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Abstract

In this paper, we consider simultaneous reconstruction of diffusion coefficient and initial state for a

one-dimensional heat equation through boundary control and measurement. The boundary measure-

ment is proposed to make the system approximately observable, and both the coefficient and initial

state are shown to be identifiable by this measurement under a boundary switch on/off control. By a

Dirichlet series representation for the observation, we can transform the problem into an inverse process

of reconstruction of the spectrum and coefficients for the Dirichlet series in terms of observation. This

happens to be the reconstruction of spectral data for an exponential sequence with measurement error,

and it enables us to develop an algorithm based on the matrix pencil method in signal analysis. A

theoretical error analysis for the algorithm concerning the coefficient reconstruction is carried out for

the proposed method. The numerical simulations are presented to verify the proposed algorithm.

Keywords: Boundary switch on/off control, identifiability, identification, matrix pencil method,

error analysis.
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1 Introduction

It is recognized that many industrial controls are temperature control. The inverse heat conduction prob-

lem (IHCP) is one of the important control problems in science and engineering. Such kinds of problems
∗The corresponding author. Email: zxzhao@amss.ac.cn
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usually arise in modeling and process control with heat propagation in thermophysics, chemical engineer-

ing, and many other industrial and engineering applications. In the last decades, there are various class

of IHCPs being investigated ranging from recovery of boundary heat flux [27]; estimation of medium pa-

rameters such as thermal conductivity coefficient [10] and radiative coefficient [5, 30]; recovery of spatial

distribution of heat sources [31]; and reconstruction of initial state distributions [30]. For many other

aspects including numerical solutions of inverse problems for PDEs, we refer to the monograph [13]. Most

of the existing works, however, are devoted to single parameter identification. The simultaneous recon-

struction of more than one different coefficients has not been sufficiently investigated, for which, to the

best of our knowledge, only a few studies are available (see, e.g., [4, 5, 27, 30] and the references therein).

To cope with the ill-posed nature of inverse problems, optimization methods and regularization techniques

together with many other numerical methods such as finite difference methods and finite element methods

are generally applied in the literature. In addition to the numerical methods mentioned above, a number

of classical identifiability results are based on the inverse spectral theory, see, for instance, [15, 18, 23, 24].

In [18], the unique determination of eigenvalues and coefficients under certain conditions for a parabolic

equation is considered by the Gel’fand-Levitan theory. Some uniqueness results on simultaneous identifi-

cation of coefficients and initial values for parabolic equations are presented in [15, 23, 24]. However, most

of the identifiability results require that the initial value can not be orthogonal to any of the eigenvectors.

This restrictive condition is actually unverifiable in practice because the initial value is also unknown.

Some other uniqueness results on the determination of constant coefficients are discussed in [14, 16]. But

no numerical identification algorithm is attempted in these theoretical papers.

In this paper, we are concerned with reconstruction of the diffusion coefficient and initial state for a

one-dimensional heat conduction equation in a homogeneous bar of unit length, which is described by




ut(x, t) = αuxx(x, t), 0 < x < 1, t > 0,

αux(0, t) = f(t), ux(1, t) = 0, t ≥ 0,

y(t) = u(0, t), t ≥ 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.1)

where x represents the position, t the time. α ≥ α0 > 0 is an unknown constant that represents the

thermal diffusivity, and u0(x) is the unknown initial temperature distribution. Here we do not impose

any restriction on the initial value other than boundedness. The function f(t) is the Neumann boundary

control (input) which represents the heat flux through the left end of the bar, and y(t) is the boundary

temperature measurement. Sometimes we write the solution of (1.1) as u = u(x, t; f, u0) to represent its

dependence on f(t) and u0(x).

The inverse problem that we consider in this paper can be described as follows:

Inverse Problem: Consider the problem as posed in Equation (1.1). Design the boundary control

f ∈ L2(0, T ) for some finite time interval t ∈ (0, T ), to reconstruct simultaneously the α and u0(x) from

the boundary observation {y(t), t ∈ (0, T )}.
Let us briefly explain the main idea of this paper, which is inspired by an idea of [9]. By the su-

perposition principle of linear systems, the output y(t) of system (1.1) can be separated into two parts
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u(0, t; 0, u0) and u(0, t; f, 0), where the former is determined by the initial state only and the latter by

the control. The first part u(0, t; 0, u0) admits a Dirichlet series representation, which means that it can

be determined by its restriction on any finite interval. By choosing the control f(t) appropriately, we can

design an algorithm to estimate the unknown coefficients in the Dirichlet series. The part of the output

that has been determined by the initial value, u(0, t; 0, u0), can be canceled from the output y(t) such that

the coefficient identification of α is equivalently transformed into the case with zero initial state. After

estimating the diffusion coefficient, the remaining problem is a single reconstruction of the initial state.

The rest of the paper is organized as follows. Section 2 is devoted to simultaneous identifiability of

the coefficient and initial value based on the Dirichlet series theory. The identification algorithm based on

the matrix pencil method is introduced in Section 3. In Section 4, an error analysis of the matrix pencil

method to the infinite spectral estimation problem is obtained. A numerical simulation is presented in

Section 5 to show the validity of the algorithm introduced in Section 3.

2 Identifiability

The identifiability is to show that the boundary control f ∈ L2(0, T ) and boundary observation {y(t), t ∈
(0, T )} are sufficient to determine α and u0(x) uniquely. To begin with, let H = L2(0, 1) with the usual

inner product 〈·, ·〉 and inner product induced norm ‖ · ‖. Define the operator A : D(A)(⊂ H) 7→ H by




[Aψ](x) = −αψ′′(x),

D(A) = {ψ ∈ H2(0, 1) |ψ′(0) = ψ′(1) = 0}.
(2.1)

It is easy to verify that A is positive semidefinite in H, and the eigenvalues {λn} of A are given by

λn = αn2π2, n = 0, 1, 2, . . . , (2.2)

with the corresponding eigenfunctions {φn(x)}∞n=0 given by

φ0(x) = 1, φn(x) =
√

2 cos nπx, n ∈ N∗. (2.3)

It is well known that {φn(x)}n∈N forms an orthonormal basis for H. Set

G(t, x, y) =
∞∑

n=1

e−λntφn(x)φn(y) + 1, An(x) = 〈u0, φn〉φn(x), n ∈ N. (2.4)

It is evident that G(t, 0, 0) = 2
∑∞

n=1 e−λnt + 1 is continuous in t > 0. Suppose that the boundary control

satisfies f ∈ L2(0, T ) for some T > 0. Standard analysis (see, e.g., [2, Chapter 3]) shows that the boundary

observation y(t) of system (1.1) takes the form

y(t) =
∞∑

n=0

An(0)e−λnt −
∫ t

0
G(t− s, 0, 0)f(s) ds, 0 < t < T. (2.5)

It is well known that system (1.1) (with f = 0) is not exactly observable in H because the following

observability inequality ∫ τ

0
u2(0, t)dt ≥ cτ‖u0‖2, ∀ u0 ∈ H,
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is not valid for any constants τ, cτ > 0. However, from the uniqueness of Dirichlet series expansion (see,

for example, [10, Lemma 2.4], and also [20, Chapter 9] for more details about Dirichlet series), it is easy to

verify, from (2.5), that system (1.1) is approximately observable (see, e.g., [26, Chapter 6]), which ensures

that the initial state can be uniquely determined from the output.

