkin (2007) postulated that the diversification of Mantispidae was 
probably during the Jurassic period, but that the origin of the family might have oc-
curred during the end of the Triassic period and was certainly around by the early Ju-
rassic, with Laurasia as the epicentre of mantispid evolution. The phylogenetic analysis 
by Liu et al. (2015) from multistate morphology evidence changed this framework 
in that it led to the transference of Liassochrysa and Promantispa to the Drepanicinae. 
This transference increased the age of Drepanicinae, thought to have originated in the 
upper Cretaceous period (Wedmann & Makarkin 1990), pushing it back to the esti-
mated origin of Mantispidae in the lower Jurassic period (Jepson 2015). The authors 
unfortunately did not include a divergence time estimate analysis in support of their 
hypothesis. It should be noted that of the 74 morphological characters used in the 
Liu et al. (2015) study, 58 (78%) and 60 (81%) of those characters were missing for 
Liassochrysa stigmatica and Promantispa similis, respectively. Most recently, Shi et al. 
(2019) discovered and described two fossil Symphrasinae species from Burmese amber, 
Archaeosymphrasis pennyi and Habrosymphrasis xiai. The authors generated a phylogeny 

Fig. 5.  Phylogenetic and divergence time hypotheses based on fossil data of Wedmann & Makarkin 
(2007), Jepson (2015) and Shi et al. (2019). Numbers indicate the fossils included by the various au-
thors following Jepson (2015). (1) Liassochrysa stigmatica, (2) Clavifemora rotundata (3a) Karataumantispa 
monstruosa (3b) Karataumantispa carnaria (4) Promantispa similis (5) Mesomantispa sibirica (6a) Archaeo-
drepanicus acutus (6b) Archaeodrepanicus nuddsi (6c) Archaeodrepanicus sp. (7) Sinomesomantispa microden-
tata (8) Gerstaeckerella* asiatica (9) Doratomantispa burmanica (10) Micromantispa cristata (11) Unidenti-
fied larvae (12) Symphrasites eocenicus (13) Vectispa relicta (14) Prosagittalata oligocenia (15) Climaciella*(?) 
henrotayi (16a) Dicromantispa* electromexicana (16b) Dicromantispa* moronei (17) Feroseta prisca.. Shi 
et al. (2019) did not specify Mesomantispinae species in their analysis, here all Mesomantispinae fossils 
are indicated on the phylogeny. *Extant genera; solid black lines: age of lineages supported by fossils; dash 
grey line: inferred range/relationship; solid grey line: extant taxa used for analysis.
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from 19 morphological characters and included 11 taxa, both extant and extinct but 
excluded Liassochrysa and Promantispa from their analysis due to the uncertainty of 
placement within Mantispoidea (Fig. 5). The cascade of changes due to the placement 
of these taxa within Drepanicinae is drastic lacking substantial evidence and therefore 
requires careful review of both Liassochrysa stigmatica and Promantispa similis. The fos-
sil was previously thought to be a separate family, Liassochrysidae (Nel et al. 2005) but 
was transferred to Mantispidae by Wedman & Makarkin (2007) due to morphological 
similarities with Promantispa similis. This fossil, in turn, was also regarded as being in a 
monotypic family, Promantispidae (Panfilov, 1980), and transferred to Mantispidae by 
Lambkin (1986a), who could not determine a relationship with the remaining mem-
bers of the family. Willman (1994) suggested a stem relationship with Mantispidae. 
Currently both fossils are considered drepanicines and are being used as calibration fos-
sils for phylogenetic analysis that require certainty, something that should potentially 
be reconsidered. What should be regarded as important is that both Liassochrysa stig-
matica and Promantispa similis are only known from wing impressions, greatly reduc-
ing the number of available morphological characters for phylogenetic analysis. Prior 
to the Liu et al. (2015) and Winterton et al. (2018) papers, authors suspected conver-
gence with Drepanicinae but not necessarily placement within the subfamily (Jepson 
2015; Shi et al. 2015; Wedmann & Makarkin 2007). Furthermore, identification from 
only wing venation between Mesozoic Berothidae and Mantispidae is challenging at 
best, not to mention subsequent intrafamilial placements (Makarkin 2015).

