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Abstract

A major obstacle in applying genomic selection (GS) to uniquely adapted local breeds in less-
developed countries has been the cost of genotyping at high densities of single-nucleotide
polymorphisms (SNP). Cost reduction can be achieved by imputing genotypes from lower to
higher densities. Locally adapted breeds tend to be admixed and exhibit a high degree of
genomic heterogeneity thus necessitating the optimization of SNP selection for downstream
imputation. The aim of this study was to quantify the achievable imputation accuracy for a
sample of 1,135 South African (SA) Drakensberger cattle using several custom-derived
lower-density panels varying in both SNP density and how the SNP were selected. From a
pool of 120,608 genotyped SNP, subsets of SNP were chosen (1) at random, (2) with even
genomic dispersion, (3) by maximizing the mean minor allele frequency (MAF), (4) using a
combined score of MAF and linkage disequilibrium (LD), (5) using a partitioning-around-
medoids (PAM) algorithm, and finally (6) using a hierarchical LD-based clustering algorithm.
Imputation accuracy to higher density improved as SNP density increased; animal-wise
imputation accuracy defined as the within-animal correlation between the imputed and
actual alleles ranged from 0.625 to 0.990 when 2,500 randomly selected SNP were chosen
vs. a range of 0.918 to 0.999 when 50,000 randomly selected SNP were used. At a panel
density of 10,000 SNP, the mean (standard deviation) animal-wise allele concordance rate
was 0.976 (0.018) vs. 0.982 (0.014) when the worst (i.e., random) as opposed to the best
(i.e., combination of MAF and LD) SNP selection strategy was employed. A difference of
0.071 units was observed between the mean correlation-based accuracy of imputed SNP
categorized as low (0.01 < MAF < 0.1) vs. high MAF (0.4 < MAF < 0.5). Greater mean
imputation accuracy was achieved for SNP located on autosomal extremes when these
regions were populated with more SNP. The presented results suggested that genotype
imputation can be a practical cost-saving strategy for indigenous breeds such as the SA
Drakensberger. Based on the results, a genotyping panel consisting of ~10,000 SNP selected
based on a combination of MAF and LD would suffice in achieving a <3% imputation error
rate for a breed characterized by genomic admixture on the condition that these SNP are
selected based on breed-specific selection criteria.
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Large-scale cattle genotyping is presently undertaken using single-nucleotide polymorphism
(SNP)-chips with a vast array of different panels available that vary in both genotype density
and breed representation (Nicolazzi et al., 2015). Most of the genotype panels are
constructed by selecting SNP that are informative in the most populous breeds of either
taurine- (e.g., Bovine SNP50; Matukumalli et al., 2009) or indicine descent (e.g., GeneSeek
GGP Indicus; Ferraz et al., 2018). The utility of panels favoring either of these subspecies
may therefore not be optimal for less common breeds that often have admixed genomes.
This is particularly true as many exploit linkage disequilibrium (LD) between candidate SNP
in their generation of lower density panels; LD erodes more rapidly in admixed populations
(Shifman, 2003; Toosi et al., 2010) influencing not only the choice of selected SNP but also
the ideal SNP density to sufficiently capture the haplotypes segregating in that population.

The South African (SA) Drakensberger is a beef breed with a sleek, black coat that belongs to
the Sanga subspecies (Bos taurus africanus) of cattle (SA Drakensberger Breeders’ Society,
2011) and is indigenous to southern Africa. A study by Makina et al. (2016) that used
genome-wide SNP data to investigate patterns of admixture that might assist in elucidating
the historic origin of Sanga breeds indicated common ancestry with European and African
Bos taurus as well as Bos indicus breeds. Makina et al. (2016) reported the estimated
genomic composition of the SA Drakensberger to be 46% European taurine, 38% African
taurine, and 15% indicine; the estimated genomic composition of other Sanga breeds varied
slightly with the Afrikaner and Nguni breeds displaying 12 and 15 percentage units greater
indicine germplasm, respectively, than the SA Drakensberger. The success of genome-
enabled breed improvement strategies, predominantly genomic selection (GS), for breeds
such as the SA Drakensberger is therefore contingent on the utility of the SNP included in
commercial high-density genotype panels.



The cost of genotyping is still a major barrier to adoption. One potential strategy to reduce
the cost of genotyping is to minimize the number of SNP to be genotyped and subsequently
impute these SNP to higher density. The SNP selected for a reduced density panel must,
however, be (1) abundant enough to facilitate acceptable imputation accuracy to higher
density and (2) informative for the breed(s) in which they will be applied. When current
genotyping panels were applied in the SA Drakensberger, a high proportion of low minor
allele frequency (MAF) SNP as well as weak LD between SNP was observed (Qwabe et al.,
2013; Zwane et al., 2016; Lashmar et al., 2018). It is therefore expected that the lower limit
of SNP required on a reduced density panel will be higher than proposed for taurine breeds
in which longer haplo-blocks of these SNP exist. Therefore, while approaches to SNP
selection for reduced genotype panels has been presented for purebred populations (Judge
et al., 2016), these strategies may not be applicable in admixed populations where, in
particular, LD characteristics may differ. Careful consideration of the genomic characteristics
of individual SNP, in terms of the selection strategy, is necessary to generate a reduced
panel with optimal utility in admixed populations. The strategies considered within this
study to develop lower density panels may also be useful in informing such strategies in
other breeds with no relationship to Sanga-type animals.

