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Abstract 

Since the inception of control charts by W. A. Shewhart in the 1920s they have been 

increasingly applied in various fields. The recent literature witnessed the development of a 

number of nonparametric (distribution-free) charts as they provide a robust and efficient 

alternative when there is a lack of knowledge about the underlying process distribution. In 

order to monitor the process location, information regarding the in-control process median is 

typically required. However, in practice this information might not be available due to 

various reasons. To this end, a generalized type of nonparametric time-weighted control chart 

labelled as the Double Generally Weighted Moving Average (DGWMA) based on the 

exceedance statistic (EX) is proposed. The DGWMA-EX chart includes many of the well-

known existing time-weighted control charts as special or limiting cases for detecting a shift 

in the unknown location parameter of a continuous distribution. The DGWMA-EX chart 

combines the better shift detection properties of a DGWMA chart with the robust in-control 

performance of a nonparametric chart, by using all the information from the start until the 

most recent sample to decide if a process is in-control (IC) or out-of-control (OOC). An 

extensive simulation study reveals that the proposed DGWMA-EX chart, in many cases, 

outperforms its counterparts. 

Keywords: Average run length; Control chart; DGWMA; Exceedance statistic; 

Nonparametric. 

 

1. Introduction 

Statistical process control (SPC) refers to the collection of statistical procedures and problem 

solving tools used to control and monitor the quality of the output of some production process 
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(Balakrishnan et al.1). It is often of interest to detect any changes in location and/or dispersion 

as early as possible and SPC possesses some of the extensively used tools to detect the 

presence of causes of variation and to maintain stability. One of these tools is the control 

chart and designed to detect changes in a process from an in-control to an out-of-control 

state. Control charts are widely used to analyse and understand process variables, monitor 

effects of the variables on the difference between target and actual performance, and 

determine if a process is under statistical control. If a charting statistic plots within the upper 

and lower control limits , it is considered to be in-control (IC) and if a charting statistic plots 

on or outside either of the limits, it is declared to be out-of-control (OOC). Control charts 

usually assume a known (normal) distribution for the process, however in many applications, 

the underlying process distribution is unknown and/or not normal and hence the statistical 

properties of commonly used charts, designed to perform best under the normal distribution 

assumption, could be highly affected. Nonparametric control charts provide a robust 

alternative when there is a lack of knowledge about the underlying process distribution. A 

chart is called distribution-free or nonparametric if its IC run length distribution remains 

invariant for all continuous process distributions. However, in some cases, symmetry of the 

underlying distribution is required for the chart to be nonparametric. The number of plotting 

statistics to be plotted until the first out-of-control signal occurs, is a discrete random variable 

and is called the run length.  

Walter A. Shewhart (1891-1967) proposed Shewhart-type charts, laying the foundation of 

SPC. The interested reader is referred to Shewhart2,3. Shewhart-type control charts are the 

most widely known charts in practice because of their global performance. The charting 

statistic for the Shewhart-type charts is typically the value of the corresponding sample 

statistic. As an example, assume that the observations from the process being monitored are 

mutually independent and from a normal distribution with known mean 𝜇 and known 

variance 𝜎2. Then the symmetrically placed control limits for a Shewhart 𝑋̅ chart are given 

by 𝑈𝐶𝐿 =  𝜇 + 𝐿
𝜎

√𝑛
  and 𝐿𝐶𝐿 = 𝜇 − 𝐿

𝜎

√𝑛
, where 𝑛 denotes the sample size, 𝑈𝐶𝐿 and 𝐿𝐶𝐿 are 

the upper and lower control limits, respectively, and 𝐿 > 0 is the distance of the control 

limits from the centerline. Because Shewhart-type charts only use the most recent sample to 

decide if the process is IC or OOC, they are inefficient in detecting small and minor shifts in 

the process. To overcome the difficulties of Shewhart-type charts in detecting process shifts, 

it is recommended to use time-weighted or memory-type charts such as the Cumulative Sum 

(CUSUM) proposed by Page4, the Exponentially Weighted Moving Average (EWMA) 
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proposed by Roberts5, the Double Exponentially Weighted Moving Average (DEWMA) 

proposed by Shamma and Shamma6 and the Generally Weighted Moving Average (GWMA) 

proposed by Sheu and Lin7; these charts sequentially accumulate information over time to 

determine the state of statistical control. The interested reader is referred to Montgomery8 for 

more details. Sheu and Hsieh9 proposed a Double Generally Weighted Moving Average 

(DGWMA) chart for the normal distribution (denoted by DGWMA-𝑋̅) by combining the 

DEWMA- 𝑋̅ chart proposed by Zhang and Chen10 and the GWMA-𝑋̅ chart proposed by Sheu 

and Lin7. They have shown that the DGWMA-𝑋̅ chart is more sensitive in detecting minor 

shifts in the process. The interested reader is referred to the works by Tai et al.11 and Huang 

et al.12. In typical applications Shewhart-type and time-weighted charts are based on the fact 

that the observations of the underlying process are assumed to follow a normal or specified 

probability distribution. However, in many situations, the assumption of normality may not 

be justified or valid when the observations are from a non-normal or unknown distribution. 

The CUSUM signed-rank charts were developed by Bakir and Reynolds13 and the Shewhart-

type signed-rank chart by Bakir14 . For more details the interested reader is referred to Amin 

et al.15, Chakraborti et al.16 and Bakir17. More recently, Lu18 and Chakraborty et al.19 

proposed nonparametric GWMA charts based on the sign statistic (denoted by GWMA-SN) 

and Wilcoxon signed-rank statistic (denoted by GWMA-SR), respectively, for the case when 

the true process median is known; this is referred to as Case K. The parametric DGWMA 

scheme has been shown to improve the detection ability of the GWMA chart. To this end, 

Lu20 proposed a nonparametric DGWMA chart (denoted by DGWMA-SN) when the true 

process proportion is known. However, the true process median may not be known (referred 

to as Case U) which limits the applicability of the distribution-free DGWMA charts based on 

well-known nonparametric statistics, e.g. the sign and Wilcoxon signed-rank statistics. 

Precedence or exceedance tests, based on precedence or exceedance statistics, are well 

known nonparametric two-sample tests which do not suffer from the limits of the 

aforementioned. Precedence statistics are defined as the number of observations from one of 

the samples that exceeds a specified (𝑟𝑡ℎ) order statistic of the other sample. A class of 

nonparametric Shewhart-type charts, referred to as Shewhart-type precedence charts were 

studied by Graham et al.21. For more information in terms of nonparametric control charts 

please refer to Chakraborti et al.22. More recently, Chakraborty et al.23 proposed a 

nonparametric GWMA exceedance chart, referred to as the GWMA-EX chart, which 

outperforms the EWMA-EX chart. Relatively little work has been done on nonparametric 
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schemes in the context of a DGWMA chart. Motivated by these findings, we construct a 

distribution-free DGWMA chart based on an exceedance statistics for monitoring the 

unknown median of a process. This chart is referred to as the DGWMA exceedance (or 

DGWMA-EX) chart and integrates the virtues of both the GWMA and DEWMA charts to 

achieve improved detection ability, when compared with the nonparametric GWMA-EX 

chart. The proposed chart can be viewed as a generalized nonparametric time-weighted 

control chart which includes other nonparametric time-weighted charts such as the GWMA-

EX, EWMA-EX and Shewhart-EX charts as limiting cases. Furthermore, the nonparametric 

DEWMA chart based on exceedance statistics, labelled as the DEWMA-EX chart, which is a 

special case of the DGWMA-EX chart, will be proposed and discussed as well. To the best of 

our knowledge there is no research published on the DEWMA-EX chart, a special case of the 

proposed DGWMA-EX chart, in the SPC literature, hence this paper also introduces this 

chart and discusses some of its properties. The structure of the rest of the paper is as follows: 

Section 2 provides the necessary theoretical framework for the DGWMA-EX chart. In 

Section 3, the run length distribution and design of the proposed chart are studied. An 

illustrative example is provided in Section 4, while some conclusions are provided in Section 

5. 

2. Preliminaries and Statistical Framework of the DGWMA exceedance chart 

Let 𝑋1, 𝑋2, … , 𝑋𝑚~iid 𝐹𝑋(𝑥) denote a Phase I reference sample from an in-control (IC) 

process with an unknown continuous cumulative distribution function (c.d.f.) 𝐹𝑋(𝑥) where 

−∞ < 𝜃 < ∞ denotes the unknown location parameter. Let 𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛 , 𝑖 = 1,2,…,  

denote the 𝑖𝑡ℎ test sample in Phase II of size 𝑛 ≥ 1, with an unknown continuous c.d.f. 

𝐺𝑌(𝑥) = 𝐹𝑋(𝑥 − 𝜃). The main intention is to design a control chart for monitoring the 

unknown process location. The unknown/true value of the location parameter is denoted by 

𝜃0 and the shifted location parameter is denoted by 𝜃1 = 𝜃0 + 𝛿; where −∞ < 𝛿 < ∞ is the 

location shift. The process is declared to be IC when the unknown continuous c.d.f.’s 𝐹 and 

𝐺  are equal (i.e. 𝐺 = 𝐹 or 𝛿 = 0) and out-of-control (OOC) when 𝐺 ≠ 𝐹 or 𝛿 ≠ 0. 

Let 𝑈𝑖𝑟 denote the number of 𝑌 observations in the 𝑖𝑡ℎ Phase II sample that exceeds 𝑋(𝑟) , 

𝑟 = 1,2,…, 𝑚, i.e. the 𝑟𝑡ℎ order statistic from the Phase I sample of size 𝑚 ≥ 1. The statistic 

𝑈𝑖𝑟 is called the exceedance statistic and the probability 𝑝𝑟 = 𝑃[𝑌 ≥ 𝑋(𝑟)|𝑋(𝑟)], is the 

exceedance probability. For inference purposes, the exceedance and precedence tests are 

equivalent in the sense that the two statistics are linearly related. Hereafter, 𝑈𝑖 will be used to 

denote the exceedance statistic for the 𝑖𝑡ℎ sample in Phase II. 
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2.1. Charting statistic 

The DGWMA-EX chart is an extension of the GWMA-EX chart by invoking the DEWMA 

technique i.e. performing “smoothing” twice. The GWMA-EX chart proposed by 

Chakraborty et al.23 is constructed by taking a weighted average of a sequence of the 

exceedance statistic 𝑈𝑖’s. Let 𝑀1 and 𝑀2 be two discrete random variables denoting the 

number of samples until the next occurrence of an event since its last occurrence. Then, by 

summing over all values of 𝑀𝑗, we can write: 

 ∑ 𝑃 [𝑀𝑗 = 𝑖]
∞
𝑖=1 = ∑ 𝑃 [𝑀𝑗 = 𝑖]

𝑡
𝑖=1 + 𝑃 [𝑀𝑗 > 𝑡] = 1   for  𝑗 = 1,2 and  𝑡 = 1,2,3, … (1) 

A GWMA is a weighted moving average of a sequence of 𝑈𝑖’s, where the probability 

𝑃[𝑀1 = 𝑖] is known as the weight for the 𝑖𝑡ℎ most recent statistic 𝑈𝑡−𝑖+1 among the last 𝑡 of 

the 𝑈𝑖’s. The probability P[𝑀1 > 𝑡] is considered the weight for the starting value, denoted 

by 𝑍0
1, and is typically taken as the unconditional in-control (IC) expected value of the 

exceedance statistic under consideration, i.e., 𝑍0
1 = 𝐸(𝑈𝑖|𝐼𝐶) = 𝑛 (1 −

𝑟

𝑚+1
). Hence, the 

charting statistic for the GWMA-EX chart is as follows: 

 𝑍𝑡
1 = ∑ 𝑃(𝑀1 = 𝑖)𝑈𝑡−𝑖+1 + 𝑃(𝑀1 > 𝑡)

𝑡
𝑖=1 𝑍0

1      for       𝑡 = 1,2,3,… (2) 

The distribution of 𝑀1 can be written as (Sheu and Hsieh9): 

 𝑃(𝑀1 = 𝑖) = 𝑞1
(𝑖−1)𝛼1

− 𝑞1
𝑖𝛼1  (3) 

where 0 <  𝑞1 < 1 and 𝛼1 > 0 are the parameters and 𝑖 = 1, 2, … . Equation (3) is the 

probability mass function (p.m.f.) of the two-parameter discrete Weibull distribution 

introduced by Nakagawa and Osaki24. By substituting the p.m.f. of the two-parameter 

discrete Weibull distribution in Equation (2), the charting statistic for the GWMA-EX is: 

 𝑍𝑡
1 = ∑ (𝑞1

(𝑖−1)𝛼1
− 𝑞1

𝑖𝛼1)𝑋𝑡−𝑖+1 +
𝑡
𝑖=1 𝑞1

𝑡𝛼1𝑍0
1     for       𝑡 = 1,2,3, … (4) 

where 𝑍0
1 = 𝑛 (1 −

𝑟

𝑚+1
).  