It has been suggested that the general neuropteran fauna has long since surpassed 
its biodiversity high-point and that the taxa left are only remnants of a previously 
megadiverse group (Liu et al. 2015; Wedmann & Makarkin 2007). Both the age and 
the former diversity of Neuroptera, and thus also Mantispidae, complicates tracing the 
steps back to the origin of the group. Distribution of extant diversity is not necessarily 
indicative of former distribution of taxa and the general lack of fossils closely related 
to extant fauna adds to the difficulty (Wedmann & Makarkin 2007). Fossils of taxa 
with uncertain placement may not necessarily help with current classification, in fact 
it may distort it. Most mantispid related fossils have been discovered in the Palearctic, 
however, unequal efforts for locating fossils on all the continents might provide a false 
impression of historical diversity deduced from the fossil record (Jepson 2015) (Fig. 6). 
For example, can we argue that South America was recolonised by members of all four 
mantispid subfamilies because no fossils have been found there? Wedmann & Makar-
kin (2007), using mostly fossil data, hypothesised that Mantispidae had an Asian or 
Eurasian origin and the extant diversity has no bearing on the past distribution. The 
recent discovery of two Symphrasinae fossils in Burmese amber, dating to the mid/
upper Cretaceous could be considered as supporting the Eurasian origin hypothesis 
and dispersal took place via a Thulean route, at least to the Nearctic (Shi et al. 2019). 
However, Burmese amber, in turn, might have a Gondwanan origin, which further 
complicates matters (Shi et al. 2019). Extant Symphrasinae is known from the south-
ern Nearctic, Neotropics and Australasia (Table 1). Apart from the above-mentioned 
Symphrasinae fossils, an additional Symphrasinae fossil, Symphrasites eocenicus (Wed-
mann & Makarkin, 2007), has been collected in the Palearctic (Fig. 6). The fossil was 
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found as an impression in Messel (Germany) dating back to the Eocene, approximately 
47 Mya (Liu et al. 2015; Shi et al. 2015; Wedmann & Makarkin 2007), certainly not 
old enough to postulate that Symphrasinae was also present during the Jurassic. If Bur-
mese amber has a Gondwanan origin, it is also plausible to argue that Symphrasinae 
colonised the Palearctic from Gondwana and subsequently became extinct since the 
holarctic was intact during the Paleogene (Winterton 2010).

The extant distribution of higher groupings of Mantispidae, Rhachiberothidae and 
Berothidae are clearly more diverse on the landmasses that formed part of Gondwana 
(Table 1). The hypothesis provided by Wedmann & Makarkin (2007) cannot therefore 
accurately provide evidence for the skewed extant distribution (Fig. 5). It is under-
standable that one cannot use extant species level distribution for historical patterns, 
but the presence of all higher-level sister-taxa in Gondwana will prove difficult to ex-
plain. Jepson (2015) simply stated that it is possible that during the early Jurassic, 
drepanicines and symphrasines had a world-wide distribution from the Jurassic until 
the Neogene.

Fossils, other than Liassochrysa stigmatica and Promantispa similis, assigned to 
Drepanicinae are also not without controversy. Micromantispa cristata has dissimilar 
wing venation, but similar fore femurs (Jepson 2015; Shi et al. 2015) when compared 
to the aforementioned fossils. Shi et al. (2015), expected a close phylogenetic rela-
tionship between Doratomantispa and Micromantispa, and not Drepanicinae. There 
was even a suggestion that the fossil should be transferred to Paraberothinae (Berothi-
dae) and removed from Mantispidae (Makarkin 2015). The most recent assignment of  

