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Abstract

The present paper is devoted to the numerical approximation of an abstract stochastic nonlin-
ear evolution equation in a separable Hilbert space H. Examples of equations which fall into our
framework include the GOY and Sabra shell models and a class of nonlinear heat equations. The
space-time numerical scheme is defined in terms of a Galerkin approximation in space and a semi-
implicit Euler–Maruyama scheme in time. We prove the convergence in probability of our scheme
by means of an estimate of the error on a localized set of arbitrary large probability. Our error esti-
mate is shown to hold in a more regular space Vβ � H with β P r0, 1

4 q and that the explicit rate of
convergence of our scheme depends on this parameter β.

Keywords: Goy and Sabra shell model, nonlinear heat equation, Galerkin approximation, time
discretization, fully implicit scheme, semi-implicit scheme, convergence in probability

1. Introduction

Throughout this paper we fix a complete filtered probability space U � pΩ, F , F, Pq with the
filtration F � tFt; t ¥ 0u satisfying the usual conditions. We also fix a separable Hilbert space
H equipped with a scalar product p�, �q with the associated norm | � | and another separable Hilbert
space H . In this paper, we analyze numerical approximations for an abstract stochastic evolution
equation of the form #

du � �rAu� Bpu, uqsdt� GpuqdW, t P r0, Ts,

up0q � u0,
(1.1)

where hereafter T ¡ 0 is a fixed number and A is a self-adjoint positive operators on H. The
operators B and G are nonlinear maps satisfying several technical assumptions to be specified later
and W � tWptq; 0 ¤ t ¤ Tu is a H -valued Wiener process.

The abstract equation (1.1) can describe several problems from different fields including math-
ematical finance, electromagnetism, and fluid dynamic. Stochastic models have been widely used
to describe small fluctuations or perturbations which arise in nature. For a more exhaustive in-
troduction to the importance of stochastic models and the analysis of stochastic partial differential
equations, we refer the reader to [18, 32, 37, 40, 42].

Numerical analysis for stochastic partial differential equations (SPDEs) has known a strong inter-
est in the past decades. Many algorithms which are based on either finite difference or finite element
methods or spectral Galerkin methods (for the space discretization) and on either Euler schemes or
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Crank-Nicholson or Runge-Kutta schemes (for the temporal discretization) have been introduced
for both the linear and nonlinear cases and their rate of convergence have been investigated widely.
Here we should note that the orders of convergence that are frequently analyzed are the weak and
strong orders of convergence. The literature on numerical analysis for SPDEs is now very extensive.
Without being exhaustive, we only cite amongst other the recent papers [38, 16, 24, 1, 15], the excel-
lent review paper [33] and references therein. Most of the literature deals with the stochastic heat
equations with globally Lipschitz nonlinearities, but there are also several papers that treat abstract
stochastic evolution equations. For example, Gyongy and Millet in [31] investigated a general evo-
lution equation with an operator that has the strong monotone and global Lipschitz properties. They
were able to implement a space-time discretization and showed a rate of convergence in mean under
appropriate assumptions. Similar rate of convergence have been obtained by Bessaih and Schurz
in [8] for an equation with globally Lipschitz nonlinearities. When a system of SPDEs with non-
globally Lipschitz nonlinearities, such as the stochastic Navier-Stokes equations, is considered the
story is completely different. Indeed, in this case the rate of convergence obtained is generally only
in probability. This kind of convergence was introduced for the first time by Printems in [41] and
is well suited for SPDEs with locally Lipschitz coefficients. When the stochastic perturbation is in
an additive form (additive noise), then using a path wise argument one can prove a convergence in
mean, we refer to Breckner in [10]. Let us mention that in this case, no rate of convergence can be
deduced.

Recent literature involving nonlinear models with nonlinearities which are locally Lipschitz are
[28, 17, 11, 5] and references therein. In [11] martingale solutions to the incompressible Navier-Stokes
equations with Gaussian multiplicative noise are constructed from a finite element based space-time
discretizations. The authors of [17] proved the convergence in probability with rates of an explicit
and an implicit numerical schemes by means of a Gronwall argument. The main issue when the
term B is not globally Lipschitz lies on its interplay with the stochastic forcing, which prevents a
Gronwall argument in the context of expectations. This issue is for example solved in [10, 14] by the
introduction of a weight, which when carefully chosen contributes in removing unwanted terms and
allows to use Gronwall lemma. In [17], the authors use different approach by computing the error
estimates on a sample subset Ωk � Ω with large probability. In particular, the set Ωk is carefully
chosen so that the random variables ‖∇u`‖L2 are bounded as long as the events are taken in Ωk, and
limk×0 PpΩzΩkq � 0. The result is then obtained using standard arguments based on the Gronwall
lemma. Other kinds of numerical algorithms have been used in [5] for a 2D stochastic Navier-Stokes
equations. There, a splitting up method has been used and a rate of convergence in probability is
obtained. A blending of a splitting scheme and the method of cubature on Wiener space applied to a
spectral Galerkin discretisation of degree N is used in [28] to approximate the marginal distribution
of the solution of the stochastic Navier- Stokes equations on the two-dimensional torus and rates of
convergence are also given. For the numerical analysis of other kind of stochastic nonlinear models
that enjoy the local Lipschitz condition, without being exhaustive, we refer to [25, 26, 9, 20] and
references therein. They include the stochastic Schrödinder, Burgers and KDV equations.

In the present paper, we are interested in the numerical treatment of the abstract stochastic evo-
lution equations (1.1). We first give a simple and short proof of the existence and uniqueness of a
mild solution and study the regularity of this solution. The result about the existence of solution is
based on a fixed point argument recently developed in [12]. Then, we discretize (1.1) using a coupled
Galerkin method and (semi-)implicit Euler scheme and show convergence in probability with rates
in Vβ :� DpAβq. Regarding our approach it is similar to [17] and [41], however, the results are differ-
ent. Indeed, while [17] and [41] establish their rates of convergence in the space H where the solution
lives, we establish our rate of convergence in Vβ � H where β P r0, 1

4 q is arbitrary. Hence, our result
does not follow from the papers [17] and [41]. In contrast to the nonlinear term of Navier–Stokes
equations with periodic boundary condition treated in [17], our nonlinear term does not satisfy the
property xBpu, uq, Auy � 0 which plays a crucial role in the analysis in [17]. We should also point out
that our model does not fall into the general framework of the papers [31] and [8], see Remark 2.2.

Examples of semilinear equations which fall into our framework include the GOY and Sabra shell
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models. These toy models are used to mimic some features of turbulent flows. It seems that our work
is the first one rigorously addressing the numerical approximation of such models. Our result also
confirm that, in term of numerical analysis, shell models behave far better than the Navier-Stokes
equations. On the theoretical point of view, we provide a new and simple proof of the existence of
solutions to stochastic shell models driven by Gaussian multiplicative noise. On the physical point
of view, it is also worth mentioning that shell models of turbulence are toy models which consist
of infinitely many nonlinear differential equations having a structure similar to the Fourier repre-
sentation of the Navier-Stokes equations, see [27]. Moreover, they capture quite well the statistical
properties of three dimensional Navier-Stokes equations, like the Kolmogorov energy spectrum and
the intermittency scaling exponents for the high-order structure functions, see [27] and [29]. Due to
their success in the study of turbulence, new shell models have been derived by several prominent
physicists for the investigation of the turbulence in magnetohydrodynamics, see for instance [39].

Another example of system of equations which falls into our framework is a class of nonlinear
heat equations described in Section 5. We do not know whether our results can cover the numeri-
cal analysis of 1D stochastic nonlinear heat equations driven by additive space-time noise. Despite
this fact we believe that our paper is still interesting as we are able to treat a class of 2D stochastic
nonlinear heat equations with locally Lipschitz coefficients and we are not aware of results similar
to ours. In fact, most of results related to stochastic heat equations are either about 1D model, or
d-dimensional, d P t1, 2, 3u, models with globally Lipschitz coefficients and deal with weak conver-
gence or convergence in weaker norm, see for instance [38, 16, 24, 1].

This paper is organized as follows: in Section 2, we introduce the necessary notations and the
standing assumptions that will be used in the present work. In Section 3, we present our numerical
scheme and also discuss the stability and existence of solution at each time step. The convergence of
the proposed method is presented in Section 4. In Section 5 we present the stochastic shell models
for turbulence and a class of stochastic nonlinear heat equations as motivating examples.

2. Notations, assumptions, preliminary results and the main theorem

In this section we introduce the necessary notations and the standing assumptions that will be
used in the present work. We will also introduce our numerical scheme and state our main result.

