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Abstract
Estimation in themultivariate contextwhen thenumber of observations
available is less than the number of variables is a classical theoretical
problem. In order to ensure estimability, one has to assume certain con-
straints on the parameters. A method for maximum likelihood estima-
tion under constraints is proposed to solve this problem. Even in the
extreme case where only a single multivariate observation is available,
thismay provide a feasible solution. It simultaneously provides a simple,
straightforwardmethodology to allow for specific structures within and
between covariance matrices of several populations. This methodology
yields exact maximum likelihood estimates.

1. Introduction

This article addresses the fundamental problem of determining the exact maximum like-
lihood estimates (MLEs) for the mean vector and covariance matrix structures of p-
dimensional multivariate normal distributions with special reference to the case where the
number of observations, n, may be less than the dimension of the observations, p. In such
cases, constraints on the parameters have to be introduced to ensure estimability. Such con-
straints are usually suggested by the underlying experimental design, as well as the nature of
the data. These additional structures on parameters, mean vectors, and covariance matrices
can easily be incorporated using the proposed procedure of estimation by combining the
principles discussed in the two papers by Strydom and Crowther (2012, 2013). In this article,
it is shown how this method even provides an estimation solution in the extreme case where
a number of multivariate populations are sampled with only one observation per population.
Specifi approaches for dealing with a variety of scenarios are presented.

No general maximum likelihood estimation procedures are known in the case where
n < p. In order to ensure estimability, reparameterization is required which in essence reduces
the number of parameters. Each parameterization then calls for the derivation of its own set
of likelihood equations which should then be maximized. This process is cumbersome in the
easiest of applications. The complexity of the problem increases in magnitude in the case of
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several multivariate populations. For this reason, assumptions such as equality of covariance
matrices of several populations are often required. Less restrictive assumptions, such as pro-
portionality of covariance matrices of several populations, represent a problematic estimation
problem even when n ≥ p (Flury 1986). When n < p, estimation of the covariance matrices
is impossible—unless restrictions are imposed. The method proposed in this article enables
and illustrates straightforward maximum likelihood estimation in a variety of complicated
practical applications.

Although the procedure proposed in this article is focused on relatively small samples,
the techniques can be applied to model the same structures in large samples (Strydom and
Crowther 2012, 2013). Many aspects of the Behrens–Fisher problem and other similar prob-
lems can be addressed in this way. However, if insuffici t sample sizes are available, but
certain structures between (or within) samples may be assumed, the same procedure pro-
vides a simple approach to the estimation of the underlying parameters. Although normality
is assumed in this article, the procedure may be applied similarly in a broader context to dis-
tributions in the exponential class.

In this article, the focus is on the following aspects:
� It is shown that the theory for maximum likelihood estimation under constraints pro-

vides a simple framework within which, for relatively small samples (n < p), the MLEs
of mean vectors and covariance structures can easily be obtained.

� The scope, flexibility, and usefulness of the methodology is illustrated by estimating the
covariance matrices under three different variations of growth: proportional, linear, and
linear porportional.

� The accuracy of the MLEs of covariance matrices obtained when n < p is presented in
simulation studies.

� A practical application illustrates the potential and innovative use of the methodology
in the context of a seemingly unrelated regression (SUR) model.

The theoretical background of the estimation procedure is given in Section 2. A simple
example is used to show that the exact MLEs are obtained using the proposed procedure. In
Section 3, the covariance matrix estimation for several multivariate populations when n < p
is illustrated using simulated data. The accuracy of the results is illustrated by way of simula-
tion studies in the case of linear growth, proportional growth, as well as linear proportional
growth of the covariance matrices. These underlying structures are suggested as practical and
sensible assumptions or constraints that may exist within and among covariance matrices.
These constraints enable estimation even in the case of relatively small sample sizes. Finally,
in Section 4, a practical application to a SUR model (Greene 2012) is considered. In this case,
data observed for four companies over 20 years (1935–1954) are modeled as 20 single (n = 1)
four-dimensional multivariate observations. MLEs of both the mean vectors and covariance
matrices are obtained simultaneously under diffe ent structural assumptions. The seemingly
unrelated regression model is fit ed under the assumption of proportional covariance matrices
allowing for different trends in growth.

2. Theoretical background

Suppose that yi1, yi2, . . . , yini represent ni observations of k independent random samples
from Np(μi, �i) distributions (i = 1, 2, . . . , k). Let yi represent the sample mean vector

yi = 1
ni

ni∑
j=1

yi j (1)
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and Si the matrix of mean sums of squares and cross products of the ith sample

Si = 1
ni

ni∑
j=1

yi jy
′
i j. (2)

Note that ni is not assumed to be larger than p. If any of the ni is less than or equal to p, the
MLEs in general do not exist unless additional restrictions on parameters are imposed.