Suppose that T2 > T1 > 0 are two arbitrary positive numbers, and the boundary control f(t) is chosen

to be zero in the time interval [0, T2]. In this case, it is deduced from (2.5) that the boundary observation

is

y(t) , u(0, t; 0, u0) =
∞∑

n=0

Cne−λnt, ∀ t ∈ [T1, T2], (2.6)

where Cn = An(0), n ∈ N. Since u0(x) is unknown, it is not clear whether Cn 6= 0 for any n ∈ N. Define

the set K ⊂ N, which is unknown as well and satisfies

Ck 6= 0, k ∈ K; Ck = 0, k /∈ K. (2.7)

Theorem 2.1 below establishes the identifiability of the set {(Ck, λk)}k∈K.

Theorem 2.1. Let 0 < T1 < T2 < ∞, u0 ∈ L2(0, 1). Then the set {(Ck, λk)}k∈K in (2.6) can be uniquely

determined by the observation data {y(t) | t ∈ [T1, T2]}.

Proof. The proof is accomplished by two steps.

Step 1: {(Ck, λk)}k∈K can be uniquely determined by infinite time observation {y(t)| t ∈ (0,∞)}.
Actually, since

∞∑

n=0

|Cn|2 ≤ 2‖u0‖2
L2(0,1) < +∞,

it follows that supn≥0 |Cn| < ∞. Since λn = αn2π2, the series (2.6) converges uniformly in t over [t0,+∞)

for any t0 > 0. Apply the Laplace transform to (2.6) to obtain

ŷ(s) =
∞∑

n=0

Cn

s + λn
=

∑

k∈K

Ck

s + λk
, (2.8)

whereˆdenotes the Laplace transform. Since we are only interested in those Ck 6= 0, there is no zero/pole

cancelations. In other words, −λk is a pole of ŷ(s) and Ck is the residue of ŷ(s) at −λk for any k ∈ K.

By the uniqueness of the Laplace transform, {(Ck, λk)}k∈K is uniquely determined by {y(t)| t ∈ (0,∞)}.
Step 2: {(Ck, λk)}k∈K can be uniquely determined by finite-time observation {y(t)| t ∈ [T1, T2]}.
By Step 1, we only need to show that the observation y(t) in (2.6) for all t > 0 can be uniquely

determined by its restriction on I1 = [T1, T2], or in other words, y(t) = 0 for t ∈ [T1, T2] in (2.6) implies

that y(t) = 0 for all t > 0. But this is evident because y(t) is an analytic function in t > 0. This completes

the proof of the theorem.

Theorem 2.2. Let 0 < T1 < T2 < T3 < ∞, u0 ∈ L2(0, 1). The control function f ∈ L2(0, T3) satisfies
{

f(t) = 0, for t ∈ [0, T2),

f(t) 6= 0, for almost all t ∈ [T2, T3],
(2.9)

and the corresponding boundary observation is {y(t) = u(0, t; f, u0) | t ∈ [T1, T3]}. Then the diffusion

coefficient α and the initial state u0(x) in system (1.1) can be uniquely determined by {y(t) | t ∈ [T1, T3]}.
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Proof. By (2.5), it follows that

ỹ(t) ,
∑

k∈K
Cke

−λk(t+T2) − y(t + T2) =
∫ t

0
G(t− s, 0, 0)f̃(s) ds, t ∈ (0, T3 − T2], (2.10)

where

f̃(t) = f(t + T2), t ∈ (0, T3 − T2],

and

G(t, 0, 0) = 2
∞∑

n=1

e−λnt + 1 ,
∞∑

n=0

Gne−λnt, t ∈ (0, T3 − T2], (2.11)

with

G0 = 1, λ0 = 0; Gn = 2, n ∈ N∗.

Since f̃ ∈ L2(0, T3 − T2) is nonzero for almost all t ∈ (0, T3 − T2) and G(t, 0, 0) is continuous in t > 0,

it follows from [25, Theorem 151] that {G(t, 0, 0) | t ∈ (0, T3 − T2]} can be uniquely determined by

{ỹ(t) | t ∈ (0, T3 − T2]}. By Theorem 2.1, {(Ck, λk)}k∈K can be uniquely determined from {y(t) | t ∈
[T1, T2]}, which shows, from the first equality of (2.10), that {ỹ(t) | t ∈ (0, T3−T2]} can be obtained from

{y(t) | t ∈ [T1, T3]}. In addition, since all the coefficients {Gn}n∈N in (2.11) are nonzero, by Theorem 2.1

again, {λn}n∈N∗ can be uniquely determined by {G(t, 0, 0) | t ∈ (0, T3−T2]}. The exponents {λn}n∈N∗ are

therefore uniquely determined by {y(t) | t ∈ [T1, T3]}, and then the diffusion coefficient α can be obtained

from (2.2).

We now turn to the identifiability of the initial value u0(x). To be specific, it follows from (2.5) that

y(t) +
∫ t

0
G(t− s, 0, 0)f(s) ds =

∞∑

n=0

An(0)e−λnt, t ∈ [T1, T3]. (2.12)

Since the diffusion coefficient α can be uniquely determined by {y(t) | t ∈ [T1, T3]}, the left-hand side of

(2.12) can also be uniquely determined by {y(t) | t ∈ [T1, T3]}. On the other hand, the right-hand side

of (2.12) is a Dirichlet series (see, e.g., [20, Chapter 9]), it follows from the uniqueness of Dirichlet series

expansion (e.g., [10, Lemma 2.4]) that all the coefficients {An(0)}∞n=0 can be uniquely determined by the

left-hand side of (2.12) or the boundary observation {y(t) | t ∈ [T1, T3]}. Therefore, the initial value

u0(x) =
∞∑

n=0

〈u0, φn〉φn(x) = A0(0) +
1√
2

∞∑

n=1

An(0)φn(x),

can also be uniquely determined by {y(t) | t ∈ [T1, T3]}. This ends the proof of the theorem.