Various methods have been proposed to identify the most appropriate low-density SNP sets
from a larger pool of existing SNP using certain genomic characteristics as inclusion criteria.
These methods have generally considered genomic parameters such as mean MAF (Corbin
et al., 2014; Judge et al., 2016), and inter-marker relationship estimates, i.e., LD (Ogawa et
al., 2016), while maintaining more or less an even dispersion of selected SNP across the
genome. The most efficient selection strategy will ensure a minimization of the size of the
reduced SNP panel without compromising imputation accuracy and hence facilitate the use
of such a panel in imputation-driven applications for local breeds. Even though the cost
structure of genotyping with SNP panels depends on many different factors, minimizing the
number of SNP to a low enough density may enable (1) a transition to alternative
technologies in the future (e.g., genotype-by-sequencing) or (2) including multiple species
on a single platform which would contribute to a larger purchase order and thus a reduction
in price per panel.

The overarching aim of the present study was to determine the accuracy of imputing from
low- to high-density panels in the indigenous SA Drakensberger breed. The main objectives
were achieved by varying (1) the SNP density and (2) the selection strategy of SNP for
various custom-derived low-density panels. An additional objective was to determine the
impact of relatedness between the validation and reference populations on the achievable
imputation accuracy.

Materials and Methods

Ethical approval to perform this study was obtained from the University of Pretoria’s Faculty
of Natural and Agricultural Science (EC151106-024). The SNP genotypes used were
generated as part of the Beef Genomics Project (BGP; http://www.livestockgenomics.co.za/)
and written consent was given by the Drakensberger Breeders’ Society to use the SA
Drakensberger genomic and phenotypic data.



Pedigree and genotype data

Pedigree and SNP data were available for 1,135 SA Drakensberger cattle originating from 48
breeders and born between 1982 and 2017. Available pedigree information for the breed
was obtained from SA Stud Book (SA Stud Book Association) and consisted of 6,074 animals,
which comprised the genotyped animals and their ancestors. Genotypes generated using
the GeneSeek Genomic Profiler Bovine 150K SNP panel (Neogen Corporation, Lansing, Ml)
consisting of 139,480 SNP were available for 214 male and 921 female SA Drakensberger
cattle, all of which had a sample call rate exceeding 90%. SNP were mapped to the UMD3.1
bovine reference genome using SNPchiMp versions 3 and SNPConvert software (Nicolazzi et
al., 2016). Only SNP mapped to autosomes (Bos Taurus autosome; BTA1-BTA29) and with
call rates exceeding 95%, MAF exceeding 1% and that did not violate Hardy Weinberg
Equilibrium (P < 0.01 x 107®) were retained for downstream analysis. A total of 120,608 SNP
(mean call rate = 99.4%) remained after edits.

Parent mismatches within the genotype data set were identified as pedigree-defined
putative parent—progeny pairs displaying >2% Mendelian inconsistencies. Where parentage
errors were detected, the parents were set to missing in the pedigree file if no alternative
match within the genotype data set was identified; the pedigree was updated if an
alternative match was detected. The data set was then separated into a reference
population (n = 900) and a validation population (n = 235). The validation population
consisted of the youngest animals but with no more than 3 paternal sibs represented. The
reference population was used to estimate SNP MAF and the extent of LD, both of which
were used as criteria for the selection of SNP in the low-density panels (discussed
hereafter), and to model haplotypes used in imputation.

SNP selection methods

Different strategies were used to develop several custom-derived low-density SNP panels
consisting of 2,500, 5,000, 10,000, 20,000, and 50,000 SNP. The number of SNP selected per
autosome was proportional to the length of each autosome; therefore, more SNP were
selected for longer autosomes. The number of SNP selected per autosome to fulfill each of
the different panel densities is summarized in Table 1. Six alternative algorithms were used
to generate the custom SNP panels, and these were implemented as follows.

Random selection (RAN)

The predefined number of SNP required per autosome was chosen at random until each of
the respective panel densities was reached.

Mid-point, equidistant selection (MID)

The length of each autosome, defined as the difference in base pairs between the first and
last genotyped SNP per autosome, was divided into equally sized segments and the SNP
closest to the physical midpoint of each segment was chosen. The segment size per
autosome was calculated as the autosomal length divided by n-1, where n is the predefined
number of SNP to be chosen for that specific autosome. Due to an uneven distribution of



Table 1. The number of SNP that were selected per chromosome for the 2,500, 5,000, 10,000, 20,000, and 50,000-marker low-density
genotyping panels

Number of SNPs
Chromosome Chromosome length (Mb) HD* 2,500 5,000 10,000 20,000 50,000
1 158.21 7,371 152 305 610 1,222 3,166
2 136.62 6,455 133 267 535 1,070 2734
3 121.38 5,796 120 240 481 961 2,428
4 12055 5,582 115 231 463 o325 2414
5 121.14 6,041 125 250 S0l 1,001 2417
& 119.40 6,626 137 274 549 1,098 2,385
7 112.60 5,705 118 236 473 946 2,230
g 113.35 5,157 106 213 478 855 2254
9 105.59 4,948 102 206 410 B20 2,096
10 104.23 4,891 1m 202 406 811 2,075
11 107.24 5,028 104 208 417 833 2,137
12 91.10 4,211 87 174 349 698 1,797
13 B84.20 3,924 81 162 325 650 1,678
14 84.03 4,701 a7 194 390 779 1,679
15 85.20 3,984 82 165 330 660 1,700
16 81.65 3,741 78 156 310 621 1,623
17 75.11 3446 72 143 286 572 1,491
18 65.87 3,073 64 128 255 510 1,313
19 63.80 2,035 &1 122 243 487 1,269
20 71.88 3,799 78 158 315 630 1,440
21 71.53 3,338 70 139 277 554 1416
22 61.24 2,901 61 121 241 482 1,226
23 52.45 2469 52 103 205 410 1,045
24 62.59 3,377 70 140 280 560 1,254
25 42.76 2,003 42 84 166 333 861
26 51.58 2469 52 103 205 410 1,029
27 45.35 2,127 45 89 176 353 899
28 46.24 2,13 45 89 177 354 922
29 51.17 2,379 50 99 197 385 1,022

'HD = 120,608 SNP that remained after quality control procedures.