Let

t =

⎛
⎜⎜⎜⎜⎜⎝

y1
vec(S1)

...
yk

vec(Sk)

⎞
⎟⎟⎟⎟⎟⎠ with E(t ) = m =

⎛
⎜⎜⎜⎜⎜⎝

μ1
vec(�1 + μ1μ

′
1)

...
μk

vec(�k + μkμ
′
k)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

m11

m12
...

mk1

mk2

⎞
⎟⎟⎟⎟⎟⎠ . (3)

The covariance matrix of t is given by

V = Cov(t ) =

⎛
⎜⎝

V 11 0 0

0
. . . 0

0 0 V kk

⎞
⎟⎠ V ii =

(
V i

11 V i
12

V i
21 V i

22

)
(4)

where

V i
11 = 1

ni
�i

V i
21 = 1

ni
(�i ⊗ μi + μi ⊗ �i)

V i
12 = V i ′

21

V i
22 = 1

ni
(Ip2 + K )

[
�i ⊗ �i + �i ⊗ μiμ

′
i + μiμ

′
i ⊗ �i

]
for i = 1, . . . , k. The commutation matrix K is given by K = ∑p

i, j=1(H i j ⊗ H ′
i j) and H i j :

p× p with hi j = 1 and all other elements equal to zero (Muirhead 1982).
Parameter structures can be fitted by specifying constraints g(m) = 0 on the elements of

m. The MLE of m under the constraints can be obtained from the expression (Strydom and
Crowther 2012, 2013):

m̂ = t − (GmV )′(GtV G′
m)∗g(t ) (5)

where Gm = ∂g(m)
∂m , Gt = Gm|m=t and (GtV G′

m)∗ is a generalized inverse of GtV G′
m.

When ni < p, the covariance matrices are singular and certain restrictions hold between the
elements of each vector of observations yi, i = 1, . . . , k. Since different sets of independent
restrictions may be imposed sequentially, the result (5) also holds for singular covariance
matrices V and GtV G′

m (Matthews and Crowther 1995, 1998; Crowther and Shaw 1989). In
general, the double-iterative procedure implies a double iteration over t and m. The fi st iter-
ation stems from the Taylor series linearization of g(t ) and the second from the fact that V
may be a function of m.

The present issue is that the MLEs of m do not exist in general, except under constraints
which are implied by assuming a particular model. In the procedure (5) for obtaining the
MLEs of μi and �i under constraints, the vector t of canonical statistics with the correspond-
ing covariance matrix V is used as the point of departure for any model considered within
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this framework. The algorithm given by Strydom and Crowther (2012) is then used to obtain
these MLEs.

The Wald test statistic may also serve as an indication of whether certain constraints exist,
which may be imposed in order to ensure estimability. The examples of covariance matrix
estimation in Section 3 and Section 4 implement specifica ly various types of structures (con-
straints) on the variances and covariances in order to obtain MLEs for the parameters. These
structures are implied by the data and the theory underlying the specifi application.

2.1. Introductory example

As a simple example to demonstrate the potential of the process described in (5) and its equiv-
alence to traditional maximum likelihood , eight observations were simulated from a multi-
variate normal distribution with mean zero and covariance matrix

� =
(

�11 �12

�21 �22

)
=

(
dI5 + e151′

5 0
0 dI5

)
= dI10 + ecc′ where

I5 a 5 × 5 identity matrix, c = ( 15
05

), 15 a 5 × 1 vector of ones, 05 a 5 × 1 vector of zeros, d = 2
and e = 3.

The singular observed covariance matrix of rank 8 is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.12 3.33 2.22 3.82 2.38 0.71 −0.95 2.82 0.82 0.03
3.33 4.22 3.02 3.68 1.60 1.35 −0.93 2.77 −1.00 −0.67
2.22 3.02 3.29 3.56 1.33 0.94 −0.63 2.21 −0.20 −0.56
3.82 3.68 3.56 9.64 3.65 −0.44 0.42 3.28 1.01 1.05
2.38 1.60 1.33 3.65 3.00 0.90 0.07 2.11 1.86 0.19
0.71 1.35 0.94 −0.44 0.90 2.26 −0.35 1.13 −0.18 −1.28

−0.95 −0.93 −0.63 0.42 0.07 −0.35 1.47 −0.81 −0.28 0.35
2.82 2.77 2.21 3.28 2.11 1.13 −0.81 2.50 0.80 −0.33
0.82 −1.00 −0.20 1.01 1.86 −0.18 −0.28 0.80 3.52 0.62
0.03 −0.67 −0.56 1.05 0.19 −1.28 0.35 −0.33 0.62 0.95

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The structure in the covariance matrix � implies that the restrictions g(m) required by the
estimation process in (5) are given by:

g(m) =

⎡
⎢⎢⎢⎢⎣

Pde

Pd

Pe

P0

Pr

⎤
⎥⎥⎥⎥⎦ vec(�) and G(m) =

⎡
⎢⎢⎢⎢⎣

Pde

Pd

Pe

P0

Pr

⎤
⎥⎥⎥⎥⎦

∂vec(�)

∂m

where the matrix

Pde selects and equates the diagonal elements of vec(�11),

Pd selects and equates the diagonal elements of vec(�22),

Pe selects and equates the off-diagonal elements of vec(�11),

P0 selects and sets the elements of vec(�12) equal to zero
Pr selects the elements and specifie the implied relation between the elements of �11

and �22.
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The MLE of the covariance matrix � under these restrictions follows from (5) as a non
singular matrix with �̂ = ( 2.07I5+2.84151′

5 0
0 2.07I5

)
.