Now, to propose the DGWMA-EX chart as an extension of the GWMA-EX chart, the 

DGWMA-EX charting statistic is defined as: 

 𝑍𝑡
2 = ∑ 𝑃(𝑀2 = 𝑖)𝑍𝑡−𝑖+1

1 + 𝑃(𝑀2 > 𝑡)𝑡
𝑖=1 𝑍0

2  (5) 

where 𝑍0
2 = 𝑍0

1 = 𝐸(𝑈𝑖|𝐼𝐶) = 𝑛 (1 −
𝑟

𝑚+1
) is the starting value, and  

 𝑃(𝑀2 = 𝑖) = 𝑞2
(𝑖−1)𝛼2 − 𝑞2

𝑖𝛼2  (6) 

where 0 <  𝑞2 < 1 and 𝛼2 > 0 are the parameters and 𝑖 = 1, 2,… , similar to Equation (3). 

Note that the superscripts that are used to denote the charting statistics for the GWMA-EX 

and the DGWMA-EX charts (i.e. 𝑍𝑡
1 and 𝑍𝑡

2, respectively) also denote the order in which we 
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apply the first and second “smoothing” of the 𝑈𝑖’s; these superscripts should not be confused 

with the mathematical concept of raising a number or variable to an arbitrary power. 

As in Sheu and Hsieh9, the charting statistic in Equation (5) can be rewritten as: 

𝑍𝑡
2 = 𝑃(𝑀2 = 1)𝑍𝑡

1 + 𝑃(𝑀2 = 2)𝑍𝑡−1
1 +⋯+ 𝑃(𝑀2 = 𝑡)𝑍1

1 + 𝑃(𝑀2 > 𝑡)𝑍0
1 

 = 𝑤1𝑈𝑡 +𝑤2𝑈𝑡−1 +⋯+ 𝑤𝑡𝑈1 + (1 − ∑ 𝑤𝑖
𝑡
𝑖=1 )𝑍0

2  (7) 

where the weight at time 𝑡 is defined as: 

 𝑤𝑡 = ∑ 𝑃(𝑀1 = 𝑗)𝑃(𝑀2 = 𝑡 − 𝑗 + 1)
𝑡
𝑗=1   (8) 

By substituting the p.m.f. for the discrete Weibull distribution (Equations (3) and (6)) into 

Equation (8), the weights can be written as: 

 𝑤𝑡 = ∑ (𝑞1
(𝑗−1)𝛼1

− 𝑞1
𝑗𝛼1
)(𝑡

𝑗=1 𝑞2
(𝑡−𝑗)𝛼2

− 𝑞2
(𝑡−𝑗+1)𝛼2

)     for       𝑡 = 1,2,3,… (9) 

Finally, the DGWMA-EX charting statistic is defined as: 

 𝑍𝑡
2 = ∑ 𝑤𝑖

𝑡
𝑖=1 𝑈𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2  (10) 

where, 𝑡 = 1, 2,… and 𝑍0
2 is considered as the starting value. 

The DGWMA-EX statistic 𝑍𝑡
2 is denoted by DGWMA-EX (𝑞1, 𝛼1; 𝑞2, 𝛼2). In addition, the 

values of the weights i.e. 𝑤𝑡 , using 0 <  𝑞1,𝑞2 < 1, 𝛼1, 𝛼2 > 0, 𝑃(𝑀1 > 𝑡) = 𝑞1
𝑡𝛼1 and 

𝑃(𝑀2 > 𝑡) = 𝑞2
𝑡𝛼2  are equal to those derived using 𝑃(𝑀1 > 𝑡) = 𝑞2

𝑡𝛼2  and 𝑃(𝑀2 > 𝑡) =

𝑞1
𝑡𝛼1 . Hence, the DGWMA-EX chart with parameters (𝑞1, 𝛼1; 𝑞2, 𝛼2) is equivalent (i.e. has 

the same run length distribution) as the DGWMA-EX chart with parameters (𝑞2, 𝛼2; 𝑞1, 𝛼1). 

For the sake of brevity, we write DGWMA-EX (𝑞1, 𝛼1; 𝑞2, 𝛼2) = DGWMA-EX (𝑞2, 𝛼2; 𝑞1, 𝛼1). 

Since there is no or little information available with respect to the process distribution, the 

control limits for the DGWMA-EX chart are determined using the unconditional IC 

expectation and variance of the charting statistics in Equation (10). 

2.2. Control limits 

Let 𝑍0
2 = 𝑛(1 −

𝑟

𝑚+1
), then the unconditional IC expectation of 𝑍𝑡

2 can be derived as (see 

Chakraborty et al.23): 

 𝐸(𝑍𝑡
2) = 𝑛 (1 −

𝑟

𝑚 + 1
). (11) 

The unconditional IC variance of 𝑍𝑡
2 is: 

      𝑉𝑎𝑟(𝑍𝑡
2) =

𝑛(
𝑟

𝑚+1
)(1 − 

𝑟

𝑚+1
)

𝑚+2
∑ 𝑤𝑖

2𝑡
𝑖=1 (𝑛 +𝑚 + 1).              (12) 

The exact time-varying, symmetrically placed, control limits (denoted by 𝑈𝐶𝐿𝑒 & 𝐿𝐶𝐿𝑒) of 

the two-sided DGWMA-EX chart are given by: 
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𝑈𝐶𝐿𝑒/𝐿𝐶𝐿𝑒 = 𝑛(1 −
𝑟

𝑚+1
) ± 𝐿√

𝑛(
𝑟

𝑚+1
)(1 − 

𝑟

𝑚+1
)

𝑚+2
∑ 𝑤𝑖

2𝑡
𝑖=1 (𝑛 + 𝑚 + 1)      

(13) 

where 𝐿 > 0 is the distance of the control limits from the centerline and the subscript “e” 

denotes the exact control limits. 

The steady-state control limits, which are based on the asymptotic unconditional variance of 

the charting statistic, are given by: 

 

𝑈𝐶𝐿𝑠/𝐿𝐶𝐿𝑠 = 𝑛(1 −
𝑟

𝑚+1
) ± 𝐿√

𝑛(
𝑟

𝑚+1
)(1−

𝑟

𝑚+1
)

𝑚+2
𝑄′(𝑛 + 𝑚 + 1)       

(14) 

with centerline 𝐶𝐿 = 𝑛 (1 −
𝑟

𝑚+1
), where the subscript “s” denotes the steady-state control 

limits and 𝑄′ = 𝑙𝑖𝑚
𝑡→∞

∑ 𝑤𝑖
2𝑡

𝑖=1 .  

The following points are worth mentioning here: 

i. The main focus of this study is to construct a DGWMA-EX chart with control 

limits equidistance from the centerline. One can also design a one-sided chart 

depending on the purpose or application; 

ii. Steady-state control limits are used in order to simplify the application and 

implementation of the DGWMA-EX chart. Hence, hereafter we use LCL and 

UCL to denote the steady-state control limits in Equation (14); 

iii. If any plotting statistic 𝑍𝑡
2, plots on or outside either of the control limits (steady-

state) given in Equation (14), the process is declared out-of-control (OOC) and a 

search for assignable causes is started. Otherwise, the process is considered to be 

in-control (IC), which implies no location shift has occurred; 

iv. For more information in terms of precedence or exceedance type tests and their 

distributional properties, please refer to Balakrishnan and Ng25; 

v. Since the DGWMA-EX chart has four parameters, the computational aspects can 

become complex and time consuming. However, choosing specific values for 

some of the parameters reduces the number of unknown DGWMA-EX parameters 

and simplifies the implementation of the proposed chart. In this article, we will 

consider the DGWMA-EX chart with 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼. For brevity 

we denote this chart by DGWMA-EX (𝑞; 𝛼); 

vi. Sheu and Hsieh9 mentioned that the DGWMA chart with four parameters does not 

perform better than the DGWMA with two parameters. However, it was 

discovered that there exist DGWMA-EX charts with four parameters that 
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outperforms the DGWMA-EX chart with two parameters. We first computed the 

in-control ARL (𝐴𝑅𝐿0) for these two charts to ensure both of them are at an equal 

footing. The 𝐴𝑅𝐿0 of the DGWMA-EX (𝑞1, 𝛼1; 𝑞2, 𝛼2) is 370.47 and for the 

DGWMA-EX (𝑞; 𝛼) is 371.34. We computed the out-of-control ARL (𝐴𝑅𝐿1) for 

some combinations of 𝑞1, 𝑞2, 𝛼1, 𝛼2 and as a result for some combinations of the 

aforementioned parameters the DGWMA with four parameters outperforms the 

DGWMA with two parameters; this is due to the flexibility that is gained by using 

additional parameters. For example, for 𝑞1 = 0.8, 𝑞2 = 0.7, 𝛼1 = 0.9, 𝛼2 = 0.7 

and L= 1.984, the OOC ARL is equal to 𝐴𝑅𝐿1 = 348.78 and 𝐴𝑅𝐿1 = 107.09, for 

shift sizes (𝛿) 0.05 and 0.25, respectively. For 𝑞1 = 𝑞2 = 𝑞 = 0.8, 𝛼1 = 𝛼2 =

𝛼 = 0.9 and L= 1.925, the OOC ARL is equal to 𝐴𝑅𝐿1 = 364.05 and 𝐴𝑅𝐿1 =

111.66, for shift sizes (𝛿) 0.05 and 0.25, respectively. The first set of design 

parameters are referring to the DGWMA with four parameters while the latter one 

are referring to the DGWMA with two parameters; 

vii. The GWMA-EX and EWMA-EX charts are limiting cases of the proposed 

DGWMA-EX chart. For example, in the DGWMA-EX chart, if we set 𝑞2 = 0 and 

𝛼2 = 1, then the chart simplifies to a GWMA-EX chart with the parameters 𝑞1 

and 𝛼1 denoted as GWMA-EX (𝑞1, 𝛼1). In the GWMA-EX chart, if one sets 𝛼1 = 

1, then it simplifies to the EWMA-EX chart denoted as EWMA-EX (𝑞1). The same 

result can be obtained, if we set 𝛼1 = 𝛼2 = 1 and 𝑞2 = 0, then the charting 

statistic of the DGWMA-EX reduces to the charting statistic of the EWMA-EX 

chart denoted as EWMA-EX (𝑞1). Hence, as a conclusion, the EWMA-EX chart 

can be regarded as limiting case for the DGWMA-EX chart, and as a special case 

of the GWMA-EX chart; 

viii. Shamma and Shamma6 designed a DEWMA chart for the mean. Zhang and Chen 

10 have shown that the proposed chart performs better than the EWMA chart for 

the mean when the process shifts are small. For larger shifts, the DEWMA chart 

and the EWMA chart perform similarly. We also introduce the nonparametric 

DEWMA chart (Case U) labeled as DEWMA-EX control chart in this paper 

which is a special case of the DGWMA-EX chart. Note that, as mentioned by 

Zhang and Chen10, there are two cases for the DEWMA chart based on the 

equality and/or inequality of the smoothing parameters (1 = 1 − 𝑞2, 2 = 1 −

𝑞1). These two cases of the DEWMA-EX chart are denoted as DEWMA-EX ( =



 9 

1 − 𝑞) and DEWMA-EX (1 = 1 − 𝑞2, 2 = 1 − 𝑞1), respectively. In the 

DGWMA-EX chart, if one sets 𝛼1 = 𝛼2 = 1, the outcome will be the DEWMA-

EX with parameters 𝑞1 and 𝑞2, denoted as DEWMA-EX (1 − 𝑞2, 1 − 𝑞1). Zhang 

and Chen10 concluded that the DEWMA chart with equal smoothing parameters 

performs similarly comparing to the DEWMA chart with different smoothing 

parameters. 