SNP in specific autosomal regions after quality control, certain segments did not contain any
candidate SNP and, in these situations, the SNP on the boundary closest to the starting
position of the adjacent segment was chosen.

Equidistant selection that maximized MAF (DISTMAF)

SNP within segments of equal size were chosen based on an index that maximized MAF
whilst attempting to adhere to the ideal inter-SNP spacing per autosome for each panel
density. The SNP with the highest MAF was chosen within the first segment per autosome
after which each SNP within subsequent segments was chosen based on the highest index
score calculated as proposed by Matukumalli et al. (2009) and Zhang and Druet (2010):

score; = MAFgyp [ssize — |ssize — dsyp, snp,., ||

where MAFsxe, represented the MAF of a candidate SNP j, ssize represented the genomic

length of each segment within a given autosome and representdSN'Ph SNF;-1 represented
the genomic distance between the base pair position of a candidate SNP: andSNPi1, \where
SNP; 1 js the SNP selected in the previous segment. If a segment contained no SNP, a second
SNP was chosen in the next segment, i.e., the SNP with the second highest index score was
also chosen.

Segment-based selection combining MAF and LD (MAFLD)

An index score combining MAF and LD information was calculated per SNP within genomic
segment. The MAF and LD per SNP were first standardized so that the weights on each
attribute within segment were equal before summation. The scores were derived as follows:

MAFswr,  IDsve,
SDwar.., ~ SDip
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AFsnp SDmaF.,

irepresented the MAF of candidate SNP jin segment i

LDsnp, represented the mean

LD between candidate SNP; and all other SNP within segment j, and SDLD“SJ represented

the standard deviation for all pairwise LD interactions within segment j . Within each
segment, the SNP with the highest index score was chosen. A second SNP was selected in
the segments at both ends of each autosome and the number of segments was therefore
equal to the number of SNP to be chosen -2. The second SNP in the peripheral
chromosomal segments was selected based on a score combining MAF and the partial
correlation of that SNP with all remaining candidate SNP in the periphery segment.
Adjustments were made to the partial correlation to account for the relationship between
each candidate SNP and the SNP already selected in the initial round of selection. This
calculation was performed according to Judge et al. (2016) as follows:

where

represented the standard deviation for MAF in segment I
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where 7(SNP;, SNP; | SNP) represented the partial correlation between candidate SNP;
and candidate SNP; corrected for the correlation with the already selected SNP, SNPs. The
terms (SNP;, SNP;), 7 (SNP;, SNPs ), and r (SNP;, SNPyq) represented the correlations

between 2 candidate SNP, between the first candidate SNP and the selected SNP, and
between the second candidate SNP and the selected SNP, respectively.

Partitioning-around-medoids (PAM)

SNP on each autosome were partitioned into a number of clusters based on their proximity
in genomic position using the PAM algorithm implemented in R’s “clara” package (Kaufman
& Rousseeuw, 2009). The number of clusters was equal to the number of pre-defined SNP to
be selected per autosome. The medial SNP within each SNP cluster was chosen.

Intra-autosomal LD-based clustering algorithm (LDCLUST)

SNP were selected within each autosome separately using a hierarchical clustering
algorithm that clusters subsets of SNP according to a prespecified LD threshold between
SNP. The SNP density of a given panel is therefore adjusted according to local LD levels and
is not preselected to achieve even genomic dispersion. This algorithm was executed using
the SS41 software (Hérault et al., 2016) as implemented by Herry et al. (2018) for layer
chickens. The SNP density of these panels in the present study was therefore not pre-
defined but corresponded to the number of LD-based clusters identified, the number of
which was determined by the different r? thresholds imposed (i.e., r* = 0.05, 0.1, and 0.2).
The SNP with the greatest MAF within each of the defined clusters using this method was
subsequently selected to develop the panels in the present study. The choice of LD
thresholds was based on weak autosome-level LD previously reported for the SA
Drakensberger breed (mean pairwise r? ranged from 0.11 for BTA28 to 0.17 for BTA14
between SNP pairs separated by <100kb using a 120,218 SNP panel with a mean inter-SNP
distance of 20.9kb; Lashmar et al., 2018).

Imputation and imputation accuracy

Imputation from each of the low-density panels to the higher density was performed using
FImpute version 2.2 software (Sargolzaei et al., 2014) based on both pedigree information
and population-wide LD. Imputation with this software is carried out simultaneously on a
per chromosome basis. The software’s default settings were used with regards to
specifications of the sliding window used to capture haplotype similarities (i.e., shrink factor
=0.150 and overlap = 0.650).