These estimated values may also be verifi d directly by making use of the fact that if
the covariance matrix � has the structure � = dI + ecc′, then �−1 has the same structure
(Graybill 1983), namely

�−1 = δI + εcc′

for some δ and ε. The MLEs of δ, ε, and �−1 are obtained from the likelihood function:

L(y) ∝ k exp
(

− 1
2

y′�−1y
)

= k exp
[

− 1
2

y′(δI + εcc′)y
]

= k exp
{

− 1
2
δy′y + ε(c′y)2

}
.

The MLEs follow directly as:

δ̂ = p(p− 1)

py′y − 2(c′y)2 and ε̂ = 1
(1′y)2 − δ

2
p
.

Since the transformation of � to �−1 is one to one, the MLE of � is the inverse of the MLE of
�−1. This yields exactly the same estimated values for d and e as given above.

Traditional maximum likelihood estimation may increase drastically in difficulty with
more complicated structures. With the maximum likelihood procedure outlined in (5), the
problem may usually be resolved in a straightforward way.

3. Covariance matrix estimation

The case of relatively few observations can only be addressed if the existence of underlying
structures between and/or within covariance matrices can be assumed. The constraints in
essence reduce the number of independent parameters to be estimated. Under this scenario,
the procedure for maximum likelihood estimation under constraints described in the previ-
ous section provides an elegant and direct solution to this problem.

In the framework of procedure (5), when the mean vectors are assumed to be zero, the
canonical statistics with expected values simplify to

t =

⎛
⎜⎝

vec(S1)
...

vec(Sk)

⎞
⎟⎠ , E(t ) = vec(�) =

⎛
⎜⎝

vec(�1)
...

vec(�k)

⎞
⎟⎠ =

⎛
⎜⎝

m1
...

mk

⎞
⎟⎠ = m (6)

and V = Cov(t ) = block(V 1,V 2,V 3,V 4,V 5) a block-diagonal matrix with typical
submatrix

Vi = (Ip2 + K) [�i ⊗ �i]

for i = 1, . . . , 5 and K the commutation matrix (cf., (4)).
In the next three subsections, simulations are given where the number of multivariate

observations in each case presented is less than or equal to the dimension of the observations
and constraints have to be imposed on the parameters in order to obtain MLEs. Traditionally,
constraints such as equal covariance matrices are assumed. Assumptions like, for example,
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proportionality of covariance matrices could in many instances provide a much more real-
istic and desirable solution. Proportionality of covariance matrices implies equal correlation
matrices, but allows for different covariance structures. Structures between and within the
covariance matrices may be imposed which would ensure estimability.

For each simulation, relatively small random samples Y i : p× ni, p > ni, for i =
1, 2, 3, 4, 5 generated from N(0, �i) distributions, are considered. These small samples result
in the unbiased singular sample covariance matrix estimates 1

ni
Y iY ′

i, i = 1, 2, 3, 4, 5 with the
ith estimate having rank ni. Structures between and within covariance matrices are imposed
to ensure estimability and are illustrated with the simulations in the following subsections.

Due to the complexity of estimation and the problem of relatively small sample sizes, equal-
ity of covariance matrices is often assumed in the simultaneous modeling of mean vectors and
covariance structures. In the following subsections, the accuracy of MLEs under less restric-
tive but practically sensible assumptions, is illustrated. These assumptions are proportional
growth, linear growth, and linear proportional growth of covariance matrices with a com-
pound symmetry structure. For each scenario, the random samples generated are described,
the theory (constraints) formulated, followed by a short summary of results accompanied by
a table with specific detail.

3.1. Simulation of proportional growth in covariances

The columns of Y i : 6 × 2 for i = 1, 2, 3, 4, 5 represent five independent samples of size two
generated from N(0, �i) distributions where

�i = ρ i−1

⎛
⎜⎜⎜⎜⎜⎜⎝

α β β β β β

β α β β β β

β β α β β β

β β β α β β

β β β β α β

β β β β β α

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

i.e., where consecutive population covariance matrices are proportional. These small samples
result in the unbiased singular sample covariance matrix estimates 1

2Y iY ′
i, i = 1, 2, 3, 4, 5 and

each estimate has rank 2.