2.1. Assumptions and notations

Throughout this paper we fix a separable Hilbert space H with norm | � | and a fixed orthonormal
basis tψn; n P Nu. We assume that we are given a linear operator A : DpAq � H Ñ H which is a
self-adjoint and positive operator such that the fixed orthonormal basis tψn; n P Nu satisfies

tψn; n P Nu � DpAq, Aψn � λnψn,

for an increasing sequence of positive numbers tλn; n P Nu with λn Ñ 8 as n Õ 8. It is clear that
�A is the infinitesimal generator of an analytic semigroup e�tA, t ¥ 0, on H. For any α P R the
domain of Aα denoted by Vα � DpAαq is a separable Hilbert space when equipped with the scalar
product

ppu, vqqα �
8̧

k�1

λ2α
k ukvk, for u, v P Vα. (2.1)

The norm associated to this scalar product will be denoted by }u}α, u P Vα. In what follows we set
V :� DpA

1
2 q.

Next, we consider a nonlinear map Bp�, �q : V�V Ñ V� satisfying the following set of assump-
tions, where hereafter V� denotes the dual of the Banach space V.
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(B1) There exists a constant C0 ¡ 0 such that for any θ P r0, 1
2 q and γ P p0, 1

2 q satisfying θ � γ P p0, 1
2 s,

we have

}Bpu, vq�Bpx, yq}�θ ¤

$'''''&
'''''%

C0}u� x} 1
2�pθ�γqp}v}γ � }y}γq � }v� y}γp}u} 1

2�pθ�γq � }x} 1
2�pθ�γqq

for any u, x P V 1
2�pθ�γq and v, y P Vγ,

C0p}u}γ � }x}γq}v� y} 1
2�pθ�γq � }u� x}γp}v} 1

2�pθ�γq � }y} 1
2�pθ�γqq

for any v, y P V 1
2�pθ�γq and u, x P Vγ.

(2.2)
Due to the continuous embedding V�θ � V� 1

2
, θ P r0, 1

2 q, (2.2) holds with θ and 1
2 � pθ � γq

respectively replaced by 1
2 and 1

2 � γ where γ ¡ 0 is arbitrary.

In addition to the above, we assume that for any ε ¡ 0 there exists a constant C ¡ 0 such that

|Bpu, vq| ¤ C|u|‖v‖ 1
2�ε, for any u P H, v P V 1

2�ε. (2.3)

(B2) We also assume that for any u, v P V

xAv� Bpu, vq, vy ¥ }v}2
1
2
. (2.4)

(B3) We assume that for any u P H we have

Bp0, uq � Bpu, 0q � 0. (2.5)

Note that Assumptions (B1) and (B3) imply

(B1)1 There exists a constant C0 ¡ 0 such that for any numbers θ P r0, 1
2 q and γ P p0, 1

2 q satisfying
θ � γ P p0, 1

2 s, we have

}Bpu, vq}�θ ¤ C0

$&
%
}u} 1

2�pθ�γq}v}γ for any u P V 1
2�pθ�γq and v P Vγ,

}u}γ}v} 1
2�pθ�γq for any v P V 1

2�pθ�γq, and u P Vγ.
(2.6)

If θ � 1
2 , then (2.6) holds with 1

2 � pθ � γq replaced by 1
2 � γ where γ ¡ 0 is arbitrary.

Let twj; j P Nu be a sequence of mutually independent and identically distributed standard Brow-
nian motions on U. Let H be separable Hilbert space and L1pH q be the space of all trace class
operators on H . Recall that if Q P L1pH q is a symmetric, positive operator and tϕj; j P Nu is an
orthonormal basis of H consisting of eigenvectors of Q, then the series

Wptq �
8̧

j�1

a
qjwjptqϕj, t P r0, Ts,

where tqj; j P Nu are the eigenvalues of Q, converges in L2pΩ; Cpr0, Ts; H qq and it defines an H -
valued Wiener process with covariance operator Q. Furthermore, for any positive integer ` ¡ 0 there
exists a constant C` ¡ 0 such that

E}Wptq �Wpsq}2`
H ¤ C`|t� s|` pTr Qq` , (2.7)

for any t, s ¥ 0 with t � 0. Before proceeding further we recall few facts about stochastic integral. Let
K be a separable Hilbert space, L pH , Kq be the space of all bounded linear K-valued operators de-
fined on H , M 2

TpKq be the space of all equivalence classes of F-progressively measurable processes
Ψ : Ω� r0, Ts Ñ K satisfying

E

» T

0
}Ψpsq}2

Kds   8.
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If Q P L1pH q is a symmetric, positive and trace class operator then Q
1
2 P L2pH q and for any

Ψ P L pH , Kq we have Ψ � Q
1
2 P L2pH , Kq, where L2pH , Kq (with L2pH q :� L2pH , H q) is the

Hilbert space of all operators Ψ P L pH , Kq satisfying

}Ψ}2
L2pH ,Kq �

8̧

j�1

}Ψϕj}
2
K   8.

Furthermore, from the theory of stochastic integration on infinite dimensional Hilbert space, see [21],
for any L pH , Kq-valued process Ψ such that Ψ � Q1{2 P M 2

TpL2pH , Kqq the process M defined by

Mptq �
» t

0
ΨpsqdWpsq, t P r0, Ts,

is a K-valued martingale. Moreover, we have the following Itô’s isometry

E

�����
» t

0
ΨpsqdWpsq

����
2

K



� E

�» t

0
}ΨpsqQ

1
2 }2

L2pH ,Kqds



,@t P r0, Ts, (2.8)

and the Burkholder-Davis-Gundy inequality

E

�
sup

0¤s¤t

����
» s

0
ΨpτqdWpτq

����
q

K



¤ CqE

�» t

0
}ΨpsqQ

1
2 }2

L2pH ,Kqds

 q

2
,@t P r0, Ts,@q P p1,8q. (2.9)

Now, we impose the following set of conditions on the nonlinear term Gp�q and the Wiener process
W.

(N) Let H be a separable Hilbert space. We assume that the driving noise W is a H -valued Wiener
process with a positive and symmetric covariance operator Q P L1pH q.

(G) We assume that the nonlinear function G : H Ñ L pH , V 1
4
q is measurable and that there exists

a constant C1 ¡ 0 such that for any u P H, v P H we have

}Gpuq � Gpvq}L pH ,V 1
4
q ¤ C1|u� v|.

Remark 2.1.

(a) Note that the above assumption implies that G : H Ñ L pH , Hq is globally Lipschitz and of at
most linear growth, i.e, there exists a constant C2 ¡ 0 such that

}Gpuq � Gpvq}L pH ,Hq ¤ C2|u� v|,

|Gpuq| ¤ C2p1� |u|q,

for any u, v P H.

(b) There also exists a number C3 ¡ 0 such that

}Gpuq � Gpvq}L pH ,V 1
4
q ¤ C3}u� v} 1

4
,

}Gpuq}L pH ,V 1
4
q ¤ C3p1� }u} 1

4
q,

for any u, v P V 1
4
.

(c) Owing to item (a) of the present remark, if u P M 2
TpHq, then Gpuq � Q

1
2 P M 2

TpL2pH , Hqq and
the stochastic integral

³t
0 GpupsqqdWpsq is a well defined H-valued martingale.

To close the current subsection we formulate the following remark.
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Remark 2.2. Our assumptions on our problem do not imply the assumptions in either [31] or [8]. To
justify this claim assume that the coefficient of the noise G of our paper and those of [31] and [8] are
both zero. Let us now set

Apt, uq � �Au� Bpu, uq,

which basically corresponds to the drift in both [31] and [8]. For the sake of simplicity we take θ � 0
and γ � 1

4 in our assumption (B1). The spaces H and V in [31] and [8] are respectively V0 and V 1
2

in
our framework. The map Apt, uq defined above satisfies

xApt, uq � Apt, vq, u� vy ¤ �|u� v|2 � C0|u� v|‖u� v‖ 1
4

�
‖u‖ 1

4
� ‖v‖ 1

4

	
.

This implies that our assumptions does not imply either [31, Assumptions 2.1(i) and (2.2)(1)] or [8,
Assumption (H2)].

2.2. Preliminary results

In this subsection we recall and derive some results that will be used in the remaining part of the
paper. To this end, we first define the notion of solution of (1.1).