Imputation accuracy was quantified using 3 parameters namely: (1) genotype concordance
rate (GCR), (2) allele concordance rate (ACR), and (3) the Pearson correlation between the
true and imputed genotypes (COR). These parameters were averaged per animal (ACRaniv,



GCRanim, and CORaniv, respectively) and per SNP (ACRsnp, GCRsnp, and CORsyp, respectively).
The GCRs and ACRs were calculated as the proportion of correctly imputed genotypes and
alleles, respectively. For genotype concordance, a score of zero was given to a SNP if it had
either 1 allele (homozygous true vs. heterozygous imputed) or both alleles (opposing
homozygous for true vs. imputed) incorrectly imputed. For allele concordance, a score of 0.5
was given if 1 allele was correctly imputed, i.e., a homozygous true genotype vs. a
heterozygous imputed genotype. For both these measures, concordance was calculated (1)
for only masked genotypes and (2) for both masked and unmasked genotypes, i.e., all of the
genotypes in the high-density panel. Unmasked genotypes were the genotypes that
corresponded to each of the in silico selected SNP panels while masked genotypes were the
genotypes that corresponded to the higher density panel and were intentionally excluded
from each of the in silico SNP panels. The latter calculation was included to mimic what
would be expected to happen in real life (Judge et al., 2016).
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Figure 1. Mean correlation-based imputation accuracies (CORanim) for different genotyping panel densities
derived using 5 different SNP selection methodologies (RAN: random selection, MID: midpoint selection,
DISTMAF: equidistant selection maximizing MAF, MAFLD: combinative selection for MAF and LD, PAM:
partitioning-around-medoids selection). Error bars represent minimum and maximum CORanim.

Results
Number of SNP on the lower density panel

The mean imputation accuracy per animal increased with increasing panel density but did so
at a diminishing rate (Figure 1). Animal-wise correlation-based imputation accuracy,
CORanim, ranged (minimum to maximum) from 0.625 to 0.990, 0.728 to 0.994, 0.830 to
0.996, 0.885 to 0.998, and 0.918 to 0.999 when 2,500, 5,000, 10,000, 20,000, and 50,000
SNP were randomly chosen. Mean CORanim increased by 0.055, 0.043, and 0.043 units for
the MID, DISTMAF, and MAFLD methods, respectively, when the number of SNP doubled



from 2,500 to 5,000 SNP. Mean CORanim increased by only 0.008, 0.007, and 0.007 for MID,
DISTMAF, and MAFLD, respectively, when the density increased from 20,000 to 50,000 SNP.
Moreover, the standard deviation for CORanim reduced with increasing panel density; the
standard deviation reduced from 0.075 for CORanim to 0.014 as panel density increased from
2,500 (mean CORaniv = 0.872) to 50,000 SNP (mean CORanim = 0.985). The difference
between ACRanim and GCRanim Was, for example, 0.051 units for the 2,500 SNP panel vs.
0.007 units for the 50,000 SNP panel when the DISTMAF SNP selection strategy was used.

SNP selection method

When the LDCLUST algorithm was used, SNP panels consisting of 23,469, 30,681, and 41,403
SNP were generated corresponding to the LD thresholds of r> =0.05, r> =0.1 and r>=0.2,
respectively. The mean CORanim (standard deviation), ACRanim (standard deviation), and
GCRanim (standard deviation) based on the 23,469 SNP panel, which was somewhat
comparable in density to the predefined 20,000 SNP panels of the other methods, was 0.979
(0.018), 0.987 (0.11), and 0.975 (0.021), respectively. These values compared favorably with
both the DISTMAF and LDMAF methods (e.g., ACRmaskep = 0.987 vs. 0.988 for both DISTMAF
and LDMAF; Table 2), and were superior to the accuracy estimates for all the remaining
methods. Furthermore, the mean CORanim (standard deviation), ACRanim (standard
deviation), and GCRanim (standard deviation) values were 0.982 (0.016), 0.989 (0.010), and
0.979 (0.019) when the 30,681 SNP panel was used and improved to 0.986 (0.013), 0.991
(0.008), and 0.982 (0.016) when the 41,403 SNP panel was used. Because the SNP density of
the panels developed using the LDCLUST method differed from the methods that used a
predefined number of SNP, all subsequent results relate only to the SNP selection methods
that had a predefined

Across all panel densities evaluated, the poorest imputation accuracy was always achieved
when the SNP were randomly selected. Strategies that were based on the selection of SNP
using scores combining MAF with other attributes (i.e., DISTMAF and MAFLD) outperformed
the other selection strategies; the MAFLD method always resulted in the best imputation
accuracy (Table 2) irrespective of panel density.

Negligible differences in imputation accuracy existed between the SNP selection strategies
that only considered the genomic location of SNP (i.e., MID and PAM). The DISTMAF and
MAFLD methods were the only selection strategies with mean imputation accuracies
exceeding 0.970 at a density of 5,000 SNP; ACRanim ranged from 0.856 to 0.997 and from
0.859 to 0.997 for DISTMAF and MAFLD, respectively, at 5,000 SNP. The improvements in
imputation accuracy were marginal when unmasked SNP were included in the calculation of
GCRanimv and ACRaniv, increasing by a mean of 0.004 (SD = 0.002) and 0.002 (SD = 0.001),
respectively, across all densities and SNP selection strategies.

Degree of relatedness between validation and reference populations

The genomic relationship between a given animal in the validation population with animals
in the reference population directly impacted the imputation accuracy. A scatter plot of
each validation animal’s imputation accuracy and the mean of its top 10 coefficients of
relatedness to the reference population are shown in Figure 2.



Table 2. GCRs and ACRs for different low-density SNP panels

LD panel Method

2,500 RAN
MID
DISTMAF
LDMAF
PAM

MID
DISTMAF
LDMAF
PAM
10,000 RAN
MID
DISTMAF
LDMAF
PAM
20,000 RAN
MID
DISTMAF
LDMAF
PAM
LDCLUST®
50,000 RAN
MID
DISTMAF
LDMAF
PAM

1GCRawL and ACRauL = mean imputation accuracy across the full set of 120,608 SNP, including both true and imputed SNP.

