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The COVID-19 pandemic has wreaked havoc around the globe and caused significant 

disruptions across multiple domains[1]. Moreover, different countries have been differentially 

impacted by COVID-19 – a phenomenon that is due to a multitude of complex and often 

interacting determinants[2]. Understanding such complexity and interacting factors requires both 

compelling theory and appropriate data analytic techniques. Regarding data analysis, one 

question that arises is how to analyze extremely non-normal data, such as those variables 

evidencing L-shaped distributions. A second question concerns the appropriate selection of a 
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predictive modelling technique when the predictors derive from multiple domains (e.g., testing-

related variables, population density), and both main effects and interactions are examined.  

To address these questions, we propose a novel statistical approach for analyzing and 

understanding complex data interactions. Using data collected in the USA during the first month 

in which COVID-19 testing was performed (March of 2020), we examined the following six 

predictors of COVID-19 related deaths: (i) the proportion of all tests conducted during the first 

week of testing; (ii) the cumulative number of (test-positive) cases through 3-31-2020, (iii) the 

number of tests performed/million inhabitants; (iv) the cumulative number of inhabitants tested; 

(v) the number of cases/million inhabitants (cases/mill inh); and (vi) the number of diagnostic 

tests performed in week one of testing/million inhabitants/state-specific population density 

(w1DT/MI/PD), where “population density” is defined as the number of inhabitants per square 

kilometer. 

The purpose of this study was to examine the ability of the six variables to predict 

COVID-19 related deaths in the United States during March of 2020. We ran the predictive 

model twice, once for each dependent variable: mortality count (overall number of deaths), and 

deaths per million inhabitants. Because our model (a) uses predictors that leverage information 

from multiple domains, (b) captures both nationwide and state-specific dimensions, and (c) 

examines two different mortality-related outcomes, the results are expected to have relevance for 

policy-makers. 

All data used in this study were obtained from three sources in the public domain: 

Worldometer (https://www.worldometers.info/coronavirus/), World Population Review 

(https://worldpopulationreview.com/states), and Covidtracking (https://covidtracking.com/). The 

data were processed and analyzed using IBM SPSS, Minitab, and R. Univariate skewness and 
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kurtosis values indicated that all predictors and outcomes were non-normally distributed, with a 

few variables evidencing L-shaped distributions. The L-shaped variables were normalized using 

the rank-based inverse normal (RIN) transformation[3]. For extremely non-normal data, the RIN 

method is a highly effective normalizing transformation[3]. 

The prediction models were first examined using linear multiple regression, with the 

RIN-transformed versions of all variables used in the regressions. Because the homoscedasticity 

assumption (i.e., constant variance of the predicted Y-values) was not met, we re-ran the  

prediction models using a non-parametric approach known as Kernel Regularized Least Squares 

(KRLS) Regression[4]. KRLS is an appropriate method to use when the assumptions of linear 

regression are not met and the precise functional forms between the predictors and outcomes are 

unknown. All KRLS regressions used the RIN-transformed variables and all analyses were 

performed using the KRLS package for R. The use of non-parametric, machine learning-based 

methods such as KRLS is consistent with recent calls to place greater reliance on artificial 

intelligence systems for understanding the causes and consequences of the COVID-19 

pandemic[5]. 

The KRLS regression results are presented in Table 1. For number of deaths, the six 

predictors accounted for 98.8% of the variance. Five of the predictors were statistically 

significant (p-values ≤ 0.002). Two of the significant predictors (i.e., number of test-positive 

cases, Cohen’s d = 2.3; and cases per million inhabitants, Cohen’s d = 1.3) represent different 

ways of quantifying the illness burden due to SARS-CoV-2 infection. The ratio of the two d 

values indicated that the predictive strength of number of test-positive cases was 77% greater 

than was cases per million inhabitants. Regarding the second dependent variable, the six 

predictors accounted for 92.6% of the variance in deaths per million inhabitants. Five of the 
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predictors were significant (p-values ≤ 0.03). For this regression analysis, the number of test-

positive cases (d = 1.1) and cases per million inhabitants (d = 1.4) were similar in predictive 

strength. 