 

3. Implementation and performance 

The average run length (ARL) is the most important and widely used metric to evaluate the 

performance of control charts. The performance of a control chart can be evaluated in terms 

of two ARL values: 

• 𝐴𝑅𝐿0: the average number of charting statistics until an OOC signal is detected by a 

control chart when the process is in-control; 

• 𝐴𝑅𝐿1: the average number of charting statistics until an OOC signal is detected by a 

control chart when the process has shifted to an OOC value. 

The design of the DGWMA-EX chart typically involves the calculation of the chart 

parameters so as to obtain a pre-specified in-control 𝐴𝑅𝐿 (denoted by 𝐴𝑅𝐿0
∗ ) i.e. one wants to 

solve for the values 𝛼1, 𝛼2 , 𝑞1, 𝑞2  and  𝐿 such that 𝐴𝑅𝐿0 ≈ 𝐴𝑅𝐿0
∗ . In order to make the 

computational aspects easier, some of the design parameters are set equal to each other, 

hence 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼. However, since 𝑋(𝑟) is a random variable, computation 

of the run length distribution for the DGWMA-EX chart is not straightforward. The three 

standard methods that are often used to evaluate or calculate the ARL and that will be 

investigated in this article are: (i) the exact approach; (ii) the Markov chain approach and, 

(iii) Monte Carlo simulation. 

Exact approach 

One can denote 𝐾 as the run length random variable for the DGWMA-EX chart. Suppose that 

the signaling event at the 𝑖𝑡ℎ sample is denoted by 𝑆𝑖. For ∀𝑖 ≥ 1, one can re-write the event 

𝑆𝑖
𝐶 = [𝐿𝐶𝐿 < 𝑍𝑖

2 < 𝑈𝐶𝐿], as 𝑆𝑖
𝐶 = [𝐿𝐶𝑖 < 𝑈𝑖 < 𝑈𝐶𝑖], where for 𝑖 = 2,3,…, 

 

{
 
 

 
 
𝑈𝐶𝑖 =

𝑈𝐶𝐿 − ∑ 𝑤𝑗𝑈𝑖−𝑗+1 − (1 − ∑ 𝑤𝑗
𝑖
𝑗=2 )𝑛(1 −

𝑟
𝑚 + 1)

𝑖
𝑗=2

(1 − 𝑞1)(1 − 𝑞2)

𝐿𝐶𝑖 =
𝐿𝐶𝐿 − ∑ 𝑤𝑗𝑈𝑖−𝑗+1 − (1 − ∑ 𝑤𝑗

𝑖
𝑗=2 )𝑛(1 −

𝑟
𝑚 + 1

)𝑖
𝑗=2

(1 − 𝑞1)(1 − 𝑞2)

 

(15) 
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where 𝑈𝐶1 =
𝑈𝐶𝐿−(1−𝑤1)𝑛(1−

𝑟

𝑚+1
)

(1−𝑞1)(1−𝑞2)
 , 𝐿𝐶1 =

𝐿𝐶𝐿−(1−𝑤1)𝑛(1−
𝑟

𝑚+1
)

(1−𝑞1)(1−𝑞2)
 and UCL and LCL are the 

steady-state control limits defined in Equation (14). 

The conditional ARL can be written as: 

 𝐴𝑅𝐿|𝑋(𝑟) = ∑ 𝐼𝑘
∞
𝑘=1   (16) 

where 𝐼𝑘 = ∑ ∑ …∑ (∏ 𝑃[𝑈𝑖 = 𝑢𝑖|
𝑘
𝑖=1

𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

𝑋(𝑟)]) for 𝑘 = 1, 2, 3,…, 𝐼0 = 1 (see 

Appendix A3) and 𝑃[𝑈𝑖 = 𝑢𝑖|𝑋(𝑟)] is given in Appendix A1. 

The unconditional ARL is, therefore: 

 𝐴𝑅𝐿 = 𝐸𝑋(𝑟)(𝐴𝑅𝐿|𝑋(𝑟)) = 1 + ∑ 𝐸𝑋(𝑟)(𝐼𝑘).
∞
𝑘=1   

 

(17) 

By obtaining 𝐸𝑋(𝑟)(𝐼𝑘) (see Appendix A2), the closed form expression of the unconditional 

ARL is: 

 
𝐴𝑅𝐿 = 1 +∑ ∑ ∑ …∑ (∏ (

(
𝑢𝑖+𝑚−𝑘

𝑢𝑖
)(
𝑛−𝑢𝑖+𝑘−1
𝑛−𝑢𝑖

)

(
𝑚+𝑛
𝑛

)
)𝑘

𝑖=1 )
𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

∞
𝑘=1   

 

(18) 

The following points need to be taken into account when evaluating Equation (18): 

i. The closed form expression consists of multiple series and as 𝑘 inceases, the 

number of series increase which makes the expression cumbersome to evaluate 

computationally; 

ii. The “IC robustness” property is referred to a control chart based on the 

exceedance (precedence) statistic which is distribution-free when the process is 

declared IC. Hence, evaluation of Equation (18) does not require any prior 

knowledge regarding the distribution of the underlying process when the process 

is IC. 

Markov chain approach 

The Markov chain approach is another method that is widely applied in the context of control 

charts to evaluate the run length distribution and its characteristics. However, due to the 

complexities of implementing the Markov chain approach raised by Chakraborty et al.23, 

calculating the run length distribution and enumerating the states spaces utilizing the Markov 

chain approach is difficult. 
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Monte Carlo simulation approach 

A numerical Monte Carlo simulation has been implemented in this study to estimate the 

unconditional run length distribution and its characteristics for the DGWMA-EX chart. 

Furthermore, to make the calculation easier and less time consuming, as mentioned earlier, 

we set  𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼. The simulation algorithm includes the following 

steps: 

i. Select a combination of the design parameters, i.e., (𝑞, 𝛼, 𝐿), the shift to be detected 

denoted by 𝛿, the reference and test sample sizes 𝑚 ≥ 1 and 𝑛 ≥ 1, the IC 

distribution parameter 𝜃0 and identify a process distribution 𝐹𝑋(𝑥); the latter is only 

used to investigate the out-of-control run length distribution; 

ii. Obtain the 𝑟𝑡ℎ order statistic 𝑋(𝑟) by generating a reference sample of size 𝑚 from the 

identified process distribution 𝐹𝑋(𝑥); 

iii. A test sample of size 𝑛 ≥ 1 is generated to calculate the exceedance statistic 𝑈𝑖 by 

counting the number of observations 𝑌′𝑠 in the 𝑖𝑡ℎ sample that met the constraint 𝑌 ≥

𝑋(𝑟). The test sample is drawn from 𝐹𝑋(𝑥 − 𝜃1). One needs to note that when an IC 

run length distribution is desired then 𝜃1 = 𝜃0, whereas 𝜃1 = 𝜃0 + 𝛿 referred to as an 

OOC run length; 

iv. Calculate the steady-state control limits defined in Equation (14) by using the design 

parameters values (𝑞, 𝛼, 𝐿) obtained from step i; 

v. Calculate the DGWMA-EX charting statistic Zt
2 according to Equation (10) with the 

starting value taken as Z0
2 = 𝑛 (1 −

𝑟

𝑚+1
) and compare each plotting statistic with the 

steady-state control limits obtained from step iv; 

vi. After running 10,000 iterations of the steps (i) to (v), the number of samples until the 

first plotting statistic falls on or outside the steady-state control limits, known as the 

run length, is calculated for each of the interactions. These 10,000 empirical run 

length values are then used to calculate the average run length and other 

characteristics for the run length. 

3.1. The in-control (IC) design 

The in-control design of the proposed DGWMA-EX chart consists of obtaining the values for 

the charting constant, i.e. 𝐿 > 0 for chosen values of 𝑚 (known as the reference sample size) 

and 𝑛 (known as the test sample size) and a certain range of values for each (𝑞, 𝛼) 

combination, so that the attained IC ARL is close to the desirable value 𝐴𝑅𝐿∗ which is 
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typically 370 or 500. Sheu and Hsieh9, Tai et al.11 and Huang et al.12 noted that (𝑞, 𝛼) 

combinations in the intervals 0.5 ≤ 𝑞 ≤ 0.9 and 0.5 ≤ 𝛼 ≤ 1.0 enhanced the sensitivity of 

the DGWMA-𝑋̅ chart and outperformed the GWMA-𝑋̅, DEWMA-𝑋̅ and EWMA-𝑋̅ charts 

for small shifts. Chakraborty et al.23 considered 𝑚 = 49 and 99 and 𝑛 = 5 and 10 as the 

values for the reference sample and test sample sizes, respectively and the following range of 

values for the GWMA-EX parameters: 𝑞 = 0.8, 0.9, 0.95 and 𝛼 = 0.7,0.8, 0.9, 1.0, 1.3. In 

order to make the comparison procedure fair and reliable, in our study, we also considered 

the same aforementioned values for 𝑚, 𝑛, 𝑞 and 𝛼. By implementing the simulation algorithm 

alongside a grid search method, the charting constant 𝐿 > 0 for the chosen (𝑞, 𝛼) 

combination and specified values of 𝑚 and 𝑛, based on the constraint that 𝐴𝑅𝐿0
∗ = 370, was 

obtained. The values of 𝐿 > 0 are reported for the DGWMA-EX chart (Tables 1 and 2) and 

the GWMA-EX, and EWMA-EX chart (Tables 3 and 4) along with the attained 𝐴𝑅𝐿0 values. 

To ensure our simulation yields reasonable and consistent results and ensure the validity of 

the algorithm developed in R, we compared our results to those obtained by Chakraborty et 

al.23. For instance, consider two following scenarios: 

i. When 𝑚 = 49 and 𝑛 = 10, we have 𝑞1 = 0.95, 𝑞2 = 0, 𝛼1 = 0.7 and 𝛼2 =

1, we find from Table 3 that a value of charting constant 𝐿 = 0.737 gives an 

attained 𝐴𝑅𝐿0 = 370.03. In Chakraborty, et al.23, the GWMA-EX chart with 

𝑞 = 𝑞1 = 0.95 and 𝛼 = 𝛼1 = 0.7 and 𝐿 = 0.738 has an attained 𝐴𝑅𝐿0 =

370.05. 

ii. When 𝑚 = 99 and 𝑛 = 5, we have 𝑞1 = 0.9, 𝑞2 = 0, 𝛼1 = 0.7 and 𝛼2 = 1, 

we find from Table 4 that a value of charting constant 𝐿 = 1.805 gives an 

attained 𝐴𝑅𝐿0 = 370.49. In Chakraborty, et al.23, the GWMA-EX chart with 

𝑞 = 𝑞1 = 0.9 and 𝛼 = 𝛼1 = 0.7 and 𝐿 = 1.807 has an attained 𝐴𝑅𝐿0 =

370.58. 

The charting constant values in Tables 1, 2, 3 and 4 will be useful for the design and 

implementation of the DGWMA-EX chart; this includes designing and implementing the 

GWMA, DEWMA and EWMA exceedance charts. 

The main objective of this paper is to focus on the median of the Phase I reference sample i.e. 

where 𝑋(𝑟) is the median of the Phase I sample. However, a short performance analysis is 

also conducted for the proposed DGWMA-EX using the 25th and 75th percentiles of the Phase 

I sample. This is discussed in more detail in the next section. However, based on the observed 



 13 

results, the recommendation would be to use the median of the Phase I sample for the 

DGWMA-EX chart, since the median is a robust measure of the central tendency of 

distributions and practitioners are more interested in the median. Hence, in this section a 

general guideline is provided for practitioners on the design of the DGWMA-EX chart. 

3.2. The out-of-control (OOC) performance 

The preliminary step to evaluate the OOC performance is to ensure that the 𝐴𝑅𝐿0’s are close 

to 370 (when no shift occurs) so that all the charts are at an equal footing. Once different 

competing charts are designed with equal 𝐴𝑅𝐿0, a chart with the smaller 𝐴𝑅𝐿1 provides 

better performance for practical applications. 