Fig. 6.  Localities of the fossil Berothidae, Dipteromantispidae, Mantispidae and Rhachiberothidae. 
Berothinae: 1-2; Dipteromantispidae: 3-8; Drepanicinae: 9, 101; Berothidae incetae sedis: 10-53; Lias-
sochrysidae: 54-55; Mantispinae: 56-63; Mesithoninae: 64-72; Mesomantispinae: 73-80; Paraberothinae: 
81-95; Rhachiberothidae: 96-97; Symphrasinae: 98-100. Number on map corresponds to fossils in 
Table 2.
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Micromantispa are also to Drepanicinae by Jepson (2015). The author mentions that 
the slender fore-femur is unique to Drepanicinae, and the specimen should be re-
garded as part of the “stem-group” of Drepanicinae, sister to Drepanicinae. Since there 
is no such classifiecation platform in place, the genus was placed within Drepanicinae. 
Similarly, the recently discovered fossil from Cretaceous Spanish amber, Aragomantispa 
lacerata Pérez-de la Fuente & Peñalver, 2019, was placed in Drepanicinae due to the 
diagnostic characters excluding the remaining subfamilies (Pérez-de la Fuente & Peñal-
ver 2019). The authors did, however, state that the placement into Drepanicinae is not 
without uncertainty and that several characters, such as the presence of trichosors and 
shape of the scape (Pérez-de la Fuente & Peñalver 2019). This is perhaps reaffirmation 
of the need to revisit the fossils currently placed in Drepanicinae.

There is no doubt that due to the poor state of fossil specimens and the low num-
bers available it is challenging to place fossils into an existing classification system. As 
it currently stands, a previously megadiverse fauna is consistently superimposed on 
a less diverse classification of extant species. Here we argue that instead of creating a 
more robust classification, it is increasingly confusing and more difficult to explain or 
understand. It is plausible to consider a split in the proto-mantispids following the 
break-up of Pangea during the Jurassic. The mantispids that remained on Gondwana 
diversified into the extant fauna which might explain the disjunct distribution between 
the Neotropics and Australasia. In turn, the mantispids that remained on Laurasia also 
diversified, some at least in convergence with drepanicines. Convergence might ex-
plain why a robust hypothesis of classification and clear understanding of the historical 
biogeography is so difficult to achieve. Pronounced weight on convergence might be a 
slightly tenuous argument, but to argue that all subfamilies had a worldwide distribu-
tion since the Jurassic and became extinct is just as tenuous (Wedman & Makarkin 
2007; Jepson 2015).

The Afrotropical endemic Rhachiberothidae have a rather unsettled history (Fig. 7): 
some authors prefer to place them as a subfamily of the berothids (Tjeder 1959; 
MacLeod & Adams 1968; Makarkin 2015; Makarkin & Kupryjanowicz 2010) (Fig. 
7A), some prefer to place them within the mantispids (Willmann 1990) (Fig. 7B) 
and some authors suggest that they should form a separate family as either sister to 
Berothidae (Aspöck & Mansell 1994) or as sister to Mantispidae (Liu et al. 2015) 
(Fig. 7C). Initially, molecular evidence and integrative evidence points to them being 
a separate family sister to Mantispidae (Liu et al. 2015). This changed when more in-
depth molecular evidence placed them in a monophyletic clade with the Symphrasi-
nae, with Berothidae rendering Mantispidae paraphyletic (Winterton et al. 2018) (Fig. 
7D). This is not only supported by the relatively close morphological connection be-
tween Symphrasinae and Rhachiberothidae (synapomorphies include a left mandibu-
lar tooth, raptorial forelegs, and modified foretarsus in the male) (Willmann 1990; 
Aspöck & Mansell 1994; Makarkin & Kupryjanowicz 2010), but has been supported 
with molecular evidence as well (Liu et al. 2015; Winterton et al. 2018). Isolation of 
Rhachiberothidae in Africa might be the reason for the genetic “distance” from the rest 
of the berothids or, in turn, mantispids as well as the confusing morphology.
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The sister-grouping of Mucroberotha (Rhachiberothidae) and Ormiscocerus (Nyrmi-
nae) (Winterton et al. 2010: fig 5) also indicates a Gondwanan origin. Cyrenoberothinae,  
sister to the Nyrminae, occurs in both the Neo- and Afrotropics with Rhachiberothi-
dae endemic to the Afrotropics, whereas Nyrminae occurs in the Neotropics and the 
northeastern mediterranean surrounding the Arabian Peninsula. Even though beroth-
ids and rhachiberothids had a near cosmopolitan distribution during the Cretaceous, 
as seen from fossil evidence, the extant Afrotropical Rhachiberothidae are more closely 
related to the Gondwanan Berothidae, and not members from the Laurasian taxa. 
Mesoberothidae (now Berothidae) known from compressions in Asia are thought 
to be either the stem taxon for berothids or possibly all “Mantispoidea” (Winterton 
et al. 2018). If some members of proto-Mantispoidea remained on Laurasia and some 