 
Table 1. KRLS regression of potential predictors of COVID-19 related mortality 
 
             
 
Predictors of number of deaths 
 
                    Estimate       Std. Error          t value    p-value 
              
 
totaltestsRIN                 0.111   0.033    3.326   .002 
testedpermilRIN              -0.153   0.026   -5.782   <.0001 
wkonepropalltestsRIN          0.044   0.030    1.452   .153 
wkonepermilcitperpopdenRIN   0.169   0.032    5.262   <.0001 
confircasesRIN                0.568   0.035   16.340  <.0001 
casespermilRIN                0.215   0.023    9.185   <.0001 
 
             
 
Predictors of deaths per million inhabitants 
 
                    Estimate       Std. Error          t value    p-value 
              
 
totaltestsRIN                 -0.138   0.058   -2.352   .023 
testedpermilRIN               0.004   0.048    0.091   .928 
wkonepropalltestsRIN          0.136   0.061    2.234   .031 
wkonepermilcitperpopdenRIN   0.161   0.063    2.570   .014 
confircasesRIN                0.408   0.055    7.353   <.0001 
casespermilRIN                0.441   0.045    9.748   <.0001 
             
 
Note. All predictors were normalized using the rank-based inverse normal (RIN) transformation. Estimates are 
sample-average partial derivatives. The set of predictors accounted for 98.8% of the variance in number of deaths 
(R2 = 0.9875). For deaths per million citizens, the predictors accounted for 92.6% of the variance (R2 = 0.9264). 
Description of predictors: totaltests = number of tests performed in March of 2020; testedpermil = number of all 
tests conducted per million inhabitants, in March of 2020; wkonepropalltests = all tests conducted during the first 
week of testing, expressed as the percentage of all tests performed in March 2020; wkonepermilcitperpopden = the 
number of tests performed during week one per million inhabitants, divided by state-specific population density; 
confircases = total number of test-positive individuals, in March of 2020; casespermil = number of test-positive 
individuals per million inhabitants, in March of 2020. 
 
 In addition to number of test-positive cases and cases per million inhabitants, another 

interesting predictor was our geo-demographic variable (i.e., the number of diagnostic 

tests/million inhabitants/population density performed in week one of testing, or w1DT/MI/PD). 
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This predictor was significantly associated with both dependent variables. Because 

w1DT/MI/PD is a complex, ratio-based predictor, discerning the precise nature of its predictive 

association from a single regression estimate alone is challenging. To further enhance the 

interpretation of this variable, we created two scatterplots showing the association between 

w1DT/MI/PD and each dependent variable. Both scatterplots include boxplots for the X and Y 

variables, a best fitting linear regression line, and a lowess line (with accompanying 95% 

confidence interval). Lowess stands for locally weighted scatterplot smoothing. The lowess line 

is the best fitting non-linear curve that tracks the data points in the scatterplot. The lowess curves 

allow us to make inferences about COVID-19 related deaths at low and high levels of 

w1DT/MI/PD. Such inferences are tantamount to examining COVID-19 related deaths for U.S. 

states scoring low versus high on the geo-demographic predictor variable. The scatterplots were 

created using the car package for R. 

 As the lowess curve in the top panel of Figure 1 indicates, at higher and medium levels of 

w1DT/MI/PD, the association between the geo-demographic predictor and death count was 

strongly negative and moderately negative, respectively. In contrast, at lower levels of 

w1DT/MI/PD, there was little if any association between the geo-demographic variable and 

number of fatalities. The bottom panel of Figure 1 indicates that at lower levels of w1DT/MI/PD, 

the association between the geo-demographic variable and deaths per million inhabitants was 

moderately positive. At medium levels of w1DT/MI/PD, there was little if any association 

between the two variables. Finally, at higher levels of w1DT/MI/PD, there was a moderately 

strong negative association between the geo-demographic variable and deaths per million 

inhabitants. 
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Figure 1. Scatterplots depicting lowess curves (the middle dashed lines) and accompanying 95% confidence 
intervals (top and bottom dashed lines) for the association between number of tests during week 1/million 
inhabitants/population density and (a) number of COVID-19 related deaths (top panel) and (b) number of COVID-
19 related deaths per million inhabitants (bottom panel). All variables were normalized using the rank-based inverse 
normal (RIN) transformation. 
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Figure 2. Scatterplots showing the Pearson correlations between population density and cumulative COVID-19 
related deaths per million inhabitants through (a) March 31, 2020, top panel (r = 0.228, 95% CI: −0.054, 0.476) and 
(b) June 17, 2020, bottom panel (r = 0.80, 95% CI: 0.671, 0.882). 
 