The results for the OOC performance comparisons are shown in Tables 1, 2, 3 and 4 for 

multiple combinations of the parameters (𝑞, 𝛼) as well as for some chosen or specified values 

of 𝑚, 𝑛, and 𝛿. Tables 1 and 2 refer to the DGWMA-EX control chart and Tables 3 and 4 

correspond to the GWMA-EX and EWMA-EX charts when 𝑚 = 49, 99 and 𝑛 = 5, 10. The 

optimal design for the proposed DGWMA-EX chart would consists of specifying the desired 

𝐴𝑅𝐿0 and 𝐴𝑅𝐿1 values as well as the magnitude of the process shift and then select the 

combination of design parameters that provides the desired 𝐴𝑅𝐿0 with the minimum 𝐴𝑅𝐿1. 

For instance, in Table 1, the combination (𝑞 = 0.8, 𝛼 = 0.7, 𝐿 = 1.304) has the minimum 

𝐴𝑅𝐿1 = 317.48 among the chosen range of parameters for shift size 𝛿 = 0.1, for 𝑚 = 49 

and 𝑛 = 5. Since the IC distribution of the exceedance statistic is symmetric when 𝑋(𝑟) is 

selected as the median, for OOC performance (𝐴𝑅𝐿1), only the positive shifts 𝛿 =

0.05,0.1, 0.25, 0.5, 0.75, 1.0, 1.5 are considered. The main objective of this study is on 

efficiency of time-weighted/memory-based charts in detecting tiny shifts. 

A quick comparison of the results advocates the following points: 

i. The DGWMA-EX chart, typically outperforms the GWMA-EX chart when the 

adjustment parameter (𝛼 < 1) for 𝛿 ≤ 0.5. For example, in order to detect a shift of 

𝛿 = 0.1, a DGWMA chart with 𝑞 = 0.9, 𝛼 = 0.8, 𝐿 = 0.924 has an 𝐴𝑅𝐿1 = 330.57 

whereas the GWMA-EX with 𝑞1 = 0.9, 𝑞2 = 0, 𝛼1 = 0.8 and 𝛼2 = 1 and 𝐿 = 1.596  

has an 𝐴𝑅𝐿1 = 336.84 when 𝑚 = 49 and 𝑛 = 5. However, in some cases, such as 

the DGWMA-EX chart with 𝑞 = 0.95 and 𝛼 = 0.7, 0.8, 0.9 are worse than the 

GWMA-EX chart when 𝑚 = 49 and 𝑛 = 5. 

ii. The DGWMA-EX chart, generally performs better than the EWMA-EX chart for 𝛿 ≤

0.25. For example, in order to detect a shift of 𝛿 = 0.05, a DGWMA-EX with 𝑞 =
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0.8, 𝛼 = 1.0, 𝐿 = 1.755 has 𝐴𝑅𝐿1 = 360.95 whereas the EWMA-EX chart with 

𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 1 and 𝛼2 = 1 and 𝐿 = 2.249 has 𝐴𝑅𝐿1 = 366.63 when 𝑚 =

49 and 𝑛 = 5. 

iii. Overall, for small to moderate shift, the DGWMA-EX chart works better than the 

GWMA-EX and the EWMA-EX charts. For example, when 𝑞 = 0.8, 𝛼 = 0.8, 𝑚 = 

49 and 𝑛 = 10, a comparative plot is illustrated in Figure 1 to compare the ARL 

performance and detection ability between the DGWMA-EX, the GWMA-EX and the 

EWMA-EX charts. One can clearly observe that the DGWMA-EX chart outperforms 

the other counterparts for small shifts. 

Furthermore, the effects of the parameters 𝑞, 𝛼 and 𝑛 on the OOC performance of the 

DGWMA-EX are investigated as well. The results for the aforementioned are presented in 

Figures 2, 3 and 4 respectively. In Figure 2, for 𝛼 = 1.3, 𝑚 = 99 and 𝑛 = 10, three different 

values for 𝑞 (0.8, 0.9 and 0.95) are selected and based on the results, larger value of 𝑞, has 

better OOC performance for the DGWMA-EX chart as a consequence. In Figure 3, for 𝑞 = 

0.8, 𝑚 = 99 and 𝑛 = 5, three different values for 𝛼 (0.7, 1 and 1.3) are considered and based 

on the results, smaller values of 𝛼, leads to better OOC performance for the DGWMA-EX 

chart. In Figure 4, for 𝑞 = 0.8, 𝛼 = 1, 𝑚 = 49, two different values are selected for the test 

sample size 𝑛 (5 and 10) and based on the results, the larger the test sample size, the better 

the OOC performance of the DGWMA-EX chart. 

Other characteristics of the run length distribution including the standard deviation (denoted 

by SDRL) and percentile points (denoted by 𝑃𝑖), where 𝑖 = 5, 25, 50, 75, 95 might be of 

interest for the practitioners. Results are available upon request from the authors. 

In practice one can be interested in selecting an 𝑟𝑡ℎ order statistic from the Phase I sample 

other than considering the median. Hence, we conducted a comparative study for the 

DGWMA-EX chart using the 75th and 25th percentiles as well. For 𝑋(𝑟) = 25th percentile, the 

run length distribution encounters bias, that is 𝐴𝑅𝐿1 is greater than 𝐴𝑅𝐿0 which makes the 

performance of the control chart worse than in the median case. For 𝑋(𝑟) = 75th percentile, 

there is a considerable improvement in terms of the run length distribution for each choice of 

design parameters (𝑞, 𝛼, 𝐿) and shift size 𝛿. The relative results are presented in Table 5 for 

the DGWMA-EX chart and in Table 6 for the GWMA-EX and EWMA-EX charts, when 

𝑚 = 49 and 𝑛 = 5. 



 15 

A performance study for the DGWMA-EX chart based on the median run length (MRL) was 

performed by taking 𝑋(𝑟) as the 75th, 50th and 25th percentiles. The reference sample size is 

taken as 𝑚 = 100, the test sample size is taken as 𝑛 = 5 and a typical value for the MRL is 

taken as 𝑀𝑅𝐿0
∗ = 350. For given 𝑚, 𝑛 and (𝑞, 𝛼), we obtain L values so that the attained 

𝑀𝑅𝐿0
∗ = 350 when 𝑋(𝑟) is taken as the 75th, 50th and 25th percentiles. These results are 

reported in Tables 7 and 8 for the DGWMA-EX, GWMA-EX and EWMA-EX charts 

respectively and they show similar results as in the ARL study. When 𝑋(𝑟) is selected as the 

25th percentile, it has poorer performance than 𝑋(𝑟) =50th percentile and the problem of bias 

in the run length distribution still remains as a major issue. Hence, there is no significant 

improvement observed in performance when the study is based on the MRL. 

As a conclusion, the median is known to be a better percentile whenever the direction of the 

shift to be detected, is not specified, and is thus recommended to practitioners. 

The DGWMA charts are more sensitive and detect a shift quicker than its main time-

weighted counterpart the GWMA chart in the case of a small or tiny shift, see for example, 

Sheu and Hsieh9, Huang et al.12, Lu18 and the references therein. It is therefore logical to 

compare the OOC performance of the proposed DGWMA-EX chart with the DGWMA-𝑋̅, 

GWMA-𝑋̅, GWMA-EX and EWMA-EX charts under the normal and a number of non-

normal distributions when parameter of interest is unknown (Case U).  Therefore, three non-

normal symmetric (around zero) process distributions are considered which have heavier tails 

or lighter tails than the normal distribution. We considered the logistic (0, √3/𝜋) distribution, 

the uniform (-√3, √3) distribution and the Laplace (0,1/√2) distribution. The parameters of 

these distribution are selected in such a manner that the variance is 1, which makes the results 

comparable amongst different distributions. For skewed distributions, we considered the 

gamma distribution with shape parameters 1, 2 and 3 and scale parameter set equal to 1 in 

each case. 

The OOC performance results are summarized in the following sections. 

(a) DGWMA-EX chart vs. GWMA-EX, EWMA-EX, DGWMA-𝑿̅ and GWMA-𝑿̅ chart 

under symmetric distributions 

From the results in Tables 1, 2, 3 and 4, it is advocated that the DGWMA-EX chart generally 

outperforms the GWMA-EX and EWMA-EX under the standard normal distribution. 

However, the rigid assumption of normality might not hold in all cases and hence it is vital 
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to evaluate the performance of the DGWMA-EX chart under non-normal distributions. For 

comparison purpose, the reference sample size is taken as 𝑚 = 49, the test sample size is 

𝑛 = 5, and the design parameters are selected as 𝑞1 = 𝑞2 = 𝑞 = 0.8, 𝛼1 = 𝛼2 = 𝛼 = 0.7 

and 𝐿 = 1.304 for the DGWMA-EX chart. Table 9 illustrates that for the aforementioned 

combination, the DGWMA-EX chart performs better than the GWMA-EX and EWMA-EX 

charts under non-normal symmetric distributions. For instance, when the process follows a 

logistic (0, √3/𝜋) distribution and shift size 𝛿 = 0.1, the DGWMA-EX chart with 

parameters 𝑞 = 0.8, 𝛼 =, 0.7 and 𝐿 = 1.304 has 𝐴𝑅𝐿1 = 306.82, while the GWMA-EX 

chart with parameters 𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 0.7, 𝛼2 = 1 and 𝐿 = 2.032 has 𝐴𝑅𝐿1 =

314.89 and the EWMA-EX chart with parameters 𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 1, 𝛼2 = 1 and 

𝐿 = 2.249 has 𝐴𝑅𝐿1 = 316.07. When the process follows a uniform (-√3, √3) distribution 

assuming a shift size of 𝛿 = 0.25, the DGWMA-EX chart with parameters 𝑞 = 0.8, 𝛼 =, 0.7 

and 𝐿 = 1.304 has 𝐴𝑅𝐿1 = 235.28, whereas the GWMA-EX chart with parameters 𝑞1 =

0.8, 𝑞2 = 0, 𝛼1 = 0.7, 𝛼2 = 1 and 𝐿 = 2.032 has 𝐴𝑅𝐿1 = 251.50 and the EWMA-EX chart 

with parameters 𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 1, 𝛼2 = 1 and 𝐿 = 2.249 has 𝐴𝑅𝐿1 = 255.67. For 

the Laplace (0,1/√2) distribution and same set of parameters considered for the logistic and 

uniform distributions and shift size 𝛿 = 0.05, the OOC ARL (𝐴𝑅𝐿1) is 319.88, 327.60 and 

333.09 for the DGWMA-EX, GWMA-EX and EWMA-EX charts, respectively.  

Now, similarly to Sheu and Lin7, we conducted a comparative study to compare the 

performance of the DGWMA-EX chart with the DGWMA-𝑋̅ and GWMA-𝑋̅ charts under 

the assumption of an underlying normal distribution specifically for Case U.  

The parameters 𝑞, 𝛼 for all the time-weighted control charts included in the comparative 

analysis are taken to be the same, since the main intention is to see whether the same (𝑞, 𝛼) 

combination provides similar robust performance under different non-normal symmetric 

distributions when X̅ is replaced by the exceedance statistic in the DGWMA chart. The 

mechanism for designing parametric control charts for Case U is to use an IC Phase I sample 

and obtaining the estimates for the unknown process parameters. Thereafter, these estimates 

will be used to obtain the control limits and as well as studying the performance of the run 

length characteristics. Table 9 reveals that, under the normality assumption the DGWMA-𝑋̅ 

chart outperforms DGWMA-EX, GWMA-EX and EWMA-EX charts, which is an expected 

outcome since the DGWMA-𝑋̅ chart is designed under the normality assumption. However, 

when the process distribution departs from normality, the behavior of the DGWMA-𝑋̅ chart 
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is influenced and its attained 𝐴𝑅𝐿0 starts moving further from the standard value 370. For 

the logistic distribution this does not hold, since the IC ARL does not depart that further 

from 370 when the underlying process distribution is not normal. For this specific 

distribution, the attained 𝐴𝑅𝐿0 for DGWMA-𝑋̅ chart is 367.04, whereas for the uniform and 

the Laplace distributions the attained 𝐴𝑅𝐿0 is 396.90 and 391.43, respectively. On the 

contrary, the nonparametric counterpart DGWMA-EX is IC robust under non-normality. 

Hence, when the underlying process distribution is either unknown or cannot be identified, 

the DGWMA-EX chart is a better alternative since it is IC robust under non-normality 

whereas the DGWMA-𝑋̅ chart is non-robust. 

Furthermore, the robust IC and OOC performances for the DGWMA-EX chart under normal 

and symmetric non-normal distributions are presented in Figure 5.  