2GCRwmaskep and ACRwaskep = mean imputation accuracy across masked SNP only, i.e., only the SNP imputed per density.

3Exact SNP panel density was 23,469 SNP.

Imputation accuracy

GCR, e (SD)

0.857 (0.075)
0.865 {0.075)
0.893 (0.066)
0.895 (0.066)
0.867 (0.074)
0.918 (0.052)
0.922 (0.066)
0.940 (0.044)
0.942 (0.042)
0.925 (0.050)
0.954 (0.035)
0.954 (0.055)
0.964 (0.029)
0.966 (0.028)
0.957 (0.034)
0.970 (0.025)
0.972 (0.023)
0.976 (0.020)
0.977 (0.020)
0.973 (0.023)
0.975 (0.021)
0.981 (0.016)
0.982 (0.016)
0.985 (0.014)
0.985 (0.014)
0.982 (0.015)

GCR,,, (SDy

0.860 (0.074)
0.868 (0.073)
0.896 (0.065)
0.897 (0.065)
0.869 (0.072)
0.922 (0.050)
0.925 (0.064)
0.943 (0.042)
0.944 (0.022)
0.978 (0.048)
0.957 (0.032)
0.957 (0.054)
0.967 (0.026)
0.968 (0.025)
0.960 (0.031)
0.975 (0.021)
0.977 (0.019)
0.980 (0.017)
0.980 (0.017)
0.977 (0.019)
0.980 (0.017)
0.989 (0.010)
0.990 (0.009)
0.991 (0.008)
0.991 (0.008)
0.990 (0.009)

10

ACR,,, ., (SD)

0.925 (0.041)
0.929 (0.041)
0.944 (0.036)
0.945 (0.035)
0.930 (0.040)
0.958 (0.028)
0.955 (0.042)
0.969 (0.023)
0.970 (0.022)
0.961 (0.027)
0.976 (0.018)
0.975 (0.037)
0.982 (0.015)
0.982 (0.014)
0.978 (0.017)
0.985 (0.013)
0.986 (0.012)
0.988 (0.010)
0.988 (0.010)
0.986 (0.012)
0.987 (0.110)
0.991 (0.008)
0.991 (0.008)
0.992 (0.007)
0.992 (0.007)
0.991 (0.008)

ACR,, (SD)?

0.926 (0.040)
0.931 (0.040)
0.945 (0.035)
0.946 (0.035)
0.931 (0.040)
0.959 (0.027)
0.960 (0.041)
0.970 (0.022)
0.971 (0.021)
0.963 (0.026)
0.978 (0.017)
0.977 (0.037)
0.983 (0.014)
0.984 (0.013)
0.980 (0.016)
0.987 (0.011)
0.988 (0.010)
0.990 (0.009)
0.990 (0.009)
0.988 (0.010)
0.990 (0.009)
0.994 (0.005)
0.995 (0.005)
0.995 (0.004)
0.995 (0.004)
0.995 (0.005)
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Figure 2. The validation animal-wise relationship between relatedness to the reference population (mean of
top 10 coefficients) and imputation accuracy from different panel densities. The linear regression lines for
imputation accuracy on relatedness are illustrated for each panel density.

The influence of genomic relatedness between reference and validation animals on the
correlation-based accuracy was more pronounced when fewer SNP were included on the
lower density panel. A minimum (maximum) CORanim of 0.825 (0.995), 0.911 (0.997), 0.957
(0.998), 0.974 (0.998), and 0.986 (0.999) was observed for animals that were least (most)
related, respectively, to the reference population when 2,500, 5,000, 10,000, 20,000, and
50,000 SNP were utilized. The regression coefficient (simple linear regression) of mean
animal-wise imputation accuracy (correlation) on mean relatedness to the reference
population (top 10 relatives), reduced as panel density increased (data not shown). The
corresponding R? value for the 2,500, 5,000, 10,000, 20,000, and 50,000 SNP panels was
0.684, 0.557, 0.406, 0.265, and 0.135, respectively. Therefore, a larger proportion of the
variability in CORaniv Was explained by animal relatedness to the reference population when
a lower density panel was used.

Imputation accuracy per SNP
Variation between autosomes

Imputation accuracy, depicted by either mean genotype- (GCRsnp) or allele concordance
rates (ACRsnp), differed by autosome (Figure 3). Using the 10,000 SNP panel as an example,
the lowest mean + SD ACR across masked SNP was for BTA26 (0.971 £ 0.021) when random
selection was undertaken. When other SNP selection strategies were employed, imputation
accuracy of BTA19 (MID = 0.971 + 0.018; DISTMAF = 0.976 + 0.015) and BTA23 (MAFLD =
0.978 £ 0.015; PAM = 0.971 + 0.020) were the worst of all chromosomes. The greatest
chromosome-wide allele concordance was for BTAS for all selection strategies except the
MAFLD strategy; for the MAFLD strategy, BTA24 (0.985 + 0.12) was the best.
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Figure 3. Mean concordance-based imputation accuracy measures for 10,000 SNP panels derived using the 5

different marker selection methodologies (a: random selection, b: midpoint selection, c: equidistant selection
maximizing MAF, d: combinative selection for MAF and LD, e: partitioning-around-medoids selection).
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Variation within autosomes