In constructing our geo-demographic predictor variable, we controlled for population 

density because it is an important factor associated with disease transmission[6]. Moreover, 

because there typically is a lag time of several weeks or more between being infected with 
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SARS-CoV-2 and showing disease-related symptoms, the association between population 

density and disease-related deaths should strengthen over time. To highlight this point, Figure 2 

presents scatterplots showing the Pearson correlations between population density and 

cumulative COVID-19 related deaths per million inhabitants through March 31st and June 17th, 

2020, respectively. The correlations were as follow: March 31st (r = 0.228, p > 0.05); June 17th (r 

= 0.800, p < 0.01). The difference between the two statistically dependent correlations was 

evaluated using Hittner, May and Silver’s modification of Dunn and Clark’s z test[7]. The two 

correlations were significantly different (z = 5.85, p < 0.0001), thereby supporting the prediction 

that the association between population density and COVID-19 related deaths will strengthen 

over time. 

To the best of our knowledge, this is the first study that examines testing-, case count- 

and geo-demographic variables as predictors of COVID-19 related deaths. Using a flexible, 

machine learning-based approach (KRLS regression), we found that our predictors accounted for 

very high percentages of outcome variance (98.8% and 92.6% for number of deaths and deaths 

per million inhabitants, respectively). Furthermore, with very few exceptions, our predictors 

were both statistically significant and practically important. 

One novel contribution of this study was our examination of a complex, ratio-based geo-

demographic predictor variable. This variable—the number of diagnostic tests performed in 

week one of testing/million inhabitants/state-specific population density (w1DT/MI/PD)—

significantly predicted COVID-19 related deaths, but did so differently depending on where, 

along the continuum of geo-demographic values, the predictive association was examined. At the 

lower end of the geo-demographic predictor, more tests during week one per million inhabitants, 

normalized by population density, were associated with more deaths per million citizens. In 
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contrast, at the higher end of the geo-demographic predictor, more tests during week one per 

million inhabitants, normalized by population density, were associated with fewer deaths per 

million inhabitants. These different quantitative patterns could reflect different qualitative 

situations. In the first case (lower values on the geo-demographic variable, where more tests are 

associated with more deaths), testing seems to pursue a confirmatory purpose. In contrast, for the 

second case (higher values on the geo-demographic variable, where more tests are associated 

with fewer deaths), diagnostic testing appears to be emphasized[8]. One implication of these 

findings is that when examining our geo-demographic variable as a predictor of deaths, the 

inflection points along the lowess curves (the positions where the slope rises and falls) can serve 

as approximate cut-points demarcating three types of testing: confirmatory, diagnostic, and other. 

When testing prioritizes symptomatic cases, it is expected that most tested individuals 

will result in positive results (infection will be confirmed). Because deaths will occur within a 

subset of infected individuals, when testing is confirmatory (when only symptomatic patients are 

tested), more tests will be associated with more deaths. In contrast, when asymptomatic 

individuals are also tested, more tests, conducted earlier, will allow clinicians to detect, treat, and 

isolate infections earlier and prevent further viral dissemination which, in turn, will result in 

fewer deaths/million inhabitants. Our findings thus support an important recommendation from 

the World Health Organization, which is that early and frequent testing helps to prevent deaths[9]. 

In addition to the contributions described above, we performed supplemental analyses 

examining the association between population density and COVID-19 related deaths. The role of 

population density in predicting epidemic dispersal and epidemic-related deaths is receiving 

increased research attention[10]. To the best of our knowledge, the present study is the first to 

demonstrate that the magnitude of association between population density and COVID-19 
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related deaths strengthens as the time since first infection increases. Understanding how factors 

such as testing frequency, the relative proportion of confirmatory versus diagnostic testing, and 

sociodemographic composition influence the temporal association between population density 

and COVID-19 related deaths is an important priority for future research. 

Overall, our findings highlight the importance of considering predictor variables from 

multiple domains. When ratio-based predictors such as our geo-demographic variable are 

analyzed, we recommend examining lowess curves as a visual interpretational aid for explicating 

the (often) complex non-linear associations between such ratio-based predictors and various 

outcomes of interest. An important direction for future research on epidemic dissemination and 

potential control is to examine both ratio-based composite variables—such as our geo-

demographic measure—and traditional multiplicative interaction terms (created as linear 

products of two or more variables). The joint examination of both types of complex variables 

might result in greater predictive power and/or might foster additional insights into the dynamics 

of infectious diseases, such as COVID-19. 