(b) DGWMA-EX chart vs. GWMA-EX, EWMA-EX, DGWMA-𝑿̅ and GWMA-𝑿̅ 

under skewed distributions 

In this section, we study the performance of the DGWMA-EX, GWMA-EX, EWMA-EX, 

DGWMA-𝑋̅ and GWMA-𝑋̅ charts for underlying skewed distributions. For this purpose, the 

𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃) distribution is considered as the underlying model. The probability density 

function (p.d.f.) of 𝑋 is given by: 

𝑓(𝑥; 𝑘, 𝜃) =
𝑒−𝑥/𝜃𝑥𝑘−1

Γ(𝑘)𝜃𝑘
, 𝑥 > 0 , 𝜃 > 0 and  𝑘 > 0 

(19) 

The following is worth noting regarding the gamma distribution: 

i. The parameters 𝑘 and 𝜃 are known as the shape and the scale parameters; 

ii. Under the gamma distribution, the mean and the variance are functions of parameters 

𝑘 and 𝜃; 

iii. For a given value of the shape parameter 𝑘, the scale parameter 𝜃 would effect 

change in both mean and variance. Hence, for the gamma distribution it is not 

possible to assume mean 0 and variance 1 as in the study pertaining to symmetric 

distributions. 

The IC and OOC scale parameters are denoted as 𝜃0 and 𝜃1 respectively. Note that the shift 

for the gamma distribution is defined as 𝛿 = 𝜃1/𝜃0 which is different than for symmetric 

distributions considered in the previous section. The reason is as follows: If  X ~ gamma 

(𝑘, 𝜃), then Y = X/(𝜃) ~ gamma(𝑘, 1). In other words, the IC scale parameter can be taken 

as 1 and hence the shift which is defined as the ratio between 𝜃1 and 𝜃0 (𝛿 = 𝜃1/𝜃0) is equal 

to the OOC scale parameter (𝛿 = 𝜃1). Hence, X/𝜃1 and Y/(𝛿) ~ gamma(𝑘, 1/(𝛿)), have the 
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same distribution as long as the ratio 𝛿 stays the same. However, for the absolute difference 

between the IC and OOC scale parameters which is defined as |𝜃1 − 𝜃0|, the effect of the 

shift depends on the magnitude of 𝜃0. Therefore, considering 𝜃0 = 1 would make the chart 

applicable for any IC 𝜃0, whereas the OOC performance differs based on different values for 

𝜃0 and 𝜃1. For the IC process the shift value is considered as 1 (𝛿 = 1) and for the OOC the 

values are 𝛿 = 0.975, 0.95, 0.9, 0.8, 0.7. Note that, as mentioned by Chakraborty et al.23 for 

the GWMA-𝑋̅ chart, the control limits used for the normal distribution in the case of the 

DGWMA-𝑋̅ chart (Case U) are unsuitable for the gamma distribution since the mean and the 

variance are no longer 0 and 1, respectively. 

In order to calculate the control limits for the DGWMA-𝑋̅ chart, the estimation of both the 

process mean (𝜇) and the standard deviation (𝜎) from the IC Phase I sample is required. 

Thereafter, these estimates denoted by 𝜇̂ and 𝜎̂ can be used to obtain the control limits. 

Results for the gamma distribution are presented in Table 10 which reveals that the 

DGWMA-𝑋̅ is not IC robust and the issue related to the bias of the run length distribution 

exist. For example, for the DGWMA-𝑋̅ chart with 𝑞 = 0.8, 𝛼 = 0.7, L = 2.992, 𝑚 = 49 and 

𝑛 = 5 has 𝐴𝑅𝐿0 = 436.02 for gamma(1,1) distribution, 𝐴𝑅𝐿0 = 441.70 for gamma(2,1) 

distribution and 𝐴𝑅𝐿0 = 432.24 for gamma(3,1) distribution. Furthermore, when the shape 

parameters 𝑘 = 1, 2, 3, the DGWMA-EX chart outperforms the GWMA-EX and EWMA-

EX chart for all shift 𝛿 ≥ 0.7. The only exception is for case of 𝑘 = 3 and 𝛿 = 0.7 where 

GWMA-EX chart outperforms the DGWMA-EX and EWMA-EX charts. The IC and OOC 

ARL performance for the DGWMA-EX chart under the gamma distribution with different 

shape parameters is presented in Figure 6. Based on the illustration, the DGWMA-EX chart 

with larger shape parameter performs better than others. 

4. Illustrative example 

In this section, we present a simulated example to demonstrate the applicability of the 

proposed DGWMA-EX chart. We draw a reference sample of size 𝑚 = 49 from a standard 

normal (N(0,1)) distribution as a Phase I dataset in order to estimate the process median. 

Thereafter, we draw 200 Phase II random samples of size 𝑛 = 5, from a N(0.25,1) 

distribution which can be viewed as an OOC observations following a location shift of 𝛿 = 

0.25. Two sets of design parameters are used: (𝑞 = 0.8, 𝛼 = 0.7, L = 1.304) and (𝑞1 = 0.8,  

𝑞2 = 0, 𝛼1 = 0.7, 𝛼2 = 1, L = 2.032) as in Tables 1 and 3. The first set results in a 

DGWMA-EX chart whereas the second one results in a GWMA-EX chart. Note that, any 
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other combination can be chosen, however these values are chosen only for the illustration 

purposes. The in-control 𝐴𝑅𝐿 (𝐴𝑅𝐿0) for both charts are close to 370 which put them at equal 

footing in order to perform a valid comparison. From Table 1, the DGWMA-EX chart has an 

OOC 𝐴𝑅𝐿 of 163.35 while from Table 3 the GWMA-EX chart has an OOC 𝐴𝑅𝐿 of 182.06 

when 𝛿 = 0.25. Control limits for the DGWMA-EX chart are obtained as UCL = 3.008 and 

LCL = 1.991, whereas for the GWMA-EX chart these limits are obtained as UCL = 3.437 

and LCL = 1.562. The two control charts are displayed in Figure 7. As a conclusion, the 

DGWMA-EX chart detects the shift 𝛿 = 0.25 (small shift) much quicker than the GWMA-

EX chart which provides similar results as those presented in Tables 1 and 3. 

5. Synopsis and main conclusions 

Nonparametric control charts offer an efficient technique to monitor a process, even if the 

form of the underlying distribution is unknown or not exactly specified. The performance of 

the DGWMA-𝑋̅ and GWMA-𝑋̅ charts become worse under skewed distributions when the 

process distribution is unknown. A new distribution-free (nonparametric) control chart based 

on an exceedance statistic, denoted as the DGWMA-EX chart, is introduced. This chart 

provides a method for monitoring when no information is available with regards to the 

process distribution as well as the process median. A performance comparison of the 

DGWMA-EX chart is done with its competitors: the GWMA-EX and EWMA-EX charts. 

The results reveal that the proposed chart is robust to non-normality when the process is IC 

and in many instances, performs better than the existing GWMA and EWMA charts based on 

exceedance statistics when the shift is small. This is due to the fact that DGWMA chart take 

advantage of the sequential (time ordered) accumulation of all the information from the start 

until the most recent observation, and is known to be more efficient in detecting smaller 

shifts as showed in this paper as well. 
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Table 1: DGWMA-EX IC and OOC ARL for different combinations of (𝒒, 𝜶, 𝑳) for 

different 𝜹 when m = 49, n = 5,10 with 𝑨𝑹𝑳𝟎
∗ = 370 under a standard normal 

distribution. 
 

 

             𝜹       

𝒎 = 49 𝒒𝟏 = 𝒒𝟐 = 𝒒 𝜶𝟏 = 𝜶𝟐 = 𝜶 L 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

𝑛 = 5 

0.80 

0.70 1.304 368.93 358.68 317.48 163.35 28.39 11.55 8.41 6.29 

0.80 1.480 367.80 368.06 325.90 182.81 28.87 10.92 8.02 6.15 

0.90 1.621 371.58 361.22 323.36 179.03 28.68 10.43 7.62 5.94 

1.00 1.755 369.77 360.95 328.84 183.09 30.99 10.14 7.26 5.63 

1.30 2.056 369.95 360.69 331.75 184.35 35.17 10.38 6.69 5.27 

0.90 

0.70 0.741 372.72 354.72 320.52 171.21 35.87 16.89 12.92 10.19 

0.80 0.924 375.32 365.79 330.57 173.23 35.06 15.72 12.14 9.77 

0.90 1.092 371.87 352.77 320.63 169.71 31.63 14.27 11.30 9.19 

1.00 1.255 370.17 355.64 318.89 172.63 31.00 13.36 10.51 8.66 

1.30 1.668 371.38 355.21 319.10 178.82 32.08 11.65 8.86 7.40 

0.95 

0.70 0.395 372.29 361.49 337.56 187.68 44.70 25.36 20.18 16.22 

0.80 0.543 366.70 355.16 325.94 176.63 41.76 23.21 18.82 15.40 

0.90 0.706 372.00 362.06 325.40 177.90 37.01 21.26 17.37 14.45 

1.00 0.866 372.19 358.30 332.25 170.47 36.56 19.27 15.91 13.35 

1.30 1.315 370.08 364.00 322.13 173.84 31.62 15.50 12.48 10.69 

𝑛 = 10 

0.80 

0.70 1.031 372.19 344.35 327.62 149.35 22.06 8.50 6.22 4.83 

0.80 1.177 372.48 356.12 310.97 156.17 23.76 8.30 6.01 4.80 

0.90 1.311 369.39 353.90 329.35 161.38 23.03 7.74 5.78 4.65 

1.00 1.436 369.62 355.72 322.12 171.27 22.58 7.36 5.58 4.49 

1.30 1.750 370.73 357.21 330.01 181.92 23.53 6.95 5.06 4.17 

0.90 

0.70 0.579 367.11 338.97 327.41 161.36 28.11 12.83 10.13 8.06 

0.80 0.721 369.95 359.12 312.87 155.61 26.67 11.98 9.66 7.82 

0.90 0.863 372.19 365.07 326.26 167.24 26.97 11.22 9.06 7.48 

1.00 1.002 368.31 368.67 331.25 164.02 24.82 10.47 8.58 7.19 

1.30 1.370 369.32 359.48 323.10 172.19 25.24 9.04 7.24 6.21 

0.95 

0.70 0.315 370.91 349.41 326.96 170.71 36.62 20.63 16.54 13.40 

0.80 0.437 371.53 354.16 325.77 175.02 33.30 19.24 15.74 13.02 

0.90 0.559 372.13 357.84 328.01 173.88 31.64 17.73 14.52 12.18 

1.00 0.682 370.64 353.22 324.58 168.89 29.93 15.72 13.28 11.32 

1.30 1.053 374.46 364.55 327.33 169.36 27.20 12.36 10.56 9.21 
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Table 2: DGWMA-EX IC and OOC ARL for different combinations of (𝒒, 𝜶, 𝑳) for 

different 𝜹 when m = 99, n = 5,10 with 𝑨𝑹𝑳𝟎
∗ = 370 under a standard normal 

distribution. 
 