3.1.1. Constraints
The proposed methodology only requires specification of the constraints implied by the 
underlying structural relationships. The structures within and between the �i’s are repre-
sented by the constraints g(m) = ( g1(m)

g2(m)

)
where g1(m) implies the compound symmetry

structure within covariance matrices and g2(m) implies the proportionality between the
covariance matrices.

The compound symmetry structure on each of the five covariance matrices is specified by

g1(m) =
(

I5 ⊗ (QαCα )

I5 ⊗ (QβCβ )

)
vec(�) with derivative G1(m) =

(
I5 ⊗ (QαCα )

I5 ⊗ (QβCβ )

)
∂vec(�)

∂m
(8)

where

Cα selects the diagonal elements of each �i

Qα equates all the diagonal elements of each �i
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Cβ selects the off-di gonal elements of each �i

Qβ equates all the off-di gonal elements of each �i

∂vec(�)

∂m
= I5p2 .

In this case, the matrix

Cα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Qα = I6 − 1
611

′. Similarly for Cβ and Qβ .
When proportional covariance matrices are assumed, a typical subvector of the constraints

g2(m) is given by:

g2i(m) = vec(�i) − ρ.vec(�i−1) = 0, i = 2, 3, 4, 5 (9)

where ρ is a measure of growth and

G2i(m) = ∂vec(�i)

∂m
− ρ

∂vec(�i−1)

∂m
− vec(�i−1)

∂ρ

∂m
.

It is sufficient to use only the firs two elements of each �i in the restrictions, since equal-
ity of diagonal and off-diagonal elements are specified as well. The growth factor, ρ, may be
determined in various ways, e.g., ρ = �2[1, 1]/�1[1, 1] or ρ = (�5[1, 1]/�1[1, 1]) 1

4 where
�i[1, 1] is the variance of the fi st variable measured in the ith sample, i = 1, . . . , 5. Alterna-
tively, ρ may be determined by

ρ = ( sum of elements of �4) / ( sum of elements of �3) = a′m/b′m = S4/S3 (10)

with a′ = ( 0′
36 0′

36 0′
36 1′

36 0′
36 ), b′ = ( 0′

36 0′
36 1′

36 0′
36 0′

36 ) and derivative

∂ρ

∂m
= (S3a′ − S4b′)/S2

3.

3.1.2. Results
For 1000 simulated samples with �i g i v e n i n ( 7), α = 5, β = 3, ni = 2, i = 1, . . . ,  5 a n d 
p r o - portionality constant or growth factor ρ = 1.3, the MLEs of ρ and �i were calculated. 
Conver-gence of the double-iterative process is not guaranteed, but in general it converges in 
relatively few iterations.

On the left-hand side in Table 1, the population values for the covariance matrices and
growth factor are given. The average of the MLEs of the covariance matrices and growth factor
calculated for 1000 simulations are given on the right-hand side in Table 1.

3.2. Simulation of linear growth

In this subsection, the accuracy of the MLEs of covariance matrices with compound symmetry 
structure growing linearly, is illustrated. Random samples Y i : 6 × 2 for i = 1, 2, 3, 4, 5 were
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Table 1. Simulation of proportional growth. n1 = 2, n2 = 2, n3 = 2, n4 = 2, n5 = 2.

Population covariance matrices Estimated covariance matrices
Growth factor ρ = 1.3 Estimated growth factor ρ = 1.3047

 �1  �1

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �2 = 1.3 × �1  �2 = 1.304725 × �1

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �3 = 1.3 × �2  �3 = 1.304725 × �2

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �4 = 1.3 × �3  �4 = 1.304725 × �3

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �5 = 1.3 × �4  �5 = 1.304725 × �4

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

generated from N(0, �i) distributions where

�1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α β β β β β

β α β β β β

β β α β β β

β β β α β β

β β β β α β

β β β β β α

⎞
⎟⎟⎟⎟⎟⎟⎠

and �i = �i−1 + c161′
6 + dI6, i = 2, 3, 4, 5 (11)

These small samples result in the unbiased singular sample covariance matrix estimates 1
2Y iY ′

i,
i = 1, 2, 3, 4, 5 and the ith estimate has rank 2.
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3.2.1. Constraints
The compound symmetry structure within the covariance matrices is again specified by the 
restriction g1(m) given by (8) i n  Section 3.1. The constraints specifying linear growth in 
vari-ances and in covariances are, respectively,

gd = QX (I5 ⊗ Cα[1, ])m = QX

⎛
⎜⎜⎜⎜⎝

�1[1, 1]
�2[1, 1]
�3[1, 1]
�4[1, 1]
�5[1, 1]

⎞
⎟⎟⎟⎟⎠ and

(12)

gc = QX (I5 ⊗ Cβ[1, ])m = QX

⎛
⎜⎜⎜⎜⎝

�1[1, 2]
�2[1, 2]
�3[1, 2]
�4[1, 2]
�5[1, 2]

⎞
⎟⎟⎟⎟⎠

where �i[k, l] is the covariance of the kth and lth variable measured in the ith sample and

QX = (I5 − X (X ′X )−1X ′) with X =

⎛
⎜⎜⎜⎜⎝

1 1
1 2
1 3
1 4
1 5

⎞
⎟⎟⎟⎟⎠ .