Definition 2.3. An F-adapted process u is called a weak solution of (1.1) (in the sense of PDEs) if the
following conditions are satisfied

(i) u P L2p0, T; Vq X Cpr0, Ts; Hq P-a.s.,

(ii) for every t P r0, Ts we have P-a.s.

puptq, φq � pu0, φq �

» t

0
pxAupsq � Bpupsq, upsqq, φyq ds�

» t

0
xφ, GpupsqqdWpsqy, (2.10)

for any φ P V.

Definition 2.4. An F-adapted process u P Cpr0, Ts; Hq P-a.s. is called a mild solution to (1.1) if for
every t P r0, Ts,

uptq � e�tAu0 �

» t

0
e�pt�rqABpuprq, uprqqdr �

» t

0
e�pt�rqAGpuprqqdWprq, P-a.s. (2.11)

Remark 2.5. Observe that if u P L2p0, T; Vq X Cpr0, Ts, Hq is a mild solution to (1.1), then for any
t ¡ s ¥ 0,

uptq � e�pt�sqAupsq �
» t

s
e�pt�rqABpuprq, uprqqdr �

» t

s
e�pt�rqAGpuprqqdWprq, P-a.s.

In fact, we have

uptq �e�pt�sqA
�

e�sAu0 �

» s

0
e�ps�rqABpuprq, uprqqdr �

» s

0
e�ps�rqAGpuprqqdWprq




�

» t

s
e�pt�rqABpuprq, uprqqdr �

» t

s
e�pt�rqAGpuprqqdWprq

�e�pt�sqAupsq �
» t

s
e�pt�rqABpuprq, uprqqdr �

» t

s
e�pt�rqAGpuprqqdWprq, P-a.s.

This remark is used later to prove a very important lemma for our analysis, see Lemma 4.1.
Next, we state and give a short proof of the following results.
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Proposition 2.6. If the assumptions (B1) to (B3) hold and (G) is satisfied with V 1
4

replaced by H and u0 P

L2pΩ, Hq, then the problem (1.1) has a unique global mild, which is also a weak, solution u. Moreover, if
u0 P L2ppΩ, Hq for any real number p P r2, 8s, then there exists a constant C ¡ 0 such that

E sup
tPr0,Ts

|uptq|2p �E

» T

0
|upsq|2p�2|A

1
2 upsq|2ds ¤ Cp1�E|u0|2pq, (2.12)

and

E

�» T

0
|A

1
2 upsq|2ds

�p

¤ Cp1�E|u0|2pq. (2.13)

If, in addition, Assumption (G) is satisfied and u0 P LppΩ, V 1
4
q with p P r2, 8s, then there exists a constant

C ¡ 0 such that

E sup
tPr0,Ts

}uptq}p
1
4
�E

�» T

0
}upsq}2

3
4
ds

�p

¤ Cp1�E}u0}
p
1
4
� pE|u0|2pq2q. (2.14)

Proof. Let us first prove the existence of a local mild solution. For this purpose, we study the prop-
erties of B in order to apply a contraction principle as in [12, Theorem 3.15]. Let Bp�q be the mapping
defined by Bpxq � Bpx, xq for any x P Vβ. Let β P p0, 1

2 q. Using Assumptions (B1) with θ � 1
2 � β,

γ � β, we derive that

}Bpxq � Bpyq}β� 1
2
¤ C0|x� y|p}x}β � }y}βq � C}x� y}βp|x| � |y|q, (2.15)

for any x, y P Vβ. Since, by [43, Theorem 1.18.10, pp 141], Vβ coincides with the complex interpolation

rH, DpA
1
2 qs2β, we infer from the interpolation inequality [43, Theorem 1.9.3, pp 59] and (2.15) that

}Bpxq � Bpyq}β� 1
2
¤ C0|x� y|p|x|1�2β}x}2β

1
2
� |y|1�2β}y}2β

1
2
q � C}x� y}2β

1
2
|x� y|1�2βp|x| � |y|q, (2.16)

for any x, y P V. Now, we denote by XT the Banach space Cpr0, Ts; Hq X L2p0, T; Vq endowed with
the norm

}x}XT � sup
tPr0,Ts

|xptq| �
�» T

0
}xptq}2

1
2
dt

 1

2
.

We recall the following classical result, see [22, Theorem 3, pp 520].

The linear map Λ : L2p0, T; V�q Q f ÞÑ xp�q �
» �

0
e�p��rqA f prqdr P XT is continuous. (2.17)

Thus, thanks to (2.16), (2.17) and Assumption (G) we can apply [12, Theorem 3.15] to infer the exis-
tence of a unique local mild solution u with lifespan τ of (1.1) (we refer to [12, Definition 3.1] for the
definition of local solution). Let tτj; j P Nu be an increasing sequence of stopping times converging
almost surely to the lifespan τ. Using the equivalence lemma in [21, Proposition 6.5] we can easily
prove that the local mild solution is also a local weak solution satisfying (2.10) with t replaced by
t ^ τj, j P N. Now, we can prove by arguing as in [13, Appendix A] or [14, Proof of Theorem 4.4]
that the local solution u satisfies (2.12) uniformly w.r.t. j P N. With this observation along with an
argument similar to [12, Proof of Theorem 2.10] we conclude that (1.1) admits a global solution (i.e.,
τ � T a.s.) u satisfying (2.12) and u P XT almost-surely.

As mentioned earlier the proof follows a similar argument as in [13, Appendix A], but for the
sake of completeness we sketch the proof of (2.12). We apply Itô’s formula first to | � | and the process
up� ^ τjq and then to the map x Ñ xp p ¥ 2 and the process |up� ^ τjq|

2. Then, using the assumption
(B2) and (G) we infer that there exists a constant C ¡ 0 such that for any j P N

sup
tPr0,Ts

|upt^ τjqq|2p �

» T

0
|upsq|2p�2|A

1
2 upsq|2ds ¤ CE|u0|2p � C

» T

0
|ups^ τjq|2p�2|p1� |ups^ τjq|2qds

� 2p sup
tPr0,Ts

» t^τj

0
|upsq|2p�2xupsq, GpupsqqdWpsqy.
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Using the Burkholder-Holder-Davis inequality we deduce that

E sup
tPr0,Ts

» t^τj

0
|upsq|2p�2xGpupsqq, upsqydWpsq ¤ E

�
��» T

0
p|ups^ τjq|

4pds

�1{2

�

�» T

0
p|ups^ τjq|

4p�2ds

�1{2
�
� .

Using Young’s inequality, we infer that for any ε P p0, 1
2 q there exists a constant Cpεq ¡ 0 such that

E

�» T

0
p|ups^ τjq|

4pds

�1{2

¤ εE sup
tPr0,Ts

|upt^ τjqq|2p � CpεqE
» T

0
sup

sPr0,ts
|ups^ τjq|

2pdt.

For the second integral, we need to use Hölder’s inequality and then Young’s inequality and the
previous calculations

E

�» T

0
p|ups^ τjq|

4p�2ds

�1{2

¤ εE sup
tPr0,Ts

|upt^ τjqq|2p � CpεqE
» T

0
sup

sPr0,ts
|ups^ τjq|

2pdt� T
1

2p .

Now collecting all the estimates we get that

p1� 2εqE sup
tPr0,Ts

|upt^ τjqq|2p �

» T

0
E|upsq|2p�2|A

1
2 upsq|2ds ¤ Cp1�E|u0|2pq � CE

» T

0
sup

sPr0,ts
|ups^ τjq|

2pdt.

Now, choosing ε � 1
4 , applying Gronwall’s lemma and passing to the limit as j Ñ 8 complete the

proof of (2.12). The estimate (2.13) easily follows from (2.12), so we omit its proof.
We shall now prove the inequality (2.14). To start with we will apply Itô’s formula to ϕpuq � }u}2

1
4
.

Note that thanks to the estimates (2.12) and (2.13), Assumptions (B1) and (G) we readily check that
there exists a constant C ¡ 0 such that

E

» T

0

�
‖Au� Bpu, uq‖2

� 1
2
� ‖Gpuq‖2

L pH ,V 1
4
q

�
ptqdt ¤ C.

Hence the general Itô’s formula in [36, Section 3] is applicable to (1.1) and the functional ϕpuqptq �
}uptq}2

1
4
. Thus, an application of Itô’s formula to the functional ϕpuqpt^ τjq � }upt^ τjq}

2
1
4

gives

ϕpupt^ τjqq � ϕpup0qq �
» t^τj

0
ϕ1pupsqqdupsq �

1
2

» t^τj

0
Tr
�

ϕ2pupsqqGpupsqqQpGupsqq�
�

ds,

which along with the inequality 1
2}φ

2puq} ¤ 1, where the norm is understood as the norm of a bilinear
map, implies

}upt^ τjq}
2
1
4
� 2

» t^τj

0

�
}upsq}2

3
4
� 2xA

1
2 upsq, Bpupsq, upsqqy

	
ds

¤ ‖u0‖2
1
4
� 2

» t^τj

0
xA

1
2 upsq, GpupsqqdWpsqy � C Tr Q

» t^τj

0
}Gpupsqq}2

L pH ,V 1
4
qds.