Fig. 7.  Contrasting views of the phylogenetic relationships of Berothidae, Rhachiberothidae and Mantis-
pidae. Black vertical lines on the right denote family recognition. A. Mantispidae and Berothidae (+Rhachi-
berothinae) as families. B. Mantispidae (+Rhachiberothinae) and Berothidae as families. C. Mantispidae, 
Berothidae and Rhachiberothidae as families. D. Only Mantispidae as a family with Berothidae and 
Rhachiberothidae as specilised lineages. Numbers indicate selected apomorphies. 1. Origin of planidium 
larvae feeding on social insects and the advent of raptorial forelegs. 2. Origin of wasp mimesis and param-
etamorphic ontogeny. 3. Spider eggs as a food source. 4. Loss of parametamorphic ontogeny.
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isolated on Gondwana during the pangean break, it could complicate deducing phy-
logeny during the following time periods, due to the possbility of parallelism despite 
genetic isolation, especially given a small sample size such as fossil records tend to 
be. Unfortunately, no basal berothid members were included in the Winterton et al. 
(2018) study and a similar study more focussed on including a higher number of taxa 
in the Mantispoidea could elucidate aspects of these relationships.

The extant diversity of higher taxon groups of Berothidae, Mantispidae and Rhachi-
berothidae indicates that a “historical diversity” surrounds continents originally part 
of Gondwana (Table 1). This is not uncommon for taxa with a Gondwana origin 
(Li & Zhou 2007). The plant genus Nothofagus have a very similar distribution pat-
tern, also thought to have originated on Gondwana (Li & Zhou 2007). The loss of 
other Mantispidae lineages on Africa might be due to several postulates. Firstly, other 
subfamilies might have been present, but were outcompeted by derived Mantispinae 
that comparatively recently “recolonised” the Afrotropics from the Palearctic region 
and became extinct. The other subfamilies went extinct in the Afrotropics, and only 
Mantispinae remained. The last scenario, similar to Nothofagus, is that Mantispidae 
never colonised central Gondwana and remained on what is today known as South 
America, Antarctica, India and Australia (Li & Zhou 2007). Rhachiberothidae could 
have colonised central Gondwana with diversification from Berothidae and Mantispi-
dae occurring after the breakup of Gondwana. These timelines fit with the break-up of 
Pangea occuring around the same time (200 Mya) as the origin and diversification of 
Rhachiberothidae, Berothidae and Mantispidae (Jepson & Penney 2007).

Lastly, our understanding of the Mantispidae, Berothidae and Rhachiberothidae 
phylogeny would drastically improve if the subfamilial level of fossil berothids receive 
treatment. When considering the Berothidae fossil record, currently thought to com-
prise 69 taxa, more than 60% of these taxa remain unclassified beyond family level 
(various authors, see Table 2). The taxa that have been assigned to a subfamily tend to 
receive more scrutiny and are subsequently moved within the classification more often. 
This has been true of members of Paraberothinae such as, Micromantispa cristata (Shi 
et al. 2015; Makarkin 2015a, b; Nakamine & Yamamoto 2018), Retinoberotha stuer-
meri (Engel 2004; McKellar & Engel 2009, Makarkin et al. 2011; Makarkin 2015a, b; 
Nakamine & Yamamoto 2018) and Raptorapax terribilissima (Petrulevicius et al. 2010; 
Makarkin et al. 2011; Makarkin 2015a, b; 2018; Nakamine & Yamamoto 2018).