 

This work was previously released as a preprint by J. B. Hittner, F. O. Fasina, A. L. Hoogesteijn, 
R. Piccinini, P. Kempaiah, S. D. Smith, and A. L. Rivas, with the title ‘Early and massive testing 
saves lives: COVID-19 related infections and deaths in the United States during March of 2020’ 
medRxiv 2020.05.14.20102483; https://doi.org/10.1101/2020.05.14.20102483.   
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Supplementary Table S1. Epidemic data collected in all states of the USA in March, 2020 

State Tests 
wk I 

Total 
tests 

Wk I/ 
all 

tests 
(%) 

State 
pop/  
mill 

Total 
tests/ 

mill inh 

Total 
cases 

Cases/ 
mill inh 

State 
pop 
dens 

Wk I 
tests/ 

mill inh/ 
state 
pop 
dens 

Total 
deaths 
(count) 

Deaths
/ mill 
inh 

AK 227 3654 6.21 0.734 4978.20 114 155.31 0.425 726.115 3 4.08 
AL 352 5014 7.02 4.908 1021.60 830 169.11 36.149 1.984 4 0.81 
AR 115 3453 3.33 3.038 1136.60 426 140.22 22.057 1.716 6 1.97 
AZ 373 13872 2.68 7.378 1880.18 919 124.56 24.990 2.023 17 2.30 
CA 4260 90657 4.69 39.937 2270.00 5708 142.93 94.198 1.132 123 3.07 
CO 938 14470 6.48 5.845 2475.62 2307 394.70 21.680 7.402 47 8.04

CT 551 11900 4.63 3.563 3339.88 1993 559.36 248.188 0.623 34 9.54

DE 129 3701 3.48 0.982 3768.84 236 240.33 152.342 0.862 6 6.11

FL 1380 48998 2.81 21.992 2227.99 4950 225.08 129.126 0.485 59 2.68

GA 48 12596 0.38 3.991 3156.10 2683 672.26 25.930 0.463 80 20.04

HI 12 8013 0.14 1.412 5674.93 175 123.93 49.869 0.170 0 0 
ID 427 4706 9.07 1.826 2577.22 310 169.77 8.436 27.718 6 3.28 
IL 1622 27762 5.84 12.659 2193.06 4596 363.06 84.395 1.518 66 5.21

IN 149 9830 1.51 6.745 1457.38 1514 224.46 71.505 0.308 32 4.74 

IO 330 5349 6.16 3.179 1682.60 336 105.69 21.811 4.759 4 1.25 
KS 167 4513 3.70 2.910 1550.86 319 109.62 13.655 4.202 6 2.06 
KY 207 6018 3.43 4.499 1337.63 439 97.57 42.988 1.070 9 2.00 
LA 368 27871 1.32 4.645 6000.22 3540 762.11 34.240 2.313 151 32.50

MA 171 39066 0.43 6.976 5600.06 4955 710.29 255.203 0.096 48 6.88

MD 447 13593 3.28 6.083 2234.59 1239 203.68 189.312 0.388 10 1.64 
ME 272 3647 7.45 1.345 2711.52 253 188.10 14.677 13.777 3 2.23 
MI 274 17379 1.57 10.045 1730.11 5486 546.14 40.101 0.680 132 13.14

MN 889 17657 5.03 5.700 3097.72 503 88.24 25.314 6.161 9 1.57 
MO 236 14107 1.67 6.169 2286.76 903 146.37 34.169 1.119 12 1.94 
MS 969 3318 29.20 2.989 1110.07 758 253.59 23.828 13.605 14 4.68 
MT 160 4069 3.93 1.086 3746.78 161 148.25 2.851 51.664 1 0.92 
NC 17 19072 0.08 10.611 1797.38 1167 109.98 76.123 0.021 5 0.47 
ND 393 3724 10.55 0.761 4893.56 98 128.77 4.156 124.260 1 1.31 
NE 272 2345 11.59 1.952 1201.33 120 61.47 8.859 15.728 2 1.02 
NH 232 5396 4.29 1.371 3935.81 258 188.18 56.622 2.988 3 2.18 
NJ 284 35602 0.79 8.936 3984.11 13386 1497.99 395.555 0.080 161 18.01 