(2.18)

Since the embedding V 1
2�α � V2α is continuous for any α P r0, 1

2 s, we can use Assumptions (B1)1 and
the Cauchy inequality to infer that∣∣∣∣ » t^τj

0
xA

1
2 upsq, Bpupsq, upsqqyds

∣∣∣∣ ¤ C
» t^τj

0
}upsq} 1

2
|Bpupsq, upsqq|ds,

¤
1
2

» t^τj

0
}upsq}2

3
4
ds� C

» t^τj

0
}upsq}2

1
2�γ

}upsq}2
γds,
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for some γ P p0, 1
2 q. From an application of a complex interpolation inequality, see [43, Theorem 1.9.3,

pp 59], we infer that∣∣∣∣ » T

0
xA

1
2 upsq, Bpupsq, upsqqyds

∣∣∣∣ ¤1
2

» T

0
}upsq}2

3
4
ds�

» T

0
|upsq|2}upsq}2

1
2
ds.

Plugging the latter inequality into (2.18), using the assumption on G we obtain

}upt^ τjq}
2
1
4
�

3
2

» t^τj

0
}upsq}2

3
4
ds ¤ }up0q}2

1
4
� C sup

sPr0,Ts
|upsq|2

» T

0
}upsq}2

1
2
ds

�CT � C
» T

0
}upsq}2

1
4
ds� 2

����
» t^τj

0
xA

1
4 upsq, A

1
4 GpupsqqdWpsqy

����.
(2.19)

Taking the supremum over t P r0, Ts, then raising both sides of the resulting inequality to the power
p{2, taking the mathematical expectation, and finally using the Burkholder-Davis-Gundy inequality
yield

E sup
sPr0,ts

}ups^ τjq}
p
1
4
� 2E

�» t^τj

0
}upsq}2

3
4
ds

p{2

�

�
�CE}up0q}p

1
4
� CT � CE

�» t^τj

0
}upsq}2

1
4
ds
� p

2

�



¤ C

�
E sup

sPr0,Ts
|upsq|2p

� 1
2 �

E

�» T

0
}upsq}2

1
2
ds

�p � 1
2

�2CE

�» t^τj

0
|A

1
4 upsq|2}Gpupsqq}2

L pH ,V 1
4
qds

 p

4
.

(2.20)

Here we have used the fact that for any integer ` and n we can find a constant C`,n such that

ņ

i�1

a`i ¤

�
ņ

i�1

ai

�`

¤ C`,n

ņ

i�1

a`i (2.21)

for a sequence of non-negative numbers tai; i � 1, 2, . . . , nu.
Using the assumptions on G and Young’s inequality we infer that there exists a constant C ¡ 0

such that for any j P N

E

�» t^τj

0
|A

1
4 upsq|2}Gpupsqq}2

L pH ,V 1
4
qds

 p

4
¤

1
4

E sup
sPr0,ts

‖ups^ τjq‖
p
1
4
� CE

�» t^τj

0
‖upsq‖2

1
4
ds
� p

2

� CT,

which along with (2.20), (2.12) and (2.13) implies

E sup
sPr0,ts

}ups^ τjq}
p
1
4
� 2E

�» t^τj

0
}upsq}2

3
4
ds

 p

2

¤ E}up0q}p
1
4
� C2p1�E|u0|2pq2 � CT �E

�» t^τj

0
}upsq}2

1
4
ds
� p

2

.

Now, we infer from the interpolation inequality [43, Theorem 1.9.3, pp 59], (2.12) and (2.13) that there
exists a constant C ¡ 0 such that for any j P N

E

�» t^τj

0
}upsq}2

1
4
ds
� p

2

¤ T
p
2 E

�
� sup

sPr0,Ts
|upsq|

p
2

�» T

0
‖upsq‖2ds

� p
4
�



¤ CT.

Hence,
E sup

sPr0,ts
}ups^ τjq}

p
1
4
¤ CTp1�E}up0q}p

1
4
� pE|u0|2pq2q,

from which along with a passage to the limit we readily complete the proof of the proposition.
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2.3. The numerical scheme and the main result

Let N be a positive integer, HN � H the linear space spanned by tψn; n � 1, . . . , Nu, and πN :
H Ñ HN the orthogonal projection of H onto the finite dimensional subspace HN . The projection of
u by πN is denoted by

uN :� πNu �
Ņ

n�1

pψn, uqψn, (2.22)

for u P H. The Galerkin approximation of the SPDEs (1.1) reads

duN � rπNAuN � πNBpuN , uNqsdt� πNGpuNqdWptq, uNp0q � πNu0. (2.23)

Due to the assumptions (B1)-(B3) and (G), we can use Proposition 2.6 to prove that (2.23) has a global
weak solution.

To derive an approximation of the exact solution u of (1.1) we construct an approximation Uj

of the Galerkin solution uN . To this end, let M be a positive integer and IM � prtm, tm�1sq
M
m�0 an

equidistant grid of mesh-size k � tm�1 � tm covering r0, Ts. Now, for any j P t0, . . . , M � 1u we look
for a sequence of F-adapted random variables Uj P HN , j � 0, 1, . . . , M such that for any w P V#

U0 � πNu0,

xUj�1 �Uj � krπNAUj�1 � πNBpUj, Uj�1qs, wy � xw, πNGpUjq∆j�1Wy,
(2.24)

where ∆j�1W :� Wptj�1q �Wptjq, j P t0, . . . , M � 1u, is an independent and identically distributed
random variables. We will justify in the following proposition that for a given U0 � πNu0 the
numerical scheme (2.24) admits at least one solution U j P HN , j P t1, . . . Mu and that (2.24) is stable
in H and DpA

1
4 q.

Proposition 2.7. Let the assumptions (B1)-(B3) and (G) hold. Let N and M be two fixed positive integers and
u0 P L2p

pΩ; Hq for any integer p P r2, 4s. Then, for any j P t1, . . . , Mu there exists at least a Ftj -measurable
random variable Uj P HN satisfying (2.24). Moreover, there exists a constant C ¡ 0 (depending only on T
and Tr Q ) such that

E max
0¤m¤M

|Um|2 �
M�1¸
j�0

|Uj�1 �Uj|2 � 2kE

M̧

j�1

}Uj}2
1
2
¤ CpE|u0|

2 � 1q, (2.25)

E

�
max

1¤m¤M
|Um|2p

� k
M̧

j�1

|Uj|2p�1‖Uj‖2

1
2

�
¤ Cp1�E|u0|2

p�1
q, (2.26)

E

�
k

M̧

j�1

‖Uj‖2

1
2

�2p�1

¤ Cp1�E|u0|2
p
q. (2.27)

Furthermore, if u0 P L8pΩ, DpA
1
4 qq, then there exists a constant C ¡ 0 such that

E max
1¤m¤M

}Um}2
1
4
�E

M�1¸
j�0

}Uj�1 �Uj}2
1
4
� kE

M̧

j�1

}Uj}2
3
4
¤ C, (2.28)

E max
1¤m¤M

}Um}4
1
4
�E

�M�1¸
j�0

}Uj�1 �Uj}2
1
4


2
� k2E

� M̧

j�1

}Uj}2
3
4


2
¤ C (2.29)

Proof. The detailed proofs of the existence, measurability and the estimates (2.28) and (2.29) will be
given in Section 3. Thanks to the assumption (B2), the proof of the inequalities (2.25)-(2.27) is very
similar to the proof of [17], so we omit it.
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We should note that the estimates (2.28) and (2.29) hold even if u0 P L4pΩ, DpA
1
4 qq, but for the

sake of consistency we take u0 P L8pΩ, DpA
1
4 qq.

Now, we proceed to the statement of the main result of this paper.

Theorem 2.8. Let the assumptions (B1)-(B3) and (G) hold and assume that u0 P L16pΩ; Hq X L8pΩ; V 1
4
q.