Remark 2.1. Actually, there are many papers studying simultaneous identifiability of parameters and

initial values for parabolic equations, see, for instance, [15, 23, 24]. However, most of the identifiability

results require that the initial value should be a generating element (see [23]) with respect to the system

operator A, that is,

〈u0, φn〉 6= 0, for any n ∈ N. (2.13)

But this condition is unverifiable because the initial value u0(x) is also unknown. Theorem 2.2 shows

that this restrictive condition can be removed by designing a boundary switch on/off control (2.9), which
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is somehow like the persistently exciting condition introduced in [17, 21] to stimulate the plant behavior.

It should also be emphasized that the boundary switch on/off control signal (2.9) is crucial in Theorem

2.2, without which the identifiability may not be valid anymore. The Example 2.1 below indicates the

necessity of the control signal (2.9).

Example 2.1. Let f(t) ≡ 0 in system (1.1). Consider the following two cases:

Case 1: The diffusion coefficient α and initial value u0(x) are

α = 1, u0(x) = φ4(x) =
√

2 cos 4πx, (2.14)

respectively.

Case 2: The diffusion coefficient and initial value are

α̃ = 4, ũ0(x) = φ1(x) =
√

2 cos πx, (2.15)

respectively.

Simple calculations from (2.5) show that both cases produce the same boundary measured data

y(t) = u(0, t; 0, u0) = u(0, t; 0, ũ0) =
√

2e−4π2t, t > 0. (2.16)

Hence, we can not distinguish {α, u0(x)} and {α̃, ũ0(x)} from the observation data {y(t)} alone when

f(t) = 0, or in other words, the identifiability may not be valid without the boundary control f(t).

The simplest practically implementable control that satisfies (2.9) is

f(t) =

{
0, t ∈ [0, T2),

1, t ∈ [T2, T3],
(2.17)

which is used in the numerical identification algorithm in Section 3.2. To illustrate the identifiability

analysis more clearly, we present a block diagram in Figure 1.

Figure 1: Block diagram of identifiability analysis

3 Numerical computation method

It is seen clearly from previous sections that the key point for identification is to recover the spectrum-

coefficient data {(Cn, λn)}n∈N from {y(t) | t ∈ [T1, T2]} by the Dirichlet series representation (2.6). The

difficulty is that there may exist infinitely many Cn 6= 0 in (2.6). In this section, we use the matrix pencil

method to extract some of the {(Cn, λn)} from the sum of the first M terms of the infinite series (2.6),

and treat the remainder terms as a measurement error.
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3.1 Finite dimensional approximation

Suppose M ∈ N∗ and split the series in (2.6) into two parts,

y(t) =
M−1∑

n=0

Cne−λnt + e(M, t), ∀ t ∈ [T1, T2], (3.1)

where

e(M, t) =
∞∑

n=M

Cne−λnt, ∀ t ∈ [T1, T2]. (3.2)

Theorem 3.1 gives a bound of e(M, t).

Theorem 3.1. Suppose that the diffusion coefficient α ≥ α0 > 0 and the initial value u0(x) satisfies

‖u0‖L2(0,1) ≤ M0 for some M0 > 0. Then for t ≥ T1 > 0,

|e(M, t)| <
(√

2 +
1

4Mπ2α0T1

)
M0e

−α0M2π2T1 . (3.3)

Proof. For t ≥ T1 > 0, introduce

F (α, M, t) =
∫ ∞

M
e−αx2π2t dx, (3.4)

to obtain

F 2(α, M, t) =
∫∫

D1

e−α(x2+y2)π2t dxdy +
∫∫

D2

e−α(x2+y2)π2t dxdy , I1 + I2,

where

D1 =
{
(x, y)

∣∣ x ≥ y ≥ M
}

, D2 =
{
(x, y)

∣∣ y > x ≥ M
}

.

By symmetry of the integration domains D1 and D2 with respect to x and y, I1 = I2. To compute I1, we

use a double integral in polar coordinates to convert it to iterated integrals

I1 =
∫∫

D̃1

e−αρ2π2tρ dρdθ =
∫ π

4

0
dθ

∫ ∞

M
sin θ

e−αρ2π2tρ dρ =
1

2απ2t

∫ π
4

0
e−

αM2π2t
sin2 θ dθ, (3.5)

where

D̃1 =
{

(ρ, θ)
∣∣∣∣ ρ ≥ M

sin θ
, 0 < θ ≤ π

4

}
.

The variable substitution u = cot2 θ in (3.5) yields

I1 =
1

4απ2t

∫ +∞

1
e−αM2π2t(1+u) 1

(1 + u)
√

u
du

<
1

4απ2t
e−αM2π2t

∫ +∞

1
e−αM2π2tuu−

3
2 du

=
M

4π
√

αt
e−αM2π2t · Γ

(
−1

2
, αM2π2t

)
,

(3.6)

where

Γ(a, x) =
∫ ∞

x
ta−1e−t dt, (3.7)

is the upper incomplete gamma function ([1, Section 6.5]). It is known that [1, p.263]

Γ(a, x) = e−xxa

(
1

x+
1− a

1+
1

x+
2− a

1+
2

x+
· · ·

)
, x > 0, |a| < ∞, (3.8)

7



from which we have

Γ(a, x) < e−xxa−1, x > 0, a < 0. (3.9)

This together with (3.6) gives

F (α, M, t) =
√

2I1 <
1√

2Mπ2αt
e−αM2π2t. (3.10)

We now turn to the estimation of |e(M, t)|. It can be computed that for t ≥ T1 > 0,

|e(M, t)| ≤
( ∞∑

n=M

|Cn|2
) 1

2
( ∞∑

n=M

e−2αn2π2t

) 1
2

<
√

2M0

[
e−2αM2π2t +

∞∑

n=M+1

∫ n

n−1
e−2αx2π2t dx

] 1
2

=
√

2M0

[
e−2αM2π2t + F (2α, M, t)

] 1
2

<

(√
2 +

1
4Mπ2α0T1

)
M0e

−α0M2π2T1 .

(3.11)

This completes the proof of the theorem.

Remark 3.1. It can be seen from (3.3) that if α0M
2π2T1 is sufficiently large, then indeed

y(t) ≈
M−1∑

n=0

Cne−λnt, ∀ t ∈ [T1, T2], (3.12)

with the truncation error e(M, t) estimated in (3.3). It should also be noted that all eigenvalues are real

and −λnt → −∞ as n → ∞ with the order of n2. This plays a crucial role in estimation of e(M, t) and

guarantees the feasibility of finite dimensional approximation for spectral estimation.

3.2 Matrix pencil method

The matrix pencil method was presented by Hua and Sarkar in [12] for estimation of signal parameters

from a noisy exponential sequence. This method has been proved to be quite useful because of its

computational efficiency and low sensitivity to the noise.