In conclusion, the historical biogeography of Mantispidae and sistergroups, Ber-
othidae and Rhachiberothidae are, at best, not well understood. The disjunct Gond-
wanan distribution of higher taxon levels is currently also not well explained. Here it is 
proposed that the following require elucidation in order to improve our understanding 
of their historical biogeography:

1.	 Increased fossil data are needed, particularly from regions other than the Palearctic 
and especially from the Neo- and Afro-tropics.

2.	 The placement of Gerstaeckerella asiatica, Liassochrysa stigmatica, Promantispa simi-
lis and Micromantispa cristata should be revisited.
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3.	 A revision of the 40 plus fossil taxa currently assigned as Berothidae incertae sedis 
may drastically improve our understanding of the historical biogeography of the 
group.

4.	 A robust molecular (or total evidence) phylogeny of Mantispoidea, including di-
vergence time estimates is greatly needed.

The evolution of mantispids: larval behaviour, mimesis & radiation

Redborg (1985) suggested that proto-mantispids were general predators of sedentary 
arthropods e.g. pupa. Some members would have then started feeding on spider eggs 
in which an exclusive niche was realised. Spider boarding, consequently, evolved when 
the mantispid larvae reached mature spider eggs with spiderlings that had started to 
hatch. It should be noted that at the time Redborg (1985) proposed his hypotheses, 
the classification of mantispids was still divided into a primitive Platymantispinae 
(including Calomantispinae) and derived Mantispinae (Penny 1982b). Much of what 
Redborg (1985) suggested was based on studies of Nolima pinal (Macleod & Redborg 
1982) which is now classified as Calomantispinae, sister to Mantispinae and thus de-
rived (Lambkin 1986a; Liu et al. 2015). The phoresy behaviour in mantispines is thus 
derived and the egg-sac penetrating behaviour ancestral (Macleod & Redborg 1982). 
If proto-mantispids were generalist predators of arthropod pupae, it would suggest that 
symphrasines preying on hymenopteran pupa and mantispines mimicking hymenop-
terans are unrelated and evolved independently.

Most, if not all, Euclimacia species are wasp mimics (Ohl 2004). Euclimacia might 
exhibit similar species complexes found in Climaciella, most notably C. brunnea which 
have no less than five colour morphs, each mimicking a different wasp (Opler 1981; 
Ohl 2004; Bhattacharjee et al. 2010). Euclimacia nodosa probably mimics Vespa (Vespa) 
tropica tropica (Vespidae) because of the similar colouration of adults (Bhattacharjee 
et al. 2010). Both Tuberonotha and Pseudoclimaciella and possibly Austroclimaciella, 
Entatoneura, Nampista and Paramantispa, exhibit very similar colouration found in 
many Polistes wasp species (Hoffman 1992; Snyman et al. 2018). The evolution of 
mimesis in mantispids is certainly worth investigating as a character shared by several 
genera of mantispines, and coincidentally, the symphrasines, which are predators of 
Hymenoptera.

Thus far wasp mimesis has not been described in symphrasines, yet it would make 
more sense, evolutionary wise, for symphrasinae to evolve wasp mimesis. The mime-
sis might facilitate gaining access to the host nest without being detected. Dejean & 
Canard (1990) suggested that Trichoscelia santareni might be using chemical cam-
ouflage since they gain such easy access to well-guarded nests. However, the hy-
pothesis remains untested. Similarly, Euclimacia horstaspoecki was observed flying 
amongst Polistes species (cf. P. stigma) without malicious behaviour from either (Ohl 
2004). If chemical  camouflage is present, mimesis could be considered moot and 
the coincedental Hymenopteran connection as both larval food source, and mimic 
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models, unconnected. The diurnal “sit-and-wait” predatory behaviour of Climaciella, 
Euclimacia (Banks 1912; Redborg & Macleod 1983a; Pascarella et al. 2001; Ohl 2004) 
and Pseudoclimaciella observed in Tanzania can then be considered a platform for the 
evolution on mimesis in one of two ways: (1) either the self-protecting sting possessed 
by wasps, which is known to protect them from predation (O’Donnell 1996; Kaup-
pinen & Mappes 2003; Rashed et al. 2005) serves as the driver, or (2) mantispids use 
flowers as a platform for hunting, and thereby gain access to unsuspecting pollinators 
as a food source (Pascarella et al. 2001).