Then for any β P r0, 1
4 q, there exists a constant k0 ¡ 0 such that for any small number ε ¡ 0 we have

max
1¤j¤M

E
�

1Ωk‖uptjq �Uj‖2
β

	
� 2kE

�
�1Ωk

M̧

j�1

}uptjq �Uj}2
1
2�β

�

  k0k�2εrk2p 1

4�βq � λ
�2p 1

4�βq
N s, (2.30)

where the set Ωk is defined by

Ωk �

#
ω P Ω : sup

tPr0,Ts
‖upt, ωq‖2

1
4
  log k�ε, max

0¤j¤M
}Ujpωq}2

1
4
  log k�ε

+
.

Proof. The proof of this theorem will be given in Section 4.

Remark 2.9. Note that owing to (2.14) and (2.29) and the Markov inequality it is not difficult to prove
that the set Ωk satisfies

lim
k×0

PrΩzΩks � 0.

Corollary 2.10. If all the assumptions of Theorem 2.8 are satisfied, then the solution tUj; j � 1, 2, . . . , Mu

of the numerical scheme (2.24) converges in probability in the Hilbert space Vβ, β P r0, 1
4 q. More precisely, for

any small number ε ¡ 0, any θ0 P
�

0, 1
4 � β� ε

	
and θ1 P p0, 1

4 � βq we have

lim
ΘÕ8

lim
k×0

lim
NÕ8

max
1¤j¤M

P

�
�‖uptjq �Uj‖β � k

1
2

� M̧

j�1

}uptjq �Uj}2
1
2�β


 1
2
¥ Θrkθ0 �Λ�θ1

N s

�

� 0. (2.31)

Proof. To shorten notation let us set ej :� uptjq �Uj and

ΩΘ
k,N � tω P Ω; ‖ej‖2

β � k
M̧

j�1

}ej}2
1
2�β

¥ Θrkθ0 �Λ�θ1
N su,

for any positive numbers M and k. Let Ωk be as in the statement of Theorem 2.8. Owing to (2.30),
(2.14), (2.29) and the Chebychev-Markov inequality, we can find a constant C̃5 ¡ 0 such that

P
�

ΩΘ
k,N

	
� PpΩΘ

k,N XΩkq �PpΩΘ
k,N XΩc

kq

¤ PpΩΘ
k,N XΩkq �PpΩc

kq

¤
k0

Θ
k2p 1

4�βq�2ε�2θ0 �
k0

Θ
k�2ελ

�2p 1
4�βq�2θ1

N �
C̃5

log k�ε
.

Letting N Õ 8, then k × 0 and finally Θ Õ 8 in the last line we easily conclude the proof of the
corollary.

To close this section let us make some few remarks. Instead of the scheme (2.24) we could also
use a fully-implicit scheme. More precisely, for any j P t0, . . . , M � 1u we look for a Ftj -measurable
random variable U j P HN such that for any w P V#

U 0 � πNu0,

xU j�1 � U j � krπNAU j�1 � πNBpU j�1,U j�1qs, wy � xw, πNGpU jq∆j�1Wy,
(2.32)

where ∆j�1W :� Wptj�1q �Wptjq, j P t0, . . . , M� 1u. We have the following theorem:
11



Theorem 2.11. Let the assumptions (B1)-(B3) and (G) hold and assume that u0 P L16pΩ; Hq X L8pΩ; V 1
4
q.

Let N and M be two fixed positive integers. Then,

(a) for any j P t0, . . . , M � 1u there exists a unique Ftj -measurable random variable U j P HN satisfying
(2.32) and the estimates (2.25) and (2.29).

(b) For any β P r0, 1
4 q there exists a constant k0 ¡ 0 such that for any small number ε ¡ 0 we have

max
1¤j¤M

E
�

1Ωk‖uptjq � U j‖2
β

	
� 2kE

�
�1Ωk

M̧

j�1

}uptjq � U j}2
1
2�β

�

  k0k�2εrk2p 1

4�βq � λ
�2p 1

4�βq
N s,

(2.33)
where

Ωk �

#
ω : sup

tPr0,Ts
‖upt, ωq‖2

1
4
  log k�ε, max

0¤j¤M
}U jpωq}2

1
4
  log k�ε

+
.

(c) Moreover, for any small number ε ¡ 0, any θ0 P
�

0, 1
4 � β� ε

	
and θ1 P p0, 1

4 � βq

lim
ΘÕ8

lim
k×0

lim
NÕ8

max
1¤j¤M

P

�
��‖uptjq � U j‖2

β � k
1
2

�
� M̧

j�1

}uptjq � U j}2
1
2�β

�



1
2

¥ Θrkθ0 � λ�θ1
N s

�
�
� 0.

(2.34)

Proof. The arguments for the proof of this theorem are very similar to those of the proofs of Proposi-
tion 2.7, Theorem 2.8 and Corollary 2.10, thus we omit them.

3. Existence and stability analysis of the scheme: Proof of Proposition 2.7

In this section we will show that for any j P t0, . . . , M� 1u the numerical scheme (2.24) admits at
least one solution Uj P HN . We will also show that (2.24) is stable in DpA

1
4 q, see Proposition 2.7 for

more precision.

Proof of Proposition 2.7. As we mentioned in Subsection 2.3 we will only prove the existence, measur-
ability and the estimates (2.28) and (2.29). The proof of the inequalities (2.25)-(2.27) will be omitted
because it is very similar to the proof of [17] (see also [11]).
Proof of the existence. We first establish that for any j P t0, . . . M � 1u there exists Uj P HN satisfying
the numerical scheme (2.24). To this end, let us fix ω P Ω and for a given Uj P HN consider the map
Λj

ω : HN Ñ HN defined by

xΛj
ωpvq, ψy � xv�Ujpωq, ψy � kxAv� πNBpUjpωq, vq, ψy � xψ, πNGpUjpωqq∆j�1Wpωqy

for any ψ P HN . Note that since HN � DpAq the map Λj
ω is well-defined. From assumptions (B1) and

(G) and the linearity of A it is clear that for given Uj the map Λj
ω is continuous. Furthermore, using

Hölder’s inequality, the fact that λ1|ψ|2 ¤ }ψ}2
1
2
, ψ P V and assumptions (B2) and (G) we derive that

xΛj
ωv, vy ¥|v|2

�
λ1k�

1
2
�

k
2



�
|Ujpωq|2

2

�
1� }∆j�1Wpωq}2

H C2
2

	
�

1
2
}∆j�1Wpωq}2

H C2
2

¥γ|v|2 � Γj
ω.

Since k   1, and by Assumption (N), }∆j�1W}2
H   8, the constant γ is positive and µj �

c
Γj

ω
γ   8

whenever |Uj|2   8. Thus, we have xΛj
ωv, vy ¥ 0 for any v P Hj

Npωq :� tψ P Hn; |ψ| � Rµju
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where R ¡ 1 is an arbitrary constant. Since U0 � πNu0 is given, we can conclude from the above
observations and Brouwer fixed point theorem that there exists at least one U1 P HN satisfying

Λ0
ωpU

1q � 0 and |U1| ¤ Rµ0.

In a similar way, assuming that Uj P HN , we infer that there exists at least one Uj�1 P HN such that

Λj
ωpUj�1q � 0 and |Uj�1| ¤ Rµj.

Therefore, we have to prove by induction that given U0 P HN and a H -valued Wiener process W,
for each j, there exists a sequence tUj; j � 1, . . . , Mu � HN satisfying the algorithm (2.24).
Proof of the measurability. In order to prove the Ftj -measurability of Uj it is sufficient to show that
for each j P t1, . . . , Mu one can find a Borel measurable map Ej : HN �H Ñ HN such that Uj �

EjpUj�1, ∆jWq. In fact, if such claim is true then by exploiting the Ftj -measurability of ∆jW one can
argue by induction and show that if U0 is F0-measurable then EjpUj�1, ∆jWq is Ftj -measurable,
hence Uj is Ftj -measurable. Thus, it remains to prove the existence of Ej. For this purpose we will
closely follow [23]. Let PpHNq be the set of subsets of HN and consider a multivalued map E S

j�1 :

HN �H Ñ PpHNq such that for each pUj, ηj�1q, E S
j�1pU

j, ηj�1q denotes the set of solutions Uj�1

of (2.24). From the existence result above we deduce that E S
j�1 maps HN �H to nonempty closed

subsets of HN . Furthermore, since we are in the finite dimensional space HN , we can prove, by using
the assumptions (B1) and (G) and the sequential characterization of the closed graph theorem, that
the graph of E S

j�1 is closed. From these last two facts and [4, Theorem 3.1] we can find a univocal map

Ej�1 : HN �H Ñ HN such that EjpUj, ηj�1q P E S
j�1pU

j, ηj�1q and Ej is measurable when HN �H and
HN are equipped with their respective Borel σ-algebra. This completes the proof of the measurability
of the solutions of (2.24).