The corresponding derivatives are given by

Gd = QX (I5 ⊗ Cα[1, ]) and Gc = QX (I5 ⊗ Cβ[1, ]).

These constraints allow for different linear trends in variances and covariances,
respectively.

3.2.2. Results
For 1000 simulated samples with �1 given in (11), linear growth specified according to (12) 
a n d c o m p o u n d s y m m e t r y a c c o r d i n g t o ( 8), the MLE of �1 was calculated. 
On the left-hand side in Table 2, the population values for the covariance matrices and linear 
growth factors are given. The average of the MLEs of the covariance matrices and linear 
growth factors calculated for 1000 simulations are given on the right-hand side in Table 2.
3.3. Simulation of linear proportional growth

In this subsection, the MLEs obtained in the presence of linear proportional growth in covari-
ance matrices with compound symmetry structure are given. Random samples Y i : 6 × 2 for
i = 1, 2, 3, 4, 5 were generated from N(0, �i) distributions where

�1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α β β β β β

β α β β β β

β β α β β β

β β β α β β

β β β β α β

β β β β β α

⎞
⎟⎟⎟⎟⎟⎟⎠

and �i = ρi�Av (13)

where �Av = 1
5

∑5
i=1 �i and the ρi’s are restricted to be on a straight line. This implies that

the corresponding elements of the covariance matrices �i for i = 1, 2, . . . , 5 are on straight
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Table 2. Simulation of linear growth. n1 = 2, n2 = 2, n3 = 2, n4 = 2, n5 = 2.

Population covariance matrices Estimated covariance matrices
Diagonal factor  Estimated diagonal factor .
off-diagonal factor  Estimated off-diagonal factor .

 �1  �1

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �2 = �1 + 3161′6 + 2I6  �2 = �1 + 2.857161′6 + 1.98I6

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �3 = �2 + 3161′6 + 2I6  �3 = �2 + 2.857161′6 + 1.98I6

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �4 = �3 + 3161′6 + 2I6  �4 = �3 + 2.857161′6 + 1.98I6

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �5 = �4 + 3161′6 + 2I6  �5 = �4 + 2.857161′6 + 1.98I6

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

lines and that the covariance matrices are proportional. The assumption of proportionality
implies equal corresponding correlation coeffici ts.

3.3.1 Constraints
The compound symmetry structure within the covariance matrices is again specified by the 
restriction g1(m) (cf., (8)). Proportional covariance matrices are implied by the restriction 
g2(m) (cf., (9)). The linear structure between covariance matrices is in this case implied by 
the constraints gr (m), w h e r e

gr(m) = QXρ (14)

with derivative Gr(m) = QX
∂ρ
∂m and QX as defin d by (12) in Section 3.2.
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Table 3. Simulation of linear proportional growth. n1 = 2, n2 = 2, n3 = 2, n4 = 2, n5 = 2.

Population covariance matrices Estimated covariance matrices

 �1 = 0.5�Av  �1 = 0.510�Av

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �2 = 0.75�Av  �2 = 0.755�Av

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �3 = �Av  �3 = 1.000�Av

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �4 = 1.25�Av  �4 = 1.245�Av

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 �5 = 1.50�Av  �5 = 1.490�Av

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

Population correlation matrix Estimated correlation matrix

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

3.3.2 Results
On the left-hand side in Table 3, the population values for the covariance matrices and 
growth factor are given. The average of the MLEs of the covariance matrices and growth 
factor calcu-lated for 1000 simulations are given on the right-hand side in Table 
3. N o t e t h a t t h e m a t r i x  �Av also equals the average of any two estimated �’s which are 
on equal distances from the center
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of the five estimated �’s. For example, �Av = 0.5(�1 + �5). The corresponding population
and estimated correlation matrices are also given.

4. Seemingly unrelated regression model

In this section, the flexibility and potential of the methodology given in Section 2 are practi-
cally illustrated in the case of longitudinal data with a specific focus on the SUR model (Greene
2012). Greene (2012) used a subset of the Grunfeld data set consisting of data of four firms
over 20 years. The investment equation is given by:

I ji = β1 j + β2 jF ji + β3 jC ji + e ji, j = 1, 2, 3, 4 and i = 1, 2, . . . 20 (15)

where

I ji is the real gross investment for the jth firm in year i,
F ji is the real value of the firm-shares outstanding,
C ji is the value of the capital stock,

β1 j, β2 j, and β3 j are the respective regression constant and coeffici ts, and
e ji is a disturbance term.

The SUR model can be formulated in terms of 20 independent multivariate observations.
Let

y =

⎛
⎜⎝

y1 : 4 × 1
...

y20 : 4 × 1

⎞
⎟⎠ and Cov(y) =

⎛
⎜⎜⎜⎝

�1 0 · · · 0
0 �2 · · · 0
...