Within autosomes, variability in SNP-level imputation accuracy existed by location relative
to the center of the autosome. The distribution of CORsnp across individual autosomes is
illustrated in Figure 4 for the 2,500 and 50,000 SNP panels where the SNP were randomly
selected. The pattern of CORsnp distribution on many autosomes indicated a tendency
towards poorer imputation accuracy at the autosomal peripheries. For the 2,500 and 50,000
SNP panels, mean + SD CORsnp for SNP located in the central 1 Mb of autosomes (0.5 Mb
each side of the physical midpoint of each autosome) were 0.781 + 0.067 and 0.968 + 0.015
across all autosomes, respectively, when RAN was used. The corresponding values for the
two 1 Mb autosomal peripheries were 0.682 + 0.149 and 0.664 + 0.07, and 0.938 + 0.130
and 0.968 £ 0.018, for the 2,500 and 50,000 SNP panels, respectively. Using a 10,000 SNP
panel, the mean + SD CORsnp for SNP located within 1 Mb of the start, the center and the
end of autosomes was 0.923 + 0.036, 0.943 + 0.031, and 0.912 + 0.030, respectively, across
all autosomes. For MAFLD, using 10,000 SNP, the mean CORsnp for the central and
peripheral regions (1 Mb) per autosome are depicted in Table 3.

Table 3. Mean CORsnp per autosome for SNP located on the autosomal extremities and within the center of the
autosomes when selection combining minor allele frequency and LD (MAFLD) was used to derive a 10,000 SNP
panel

Autosome First Centre Last
1 0.875 0.942 0.918
2 0.945 0.950 0.910
3 0.916 0.978 0.914
4 0.866 0.943 0.912
5 0.953 0.945 0.923
[ 0.963 0.954 0.919
7 0.845 0.955 0.930
8 0.938 0.970 0.888
9 0.986 0.937 0.927

10 0.910 0.941 0.945
11 0.930 0.961 0.802
12 0.926 0.938 0.911
13 0.939 0.944 0.929
14 -1 0.945 0.904
15 0.881 0.926 0.951
16 0.914 0.976 0.894
17 0.947 0.959 0.933
18 0.879 0.916 0.858
19 0.952 0.941 0.915
20 0.935 0.968 0.934
21 0.874 0.966 0.898
22 0.925 0.939 0.936
23 0.983 0.970 0.911
24 0.885 0.955 0,935
25 0.955 0.924 0.911
26 0.908 0.809 0.919
27 0.921 0.912 0.932
28 0.934 0,931 0.929
29 0.956 0.958 0.858

Autosomal extremities were defined as first and last 1 Mb of each autosome, whereas the autosomal center
was defined as 0.5 Mb to either side of the physical midpoint of each autosome.

!No SNP were mapped to the first 1 Mb of BTA14 after quality control.
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Figure 4. Marker-wise imputation accuracy (correlation) per autosome for 2,500- (top) vs. 50,000 (bottom)
SNP panels derived by random selection.

Variability in imputation accuracy based on SNP MAF

Imputation accuracy differed by SNP MAF. The nature of the relationship between MAF and
imputation accuracy, however, varied depending on the accuracy statistic used (Figure 5).
Mean values of concordance measures reduced whilst the correlation measure
strengthened with increasing MAF. The mean CORsnp for SNP classified in the highest MAF
bin (0.4 < MAF £ 0.5) was 0.120 and 0.135 units higher than for SNP classified in the lowest
MAF bins (0.01 < MAF £ 0.02) when the RAN and MAFLD selection strategies were
respectively used. For the concordance measures, the mean imputation error rate for
GCRsne, defined as one minus mean GCRsnp, Was approximately double the error rate for
mean ACRsnp, defined as one minus mean ACRswp, for all MAF bins. The difference between

the allele- (AER) and genotype error rates (GER) ’&ﬁERW= GERswp | per SNP was calculated
as follows according to Ma et al. (2013):
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Asprcer = 2(1— ACR) — (1 — GCR)

The difference increased from zero for the lowest MAF bin (0.01 < MAF £ 0.02) to 0.002
(RAN) and 0.001 units (MAFLD) for the highest MAF bin (0.4 < MAF < 0.5). The discrepancy
between both concordance-based measures and the correlation-based accuracy measure
was more pronounced when MAF was low but diminished as MAF increased. Monomorphic
SNP and SNP with MAF < 0.01 were removed during quality control and were therefore not
considered.

Discussion

The sustainability of routine genotyping, where the breeder incurs the full cost, will
necessitate a transition to a low-density SNP panel that contains fewer SNP, especially in
countries with poorer financial resources available for the commercial deployment of
genomic technologies. The reduced associated cost of lower density panels may, therefore,
improve the uptake of such technologies by more beef farmers. The principal motivation of
this study was therefore to determine the achievable imputation accuracy from various
custom-derived lower-density SNP panels for a beef cattle breed characterized by genomic
admixture, as is the case for a large proportion of African cattle. The investigation in an
admixed population is the novelty in the present study; similar exercises have been untaken
in purebred populations but LD patterns differ across breeds and the rate of decay in LD is
faster in admixed populations (Shifman, 2003; Toosi et al., 2010). While this difference in LD
patterns can impact SNP selection, it will also impact the ability of a reduced SNP panel to
fully capture all segregating haplotypes thus impacting the downstream imputation
accuracy.
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Genotyping panel density

The trend of increasing imputation accuracy in the more densely populated SNP panels in
the admixed Drakensberger population is consistent with previous studies in non-admixed
cattle (Zhang and Druet, 2010; Mulder et al., 2012; Carvalheiro et al., 2014; Judge et al.,
2016) and sheep (Hayes et al., 2012; O’Brien et al., 2019), and is likely attributable to the
fact that haplotypes were more easily and accurately resolved when a greater number of
unmasked, neighboring SNP were available or, in other words, there were fewer SNP to
impute (Tsai et al., 2017). The ever diminishing improvement in imputation accuracy with
each incremental increase in panel density size is consistent with previous results (Judge et
al., 2016; O’Brien et al., 2019), suggesting that at higher SNP densities (>10,000 SNP panel),
the density was already adequate to resolve shared haplotypes and to achieve high
imputation accuracy even in highly admixed populations as is the case for the
Drakensberger. Increasing the panel density to 20,000 SNP or more, had a negligible benefit
on imputation accuracy and is expected to be less cost effective for less popular breeds in
developing countries where the service costs per genotyping assay are still considered high
relative to more developed countries.