 

             𝛿       

𝒎 = 99 𝒒𝟏 = 𝒒𝟐 = 𝒒 𝜶𝟏 = 𝜶𝟐 = 𝜶 L 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

𝒏 = 5 

0.80 

0.7  1.611 369.92 344.78 286.14 103.64 17.99 10.36 7.86 6.09 

0.8 1.780 370.13 346.71 291.70 105.24 17.33 9.88 7.57 5.94 

0.9 1.925 371.34 364.05 304.72 111.66 17.55 9.47 7.21 5.62 

1.0 2.040 371.39 356.12 303.83 114.15 17.20 9.08 6.94 5.53 

1.3 2.300 370.69 353.59 309.00 127.80 19.76 8.63 6.31 5.18 

0.90 

0.7 0.939 373.73 352.11 285.50 104.44 23.38 15.05 11.94 9.53 

0.8 1.152 370.01 346.53 290.55 101.78 21.52 14.01 11.32 9.22 

0.9 1.360 372.73 351.93 305.23 101.90 20.58 13.14 10.73 8.83 

1.0 1.529 369.60 348.89 291.79 102.01 19.15 12.20 10.01 8.40 

1.3 1.946 371.96 351.24 304.25 112.07 18.91 10.45 8.51 7.26 

0.95 

0.7 0.489 371.20 357.08 298.75 112.26 32.41 22.21 18.12 14.71 

0.8 0.683 372.97 355.06 294.84 108.00 30.08 20.98 17.37 14.40 

0.9 0.884 371.31 347.67 295.12 108.40 27.35 19.39 16.25 13.65 

1.0 1.075 371.80 346.03 291.16 106.49 24.84 17.76 14.97 12.75 

1.3 1.582 370.13 347.04 295.09 106.89 21.02 13.97 11.98 10.41 

𝒏 = 10 

0.80 

0.7 1.313 370.24 345.21 294.05 82.13 12.55 7.45 5.83 4.52 

0.8 1.472 371.02 344.40 285.89 83.40 11.77 7.13 5.70 4.52 

0.9 1.622 370.24 348.83 289.50 86.90 11.20 6.83 5.51 4.44 

1.0 1.757 371.47 358.09 303.03 91.98 11.14 6.57 5.33 4.34 

1.3 2.069 371.32 359.66 315.28 101.30 11.85 6.01 4.87 4.11 

0.90 

0.7 0.742 370.71 350.76 294.16 88.90 17.62 11.59 9.37 7.55 

0.8 0.921 369.46 356.95 287.49 87.61 16.11 10.97 9.02 7.40 

0.9 1.094 372.48 350.18 293.27 87.23 15.08 10.29 8.57 7.18 

1.0 1.256 370.89 351.32 287.41 89.22 14.16 9.67 8.14 6.90 

1.3 1.677 370.64 357.64 298.35 91.44 12.65 8.20 6.99 6.10 

0.95 

0.7 0.392 370.28 347.27 287.48 96.89 26.22 18.14 14.87 12.16 

0.8 0.545 372.88 357.67 291.85 92.32 23.88 17.19 14.41 12.00 

0.9 0.708 372.45 357.91 290.34 93.83 21.70 15.97 13.58 11.47 

1.0 0.862 369.38 346.96 297.90 87.25 19.67 14.62 12.55 10.74 

1.3 1.310 372.44 349.89 292.37 87.75 15.72 11.61 10.13 8.94 
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Table 3: GWMA-EX and EWMA-EX IC and OOC ARL for different combinations of 

(𝒒, 𝜶, 𝑳) for different 𝜹 when m = 49, n = 5,10 with 𝑨𝑹𝑳𝟎
∗ = 370 under a standard 

normal distribution. 
 

 

             𝛿       

𝒎 = 49 𝒒𝟏 𝒒𝟐 𝜶𝟏 𝜶𝟐 L 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

𝐧 = 5 

0.80 0.00 

0.70 1.00  2.032 369.48 360.13 323.02 182.06 32.07 10.41 6.50 4.14 

0.80 1.00 2.112 369.16 360.33 329.31 185.74 31.77 10.12 6.26 4.06 

0.90 1.00 2.183 370.09 358.99 330.36 184.53 32.17 9.88 6.06 4.03 

1.00 1.00 2.249 370.13 366.63 332.54 187.88 32.80 9.76 5.95 3.92 

1.30 1.00 2.381 371.25 354.82 323.29 194.38 39.23 10.40 5.81 3.84 

0.90 0.00 

0.70 1.00 1.462 372.80 351.63 322.26 170.07 30.76 11.23 7.66 5.25 

0.80 1.00 1.596 371.98 357.93 336.84 173.33 29.71 10.89 7.37 5.19 

0.90 1.00 1.712 370.10 363.12 333.66 179.81 30.48 10.42 7.08 5.07 

1.00 1.00 1.820 369.01 357.90 337.08 181.37 29.67 10.06 6.86 5.01 

1.30 1.00 2.067 367.08 357.44 328.03 184.24 33.33 9.50 6.22 4.52 

0.95 0.00 

0.70 1.00 0.950 372.58 351.17 332.17 168.02 31.68 13.03 9.13 6.43 

0.80 1.00 1.089 370.29 347.62 310.26 169.06 30.00 12.65 8.88 6.38 

0.90 1.00 1.228 368.53 349.78 321.38 165.64 30.60 12.08 8.60 6.30 

1.00 1.00 1.365 372.95 360.39 330.96 177.20 31.84 11.52 8.28 6.21 

1.30 1.00 1.715 370.20 360.17 322.88 178.58 29.96 10.25 7.29 5.63 

𝐧 = 10 

0.80 0.00 

0.70 1.00 1.715 370.15 347.30 320.14 164.11 21.12 6.62 4.08 2.71 

0.80 1.00 1.798 367.01 368.84 330.41 171.71 21.64 6.13 4.07 2.86 

0.90 1.00 1.871 370.80 358.76 331.83 169.95 21.93 6.05 3.97 2.83 

1.00 1.00 1.943 369 353.45 328.11 175.56 23.78 6.07 3.89 2.81 

1.30 1.00 2.119 372.48 373.53 335.21 185.60 26.17 5.84 3.68 2.77 

0.90 0.00 

0.70 1.00 1.164 372.88 353.62 319.78 161.54 22.83 7.49 5.05 3.51 

0.80 1.00 1.274 374.14 357.50 321.47 167.35 21.34 7.30 4.98 3.56 

0.90 1.00 1.378 374.68 357.53 319.04 169.62 21.34 6.85 4.80 3.49 

1.00 1.00 1.478 369.95 359.57 324.07 160.68 19.23 6.87 4.66 3.42 

1.30 1.00 1.750 372.46 371.52 327.48 171.46 21.14 6.04 4.39 3.36 

0.95 0.00 

0.70 1.00 0.737 370.03 351.18 323.35 153.10 24.60 8.99 6.23 4.42 

0.80 1.00 0.852 370.01 343.67 317.31 161.74 22.63 8.76 6.24 4.53 

0.90 1.00 0.966 369.01 361.94 328.57 170.11 22.86 8.51 6.17 4.56 

1.00 1.00 1.077 369.65 361.64 327.80 159.42 22.33 8.09 5.98 4.52 

1.30 1.00 1.396 372.89 347.82 328.52 175.51 21.78 7.18 5.46 4.32 
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Table 4: GWMA-EX and EWMA-EX IC and OOC ARL for different combinations of 

(𝒒, 𝜶, 𝑳) for different 𝜹 when m = 99, n = 5,10 with 𝑨𝑹𝑳𝟎
∗ = 370 under a standard 

normal distribution. 
 

 

             𝛿       

𝒎 = 99 𝒒𝟏 𝒒𝟐 𝜶𝟏 𝜶𝟐 L 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

𝒏 = 5 

0.80 0.00 

0.70 1.00 2.325  370.23 341.83 298.54 111.65 18.60 8.91 6.06 4.03 

0.80 1.00 2.397 369.77 355.92 301.38 117.35 18.68 8.58 5.86 3.98 

0.90 1.00 2.456 370.68 355.38 312.78 123.82 19.24 8.42 5.70 3.92 

1.00 1.00 2.503 370.46 360.68 309.11 125.56 20.58 8.32 5.58 3.88 

1.30 1.00 2.589 370.35 364.43 314.70 139.35 23.28 8.44 5.18 3.54 

0.90 0.00 

0.70 1.00 1.805 370.49 339.03 292.55 103.51 18.55 9.88 7.01 4.91 

0.80 1.00 1.933 371.15 356.68 297.52 106.89 17.61 9.55 6.75 4.82 

0.90 1.00 2.038 369.68 349.85 287.91 106.62 17.14 9.13 6.56 4.80 

1.00 1.00 2.132 370.52 352.12 299.05 109.28 17.14 8.77 6.26 4.62 

1.30 1.00 2.335 370.80 356.22 308.91 121.73 18.29 8.25 5.85 4.45 

0.95 0.00 

0.70 1.00 1.221 369.83 341.75 292.53 102.49 20.59 11.55 8.33 5.90 

0.80 1.00 1.380 369.03 340.91 289.68 99.19 19.40 11.15 8.13 5.88 

0.90 1.00 1.536 372.14 349.22 293.58 101.51 18.86 10.73 7.93 5.90 

1.00 1.00 1.667 369.62 350.08 295.54 101.53 18.13 10.30 7.69 5.71 

1.30 1.00 2.016 371.55 350.90 309.10 110.90 17.23 9.14 6.95 5.48 

𝒏 = 10 

0.80 0.00 

0.70 1.00 2.077 372.30 348.45 298.02 90.64 11.12 5.54 3.88 2.66 

0.80 1.00 2.144 369.06 346.20 296.15 91.68 11.07 5.36 3.77 2.63 

0.90 1.00 2.213 369.35 356.32 303.21 99.64 10.77 5.19 3.67 2.62 

1.00 1.00 2.272 369.06 355.02 308.95 103.15 11.09 5.11 3.67 2.79 

1.30 1.00 2.409 369.12 353.33 313.84 108.96 12.14 4.92 3.49 2.76 

0.90 0.00 

0.70 1.00 1.483 370.29 342.42 290.25 87.12 12.15 6.51 4.66 3.34 

0.80 1.00 1.602 371.60 338.28 280.44 84.34 11.58 6.28 4.58 3.34 

0.90 1.00 1.715 368.13 341.65 276.48 78.60 11.33 6.11 4.52 3.35 

1.00 1.00 1.817 369.69 339.07 284.37 86.64 10.96 5.92 4.45 3.35 

1.30 1.00 2.071 372.13 347.89 294.68 96.31 10.85 5.39 4.11 3.22 

0.95 0.00 

0.70 1.00 0.959 371.00 351.90 298.77 92.72 13.99 7.80 5.63 4.07 

0.80 1.00 1.092 369.65 341.67 281.65 86.87 13.68 7.67 5.67 4.12 

0.90 1.00 1.228 375.11 343.87 287.38 84.76 12.87 7.44 5.65 4.30 

1.00 1.00 1.362 373.73 347.44 285.55 85.54 12.38 7.24 5.57 4.30 

1.30 1.00 1.717 370.07 350.04 285.70 86.75 11.03 6.53 5.18 4.18 
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Table 5: DGWMA-EX 𝑨𝑹𝑳 values for 𝑿(𝒓) = 75th, 50th and 25th percentiles of the Phase 

I sample for different shift 𝜹 when 𝒎 = 𝟒𝟗, 𝒏 = 𝟓. 
 

       𝜹     

𝑿(𝒓) 𝒒 𝜶 𝑳 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

75th 0.80 0.90 1.622 371.55 357.78 310.67 168.44 31.98 9.01 6.13 4.42 

50th  0.80 0.90 1.621 371.58 361.22 323.36 179.03 28.68 10.43 7.62 5.94 

25th  0.80 0.90 1.612 369.14 374.21 360.03 258.04 57.09 17.52 11.27 11.23 

75th 0.80 1.00 1.739 368.84 340.90 297.79 161.60 30.96 8.78 5.98 4.34 

50th  0.80 1.00 1.755 369.77 360.95 328.84 183.09 30.99 10.14 7.26 5.63 

25th  0.80 1.00 1.735 369.43 375.55 374.20 264.79 66.44 17.41 11.09 8.68 

75th 0.80 1.30 2.020 369.94 337.70 294.49 146.59 27.00 8.32 5.46 4.10 

50th 0.80 1.30 2.056 369.95 360.69 331.75 184.35 35.17 10.38 6.69 5.27 

25th 0.80 1.30 2.017 369.97 380.13 389.74 306.70 89.51 22.01 11.13 7.72 

75th 0.90 0.90 1.093 372.07 344.10 314.04 167.77 33.80 12.79 9.41 7.06 

50th  0.90 0.90 1.092 371.87 352.77 320.63 169.71 31.63 14.27 11.30 9.19 

25th 0.90 0.90 1.092 370.33 381.35 359.55 223.57 52.60 20.53 15.58 13.04 

75th 0.90 1.00 1.255 369.45 343.34 309.66 165.65 33.36 11.91 8.89 6.77 

50th 0.90 1.00 1.255 370.17 355.64 318.89 172.63 31.00 13.36 10.51 8.66 

25th 0.90 1.00 1.254 370.20 377.19 371.47 238.28 52.49 19.24 14.40 12.38 

75th 0.90 1.30 1.660 368.16 344.81 306.91 161.61 31.59 10.45 7.62 5.97 

50th 0.90 1.30 1.668 371.38 355.21 319.10 178.82 32.08 11.65 8.86 7.40 

25th 0.90 1.30 1.660 371.90 377.28 364.86 264.41 64.37 17.92 12.13 10.27 

75th 0.95 0.90 0.706 371.99 355.82 316.40 171.23 39.72 18.81 14.70 11.26 

50th 0.95 0.90 0.706 372.00 362.06 325.40 177.90 37.01 21.26 17.37 14.45 

25th 0.95 0.90 0.709 369.58 379.19 354.52 233.05 55.80 27.91 23.13 20.18 

75th 0.95 1.00 0.866 369.25 342.83 318.63 169.95 38.00 17.51 13.57 10.62 

50th 0.95 1.00 0.866 372.19 358.30 332.25 170.47 36.56 19.27 15.91 13.35 

25th 0.95 1.00 0.865 368.98 372.37 352.67 214.93 58.19 25.32 20.70 18.12 

75th 0.95 1.30 1.314 371.49 349.13 312.93 165.20 32.93 14.00 10.87 8.81 

50th 0.95 1.30 1.315 370.08 364.00 322.13 173.84 31.62 15.50 12.48 10.69 

25th 0.95 1.30 1.315 372.05 380.05 379.31 249.08 53.35 20.27 15.97 13.93 
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Table 6: GWMA-EX and EWMA-EX 𝑨𝑹𝑳 values for 𝑿(𝒓) = 75th, 50th and 25th 

percentiles of the Phase I sample for different shift 𝜹 when 𝒎 = 𝟒𝟗,𝒏 = 𝟓. 
 