Proof of (2.25)-(2.27). Thanks to the assumption (B2), the proof of the inequalities (2.25)-(2.27) is
very similar to the proof of [17], so we omit it and we directly proceed to the proof of the estimates
(2.28) and (2.29).

Proof of (2.28). Taking w � 2A
1
2 Uj�1 in (2.24), using the Cauchy-Schwarz inequality and the

identity

ppv� x, 2vqq � }v}2 � }x‖2 � }v� x}2, (v, x are elements of a Hilbert space with norm ‖�‖ ) (3.1)

yield

}Uj�1}2
1
4
� }Uj}2

1
4
� }Uj�1 �Uj}2

1
4
� 2k}Uj�1}2

3
4

¤ 2k|πNBpUj, Uj�1q|}Uj�1} 1
2
� 2‖πNGpUjq∆j�1W} 1

4
‖Uj�1 �Uj‖ 1

4

� 2xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy.

Using the fact that ‖πN‖L pH,HNq
¤ 1, we obtain

}Uj�1}2
1
4
� }Uj}2

1
4
� }Uj�1 �Uj}2

1
4
� 2k}Uj�1}2

3
4

¤ 2k|BpUj, Uj�1q|}Uj�1} 1
2
� 2‖GpUjq∆j�1W} 1

4
‖Uj�1 �Uj‖ 1

4

� 2xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy.

(3.2)

Using Assumption (B1)1, the complex interpolation inequality in [43, Theorem 1.9.3, pp 59], the
Young inequality, and the continuous embedding V 1

2
� V 1

4
we obtain

2|BpUj, Uj�1q|}Uj�1} 1
2
¤ C|Uj|4‖Uj�1‖2

1
4
� ‖Uj�1‖2

3
4

(3.3)

¤ C|Uj|4‖Uj�1‖2
1
2
� ‖Uj�1‖2

3
4
,
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which implies that

}Uj�1}2
1
4
� }Uj}2

1
4
�

1
2
}Uj�1 �Uj}2

1
4
� 2k}Uj�1}2

3
4
¤ 2Ck|Uj|4}Uj�1}2

1
2
� 4‖GpUjq∆j�1W}2

1
4

�2xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy.

(3.4)

Since Uj is a constant, adapted and hence progressively measurable process, it is not difficult to prove
that

2ExA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy � 0.

Using (2.26) and (2.27) with p � 2 and p � 3 respectively, we easily prove that there exists a constant
C ¡ 0, depending only on T, such that

kE

�
�M�1¸

j�0

|Uj|4}Uj�1}2
1
2

�

¤

�
E max

1¤m¤M
|Um|8


 1
2
�

E

�
k

M̧

j�1

}Uj}2
1
2


2
 1
2
¤ Cp1�E|u0|8q2. (3.5)

Now, since Uj is Ftj -measurable and ∆j�1W is independent of Ftj , we infer that there exists a constant
C ¡ 0 such that for any j P t0, . . . , M� 1u

E
�
‖GpUjq∆j�1W}2

1
4

	
¤ E

�
E

�
}GpUjq}2

L pH ,V 1
4
q}∆j�1W}2

H |Ftj





� mE

�
}GpUjq}2

L pH ,V 1
4
qE
�
}∆j�1W}2

H |Ftj

	


¤ Ck ptrQq
1
2 p1�E}Uj}2

1
4
q, (3.6)

where (2.7) and Assumption (G) along with Remark 2.1-(b) were used to derive the last line of the
above chain of inequalities.

Now taking the mathematical expectation in (3.4), summing both sides of the resulting equations
from j � 0 to m� 1 and using the last three observations imply

max
1¤m¤M

E}Um}2
1
4
�

1
2

E

�M�1¸
j�0

}Uj�1 �Uj}2
1
4



� 2kE

M̧

j�1

}Uj}2
3
4

¤ CT �E}u0}
2
1
4
� C Tr Qk

M̧

m�1

max
1¤j¤m

E}Uj}2
1
4
,

from which along with the discrete Gronwall lemma we infer that there exists a constant C ¡ 0 such
that

max
1¤m¤M

E}Um}2
1
4
�

1
2

E

�M�1¸
j�0

}Uj�1 �Uj}2
1
4



� 2kE

M̧

j�1

}Uj}2
3
4
¤ Cp1�E‖u0‖2

1
4
� rE|u0|8s2q. (3.7)

Note that from (3.4) we can derive that there exists a constant C ¡ 0 such that

E max
1¤m¤M

‖Um‖2
1
4
¤ E}u0}

2
1
4
� CkE

M�1¸
j�0

|Uj|4‖Uj�1‖2
1
2
�E

M�1¸
j�0

‖GpUjq∆j�1W‖2
1
4

�2E max
1¤m¤M

m�1̧

j�0

xA
1
4 πNGpUjq∆j�1W, A

1
4 Ujy

�:
4̧

i�1

Ii.

Arguing as in [11, proof of (3.9)] we can establish that
14



I4 ¤
1
2

E‖u0‖2
1
4
�

1
2

E max
1¤m¤M

‖Um‖2
1
4
� Ck

M�1¸
j�0

E‖Uj‖2
1
4
,

which altogether with (3.7) yields that

I4 ¤
1
2

E max
1¤m¤M

‖Um‖2
1
4
� Cp1�E‖u0‖2

1
4
q.

Using the same idea as in the proof of (3.6) and using (3.7) we infer that

I3 ¤ Cp1�E‖u0‖2
1
4
q.

Using these two estimates and the inequality (3.5) we derive that there exists a constant C ¡ 0 such
that

E max
1¤m¤M

‖Um‖2
1
4
¤ Cp1�E‖u0‖2

1
4
� rE|u0|8s2q,

which along with (3.7) completes the proof of (2.28).
Now, we continue with the derivation of an estimate of max1¤m¤M E‖Um‖4

1
4
. Multiplying (3.2) by

‖Uj�1‖2
1
4

and using identity (3.1) and then summing both sides of the resulting equation from j � 0

to m� 1 implies

1
2
‖Um‖4

1
4
�

1
2

m�1̧

j�0

∣∣∣∣‖Uj�1‖2
1
4
� ‖Uj‖2

1
4

∣∣∣∣2 � m�1̧

j�0

‖Uj�1‖2
1
4
‖Uj�1 �Uj‖2

1
4
� 2k

m�1̧

j�0

‖Uj�1‖2
1
4
‖Uj�1‖2

3
4

¤
1
2
‖u0‖4

1
4
� Ck

m�1̧

j�0

|BpUj, Uj�1q|2‖Uj�1‖2
1
2
‖Uj�1‖2

1
4

�2
m�1̧

j�0

xA
1
4 rUj�1 �Ujs, A

1
4 πNGpUjq∆j�1Wy‖Uj�1‖2

1
4

�2
m�1̧

j�0

xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy‖Uj�1‖2

1
4

�:
1
2
‖u0‖4

1
4
� J1 � J2 � J3.

(3.8)

Thanks to the estimate (3.3) we can estimate J1 as follows

EJ1 ¤ CKE

M�1¸
j�0

|Uj|4‖Uj�1‖4
1
4
� kE

M�1¸
j�0

‖Uj�1‖2
1
4
‖Uj�1‖2

3
4
�: J1,1 � J1,2.

Since the second term J1,2 can be absorbed in the LHS later on, we will focus on estimating the second
term J1,1. We have

J1,1 ¤Ck
M�1¸
j�0

|Uj|4|Uj�1|2‖Uj�1‖2
1
2

¤C
�

E max
0¤j¤M�1

r|Uj|8|Uj�1|4s

 1

2
�

E

�
k

M̧

j�1

‖Uj‖2
1
2

�2
 1
2

¤C
�

Er max
0¤j¤M�1

|Uj|12s


 1
2
�

E

�
k

M̧

j�1

‖Uj‖2
1
2

�2
 1
2

¤Cp1�E|u0|16q,
15



where (2.26) and (2.27) are used to obtain the last line. Hence,

EJ1 ¤ Cp1�E|u0|16q �Ek
M�1¸
j�0

�
‖Uj�1‖2 �

1
4
‖Uj�1‖2

3
4



.