Suppose that the observed system response can be described by

y(t) = x(t) + n(t) =
M∑

i=1

Rie
sit + n(t), ∀ t ∈ [0, T ], (3.13)

where n(t) is the noise, x(t) is the system response, y(t) is the noise contaminated observation. Let Ts be

the sampling period, the discrete form of (3.13) can be expressed as follows,

y(kTs) =
M∑

i=1

Riz
k
i + n(kTs), k = 0, 1, . . . , N − 1, (3.14)

where zi = esiTs , and N is the number of sample points which should be large enough. Generally, the

number of exponential components M , the amplitudes Ri, and the poles zi all can be unknown. In what
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follows, we show how to estimate these numbers simultaneously from the observation
{
y(kTs)

}N−1

k=0
by

virtue of the matrix pencil method.

Let xk = x(kTs) and yk = y(kTs), and define

xk = [xk, xk+1, . . . , xN−L+k−1]>, yk = [yk, yk+1, . . . , yN−L+k−1]>, k = 0, 1, 2, . . . , L, (3.15)

and
X0 = [xL−1,xL−2, . . . ,x0], Y0 = [yL−1,yL−2, . . . ,y0],

X1 = [xL,xL−1, . . . ,x1], Y1 = [yL,yL−1, . . . ,y1],

X = [x0,x1, . . . ,xL], Y = [y0,y1, . . . ,yL],

(3.16)

where the superscript “>” denotes the transpose, and L is called the pencil parameter. It has been

pointed out that the best choices for L are N/3 and 2N/3, and all values satisfying N/3 ≤ L ≤ 2N/3

appear to be good choices in general [12]. In this paper, the pencil parameter L is always chosen to be

N/3 or bN/3c + 1 when N/3 is not an integer. Here and in the sequel, b·c is as usual the floor function

and bxc denotes the integer part of the number x.

3.2.1 Estimation of M

In case of noiseless observation, M is equal to the rank of X: M = rank(X). In case of the noise

contaminated observation, suppose that {σi} are the singular values of Y . Then M can be estimated by

M = #
{
σi | σi/σmax ≥ ε

}
, (3.17)

where σmax is the maximal singular value of Y and ε is a threshold. Here and in the sequel, #S denotes

the number of elements in the set S.

3.2.2 Estimation of {zi}M
i=1

In case of noiseless observation, it has been proved in [12, Theorem 2.1] that {zi}M
i=1 in (3.14) are the M

nonzero eigenvalues of the matrix X†
0X1 when M ≤ L ≤ N −M , here and in the sequel the superscript

“†” denotes the pseudoinverse. In case of the noise contaminated observation, suppose that the SVD of

Y0 is Y0 = U0Σ0V
>
0 , and the rank-M truncated pseudoinverse Y †

0,M is defined as

Y †
0,M =

M∑

i=1

1
σi

viu
∗
i , V0,MA−1U∗

0,M , (3.18)

where {σi}M
i=1 are the M largest singular values of Y0; vi’s and ui’s are the corresponding singular vectors.

The superscript “∗” in (3.18) denotes the conjugate transpose. Then the estimates of {zi}M
i=1 can be

realized by computing the M nonzero eigenvalues of Y †
0,MY1, or equivalently, the eigenvalues of the M×M

matrix

ZE = A−1U∗
0,MY1V0,M . (3.19)

And the {si}M
i=1 in (3.13) can be obtained by

si =
ln zi

Ts
, i = 1, 2, . . . , M. (3.20)
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3.2.3 Estimation of {Ri}M
i=1

Having estimated the number M of the exponential components and all the poles {zi}M
i=1, the amplitudes

Ri can be estimated by solving the following linear least squares problem

{Ri}M
i=1 = argmin

N−1∑

k=0

[
yk −

M∑

i=1

Riz
k
i

]2

. (3.21)

This subsection serves as a brief introduction of the matrix pencil method, and the interested readers

can refer to [12] for more details. It is easily seen from (3.18) that only the first M largest singular values

of Y0 are retained and other smaller ones (may be dominated by the noise) are chopped off. This is

actually the truncated singular value decomposition (TSVD) known as a regularization method, which is

based on the perturbation theory for the singular value decomposition (see, e.g., [11, Chapter 4]).

3.3 Identification algorithm

Suppose that 0 < T1 < T2 < T3 are three arbitrary positive numbers, and the control function f(t) is

chosen as in (2.17) and the corresponding observation data is {y(t) = u(0, t; f, u0)| t ∈ [T1, T3]}. In this

section, we formulate the identification for the coefficient and initial value in several steps.

Step 1: Estimate several eigenvalues of system operator A from the observation without control by the

matrix pencil method.

Specifically, let T1 = t0 < · · · < tN1 = T2 be the uniform grids of [T1, T2] with the sampling period

Ts = T2−T1
N1

, then the measured values at sample points are

yi = y(ti) =
K−1∑

k=0

(
Cnk

e−λnk
T1

)
e−(λnk

Ts)i, i = 0, 1, . . . , N1 − 1, (3.22)

where K = #K with K defined by (2.7) and {Cnk
}K−1

k=0 consists of all the nonzero elements in the series

{Cn}n∈N. Then the number M of the estimable eigenvalues and the approximate eigenvalues
{
λ̃nk

}M−1

k=0

can be obtained by virtue of the matrix pencil method following the process introduced in Sections 3.2.1

and 3.2.2.

Remark 3.2. As stated in Theorem 2.1, it is unknown whether u0(x) is orthogonal to some of the

eigenvectors {φn}n∈N. In case that 〈u0, φn〉 = 0 for some n ∈ N, then Cn = 0 and the observation has

nothing to do with Cne−λnti . It is noteworthy that the
{
λ̃nk

}M−1

k=0
recovered in Step 1 are the approximates

of some eigenvalues ofA, but may not be the first M eigenvalues, i.e., the relationships λ̃nk
≈ λk (= αk2π2)

are not always true. In fact, it is true only when nk = k or 〈u0, φk〉 6= 0 for k = 0, 1, . . . , M − 1, which

is the case mentioned in [23] where such an initial value is said to be generic and in this case the Steps 3

and 4 below are not necessary anymore. In other words, when 〈u0, φk〉 = 0 for some k, we can not always

recover α from
{
λ̃nk

}
directly.

Step 2: Estimate the coefficients
{
C̃nk

}M−1

k=0
from (3.22) by solving the linear least squares problem

min
N1−1∑

i=0

[
yi −

M−1∑

k=0

C̃nk
e−λ̃nk

ti

]2

. (3.23)
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Remark 3.3. After obtaining
{
(C̃nk

, λ̃nk
)
}M−1

k=0
, the control free part of the observation u(0, t; 0, u0) can

be estimated as

u(0, t; 0, u0) ≈
M−1∑

k=0

C̃nk
e−λ̃nk

t, t > 0. (3.24)

Step 3: Estimate an approximate value of the diffusion coefficient α by obtaining the first several eigen-

values of A through {y(t) | t ∈ [T2, T3]} by virtue of the matrix pencil method.