...
...

...
0 0 · · · �20

⎞
⎟⎟⎟⎠ (16)

where y represents 20 independent multivariate observations that fall into the estimation
framework described in Section 2. Note that each observation needs to be considered as a
four-dimensional multivariate (normal) sample of size one.

In the following subsections, the same regression models are fit ed to the mean vectors, i.e.,
four regression models are fitted over time. However, it is argued that the usual assumption of
equal covariance matrices is too restrictive. Constraints are used to impose relations within
and between the covariance matrices. MLEs for both the mean vectors and covariance matri-
ces are obtained using the general methodology described in Section 2 and illustrated in the
following subsections. The effect of the different covariance structures on the estimates of the
mean vectors is illustrated clearly.

4.1. Estimating mean vectors and regression parameters

The SUR model in the example referred to is fitted to the four elements of the 20 independent
vector observations. Since a single multivariate observation from each population is observed,
the iterative process (5) is initialized with

vec(�̂i) = t i2 − vec[At i1(At i1)′] �= 0, i = 1, . . . , 20

where A = X (X ′X )−1X ′ and X = block(X 1, X 2, X 3, X4), a block-diagonal matrix with X j =
(120 F j C j).

This results in an initial estimate of �i of rank 1 instead of the usual estimate t i2 −
vec(t i1t ′

i1), which is equal to zero as a starting value.

12



The constraints implied by the four regression models require the defin tion of the follow-
ing matrices:

D1 = I20 ⊗ (I4 0p,p2 ), (17)

C1 =

⎛
⎜⎜⎝

I20 ⊗ I4[1, ]
I20 ⊗ I4[2, ]
I20 ⊗ I4[3, ]
I20 ⊗ I4[4, ]

⎞
⎟⎟⎠ (18)

where I4[ j, ] is the jth row of the 4 × 4 identity matrix, D1 selects the mean vectors
μ1, μ2, . . . , μ20 from m, and C1 selects successively the firs , second, third, and fourth ele-
ments of the 20 mean vectors μi, i = 1, 2, . . . 20.

The corresponding set of constraints specifying the multiple regression is given by

g1(m) = Q1C1D1m and G1(m) = Q1C1D1 where
Q1 = I80 − X (X ′X )∗X ′. (19)

4.2. Estimating covariance matrices

Estimability is obtained traditionally by assuming equal covariance matrices—an assumption
which is generally too restrictive and usually yields unacceptable estimates. In the follow-
ing subsections, more general and acceptable assumptions regarding the covariance matri-
ces, which provide more reasonable estimates, are illustrated. In the first of these subsections,
equality of covariance matrices is assumed, just to illustrate the estimation procedure under
constraints. In the subsequent sections, the MLEs of regression parameters under the follow-
ing covariance structures are given:

� Proportional growth with a single growth factor
� Proportional growth with two different growth factors, i.e., allowing a change in growth
� Linear growth in proportional covariance matrices
� Linear growth in proportional covariance matrices using two splines
These scenarios illustrate the versatility of the proposed methodology and provide the

MLEs of the regression parameters under more realistic covariance assumptions.

4.2.1 Variances and covariances constant over time
In order to express the assumption of equal covariance matrices, i.e., �1 = �2 = · · ·  = �20 = 
� in terms of constraints, the following matrices are used in the sequel:

D2 = I20 ⊗ (016×4 I16) and Q2 = (I20 − 1201′
20/20) ⊗ I16. (20)

The matrix D2 selects vec(�1 + μ1μ
′
1), . . . , vec(�20 + μ20μ

′
20) from m and Q2 equates the

covariance matrices. Consequently, the constraint which implies equality of covariance matri-
ces is given by

g2(m) = Q2

⎛
⎜⎝

vec(�1)
...

vec(�20)

⎞
⎟⎠ = Q2[D2m − (D1m) ⊗ (D1m)′]

13



= Q2

⎛
⎜⎝

m12 − vec(m11m′
11)

...
m20,2 − vec(m20,1m′

20,1)

⎞
⎟⎠ . (21)

Imposing the constraints g1 (cf., (19)) and g2 given in (21) on m yields the traditional MLEs
of the parameters (Greene 2012).

4.2.2 Proportional growth in covariance matrices
In many situations, the assumption of proportional covariance matrices over time periods is 
acceptable, which implies equal correlations of corresponding variates. This assumption then 
compensates for the lack of information due to an insufficient number of observations at any 
point in time. Different growth factors are allowed over specific time periods.