Now we estimate J2 as follows

EJ2 ¤CE

M�1¸
j�0

‖GpUjq∆j�1W‖2
1
4

�
‖Uj�1‖2

1
4
� ‖Uj‖2

1
4
� ‖Uj‖2

1
4

	
�

1
2

E

M�1¸
j�0

‖Uj�1 �Uj‖2
1
4
‖Uj�1‖2

1
4

¤CE

M�1¸
j�0

‖GpUjq∆j�1W‖4
1
4
� CE

M�1¸
j�0

‖GpUjq∆j�1W‖2
1
4
‖Uj‖2

1
4
�

1
8

E

M�1¸
j�0

����‖Uj�1‖2
1
4
� ‖Uj‖2

1
4

����
2

�
1
2

E

M�1¸
j�0

‖Uj�1 �Uj‖2
1
4
‖Uj�1‖2

1
4
.

As long as J3 is concerned we have

EJ3 � 2E

m�1̧

j�0

xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy‖Uj‖2

1
4
� 2E

m�1̧

j�0

xA
1
4 Uj, A

1
4 GpUjq∆j�1Wy

�
‖Uj�1‖2

1
4
� ‖Uj‖2

1
4

	

� 2E

m�1̧

j�0

xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy

�
‖Uj�1‖2

1
4
� ‖Uj‖2

1
4

	

¤ CE

M�1¸
j�0

‖A
1
4 GpUjq∆j�1W‖2

1
4
‖Uj‖2

1
4
�

1
8

E

M�1¸
j�0

∣∣∣∣‖Uj�1‖2
1
4
� ‖Uj‖2

1
4

∣∣∣∣2
because for any j

ExA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy‖Uj‖2

1
4
� 0.

By a similar idea as used to derive (3.6) we can prove that

CE

M�1¸
j�0

‖GpUjq∆j�1W‖4
1
4
� CE

M�1¸
j�0

‖GpUjq∆j�1W‖2
1
4
‖Uj‖2

1
4
¤ C � CkE

M�1¸
j�0

‖Uj‖4
1
4
.

Thus,

ErJ2 � J3s ¤ C � CkE

M�1¸
j�0

‖Uj‖4
1
4
�

1
4

E

M�1¸
j�0

∣∣∣∣‖Uj�1‖2
1
4
� ‖Uj‖2

1
4

∣∣∣∣2 � 1
2

E

M�1¸
j�0

‖Uj�1 �Uj‖2
1
4
‖Uj�1‖2

1
4
.

Taking the mathematical expectation in (3.8) and by plugging the information about Ji, i � 1, 2, 3 in
the resulting equation yield

max
1¤m¤M

1
2

E‖Um‖4
1
4
�

1
4

E

M�1¸
j�0

∣∣∣∣‖Uj�1‖2
1
4
� ‖Uj‖2

1
4

∣∣∣∣2

�
1
2

E

M�1¸
j�0

‖Uj�1‖2
1
4
‖Uj�1 �Uj‖2

1
4
� kE

M̧

j�1

‖Uj‖2
1
4
‖Uj‖2

3
4

¤ Cp1�E|u0|12 � ‖u0‖4
1
4
q � CkE

M�1¸
j�0

‖Uj‖4
1
4
,

which along with the Gronwall inequality yields

max
1¤m¤M

1
2

E‖Um‖4
1
4
¤ Cp1�E|u0|12 � ‖u0‖4

1
4
q.
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The latter inequality is used in the former one to derive that

max
1¤m¤M

1
2

E‖Um‖4
1
4
�

1
4

E

M�1¸
j�0

∣∣∣∣‖Uj�1‖2
1
4
� ‖Uj‖2

1
4

∣∣∣∣2 � 1
2

E

M�1¸
j�0

‖Uj�1‖2
1
4
‖Uj�1 �Uj‖2

1
4

�kE

M̧

j�1

‖Uj‖2
1
4
‖Uj‖2

3
4
¤ Cp1�E|u0|12 � ‖u0‖4

1
4
q.

(3.9)

Now we continue our analysis with the estimation of E max1¤j¤M‖Uj‖4
1
4
. To start with this analysis,

we easily derive from (3.8) the following inequality

max
1¤m¤M

1
2

E‖Um‖4
1
4
¤ Ck

M�1¸
j�0

|Uj|4‖Uj�1‖2‖Uj�1‖2
1
2

� C
M�1¸
j�0

�
‖GpUjq∆j�1‖4

1
4
� ‖GpUjq∆j�1‖2

1
4
‖Uj‖2

1
4

	

� max
0¤j¤M�1

j�1̧

`�0

xA
1
4 U`, A

1
4 πNGpU`q∆`�1Wy‖U`‖2

1
4
�: J1 � J2 � J3.

Arguing as in the proof of (3.6) and using (3.9), the mathematical expectation of J1 � J2 can be esti-
mated as follows

EpJ1 � J2q ¤ CEp1� |u0|16 � }u0}
4
1
4
q.

The same idea as used in the proof of [11, inequality (3.15)] yields

EJ3 ¤
1
4

E max
1¤m¤M

‖Um‖4
1
4
� CE‖u0‖4

1
4
� CkE

M�1¸
j�0

‖Uj‖4
1
4
,

from which altogether with (3.9) we infer that

EJ3 ¤ CEp1� |u0|16 � }u0}
4
1
4
q �

1
4

E max
1¤m¤M

‖Um‖4
1
4
.

Thus, summing up we have shown that there exists a constant C ¡ 0 such that

E max
1¤m¤M

‖Um‖4
1
4
¤ CEp1� |u0|16 � }u0}

4
1
4
q. (3.10)

Now, we estimate E

�°M�1
j�0 ‖Uj�1 �Uj‖2

1
4


2
� E

�
k
°M

j�1‖Uj‖2
3
4


2
. To do this we first observe

that from (3.4) we infer that

�
1
2

M�1¸
j�0

‖Uj�1 �Uj‖2
1
4


2
�

�
2k

M�1¸
j�0

‖Uj�1‖2
1
4


2
¤ C

�
k

M�1¸
j�0

|Uj|4‖Uj�1‖2
1
2


2

�C
�M�1¸

j�0

‖GpUjq∆j�1W‖2
1
4


2
� C

�M�1¸
j�0

xA
1
4 Uj, A

1
4 πNGpUjq∆j�1Wy


2
.

(3.11)

Then, using the same strategies to estimate the Ji-s (or Ji ), the sum of the three terms in the right
hand side of the above quality can be bounded from above by

�
E

�
max

0¤j¤M
|Uj|16


� 1
2
�

E

�
�k

M̧

j�1

‖Uj‖2
1
2

�



4� 1
2
� CMk2

M̧

j�0

E‖Uj‖4
1
4
� Ck

M̧

j�0

E‖Uj‖4
1
4
,
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which along with the estimate for E max1¤m¤M‖Um‖4
1
4

and the inequalities (2.26) and (2.27) implies

that �
1
2

M�1¸
j�0

‖Uj�1 �Uj‖2
1
4


2
�

�
2k

M�1¸
j�0

‖Uj�1‖2
1
4


2
¤ Ep1� |u0|16 � }u0}

4
1
4
q. (3.12)

The last estimate along with (3.10) completes the proof of (2.29) and hence the whole proposition.

4. Error analysis of the numerical scheme (2.24): Proof of Theorem 2.8

This section is devoted to the analysis of the error ej � uptjq � Uj at the time tj between the
exact solution u of (1.1) and the approximate solution given by (2.24). Since the precise statement of
the convergence rate is already given in Theorem 2.8, we proceed directly to the promised proof of
Theorem 2.8.

Before giving the proof of Theorem 2.8 we state and prove the following important result.

Lemma 4.1. Let β be as in Theorem 2.8. Then,

(i) there exists a constant C7 ¡ 0 such that

E}uptq � upsq}2
β ¤ C7rpt� sq2�2β � pt� sq2p

1
4�βq � pt� sqs, (4.1)

for any t, s ¥ 0 and t � s.

(ii) There also exists a positive constant C8 such that

E

» t

s
}uptq � uprq}2

1
2�β

dr ¤ C8

�
pt� sq

3
2�2β � pt� sq2p

1
4�βq � pt� sq2�2β

	
, (4.2)

for any t ¡ s ¥ 0.

Proof of Lemma 4.1. As in the statement of the lemma we divide the proof into two parts.
Proof of item (i). Let t, s P r0, Ts such that t � s. Without loss of generality we assume that t ¡ s.

Thanks to (2.11) of Remark 2.5 we have

}uptq � upsq}2
β ¤ C|Aβ� 1

4 pI� e�pt�sqAqA
1
4 upsq|2 � C

����
» t

s
Aβe�pt�rqABpuprq, uprqqdr

����
2

�C
����
» t

s
Aβe�pt�rqAGpuprqqdWprq

����
2
.

Before proceeding further we recall that there exists a constant C ¡ 0 such that for any γ ¡ 0 and
t ¥ 0, we have

}A�γpI� e�tAq}L pHq ¤ Ctγ.