NM 488 11179 4.36 2.096 5333.49 237 113.07 5.944 39.168 2 0.95 
NY 1661 172360 0.96 19.440 8866.26 59513 3061.37 137.582 0.621 965 49.63 
NV 262 10534 2.48 3.139 3355.85 920 293.08 10.960 7.614 15 4.77 
OH 148 20665 0.71 11.747 1759.17 1653 140.72 101.180 0.124 29 2.46 
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OK 206 1634 12.60 3.954 413.25 429 108.50 21.840 2.385 16 4.04 
OR 1023 11426 8.95 4.301 2656.59 548 127.41 16.879 14.090 13 3.02 
PA 403 33455 1.20 12.820 2609.59 3394 264.74 107.478 0.292 38 2.96 
RI 550 3134 17.54 1.056 2967.80 294 278.40 263.934 1.973 3 2.84 

SC 97 3789 2.56 5.210 727.26 774 148.56 62.822 0.296 16 3.07 

SD 185 3218 5.74 0.903 3563.68 90 99.66 4.521 45.315 1 1.10 
TN 73 20574 0.35 6.897 2983.04 1537 222.85 63.186 0.167 7 1.01 
TX 48 25760 0.18 29.472 874.05 2552 86.59 42.365 0.038 34 1.15 
UT 279 13993 1.99 3.282 4263.56 719 219.07 14.926 5.695 2 0.60 
VA 314 10609 2.95 8.626 1229.89 890 103.17 77.861 0.467 22 2.55 
VT 291 3701 7.86 0.628 5893.31 235 374.20 25.215 18.376 12 19.10 
WA 4415 59206 7.45 7.797 7593.43 4310 552.78 42.223 13.410 189 24.24 
WI 259 17662 1.46 5.851 3018.63 1112 190.05 34.491 1.283 13 2.22 
WV 38 3108 1.22 1.778 1748.03 124 69.74 28.331 0.754 0 0 
WY 308 1641 18.76 0.567 2894.18 87 153.43 2.238 242.707 0 0 

 
Note. Abbreviations of USA states: AK (Alaska), AL (Alabama), AR (Arkansas), AZ (Arizona), 
CA (California), CO (Colorado), CT (Connecticut), DE (Delaware), FL (Florida), GA (Georgia), 
HI (Hawaii), ID (Idaho), IL (Illinois), IN (Indiana), IO (Iowa), KS (Kansas), KY (Kentucky), LA 
(Louisiana), MA (Massachusetts), MD (Maryland), ME (Maine), MI (Michigan), MN 
(Minnesota), MO (Missouri), MS (Mississippi), MT (Montana), NC (North Carolina), ND 
(North Dakota), NE (Nebraska), NH (New Hampshire), NJ (New Jersey), NM (New Mexico), 
NY (New York), NV (Nevada), OH (Ohio), OK (Oklahoma), OR (Oregon), PA (Pennsylvania), 
RI (Rhode Island), SC (South Carolina), SD (South Dakota), TN (Tennessee), TX (Texas), UT 
(Utah), VA (Virginia), VT (Vermont), WA (Washington), WI (Wisconsin), WV (West Virginia), 
WY (Wyoming). Variables: Tests wk I = number of tests performed in the first 7 days of testing; 
Total tests = total number of people tested; Wk I / all tests (%) = tests wk I / total tests (i.e., the 
proportion of all tests conducted during the first week of testing, expressed as a percentage of all 
tests performed in March, 2020); State pop / mill = the population of each state, expressed in 
million inhabitants; Total tests / mill inh = number of tests performed per 1 million inhabitants 
by March 31, 2020; Total cases = cumulative number of confirmed (test-positive) infections by 
March 31, 2020; Cases / mill inh = the number of cases in the population (expressed in million 
inhabitants); State pop dens = the state-specific number of inhabitants per square kilometer; Wk I 
tests / mill inh / state pop dens = the number of tests performed during week one / million 
inhabitants / state population density; Total deaths (count) = cumulative number of deaths 
through March 31, 2020; Deaths / mill inh = cumulative number of deaths per 1 million 
inhabitants through March 31, 2020. 
 