         𝜹     

𝑿(𝒓) 𝒒𝟏 𝒒𝟐       𝜶𝟏 𝜶𝟐 𝑳 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

75th  0.80 0.00 0.90 1.00 2.119 369.89 324.32 268.80 120.02 22.42 7.07 4.01 2.54 

50th 0.80 0.00 0.90 1.00 2.183 370.09 358.99 330.36 184.53 32.17 9.88 6.06 4.03 

25th 0.80 0.00 0.90 1.00 2.122 369.65 408.05 411.12 346.52 108.23 25.07 12.84 8.92 

75th 0.80 0.00 1.00 1.00 2.174 371.01 325.45 265.33 122.28 21.78 7.12 4.07 2.51 

50th 0.80 0.00 1.00 1.00 2.249 370.13 366.63 332.54 187.88 32.80 9.76 5.95 3.92 

25th 0.80 0.00 1.00 1.00 2.174 366.25 403.30 422.48 354.66 116.03 25.29 12.59 8.10 

75th 0.80 0.00 1.30 1.00 2.290 369.09 322.90 266.32 121.85 20.65 6.94 3.87 2.44 

50th 0.80 0.00 1.30 1.00 2.381 371.25 354.82 323.29 194.38 39.23 10.40 5.81 3.84 

25th 0.80 0.00 1.30 1.00 2.291 369.08 412.64 440.00 410.45 152.92 35.40 14.69 7.58 

75th  0.90 0.00 0.90 1.00 1.694 370.25 338.72 302.85 142.90 26.04 8.39 5.26 3.34 

50th 0.90 0.00 0.90 1.00 1.712 370.10 363.12 333.66 179.81 30.48 10.42 7.08 5.07 

25th 0.90 0.00 0.90 1.00 1.695 370.32 384.67 384.25 271.76 63.41 18.72 12.18 9.09 

75th 0.90 0.00 1.00 1.00 1.793 369.38 332.25 295.36 146.08 27.65 8.08 4.99 3.34 

50th 0.90 0.00 1.00 1.00 1.820 369.01 357.90 337.08 181.37 29.67 10.06 6.86 5.01 

25th 0.90 0.00 1.00 1.00 1.793 370.45 385.25 379.65 273.32 66.45 18.08 11.66 8.82 

75th 0.90 0.00 1.30 1.00 2.038 371.96 333.28 295.45 144.22 28.12 8.04 4.56 3.17 

50th 0.90 0.00 1.30 1.00 2.067 367.08 357.44 328.03 184.24 33.33 9.50 6.22 4.52 

25th 0.90 0.00 1.30 1.00 2.032 374.06 383.29 392.55 302.79 82.67 20.49 10.96 7.77 

75th 0.95 0.00 0.90 1.00 1.225 371.01 347.58 303.70 155.50 33.12 10.00 6.35 4.21 

50th 0.95 0.00 0.90 1.00 1.228 368.53 349.78 321.38 165.64 30.60 12.08 8.60 6.30 

25th 0.95 0.00 0.90 1.00 1.229 368.10 376.60 358.23 235.75 56.76 19.90 14.06 11.05 

75th 0.95 0.00 1.00 1.00 1.364 371.00 339.83 310.45 155.85 31.25 9.85 6.42 4.25 

50th 0.95 0.00 1.00 1.00 1.365 372.95 360.39 330.96 177.20 31.84 11.52 8.28 6.21 

25th 0.95 0.00 1.00 1.00 1.359 368.73 373.37 362.65 236.59 54.07 18.48 13.01 10.12 

75th 0.95 0.00 1.30 1.00 1.702 368.90 344.24 301.68 155.67 28.95 8.67 5.58 4.10 

50th 0.95 0.00 1.30 1.00 1.715 370.20 360.17 322.88 178.58 29.96 10.25 7.29 5.63 

25th 0.95 0.00 1.30 1.00 1.704 371.06 377.53 369.95 236.59 63.10 17.31 11.23 8.77 
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Table 7: DGWMA-EX 𝑴𝑹𝑳 values for 𝑿(𝒓) = 75th, 50th and 25th percentiles of the Phase 

I sample for different shift 𝜹 when 𝒎 = 𝟏𝟎𝟎,𝒏 = 𝟓. 
 

        𝜹     

𝑿(𝒓) 𝒒  𝜶 𝑳 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

75th  0.80  0.90 2.142 349.00 278.00 169.00 39.00 13.00 8.00 6.00 5.00 

50th 0.80  0.90 2.140 351.00 320.00 215.00 49.00 15.00 10.00 8.00 6.00 

25th 0.80  0.90 2.132 350.00 377.00 321.00 94.00 23.00 14.00 11.00 10.00 

75th 0.80  1.00 2.228 349.00 254.00 164.00 39.00 12.00 7.00 6.00 4.00 

50th 0.80  1.00 2.253 350.50 328.00 240.00 53.00 14.00 9.00 7.00 6.00 

25th 0.80  1.00 2.234 350.00 390.50 341.00 109.00 23.00 13.00 11.00 8.00 

75th 0.80  1.30 2.443 348.50 251.00 158.00 39.00 11.00 6.00 5.00 4.00 

50th 0.80  1.30 2.472 349.00 322.00 240.00 63.00 14.00 8.00 6.00 5.00 

25th 0.80  1.30 2.455 351.00 423.00 416.00 71.00 34.00 14.00 10.00 7.00 

75th 0.90  0.90 1.620 348.00 278.00 173.00 44.00 18.00 12.00 10.00 8.00 

50th 0.90  0.90 1.618 349.00 301.00 202.00 48.00 20.00 14.00 12.00 10.00 

25th 0.90  0.90 1.615 352.00 356.00 274.00 72.00 27.00 19.00 16.00 15.00 

75th 0.90  1.00 1.775 350.50 264.00 167.00 42.00 16.00 11.00 9.00 7.00 

50th 0.90  1.00 1.782 349.00 310.00 208.00 46.00 18.00 13.00 11.00 9.00 

25th 0.90  1.00 1.772 351.00 339.50 285.00 72.00 25.00 17.00 15.00 13.00 

75th 0.90  1.30 2.152 349.00 264.00 174.00 41.00 13.00 9.00 7.00 6.00 

50th 0.90  1.30 2.165 350.00 314.00 235.00 53.00 15.00 10.00 9.00 8.00 

25th 0.90  1.30 2.155 349.00 382.00 335.00 104.00 23.00 14.00 12.00 10.00 

75th 0.95  0.90 1.173 350.00 270.00 175.00 57.00 28.00 20.00 16.00 13.00 

50th 0.95  0.90 1.171 351.00 306.00 195.00 60.00 31.00 23.00 19.00 16.00 

25th 0.95  0.90 1.172 352.00 347.00 259.50 79.00 39.00 30.00 26.00 23.00 

75th 0.95  1.00 1.346 347.00 275.00 166.00 49.00 24.00 18.00 14.00 11.00 

50th 0.95  1.00 1.361 352.00 314.50 196.50 53.00 27.00 20.00 17.00 15.00 

25th 0.95  1.00 1.360 349.5 365.00 274.00 71.00 33.00 26.00 23.00 20.00 

75th 0.95  1.30 1.821 352.00 278.00 175.00 40.00 17.00 13.00 11.00 9.00 

50th 0.95  1.30 1.836 349.00 310.00 229.00 48.00 19.00 15.00 13.00 11.00 

25th 0.95  1.30 1.813 349.00 347.00 283.00 76.00 25.00 18.00 16.00 15.00 
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Table 8: GWMA-EX and EWMA-EX 𝑴𝑹𝑳 values for 𝑿(𝒓) = 75th, 50th and 25th 

percentiles of the Phase I sample for different shift 𝜹 when 𝒎 = 𝟏𝟎𝟎,𝒏 = 𝟓. 
 

         𝜹     

𝑿(𝒓) 𝒒𝟏 𝒒𝟐 𝜶𝟏 𝜶𝟐 𝑳 0.00 0.05 0.10 0.25 0.50 0.75 1.00 1.50 

75th 0.80 0.00 0.90 1.00 2.596 350.00 217.00 124.00 34.00 10.00 6.00 4.00 3.00 

50th 0.80 0.00 0.90 1.00 2.620 350.50 320.00 246.00 58.00 15.00 8.00 6.00 4.00 

25th 0.80 0.00 0.90 1.00 2.603 352.00 504.00 581.00 321.00 44.00 19.00 13.00 9.00 

75th 0.80 0.00 1.00 1.00 2.625 350.00 219.50 128.00 35.00 10.00 5.00 4.00 3.00 

50th 0.80 0.00 1.00 1.00 2.660 349.50 327.00 246.00 62.00 14.00 8.00 5.00 4.00 

25th 0.80 0.00 1.00 1.00 2.627 350.00 468.50 576.00 349.00 48.00 18.00 12.00 8.00 

75th 0.80 0.00 1.30 1.00 2.677 351.00 220.00 134.00 37.00 10.00 5.00 3.00 3.00 

50th 0.80 0.00 1.30 1.00 2.736 352.00 329.00 271.00 79.00 16.00 7.00 5.00 4.00 

25th 0.80 0.00 1.30 1.00 2.684 348.00 544.00 691.00 645.00 101.00 28.00 14.00 8.00 

75th 0.90 0.00 0.90 1.00 2.250 350.00 253.00 156.00 37.00 13.00 7.00 5.00 3.00 

50th 0.90 0.00 0.90 1.00 2.262 350.00 307.00 215.00 50.00 16.00 9.00 7.00 5.00 

25th 0.90 0.00 0.90 1.00 2.251 351.00 411.50 359.00 104.00 27.00 16.00 12.00 10.00 

75th 0.90 0.00 1.00 1.00 2.324 349.00 256.00 149.00 37.00 12.00 7.00 5.00 3.00 

50th 0.90 0.00 1.00 1.00 2.340 351.00 319.00 228.00 50.00 15.00 9.00 7.00 5.00 

25th 0.90 0.00 1.00 1.00 2.323 350.00 412.00 358.00 112.00 26.00 15.00 11.00 9.00 

75th 0.90 0.00 1.30 1.00 2.491 350.00 246.00 157.00 38.00 11.00 6.00 4.00 3.00 

50th 0.90 0.00 1.30 1.00 2.509 350.00 319.50 241.00 60.00 14.00 8.00 6.00 4.00 

25th 0.90 0.00 1.30 1.00 2.488 349.00 423.00 412.00 176.00 31.00 14.00 10.00 7.00 

75th 0.95 0.00 0.90 1.00 1.798 350.00 273.00 165.00 45.00 16.00 10.00 7.00 5.00 

50th 0.95 0.00 0.90 1.00 1.793 351.00 310.00 195.00 51.00 19.00 12.00 9.00 7.00 

25th 0.95 0.00 0.90 1.00 1.793 349.00 376.00 298.00 83.00 29.00 19.00 15.00 13.00 

75th 0.95 0.00 1.00 1.00 1.921 350.00 251.00 162.00 41.00 15.00 9.00 6.00 4.00 

50th 0.95 0.00 1.00 1.00 1.921 350.00 311.00 199.00 48.00 17.00 11.00 9.00 7.00 

25th 0.95 0.00 1.00 1.00 1.921 352.00 364.00 294.00 78.00 27.00 17.00 14.00 12.00 

75th 0.95 0.00 1.30 1.00 2.211 349.00 260.00 164.00 39.00 12.00 7.00 6.00 4.00 

50th 0.95 0.00 1.30 1.00 2.228 350.50 326.00 234.00 51.00 14.00 9.00 7.00 6.00 

25th 0.95 0.00 1.30 1.00 2.228 351.00 402.00 361.00 107.00 24.00 14.00 11.00 10.00 
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Table 9: 𝑨𝑹𝑳 values for the DGWMA-EX, GWMA-EX, EWMA-EX, DGWMA- 𝑿̅  and 

GWMA- 𝑿̅ charts for various shifts 𝜹 when 𝑨𝑹𝑳𝟎
∗ = 370 and 𝒎 = 49, 𝒏 = 5 under 

symmetric distributions. 
 