4.2.2.1. Proportional growth with a single growth factor. The first model considered is that of 
a constant proportional increase or decrease in covariance matrices, stipulated by �i = ρ�i

−1, a s i l l u s t r a t e d i n  Table 4. C o n s t r a i n t s a r e s p e c i f i e d s i m i l a r l y 
t o t h o s e i n  Section 3.1. A  typical subvector of the constraints g2(m) is given by:

g2i(m) = vec(�i) − ρ.vec(�i−1) = 0, i = 2, . . . , 20 (22)

with derivative

G2i(m) = ∂vec(�i)

∂m
− ρ

∂vec(�i−1)

∂m
− vec(�i−1)

∂ρ

∂m
where

ρ = ( sum of elements of �11) / ( sum of elements of �10) = a′m/b′m = S11/S10

where a and b are appropriate selection vectors and

∂ρ

∂m
= (S10a′ − S11b′)/S2

10.

4.2.2.2. Proportional growth with two different growth factors, i.e., allowing a change in 
growth. The previous model is extended and illustrated in Table 6 by using different pro-
portional growth factors

ρ1 = (�10[1, 1]/�1[1, 1])
1
9 and ρ2 = (�20[1, 1]/�11[1, 1])

1
9 (23)

over the first 10 and over the last 10 covariance matrices. The notation �i[1, 1] represents the
variance of the first variable measured in the ith sample, i = 1, . . . , 20. As can be seen from
Table 5, the first growth factor ρ1 indicates a positive growth of 1.0729 per year in variances
over the first 10 years, while the second growth factor ρ2 represents a slight negative growth
in variances of 0.9915 per year over the last 10 years. The model in this case is fitted making
use of the additional restriction that �10 = �11. Equal corresponding correlation coeffici ts
of all the covariance matrices can be seen again.

4.2.3 Linear growth in proportional covariance matrices
4.2.3.1. Linear growth in proportional covariance matrices. The assumption of propor-
tional covariance matrices over time periods may be extended to accommodate a 
linear

14



Table 4. Estimated growth in proportional covariance matrices with a single growth factor ρ = 1.023052.

Mean Covariance matrix Mean Covariance matrix

 �1  �11 = ρ�10

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �2 = ρ�1  �12 = ρ�11

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �3 = ρ�2  �13 = ρ�12

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �4 = ρ�3  �14 = ρ�13

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �5 = ρ�4  �15 = ρ�14

. . −. . −. . . −. . −.
. −. . .  . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �6 = ρ�5  �16 = ρ�15

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �7 = ρ�6  �17 = ρ�16

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �8 = ρ�7  �18 = ρ�17

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �9 = ρ�8  �19 = ρ�18

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �10 = ρ�9  �20 = ρ�19

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .
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Table 5. Estimated growth in proportional covariance matrices with two different growth factors ρ1 = 
1.072856 and ρ2 = 0.991520.

Mean Covariance matrix Mean Covariance matrix

 �1  �11 = �10

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �2 = ρ1�1  �12 = ρ2�11

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �3 = ρ1�2  �13 = ρ2�12

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �4 = ρ1�3  �14 = ρ2�13

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �5 = ρ1�4  �15 = ρ2�14

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �6 = ρ1�5  �16 = ρ2�15

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �7 = ρ1�6  �17 = ρ2�16

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �8 = ρ1�7  �18 = ρ2�17

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �9 = ρ1�8  �19 = ρ2�18

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �10 = ρ1�9  �20 = ρ2�19

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . -. . . .
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Table 6. Estimated linear growth in proportional covariance matrices.

Mean Covariance matrix Mean Covariance matrix

 �1 = ρ1�Av
, ρ1 = 0.7443  �11 = ρ11�Av

, ρ11 = 1.0135

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �2 = ρ2�Av
, ρ2 = 0.7712  �12 = ρ12�Av

, ρ12 = 1.0404

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �3 = ρ3�Av
, ρ3 = 0.7981  �13 = ρ13�Av

, ρ13 = 1.0673

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �4 = ρ4�Av
, ρ4 = 0.8250  �14 = ρ14�Av

, ρ14 = 1.0942

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �5 = ρ5�Av
, ρ5 = 0.8520  �15 = ρ15�Av

, ρ15 = 1.1211

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �6 = ρ6�Av
, ρ6 = 0.8789  �16 = ρ16�Av

, ρ16 = 1.1480

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �7 = ρ7�Av
, ρ7 = 0.9058  �17 = ρ17�Av

, ρ17 = 1.1750

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �8 = ρ8�Av
, ρ8 = 0.9327  �18 = ρ18�Av

, ρ18 = 1.2019

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �9 = ρ9�Av
, ρ9 = 0.9596  �19 = ρ19�Av

, ρ19 = 1.2288

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �10 = ρ10�Av
, ρ10 = 0.9865  �20 = ρ20�Av

, ρ20 = 1.2557

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .
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Table 7. Estimated linear growth in proportional covariance matrices using two splines.

Mean Covariancematrix Mean Covariancematrix

 �1 = ρ1�Av
, ρ1 = 0.6014  �11 = ρ11�Av

, ρ11 = 1.1575

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �2 = ρ2�Av
, ρ2 = 0.6632  �12 = ρ12�Av

, ρ12 = 1.1493

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. -. . . . . −. . . .