Similar to Step 1, let T2 = t0 < t1 < · · · < tN2 = T3 be the uniform grids of [T2, T3] with the sampling

period T ′s = T3−T2
N2

, and the control is chosen to be f(t) = 1 for t ∈ [T2, T3]. Then from (2.5) and (3.24)

we obtain
y(ti) = u(0, ti; 0, u0) + u(0, ti; f, 0)

=
∞∑

n=0

Cne−λnti −
∫ ti

0
G(ti − s, 0, 0)f(s)ds

≈
M−1∑

k=0

C̃nk
e−λ̃nk

ti − 1
3α

− T ′si +
∞∑

n=1

2
λn

e−λ′ni.

(3.25)

Let

y′i = y(ti)−
M−1∑

k=0

C̃nk
e−λ̃nk

ti + T ′si, i = 0, 1, . . . , N2 − 1, (3.26)

and

C ′
0 = − 1

3α
, λ′0 = 0; C ′

n =
2
λn

, λ′n = λnT ′s, n ∈ N∗. (3.27)

Then (3.25) becomes

y′i ≈
∞∑

n=0

C ′
ne−λ′ni, i = 0, 1, . . . , N2 − 1. (3.28)

Next, we estimate
{

(C ′
n, λ′n)

}M ′−1

n=0
from (3.28) by repeating the processes in Steps 1-2, and then α can

be obtained from (2.2) and (3.27).

Remark 3.4. The estimation for
{

(C ′
n, λ′n)

}M ′−1

n=0
from (3.28) is slightly different from that in Step 1

since none of the
{
C ′

n

}M ′−1

n=0
is zero although they are also unknown. Hence, we can recover α from the

following relations

λ′n = αn2π2T ′s, n = 1, 2, . . . , M ′ − 1, (3.29)

or

C ′
n =

2
αn2π2

, n = 1, 2, . . . , M ′ − 1. (3.30)

However, the α obtained from (3.29) may be different from that obtained from (3.30) since both {C ′
n}

and {λ′n} are estimated values rather than exact ones. In simulations, the pairs (C ′
n, λ′n) that satisfy

C ′
nλ′n ≈ 2T ′s, n = 1, 2, . . . , M ′ − 1, (3.31)

seem to be more credible to estimate α. Actually, the estimated coefficient here is only for the identification

of {nk}M−1
k=0 , which is shown in succeeding Step 4.
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Remark 3.5. It has been pointed out in [12] that the best choice for the pencil parameter L is N/3 or

2N/3 and the relation M ≤ L ≤ N − M is necessary in estimation of the poles {zi}M
i=1, from which it

is easy to deduce that the number of sample points N should be no less than 3M . Although M is also

unknown, an estimate of M , the maximum probable value of M , can be made according to Theorem

3.1 and the error level. Specifically, suppose that the error bound of the measurement is δ. Then the

remainder term e(M, t) in (3.1) can be merged into the measurement error as long as e(M, t) ≤ δ, which

can be solved based on the estimate (3.3). In this way, the number of sample points N can be chosen to

be any number satisfying N > 3M.

Step 4: Estimate α from
{
λ̃nk

}M−1

k=0
and reconstruct the initial state u0(x).

To be specific, after estimating
{(

C̃nk
, λ̃nk

)}M−1

k=0
in Steps 1-2, and recovering an approximate of α

in Step 3, we can now determine the series KM =
{
nk

}M−1

k=0
by

nk =
⌊√

λ̃nk
/(απ2)

⌉
, k = 0, 1, . . . , M − 1, (3.32)

where bxe denotes the integer nearest to x. Then, α can be estimated by

αk = λ̃nk
/(n2

kπ
2) for nk 6= 0, k = 0, 1, . . . , M − 1. (3.33)

Now we turn to the initial value. It is clear from (2.5) that

y(t) =
M̃−1∑

n=0

An(0)e−λnt + e(M̃, t), ∀ t ∈ [T0, T2), (3.34)

where T0 ∈ (0, T2). It follows from Theorem 3.1 that we can choose properly M̃ and T0 such that
∣∣∣e(M̃, t)

∣∣∣
is sufficiently small. Suppose that only observations at the sample points T0 = t0 < t1 < · · · < tN = T2

are available. Then the coefficients {An(0)} can be estimated by solving the following problem:

min
N−1∑

i=0


y(ti)−

M̃−1∑

n=0

An(0)e−αn2π2ti




2

, (3.35)

or equivalently, finding the least squares solution of the matrix equation

CA = b, (3.36)

where C is an N × M̃ matrix with the (i, j) elements

C(i, j) = e−α(j−1)2π2ti−1 , i = 1, . . . , N, j = 1, . . . , M̃ , (3.37)

and

A = [A0(0), · · · , A
M̃−1

(0)]>, b = [y(t0), · · · , y(tN−1)]>.

Since the reconstruction of the initial value is known to be ill-posed, it may result in the matrix equation

(3.36) to be ill-posed as well. In order to obtain stable results, we use the TSVD regularization method

to solve (3.36). Suppose that the SVD of matrix C is C = UCΣCV >
C , where UC = [u′1, u

′
2, · · · , u′N ]
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and VC = [v′1, v
′
2, · · · , v′

M̃
] are orthonormal matrices with the left and right singular vectors, respectively.

ΣC = diag(σ1, σ2, · · · ) is a diagonal matrix with non-negative diagonal elements being the singular values

of C. In the TSVD method, the matrix C is replaced by its rank-k approximation, and the regularized

solution is given by

Areg =
k∑

i=1

u′>i b

σi
v′i , CIb, (3.38)

where k ≤ rank(C) is the regularization parameter, which can be determined by the generalized cross-

validation (GCV) criterion [8]. The GCV criterion determines the optimal regularization parameter k by

minimizing the following GCV function:

G(k) =
‖CAreg − b‖2

(trace(IN − CCI))2
. (3.39)

Having obtained the regularized solution Areg, the initial value can be estimated by the asymptotic

Fourier series expansion:

u0(x) ≈
M̃−1∑

n=0

An(0) cos nπx. (3.40)

Remark 3.6. It is evident that the reconstructed initial value, ũ0(x), in (3.40) is an approximated Fourier

series expansion of u0(x) with the first M̃ terms. Actually, since α has been estimated, there are various

methods for the initial state reconstruction, see, e.g., [19, 29] and the references therein. Compared with

those methods, the method here is more direct and simpler.