𝛿 Chart 𝑞1 𝑞2 𝛼1 𝛼2 𝐿 normal(0,1) logistic(0,
√3

𝜋
) uniform(−√3,√3) Laplace(0,

1

√2
) 

 DGWMA - EX 0.8 0.8 0.7 0.7 1.304 368.93 369.68 368.59 368.04 

 GWMA – EX 0.8 0.0 0.7 1.0 2.032 369.48 382.89 386.31 383.38 

0.00 EWMA - EX 0.8 0.0 1.0 1.0 2.249 370.13 381.31 381.31 375.63 

 DGWMA- 𝑋̅ 0.8 0.8 0.7 0.7 2.992 370.33 367.04 396.90 391.43 

 GWMA- 𝑋̅ 0.8 0.0 0.7 1.0 3.263 369.33 329.40 492.52 262.20 

 DGWMA – EX 0.8 0.8 0.7 0.7 1.304 358.68 345.10 352.68 319.88 

 GWMA – EX 0.8 0.0 0.7 1.0 2.032 360.13 360.64 371.26 327.60 

0.05 EWMA - EX 0.8 0.0 1.0 1.0 2.249 366.63 367.85 375.50 333.09 

 DGWMA- 𝑋̅ 0.8 0.8 0.7 0.7 2.992 354.92 350.17 352.36 349.83 

 GWMA- 𝑋̅ 0.8 0.0 0.7 1.0 3.263 357.01 314.02 436.42 255.38 

 DGWMA – EX 0.8 0.8 0.7 0.7 1.304 317.48 306.82 334.87 235.92 

 GWMA – EX 0.8 0.0 0.7 1.0 2.032 323.03 314.89 343.51 248.82 

0.10 EWMA - EX 0.8 0.0 1.0 1.0 2.249 332.54 316.07 347.40 258.78 

 DGWMA- 𝑋̅ 0.8 0.8 0.7 0.7 2.992 298.63 299.50 294.33 302.26 

 GWMA- 𝑋̅ 0.8 0.0 0.7 1.0 3.263 324.41 267.67 377.92 219.72 

 DGWMA – EX 0.8 0.8 0.7 0.7 1.304 163.35 135.01 235.28 54.32 

 GWMA – EX 0.8 0.0 0.7 1.0 2.032 182.06 149.34 251.50 61.12 

0.25 EWMA - EX 0.8 0.0 1.0 1.0 2.249 187.88 150.24 255.67 69.18 

 DGWMA- 𝑋̅ 0.8 0.8 0.7 0.7 2.992 61.34 62.33 64.90 63.25 

 GWMA- 𝑋̅ 0.8 0.0 0.7 1.0 3.263 126.57 112.84 146.16 94.68 

 DGWMA – EX 0.8 0.8 0.7 0.7 1.304 28.39 20.97 75.06 12.37 

 GWMA – EX 0.8 0.0 0.7 1.0 2.032 32.07 21.34 83.41 11.59 

0.50 EWMA - EX 0.8 0.0 1.0 1.0 2.249 32.80 22.48 94.50 11.03 

 DGWMA- 𝑋̅ 0.8 0.8 0.7 0.7 2.992 12.15 12.11 11.94 12.16 

 GWMA- 𝑋̅ 0.8 0.0 0.7 1.0 3.263 15.73 15.92 15.92 15.83 

 DGWMA – EX 0.8 0.8 0.7 0.7 1.304 8.41 7.81 11.06 7.34 

 GWMA - EX 0.8 0.0 0.7 1.0 2.032 6.50 5.82 9.95 5.25 

1.00 EWMA - EX 0.8 0.0 1.0 1.0 2.249 5.95 5.34 9.17 4.78 

 DGWMA- 𝑋̅ 0.8 0.8 0.7 0.7 2.992 5.50 5.46 5.48 5.48 

 GWMA- 𝑋̅ 0.8 0.0 0.7 1.0 3.263 4.05 4.17 4.17 4.15 
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Table 10: 𝑨𝑹𝑳 values for the DGWMA-EX, GWMA-EX, EWMA-EX, DGWMA- 𝑿̅  

and GWMA- 𝑿̅ charts for various shifts 𝜹 when 𝑨𝑹𝑳𝟎
∗ = 370 and 𝒎 = 49, 𝒏 = 5 under 

skewed distributions. 
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Figure 1: DGWMA-EX vs GWMA-EX vs EWMA-EX (𝒒 = 0.8, 𝜶 = 0.8, 𝒎 = 49 and 𝒏 = 

10). 

 

 

 

 

 

 
 
Figure 2: The effect of 𝒒 on the performance of the DGWMA-EX chart for 𝒎 = 99 and 

𝒏 = 10. 
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Figure 3: The effect of 𝜶 on the performance of DGWMA-EX chart for 𝒎 = 99 and 𝒏 = 

5. 

 

 

 

 
 

Figure 4: The effect of the test sample size (𝒏) on the performance of the DGWMA-EX 

chart. 
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Figure 5: The DGWMA-EX chart based on different symmetric distributions. 

 

 

 

 

 
Figure 6: The DGWMA-EX chart based on different skewed distribution. 
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Figure 7: DGWMA-EX and GWMA-EX chart implemented on simulated data. 
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Appendix 

A1. The exceedance statistics 𝑈𝑖, 𝑖 = 1,2,…, are independent and identically distributed 

binomial with parameters (𝑛, 𝑝𝑟), where 𝑛 is the sample size and 𝑝𝑟 = 1 − 𝐺(𝑥𝑟|𝑋(𝑟) = 𝑥𝑟), 

where 𝐺(. ) is the c.d.f of the Phase II test sample (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛). 

Proof: Since every observation 𝑌𝑖𝑗 in a test sample has two possible outcomes (smaller or 

larger than 𝑋(𝑟), then the order statistic 𝑋(𝑟) follows the properties of a Bernoulli trial. Note 

that for every Phase II test sample the number of observations smaller or larger than the order 

statistic are independent. Hence, the random variable 𝑈𝑖 referring to the number of 

exceedances given by the number of observations in the 𝑖𝑡ℎ test sample that exceed 𝑋(𝑟) is 

following binomial distribution with parameters (𝑛, 𝑝𝑟), given 𝑋(𝑟), where the probability of 

success is 𝑝𝑟 = 𝑃[𝑌 ≥ 𝑋(𝑟)|𝑋(𝑟) = 𝑥𝑟] = 1 − 𝐺(𝑥𝑟|𝑋(𝑟) = 𝑥𝑟). 

A2. The unconditional IC distribution of the exceedance statistic 𝑈𝑖, for all 𝑖 = 1, 2,…, is 

distribution free and is given by the p.m.f. 𝑃(𝑈𝑖 = 𝑢) =
(
𝑢+𝑚−𝑟

𝑢
)(
𝑛−𝑢+𝑟−1
𝑛−𝑢

)

(
𝑚+𝑛
𝑛

)
, 𝑢 = 0,1,2,… , 𝑛. 

Proof: The probability mass function of a exceedance statistic 𝑈𝑖, conditional on 𝑋(𝑟) can be 

written as: 

𝑃[𝑈𝑖 = 𝑢|𝑋(𝑟) = 𝑥𝑟] = (
𝑛
𝑢
)𝑝𝑟

𝑢(1 − 𝑝𝑟)
𝑛−𝑢 = (

𝑛
𝑢
) (1 − 𝐺(𝑥𝑟))

𝑢
𝐺(𝑥𝑟)

𝑛−𝑢 , 𝑢 = 0,1,2,… , 𝑛  

By implementing unconditional method we have 

𝑃[𝑈𝑖 = 𝑢] = 𝐸𝑋(𝑟)(𝑃[𝑈𝑖 = 𝑢|𝑋(𝑟) = 𝑥𝑟]) 

= ∫ (
𝑛
𝑢
) (1 − 𝐺(𝑥𝑟))

𝑢
𝐺(𝑥𝑟)

𝑛−𝑢 𝑚!

(𝑟−1)!(𝑚−𝑟)!

∞

−∞
𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟

𝑓(𝑥𝑟)𝑑𝑥𝑟 .  

When the process is IC, 𝐺 = 𝐹. Therefore, the IC unconditional distribution of 𝑈𝑖 is given by 

𝑃[𝑈𝑖 = 𝑢] = (
𝑛
𝑢
) 

𝑚!

(𝑟−1)!(𝑚−𝑟)!
∫ 𝐹(𝑥𝑟)

𝑛−𝑢+𝑟−1∞

−∞
(1 − 𝐹(𝑥𝑟))

𝑚+𝑢−𝑟
𝑓(𝑥𝑟)𝑑𝑥𝑟  

=
𝑛!

𝑢! (𝑛 − 𝑢)!

𝑚!

(𝑟 − 1)! (𝑚 − 𝑟)!

(𝑛 − 𝑢 + 𝑟 − 1)! (𝑚 + 𝑢 − 𝑟)!

(𝑚 + 𝑛)!
 

=
(
𝑢 +𝑚 − 𝑟

𝑢
) (
𝑛 − 𝑢 + 𝑟 − 1

𝑛 − 𝑢
)

(
𝑚 + 𝑛
𝑛

)
. 

A3.  ARL|𝑋(𝑟) = 1 + ∑ 𝐼𝑘
∞
𝑘=1                  where 𝐼𝑘 = 𝑃[⋂ 𝑆𝑖

𝑐𝑘
𝑖=1 |𝑋(𝑟)] =

∑ ∑ …∑ (∏ 𝑃[𝑈𝑖 = 𝑢𝑖|
𝑘
𝑖=1

𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

𝑋(𝑟)]) for 𝑘 = 1, 2, 3,… and 𝐼0 = 1. 
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Proof: 

The conditional run length probabilities can be written as: 

𝑃[𝐾 = 𝑘|𝑋(𝑟)] = 𝑃[⋂ 𝑆𝑖
𝑐𝑘−1

𝑖=1 |𝑋(𝑟)] − 𝑃[⋂ 𝑆𝑖
𝑐𝑘

𝑖=1 |𝑋(𝑟)] = 𝐼𝑘−1 − 𝐼𝑘 

where 𝐼𝑘 = 𝑃[⋂ 𝑆𝑖
𝑐𝑘

𝑖=1 |𝑋(𝑟)] = ∑ ∑ …∑ (∏ 𝑃[𝑈𝑖 = 𝑢𝑖|
𝑘
𝑖=1

𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

𝑋(𝑟)]) and 𝐼0 = 1. 

𝑃[𝑈𝑖 = 𝑢𝑖|𝑋(𝑟)] is given in Appendix A1. Hence: 

ARL|𝑋(𝑟) = 𝑃[𝐾 = 1|𝑋(𝑟)] + ∑ 𝑘𝑃[𝐾 = 𝑘|𝑋(𝑟)] = 1 − 𝑃[𝑆1
𝑐|𝑋(𝑟)] + ∑ 𝑘(𝐼𝑘−1 −

∞
𝑘=2

∞
𝑘=2

𝐼𝑘) = 1 − 𝑃 [𝑆1
𝑐|𝑋(𝑟)] + 𝐼1 +∑ 𝐼𝑘

∞
𝑘=1 . 
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