Across all 5 selection methods that were based on a predefined number of SNP, the average
improvement in CORanim Was 0.05, 0.03, and 0.01 units when panel densities were doubled
from 2,500 to 5,000, 5,000 to 10,000, and 10,000 to 20,000 SNP, respectively. This was in
agreement with results reported by Judge et al. (2016) in Irish cattle who documented
improvements in animal-wise correlations of 0.07, 0.02, and 0.01 units when the number of
markers was doubled from 1,000 to 2,000, 3,000 to 6,000, and 6,000 to 12,000 SNP,
respectively. Carvalheiro et al. (2014) documented similarly small gains in correlation-based
accuracy (0.01 units) of imputation to 777,000 SNP when the density of their custom SNP
panels was increased from 11,000 to 48,000 SNP in Nellore beef cattle.

Relative to the results of the present study, Aliloo et al. (2018) reported poorer imputation
accuracy for East African crossbred dairy cattle which have weak LD levels similar to that of
the SA Drakensberger (Lashmar et al., 2018). At SNP densities of 4,725, 11,773, and 19,812,
which were comparable to our 5,000, 10,000, and 20,000 SNP panels, Aliloo et al. (2018)
documented GCRANIM values of 0.822, 0.896, and 0.923 (compared with 0.940, 0.964, and
0.976 for DISTMAF in our study) when SNP were selected based on maximizing MAF within
equal sized genomic segments. The lower imputation accuracy in the study of Aliloo et al.
(2018) may be attributable to the fact that imputation was calculated (1) across many
admixed breeds with small sample sizes per breed and (2) based on imputation to a much
higher density (777,000 SNP). Makina et al. (2015) reported a weak sharing of long-distance
LD among Sanga breeds; therefore imputation accuracy across Sanga breeds is expected to
be lower and more comparable to the accuracies reported by Aliloo et al. (2018).

For every unit increase in mean relatedness to the top 10 closest relatives in the reference
population, the unit increase in animal-wise imputation accuracy became progressively
smaller as panel density increased (e.g., minimum correlation coefficient = 0.081 at 50,000
SNP). This trend suggests that the impact of across-population relatedness on imputation
accuracy reduced as the number of SNP on the genotype panel became sufficiently dense.
Imputation accuracy in the more dense SNP panels increasingly became a function of shared
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population-wide LD between SNP rather than pedigree-defined relationships. This trend was
in agreement with previous studies in cattle (Ventura et al., 2014; Garcia-Ruiz et al., 2015)
including those on admixed populations (Junior et al., 2017).

SNP selection strategies

The SNP selection strategies that considered MAF and an additional attribute, either inter-
SNP distance or LD, generally produced more accurate imputation than strategies that chose
SNP either randomly or based solely on genome-wide SNP distribution. Moreover, the
difference in mean imputation accuracy between methods was more pronounced at lower
panel densities consistent with reported elsewhere in purebred populations (Judge et al.,
2016). Judge et al. (2016) documented 0.031 vs. 0.004 units higher accuracy for “block”
selection, which was carried out the same as MAFLD in the present study, as opposed to
random selection; these selections methods were also the best and worst methods in the
Judge et al. (2016) study. A major contributing factor to the improvement in imputation
accuracy in the present study was the enrichment of chromosomal extremities when MAFLD
was used; while a second SNP was selected in the first and last chromosomal segments, no
SNP were selected in these regions when RAN was used. Selection using MAFLD was
furthermore undertaken within genomic segments of even size, thereby securing an even
distribution across the entirety of autosomes. Considerably more variability in the distance
between adjacent SNP was detected among SNP selected using the RAN method. For the
10,000 SNP panels, the mean * SD distance between adjacent SNP, in kilobase pairs (kb),
was 250.30 £ 266.03, 251.12 + 35.85, 251.00 + 100.05, 251.10 + 49.95, and 251.16 + 101.69
units when the RAN, MID, PAM, DISTMAF, and MAFLD methods were employed.

SNP selection methods combining both attributes of MAF and LD have previously been
reported to generate the most accurate imputation in cattle compared with other methods
such as random selection, selection using distance scores, or selection using machine-
learning algorithms (Carvalheiro et al., 2014; Judge et al., 2016). Other studies have found
that placing emphasis on either one of these attributes, i.e., MAF (Corbin et al., 2014; He et
al., 2018) or LD (Badke et al., 2013; Ogawa et al., 2016), while maintaining an even
distribution of SNP across the genome is more accurate than simply basing selection on an
even distribution alone. He et al. (2018) achieved a 0.6 unit increase in the percentage
correctly imputed SNP when a 6,000 SNP panel that maximized MAF was investigated for US
Holstein cattle relative to selection solely to achieve and even distribution. In terms of LD as
selection criteria, Ogawa et al. (2016) indicated a 0.02, 0.01, and 0.005 unit improvement in
imputation accuracy (concordance rate) when their selection strategy included LD
information, as opposed to even distribution alone, to construct 1,000, 4,000, and 10,000
SNP panels for Japanese Black cattle. The results presented in this study were therefore
consistent with previous research on these selection strategies and suggests that both MAF
and LD need to be considered in the design of a reduced panel for the SA Drakensberger and
similar breeds.