 �3 = ρ3�Av
, ρ3 = 0.7250  �13 = ρ13�Av

, ρ13 = 1.1411

. . −. . -. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �4 = ρ4�Av
, ρ4 = 0.7868  �14 = ρ14�Av

, ρ14 = 1.1329

. . −. . −. . . −. . -.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �5 = ρ5�Av
, ρ5 = 0.8486  �15 = ρ15�Av

, ρ15 = 1.1246

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �6 = ρ6�Av
, ρ6 = 0.9104  �16 = ρ16�Av

, ρ16 = 1.1164

. . −. . −. . . −. . −.
. −. . . . . -. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �7 = ρ7�Av
, ρ7 = 0.9721  �17 = ρ17�Av

, ρ17 = 1.1082

. . −. . −. . . -. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �8 = ρ8�Av
, ρ8 = 1.0339  �18 = ρ18�Av

, ρ18 = 1.1000

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �9 = ρ9�Av
, ρ9 = 1.0957  �19 = ρ19�Av

, ρ19 = 1.0918

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .

 �10 = ρ10�Av
, ρ10 = 1.1575  �20 = ρ20�Av

, ρ20 = 1.0836

. . −. . −. . . −. . −.
. −. . . . . −. . . .
. . . . . . . . . .
. −. . . . . −. . . .
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increase over the time slots by making use of the fact that if covariance matrices are pro-
portional, then each covariance matrix is also proportional to the overall average covari-
ance matrix �Av = 1

20

∑20
i=1 �i, constituting 20 different proportionality constants ρi for i =

1, 2, . . . , 20. The ρi’s can now be restricted, for example, to be on one or more straight lines
in order to ensure estimability. This linearization of the ρis also implies that the correspond-
ing elements of the �i’s are on straight lines. In this way, equal correlation coefficients as well
as a linear increase or decrease on the corresponding elements of the �i’s are accomplished.
Formally

ρi = α + iβ

which again implies that

�i = (α + iβ)�Av . (24)

Constraints are specified similarly to those in Section 3.1, where a typical subvector of the
constraints g2(m) (cf., (9)) is given by:

g2i(m) = vec(�i) − ρi.vec(�Av ) = 0, i = 1, . . . , 20 (25)

with derivative

G2i(m) = ∂vec(�i)

∂m
− ρi

∂vec(�Av )

∂m
− vec(�Av )

∂ρi

∂m
where

ρi = �i[1, 1]/�Av[1, 1] = a′m/b′m

where �i[1, 1] is the variance of the fi st variable measured in the ith sample, �Av[1, 1] is the
variance of the first variable in �Av and

∂ρi

∂m
= (

b′ma′ − a′mb′) /
[
(b′m)2]

where a and b are appropriate selection vectors.
Linearity of the ρ ′

i s implies the constraint g3(m) = Qρρ where

ρ =

⎛
⎜⎜⎜⎝

ρ1

ρ2
...

ρ20

⎞
⎟⎟⎟⎠ , Qρ = (I20 − X (X ′X )−1X ′) and X =

⎛
⎜⎜⎜⎝

1 1
1 2
...

...
1 20

⎞
⎟⎟⎟⎠ . (26)

The MLEs under these constraints are illustrated in Table 6.
The estimated average covariance matrix for the model fitted in Table 6 is given by:

�Av =

⎛
⎜⎜⎝

7237.0 −1921.9 667.5 −256.3
−1921.9 7997.7 1260.5 419.4

667.5 1260.5 701.6 2.7
−256.3 419.4 2.7 147.0

⎞
⎟⎟⎠

Note that �Av equals the average of any two estimated �’s which are on equal distances from
the center of the 20 estimated �’s, e.g., �Av = 1

2 (�5 + �16).

4.2.3.2. Linear growth in proportional covariance matrices using two splines. The model 
can be reformulated similarly in terms of two growth splines separately fitted over the f i st 10
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and last 10 years. The estimated average covariance matrix for this model fitted in Table 7 is
given by:

�Av =

⎛
⎜⎜⎝

7475.82 −2172.53 651.86 −259.08
−2172.53 8191.20 1171.80 460.86

651.86 1171.80 657.08 0.87
−259.08 460.86 0.87 151.57

⎞
⎟⎟⎠

In this case, �Av equals the average of any four estimated �’s, two of which are on symmet-
ric numbers in the first column and two of which are on symmetric numbers in the second
column, e.g., �Av = 1

4 (�1 + �10 + �11 + �20) or �Av = 1
4 (�4 + �7 + �12 + �19).

As can be expected, the results in Table 4 correspond largely to the results in Table 6, while
the results in Table 5 correspond to the results in Table 7 to a large extent. It is, however,
evident that as far as the means and the covariances are concerned, the growth patterns in the
fi st 10 years differ substantially from that in the second 10 years. These examples stress the
importance of taking different covariance patterns into consideration.
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