Remark 3.7. Considering the applicability and stability of the numerical algorithm, we point out that

the choices of the sampling parameters (i.e., N1, N2, T1, T2, T3) are relatively flexible. For the numbers of

sample points N1, N2, the only requirement is that they should be large enough. For the sampling times

T1, T2, T3, they should be properly small especially when the diffusion coefficient is large. Otherwise, the

measured values at the sample points will indicate a constant trend due to the dissipative nature of heat

equation (see, e.g., Theorem 3.1), and such measured values can not provide enough information for the

inverse problems. Therefore, a feasible criterion for choosing them is that the measured values at the

sample points should display a clear trend of decay.

To end this section, we indicate that the inverse problem concerned in this paper is ill-posed. In

order to achieve good accuracy and stability, regularization methods are the most powerful and efficient

methods in solving ill-posed problems. It can be seen that matrix pencil method plays a key role in the

estimation of the diffusion coefficient, and as has been pointed out at the end of section 3.2, the TSVD

as a regularization method is contained in the matrix pencil method, which enhances the stability of the

numerical algorithm for coefficient estimation. In the last step of the identification algorithm, TSVD is

used once again in solving the ill-posed matrix equation (3.36) in order to obtain stable results for the

reconstruction of initial state.
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4 Error analysis

Noise sensitivity of the matrix pencil method for estimation of finite signal parameters from a noisy

exponential sequence is analyzed in [12]. But our case is different in two aspects. First, the number of

unknown parameters in the infinite spectral estimation is not finite. Second, the perturbation, that is,

the remainder term e(M, t) in (3.2), is not random. Our error analysis is mainly based on the estimation

of |e(M, t)| for the finite dimensional approximation in Section 3.1 and the perturbation theory for matrix

eigenvalue problems.

In this section, we establish an error analysis by applying the matrix pencil method to the infinite

spectral estimation problem (3.1). We may suppose without loss of generality that Cn 6= 0 for any n ∈ N.

In fact, we consider only the first M nonzero terms in series (3.1), where M is defined as (3.17). Let

T1 = t0 < t1 < · · · < tN−1 = T2 be the points on a uniform grid of [T1, T2] with the sampling period

Ts = T2−T1
N−1 , and the observation data at sample points, ti, are

yi = y(ti) ,
M−1∑

n=0

(
Cne−λnT1

)
zi
n + e(M, ti), (4.1)

where zn = e−λnTs . By Theorem 3.1, it follows that

|yi − xi| = |e(M, ti)| < Mαe−α0M2π2Tsi, (4.2)

where xi =
∑M−1

n=0

(
Cne−λnT1

)
zi
n and

Mα =
(√

2 +
1

4Mπ2α0T1

)
M0e

−α0M2π2T1 . (4.3)

Define the matrices X0, Y0, X1, Y1 as (3.15)-(3.16). Theorem 4.1 below gives the bounds of ‖Y0 −X0‖F

and ‖Y1 −X1‖F , where ‖ · ‖F denotes the matrix Frobenius norm.

Theorem 4.1. Suppose that the number of sample points N > 9 and

θ = 2α0M
2π2Ts. (4.4)

Then

‖Y0 −X0‖F < Mα

√
Mθ,L + (1 + θ−1)2, (4.5)

and

‖Y1 −X1‖F < Mα

√
Mθ,L+1 + (θ−1 + θ−2) e−θ, (4.6)

where Mα is defined in (4.3) and

Mθ,L =





e−θ, θ ≥ 1,

2θ−1e−1, (L− 1)−1 < θ < 1,

(L− 1)e−(L−1)θ, 0 < θ ≤ (L− 1)−1.

(4.7)
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Proof. Notice that the matrix obtained from X0 with its columns flipped in the left-right direction admits

the Hankel structure ([7, p.339]) and so is Y0, it is easy to deduce from the definition of Frobenius norm

that

‖Y0 −X0‖2
F =

L−1∑

i=0

(i + 1) |yi − xi|2 +
L∑

i=1

i |yN−1−i − xN−1−i|2 + L

N−L−2∑

i=L

|yi − xi|2

≤ M2
α

[ L−1∑

i=0

ie−θi +
L−1∑

i=0

e−θi +
L∑

i=1

ie−θ(N−1−i) + L
N−L−2∑

i=L

e−θi

]

, M2
α [S1 + S2 + S3 + S4] .

To estimate S1, we introduce

f(x) = xe−θx, x ≥ 0, (4.8)

which satisfies

f ′(x) = (1− θx)e−θx, x ≥ 0.

There are three different cases according to the values of θ.

Case 1: θ ≥ 1. In this case, f ′(x) ≤ 0 for x ≥ 1. Hence

ie−θi ≤
∫ i

i−1
xe−θxdx, i = 2, 3, . . . , L− 1. (4.9)

Therefore,

S1 = e−θ +
L−1∑

i=2

ie−θi ≤ e−θ +
L−1∑

i=2

∫ i

i−1
xe−θxdx = e−θ +

∫ L−1

1
xe−θxdx.

Case 2: 1
L−1 < θ < 1. In this case, f ′(x) ≥ 0 for 0 ≤ x ≤ θ−1, and f ′(x) < 0 for x > θ−1, which imply

f(x) ≤ f(θ−1) = θ−1e−1, x ≥ 0,

and

ie−θi ≤
∫ i+1

i
xe−θxdx, i = 1, . . . ,

⌊
θ−1

⌋− 1, (4.10)

ie−θi ≤
∫ i

i−1
xe−θxdx, i =

⌊
θ−1

⌋
+ 2, . . . , L− 1. (4.11)

Thus, we have

S1 ≤
b 1

θ
c−1∑

i=1

∫ i+1

i
xe−θxdx + f

(⌊
θ−1

⌋)
+ f

(⌊
θ−1

⌋
+ 1

)
+

L−1∑

i=b 1
θ
c+2

∫ i

i−1
xe−θxdx

≤
∫ b 1

θ
c

1
xe−θxdx + 2f

(
θ−1

)
+

∫ L−1

b 1
θ
c+1

xe−θxdx

≤ 2
θ
e−1 +

∫ L−1

1
xe−θxdx.

Case 3: 0 < θ ≤ 1
L− 1

. In this case, f ′(x) ≥ 0 for 0 ≤ x ≤ L− 1. Hence

ie−θi ≤
∫ i+1

i
xe−θxdx, i = 1, . . . , L− 2. (4.12)
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Therefore,

S1 ≤ (L− 1)e−(L−1)θ +
L−2∑

i=1

∫ i+1

i
xe−θxdx = (L− 1)e−(L−1)θ +

∫ L−1

1
xe−θxdx.

Combining the three cases discussed above gives

S1 ≤ Mθ,L +
∫ L−1

1
xe−θxdx = Mθ,L +

1
θ

(
1 +

1
θ

)
e−θ − 1

θ

(
L− 1 +

1
θ

)
e−θ(L−1), (4.13)

where Mθ,L is defined in (4.7).