It does, however, seem unlikely that mantispines evolved from social parasites and 
secondarily evolved wasp mimesis (Fig. 7). Proto-mantispids probably exhibited a sim-
ilar life style to what is seen in symphrasines today. Mimesis can allow the mimic to live 
in close proximity to its model and food source without malicious behaviour from the 
host, thereby increasing the likelihood of obtaining food. If mimicking behaviour in-
creased the organisms’ likelihood of obtaining food, it would surely have been favoured 
by evolution. Maintaining the mimesis as seen in mantispines is plausible because of 
the danger wasps hold for several predatory taxa such as Odonata (O’Donnell 1996; 
Kauppinen & Mappes 2003; Rashed et al. 2005).

It is well understood that the basal subfamily Symphrasinae did not undergo a re-
cent radiation as exhibited by Mantispinae after the divergence of the taxa (Lambkin 
1986a, b). It is therefore likely that the behaviour of Symphrasinae did not undergo 
drastic changes and the life history exhibited today is similar to what it was in the past. 
The larvae of both Berotidae and Symphrasinae prey on social insects (termites and 
hymenopterans respectively) with the food source of rhachiberothid larva remaining 
unknown. Mantispinae, however, must have undergone some sort of drastic change in 
the evolutionary past to have radiated significantly more than their closely related sister 
groups. A change in diet might be a plausible explanation. If the proto-mantispines 
switched from hymenopteran larvae to spider eggs – a novel niche to exploit – a radia-
tion event could be the consequence.

The dietary change from wasps to spiders is not a difficult change. Several studies 
indicate the importance of spiders as a food source of vespids. After Lepidoptera, Co-
leoptera and Diptera, Araneae seems to be the preferred food source, especially during 
autumn when the other arthropod orders presumably pupate and are inaccessible to 
vespids (Harris & Oliver 1993; Richter 2000; Sackmann et al. 2000). Even though we 
do not know with certainty that symphrasines have a planidium first instar larvae, it is 
highly likely that they do. Berothidae, Rhachiberothidae, Calomantispinae, Drepan-
icinae and Mantispinae all have planidium larvae that actively search for food. The 
fossilised first instar mantispine larvae described by Ohl (2011) and Haug et al. (2018) 
from Baltic and Burmese amber respectively, is indicative that boarding of spiders has 
at least been around since the upper Cretaceous (±100 Mya).

Planidium larvae would have to gain access to such a food source by (1) searching 
for a nest or (2) search for and board a wasp and gain access to the nest phoretically. 
If proto-mantispinae planidium larvae started boarding wasps in order to phoretically 
gain access to nests, boarding of spiders and or other arthropods hunted by wasps, 
might be a logical next step. Additionally, this will explain both the specialist behaviour 
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of Mantispinae, and the generalist predatory behaviour exhibited by Calomantispinae 
larvae. By boarding spiders, access to spider eggs is easier to obtain for an active pla-
nidium larvae in stead of adventitiously start penetrating silken egg-sacs in order to 
obtain eggs. The silk barrier is a very effective protective barrier between the environ-
ment and eggs, as explained by Hieber (1992). If Calomantispinae are in fact a gen-
eralist insect pupa predator, this hypothesis also explains the evolution thereof. After 
proto-Calomantispinae larvae board insects that pupate, they will have three options:  
(1) dismount the pupa and look for alternative food sources; (2) overwinter on the 
pupa and board the imago; or (3) feed on the pupa.

In conclusion the following is hypothesised:

1.	 Proto-mantispids radiated in accordance with the radiation of the predatory be-
haviour in wasps.

2.	 Mimesis is possibly an ancestral state in Mantispinae, and likely evolved in order 
to obtain hymenopteran immatures as food.

3.	 Proto-mantispines radiated in accordance with the radiation of Araneomorphae 
spiders.

4.	 Phoresy is possibly the ancestral state in mantispines, and egg-sac penetrators the 
derived state.
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