The lowest SNP density that could be generated for the SA Drakensberger population using
the LDCLUST method (23,469 SNP at the lowest LD threshold) surpassed all of the
predefined SNP densities except the 50,000 SNP densities; this was a function of the
mathematics underpinning the LDCLUST algorithm. Because the LDCLUST algorithm assigns
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SNP to panels based on intra-autosomal LD, this was expected. Previous studies of SA
Drakensberger have reported weak and variable autosome-wide LD (Lashmar et al., 2018),
as well as LD of r2 > 0.2 only persisting over short genomic distances between SNP (10 to
20kb; Makina et al., 2015). A larger number of clusters, and hence SNP density, that contain
fewer strong-LD SNP was therefore expected for the admixed population in the present
study in comparison to populations under intensive selection (e.g., layer chickens; Herry et
al., 2018); no studies using such an approach in purebred cattle exists. While the LDCLUST
method generated similar imputation accuracy to the best predefined selection method
(MAFLD; Table 2), despite the fact that almost 20% more SNP were selected in the former,
the LDCLUST method is expected to be of more value when higher density genotypes, or
sequencing data, are available to better capture the true LD characteristics of an admixed
breed such as the SA Drakensberger.

Chromosome-level variability

Several imputation studies in cattle have reported differences in imputation errors per
chromosome (Berry and Kearney, 2011; Judge et al., 2016; Bernardes et al., 2018). Larger
autosomes are expected to harbor more SNP, which facilitates the better capturing of
stronger LD and subsequently enables more accurate inference of haplotypes (Sun et al.,
2012). In agreement with previous research in cattle (Judge et al., 2016), imputation
accuracy was best for the larger autosomes.

Differences in correlation-based imputation accuracy were observed for SNP located on the
2 autosomal extremes vs. in the middle of autosomes, and this was in agreement with
studies such as Druet et al. (2010) and Badke et al. (2013). Badke et al. (2013), for example,
demonstrated a 0.023 unit improvement in imputation accuracy for SNP in the middle vs. on
the peripheries of chromosomes. Because the MAFLD selection methodology enriched the 2
extremes on each autosome with an extra SNP, higher mean imputation accuracy (+0.040
and +0.020 units higher than RAN for the first and last 1 Mb regions across chromosomes)
was achieved for SNP located in these regions when this method was used. Furthermore,
despite selecting additional SNP on the chromosomal extremities, Judge et al. (2016) still
documented poorer imputation accuracy for shorter chromosomes due to the peripheral
regions making up a larger proportion of the chromosome. Variation in SNP imputation
accuracy within chromosomes was reduced in the present study as the SNP density of the
panel increased suggesting that the effect of a chosen SNP location within chromosome is
more detrimental to imputation accuracy when SNP density is low.

Minor allele frequency

The Sanga subspecies has been shown to suffer ascertainment bias when commercial
genotyping panels have been used and this was evidenced by a higher proportion of low-
MAF, less informative SNP, relative to taurine breeds (Qwabe et al., 2013; Zwane et al.,
2016; Lashmar et al., 2018). This bias was introduced because these Sanga breeds were not
included in the SNP discovery process involved during the original panel design. Although
commercially available and custom SNP panels may have some utility for SA Sanga breeds,
albeit sub-optimal, no Sanga-specific SNP panel exists at present (Zwane et al., 2019). The
impact of low MAF on imputation accuracy has been extensively studied although the
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documented impact varies depending on the parameter(s) used to define imputation
accuracy (Mulder et al., 2012; Brgndum et al., 2014; Calus et al., 2014).

Concordance-based measures of accuracy (GCRsne and ACRsyp) eroded with increasing MAF,
whilst the correlation-based accuracy measure (CORsnp) improved with increasing MAF.
Correlation-based measures have been suggested to minimize the dependency of
imputation accuracy on SNP allele frequency (Sargolzaei et al., 2014; Ventura et al., 2014).
The difference in imputation accuracy between accuracy metrics was more pronounced for
the RAN method than the MAFLD method as SNP were not specifically chosen to maximize
MAF. The mean CORsnp increased from 0.821 to 0.955 when averaged within low (0.01 <
MAF < 0.02) vs. high (0.4 < MAF < 0.5) MAF classes. Similarly, Ma et al. (2013) documented
an increase in the correlation coefficient from ~80% to ~85% when MAF increased from 0.1
to ~0.5 in European Red cattle.

The lower mean imputation accuracy for SNP with an MAF <10% suggests that imputation of
rare variants was more challenging (Calus et al., 2014), which is concerning considering that
these variants may be associated with unique or complex traits such as those pertaining to
adaptability (Zwane et al., 2019).

Conclusion

Genotyping at higher densities is costly and currently financially not feasible within beef
industries of the developing world. Genotyping selection candidates on lower densities and
imputing to higher density should reduce the costs involved in routinely applying GS for
locally important breeds with unique adaptation abilities. Results from this study indicated
that a custom genotyping panel consisting of 10,000 SNP would suffice in achieving <3%
imputation errors for the SA Drakensberger. The reduced-density SNP should be selected
based on criteria such as MAF and LD that are specific to the breed to maximize achievable
imputation accuracy. Whole-genome sequencing data would, however, serve as a better
resource of candidate SNP to select from in terms of abundance and ensuring breed
specificity of SNP. The inferences made in this study for the SA Drakensberger may be
transferable to other Sanga breeds and may serve as guidelines in future imputation-driven
genomic endeavors for these breeds and other breeds that have admixed genomes.
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