An analogous analysis of S2, S3, and S4 gives

S2 ≤ 1 +
1
θ
− 1

θ
e−θ(L−1),

S3 ≤ 1
θ
e−θ(N−2)

[(
L + 1− 1

θ

)
eθL +

1
θ
− 1

]
, Mθ,N , (4.14)

S4 ≤ L

θ

[
e−θ(L−1) − e−θ(N−L−2)

]
.

A simple calculation shows that when N > 9,

Mθ,N <
1
θ2

e−θ(L−1) +
L

θ
e−θ(N−L−2). (4.15)

Consequently,

S1 + S2 + S3 + S4 ≤ Mθ,L +
1
θ

(
1 +

1
θ

)
e−θ − 1

θ

(
L− 1 +

1
θ

)
e−θ(L−1) + 1 +

1
θ

−1
θ
e−θ(L−1) + Mθ,N +

L

θ

[
e−θ(L−1) − e−θ(N−L−2)

]

= Mθ,L +
1
θ

(
1 +

1
θ

)
e−θ − 1

θ2
e−θ(L−1) + 1 +

1
θ

+ Mθ,N − L

θ
e−θ(N−L−2)

< Mθ,L +
(

1 +
1
θ

)2

.

Hence,

‖Y0 −X0‖F < Mα

√
Mθ,L + (1 + θ−1)2.

By applying similar analysis to ‖Y1−X1‖F , we can achieve the estimation (4.6). The details are omitted.

This completes the proof of the theorem.

Suppose the singular values of Y0 are σ(Y0) = {σi} and Y0,M is the rank-M truncated approximation

of Y0 defined by

Y0,M = U0,MAV >
0,M . (4.16)

Now we are in a position to give an error analysis for the infinite spectral estimation problem (3.1) using

the matrix pencil method.
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Theorem 4.2. Let σ1 ≥ σ2 ≥ · · · ≥ σM be the first M singular values of the matrix Y0, and assume that

Y †
0,MY1 is diagonalizable, i.e., Y †

0,MY1 = XM Λ̃MX−1
M , where

Λ̃M = diag(z̃1, . . . , z̃M , 0, . . . , 0), z̃1 ≥ z̃2 ≥ · · · ≥ z̃M .

The nonzero eigenvalues of the matrix X†
0X1 are supposed to be

ΛM = {z1, z2, . . . , zM}, z1 ≥ z2 ≥ · · · ≥ zM .

Let Mα, θ, Mθ,L be defined as in (4.3), (4.4), (4.7), respectively, and let

ρ =
[
‖Y0,M − Y0‖2 + Mα

√
Mθ,L + (1 + θ−1)2

]/
σM . (4.17)

If ρ < 1, then

|z̃n − zn| < κ(XM )
σM · (1− ρ)

[
1 +

√
5

2
ρ‖Y1‖2 + Mα

√
Mθ,L+1 + (θ−1 + θ−2) e−θ

]
. (4.18)

In particular, if θ >
1

L− 1
, then

|z̃n − zn| < κ(XM ) · ρ
σM · (1− ρ)

[
1 +

√
5

2
‖Y1‖2 + σM

]
. (4.19)

Proof. We need to estimate the matrix norm
∥∥∥Y †

0,MY1 −X†
0X1

∥∥∥
2

first, which is done as follows:

∥∥∥Y †
0,MY1 −X†

0X1

∥∥∥
2

=
∥∥∥Y †

0,MY1 −X†
0Y1 + X†

0Y1 −X†
0X1

∥∥∥
2

≤
∥∥∥Y †

0,MY1 −X†
0Y1

∥∥∥
2
+

∥∥∥X†
0Y1 −X†

0X1

∥∥∥
2

≤
∥∥∥Y †

0,M −X†
0

∥∥∥
2
· ‖Y1‖2 +

∥∥∥X†
0

∥∥∥
2
· ‖Y1 −X1‖2.

Since Y0,M is the rank-M truncated matrix of Y0, rank(X0) = M = rank(Y0,M ). An application of [22,

Theorem 3.4] yields

∥∥∥Y †
0,M −X†

0

∥∥∥
2
≤ 1 +

√
5

2

∥∥∥Y †
0,M

∥∥∥
2
·
∥∥∥X†

0

∥∥∥
2
· ‖Y0,M −X0‖2 . (4.20)

Hence,

∥∥∥Y †
0,MY1 −X†

0X1

∥∥∥
2
≤ 1 +

√
5

2

∥∥∥Y †
0,M

∥∥∥
2
·
∥∥∥X†

0

∥∥∥
2
· ‖Y0,M −X0||2 · ‖Y1‖2 +

∥∥∥X†
0

∥∥∥
2
· ‖Y1 −X1‖2. (4.21)

Since
∥∥∥Y †

0,M

∥∥∥
2

= σ−1
M ,

‖Y0,M −X0‖2 ·
∥∥∥Y †

0,M

∥∥∥
2
≤ (‖Y0,M − Y0‖2 + ‖Y0 −X0‖F

) ·
∥∥∥Y †

0,M

∥∥∥
2

< ρ,

where the last inequality is based on the estimation of ‖Y0−X0‖F in Theorem 4.1. Since ρ < 1, it follows

from [28, Lemma 3.1] that

∥∥∥X†
0

∥∥∥
2
≤

∥∥∥Y †
0,M

∥∥∥
2

1−
∥∥∥Y †

0,M

∥∥∥
2
· ‖Y0,M −X0‖2

<
1

(1− ρ)σM
. (4.22)
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As a result,

∥∥∥Y †
0,MY1 −X†

0X1

∥∥∥
2

<
1

(1− ρ) · σM

[
1 +

√
5

2
ρ‖Y1‖2 + ‖Y1 −X1||F

]
.

By [3, Theorem 3], we have

|z̃n − zn| ≤ κ(XM ) ·
∥∥∥Y †

0,MY1 −X†
0X1

∥∥∥
2

<
κ(XM )

(1− ρ) · σM

[
1 +

√
5

2
ρ‖Y1‖2 + ‖Y1 −X1||F

]

<
κ(XM )

σM · (1− ρ)

[
1 +

√
5

2
ρ‖Y1‖2 + Mα

√
Mθ,L+1 + (θ−1 + θ−2) e−θ

]
.

In particular, if θ >
1

L− 1
, it follows from the definition of Mθ,L in (4.7) that

Mθ,L+1 = Mθ,L, θ >
1

L− 1
. (4.23)

On the other hand, since
1
θ

(
1 +

1
θ

)
e−θ <

(
1 +

1
θ

)2

, θ > 0,

it follows from (4.23) that
√

Mθ,L+1 + (θ−1 + θ−2) e−θ <

√
Mθ,L + (1 + θ−1)2,

and then

|z̃n − zn| <
κ(XM )

σM · (1− ρ)

[
1 +

√
5

2
ρ‖Y1‖2 + Mα

√
Mθ,L + (1 + θ−1)2

]

=
κ(XM )

σM · (1− ρ)

[
1 +

√
5

2
ρ‖Y1‖2 + ρ · σM − ‖Y0,M − Y0‖2

]

<
κ(XM ) · ρ

σM · (1− ρ)

[
1 +

√
5

2
‖Y1‖2 + σM

]
.

This ends the proof of the theorem.

Remark 4.1. By zn = e−λnTs , we can also obtain an error estimation |λ̃n − λn|, between the estimated

eigenvalues and the exact eigenvalues, that is (for θ > 1
L−1),

|λ̃n − λn| = | ln z̃n − ln zn|
Ts

=
|z̃n − zn|
Ts · z̄n

<
κ(XM ) · ρ

σM (1− ρ)Ts · z̄n

[
1 +

√
5

2
‖Y1‖2 + σM

]
, (4.24)

where the mean value theorem has been applied in the second equality and z̄n is between z̃n and zn. In

addition, we can choose z̄ = z̃n in case of |z̃n − zn| ¿ |z̃n|.

Remark 4.2. We point out that the estimation seems hard to improve further. It can be seen that the

estimation of
∥∥∥Y †

0,MY1 −X†
0X1

∥∥∥
2

plays a key role in the proof of Theorem 4.2. The condition ρ < 1 is

mainly for the estimation of
∥∥∥X†

0

∥∥∥, which becomes extremely complicated for ρ ≥ 1 due to the unknown

nature of X0. However, by (4.17), since the value of ρ is determined by M (determined by ε in (3.17))

and T1, the parameters ε and T1 can be chosen appropriately in applications to make ρ relatively small,

and from (4.19), the error bound becomes smaller as ρ/σM becomes smaller.
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5 Numerical simulation

In this section, two numerical examples are presented to illustrate the performance of the algorithm devel-

oped in Section 3, and all the numerical results are obtained in Matlab. It is known that the observation

data are inevitably contaminated by some measurement errors. In the numerical computations, the noisy

data are generated by adding a random perturbation, i.e.,

ỹ(ti) = y(ti)(1 + δ · rand(i)), (5.1)

where δ indicates the noise level and rand(i) generates the random number between [−1, 1].

Example 5.1. Suppose the diffusion coefficient α∗ = 0.1 and initial value u∗0(x) = x−9 cos πx+5 cos 3πx

in system (1.1). Since 〈u∗0, φ2n〉 = 0, n ∈ N∗, this initial value is not generic ([23]). The observation

y(t) = u(0, t; f, u∗0) is obtained by solving the direct problem (1.1) with the Crank-Nicolson method ([6]),

where the step sizes for time ∆t = 0.001 and for space ∆x = 0.01.

For the case of this inverse problem, the time interval is chosen to be [T1, T2, T3] = [0.1, 0.6, 1.1] since

the measured values indeed display a trend of decay (attributed to small α). The number of sample points

N1 = N2 = 50, the pencil parameters L = L′ = 17 and the sampling period Ts = T ′s = 0.01. For noise

free measured data, i.e., δ = 0 in (5.1), we can obtain the estimated
{

C̃nk
, λ̃nk

, λ′n, α
}

by following the

Steps 1-3 in Section 3.3, and we can also determine the series KM by (3.32) following Step 4. The results

are partially presented in Table 1, and the coefficient estimation through (3.33) is α∗ ≈ 0.1000. Then the

initial value u0(x) can be estimated by the Fourier series expansion (3.40) by solving the matrix equation

(3.36) with TSVD. The results are given in Figure 2, from which we can see that the numerical result is

quite accurate.

Table 1: The estimated
{

C̃nk
, λ̃nk

, λ′n, α, nk, αk

}
following Steps 1-4

n(or k) C̃nk
λ̃nk

100 ∗ λ′n α nk αk

0 0.5000 0.0000 -0.0105 – 0 –

1 -9.4053 0.9869 1.0630 0.1077 1 0.1000

2 4.9549 8.8761 4.3056 0.1091 3 0.0999

3 -0.0162 24.6246 9.9040 0.1115 5 0.0998

4 -0.0083 48.1762 18.2243 0.1154 7 0.0996

Similar to the identification process for the noise free case, numerical results for identification of α from

noisy data with various relative noise levels δ = 0.5%, 1% are found to be 0.1087 and 0.1124, respectively,

and the corresponding initial values are presented in Figure 2, which shows that the estimated initial

values are reasonably in agreement with the real initial data.
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Figure 2: The initial values for Example 5.1 for various levels of noise

Example 5.2. Suppose the diffusion coefficient α∗ = 10 and initial value u∗0(x) = x2−x4+e−2x cos x. The

observation y(t) = u(0, t; f, u∗0) is obtained by solving the direct problem (1.1) with the Crank-Nicolson

method. For the inverse problem, the time interval is chosen to be [T1, T2, T3] = [0.0001, 0.1001, 0.2001],

which is much smaller than that in Example 5.1 since the measured values in larger time intervals are

almost constants (attributed to large α) which cannot be used for identification. The number of sample

points N1 = N2 = 100, the pencil parameters L = L′ = 34 and the sampling period Ts = T ′s = 0.001.

The numerical results of diffusion coefficient for various noise levels in the cases of δ = 0, 0.5%, 1%

are 10.0000, 10.2810, 10.9125, respectively, and the corresponding estimated initial values are shown in

Figure 3. Although the accuracy of the reconstruction does not seem to be as good as that in Example

5.1, we still obtain the overall shape of the initial value. The reason for the low accuracy lies in the larger

diffusion coefficient which leads to more severe ill-posedness.

Figure 3: The initial values for Example 5.2 for various levels of noise
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6 Concluding remarks

In this paper, we represent the boundary observation with boundary Neumann control for a one-dimensional

heat equation into a Dirichlet series in terms of spectrum determined by the diffusivity and coefficients

determined by the initial value. The identification of diffusion coefficient and initial value is therefore

transformed into an inverse problem of reconstruction of spectrum-coefficient data from the observation.

Taking the first finite terms of the series, the problem happens to be an inverse problem of finite ex-

ponential sequence with deterministic small perturbation. We are thus able to develop an algorithm to

reconstruct simultaneously the diffusion coefficient and initial value by the matrix pencil method which

is used in signal processing. An error analysis is presented and a numerical experiment is carried out to

validate the efficiency and accuracy of the proposed algorithm. The method developed is promising and

can be applied in identification of variable coefficients and other PDEs.
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