Applying this inequality, the Hölder inequality, Assumption (B1)1, the Itô isometry and Assumption
(G) imply

E
�
}uptq � upsq}2

β

	
¤Cpt� sqE

�» t

s
pt� rq�2β}uprq}2

1
4
}uprq}2

1
2�

1
4
dr



� Cpt� sq2p
1
4�βqE}upsq}2

1
4
�E

» t

s
|e�pt�rqAAβGpuprqq|2dr

¤Cpt� sq2�2βE

�
sup

rPrs,ts
}uprq}2

1
4

sup
rPrs,ts

}uprq}2
1
2�

1
4

�

� Crpt� sq2p
1
4�βq � pt� sqsE

�
sup

rPrs,ts
}uprq}4

1
4

�
,
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from which along with (2.14) we easily infer that

E
�
}uptq � upsq}2

β

	
¤ Crpt� sq2�2β � pt� sq2p

1
4�βq � pt� sqs.

Thus, we have just finished the proof of the first part of the lemma.
Proof of item (ii). Let t ¡ s ¥ 0. Using (2.11) of Remark 2.5, it is not difficult to see that

» t

s
}uptq � uprq}2

1
2�β

dr ¤C
» t

s

�» t

r
|A

1
2�βe�pt�τqABpupτq, upτqq|dτ


2
dr

� C
» t

s

����
» t

r
A

1
4�βe�pt�τqArA

1
4 GpupτqqsdWpτq

����
2
dr

� C
» t

s
|Aβ� 1

4 pe�pt�rqA � IqA
3
4 upsq|2dr,

from which and the assumption on B we infer that

» t

s
}uptq � uprq}2

1
2�β

dr ¤C sup
0¤τ¤T

�
}upτq}2

1
4
}upτq}2

1
2�

1
4

	 » t

s

�» t

r
pt� τq�

1
2�βdτ


2
dr

� C
» t

s

����
» t

r
A

1
4�βe�pt�τqArA

1
4 GpupτqqsdWpτq

����
2
dr

� C
» t

s
pt� rq2p

1
4�βq}upsq}2

3
4
dr.

Taking the mathematical expectation and using (2.14) yield

E

�
1Ωk

» t

s
}uptq � uprq}2

1
2�β

dr


¤Cpt� sq2�2β � Cpt� sq2p

1
4�βqE

» T

0
}uprq}2

1
2�β

dr

�

» t

s
E

�����
» t

r
A

1
4�βe�pt�τqAA

1
4 GpupτqqdWpτq

����
2


dr.

Owing to the Itô isometry, the assumption (G) and (2.14), we obtain

E

�» t

s
}uptq � uprq}2

1
2�β

dr


¤ E

�
sup

0¤τ¤T
p1� }upτq}2

1
4
q

�» t

s

» t

r
pt� τq�

1
2�2βdτdr

�pt� sq2�2β � pt� sq2p
1
4�βq,

from which altogether with (2.14) we infer that there exists a constant C ¡ 0 such that

E

�» t

s
}uptq � uprq}2

1
2�β

dr


¤ Cpt� sq2�2β � Cpt� sq2p

1
4�βq � Cpt� sq

3
2�2β,

for any t ¡ s ¥ 0.

We now give the promised proof of Theorem 2.8.

Proof of Theorem 2.8. Since the embedding Vβ � H is continuous for any β P p0, 1
4 q, it is sufficient to

prove the main theorem for β P p0, 1
4 q.

Note that the numerical scheme (2.24) is equivalent to

pUj�1, wq �
» tj�1

tj

xAUj�1 � πNBpUj, Uj�1q, wyds � pUj, wq �
» tj�1

tj

xw, πNGpUjqdWpsqy (4.3)
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for any j P t1, . . . , Mu and w P V. Integrating (1.1) and subtracting the resulting equation and the
identity (4.3) term by term yield

pej�1 � ej, wq �
» tj�1

tj

xAej�1 �Apupsq � uptj�1qq � Bpupsq, upsqq � πNBpUj, Uj�1q, wyds

�

» tj�1

tj

xw, rGpupsqq � πNGpUjqsdWpsqy.
(4.4)

Observe that if v P DpA
1
2�αq with α ¡ β, then A2βv P DpA

1
2�α�βq � DpA

1
2�αq, Av P DpAα� 1

2 q and
the duality product xAv, A2βvy is meaningful. Thus, we are permitted to take w � 2A2βej�1 in (4.4)
and derive that

}ej�1}2
β � }ej}2

β � }ej�1 � ej}2
β � 2k}ej�1}2

1
2�β

� 2
» tj�1

tj

}A
1
2�βpupsq � uptj�1qq} 1

2�β}e
j�1} 1

2�βds

¤ 2
» tj�1

tj

���pAβ� 1
2 rBpupsq, upsqq � πNBpUj, Uj�1qs, A

1
2�βej�1q

��� ds

�2
» tj�1

tj

xA2βej�1, rGpupsqq � πNGpUjqsdWpsqy,

where we have used the identity pv� x, 2A2βvq � }v}2
β � }x‖2

β � }v� x}2
β. Now, by using the identity

v � pπN � rI� πNsqv, the fact that

Bpupsq, upsqq�πNBpUj, Uj�1q � Bpupsq, upsqq�πNBpuptjq, uptj�1qq�πNBpuptjq, uptj�1qq�BpUj, Uj�1q,

the Cauchy-Schwarz inequality, the Cauchy inequality ab ¤ a2

4 � b2, a, b ¡ 0 and Assumption (B1)
we obtain

}ej�1}2
β � }ej}2

β � }ej�1 � ej}2
β � k}ej�1}2

1
2�β

¤ 2Lj � 16C2
0

5̧

i�1

Nj,i � 2Wj, (4.5)

where for each j P t0, . . . , M� 1u the symbols Lj, Nj,i, i � 1, . . . , 5, and Wj are defined by

Lj :�
» tj�1

tj

}upsq � uptj�1q}
2
1
2�β

ds,

Nj,1 :�
» tj�1

tj

}upsq � uptj�1q}
2
βp}U

j}2
β � }upsq}2

βqds,

Nj,2 :�
» tj�1

tj

}ej�1}2
βp}U

j�1}2
β � }upsq}2

βqds,

Nj,3 :�
» tj�1

tj

}upsq � uptjq}
2
βp|U

j�1|2 � |upsq|2qds,

Nj,4 :�
» tj�1

tj

}ej}2
βp|U

j�1|2 � |upsq|2qds,

Nj,5 :�
» tj�1

tj

}pI� πNqBpupsq, upsqq}2
β� 1

2
ds,

Wj :�
» tj�1

tj

xA2βej�1, rGpupsqq � πNGpUjqsdWpsqy.

Let m P r1, Ms an arbitrary integer. Summing (4.5) from j � 0 to m � 1 , multiplying by 1Ωk ,
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taking the mathematical expectation, and finally taking the maximum over m P r1, Ms imply

max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
�

M�1¸
j�0

E
�
1Ωk}e

j�1 � ej}2
β

�
� k

M̧

j�1

E
�
1Ωk}e

j}2
1
2�β

�

¤ E}e0}2
β � 16C2

0

M�1¸
j�0

5̧

i�1

E
�
1ΩkNj,i

�
� 2

M�1¸
j�0

E
�
1ΩkLj

�
� 2 max

1¤m¤M

m�1̧

j�0

E
�
1ΩkWj

�
.

Invoking the two items of Lemma 4.1 and the fact that }upsq}2
β �max0¤j¤M }Uj}2

β ¤ f pkq on the set
Ωk we infer that

max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
�

M�1¸
j�0

E
�
1Ωk}e

j�1 � ej}2
β

�
� k

M̧

j�1

E
�
1Ωk}e

j}2
1
2�β

�

¤ E}e0}2
β � 16C2

0k f pkq
M�1¸
j�0

E
�
1Ωk r}e

j�1}2
β � }ej}2

βs
	
� 2C8 f pkqMkrΨpkq � k1� 1

2�βs

�64C2
0C8r f pkqs2MkrΨpkq � ks � 16C2

0

M�1¸
j�0

Nj,5 � 2 max
1¤m¤M

m�1̧

j�0

E
�
1ΩkWj

�
,

(4.6)

where ψpkq :� k2�2β � k2p 1
4�βq. Now, thanks to Assumption (B1)1 we have

1Ωk

» tj�1

tj

}pI� πNqBpupsq, upsqq}2
β� 1

2
ds � 1Ωk

» tj�1

tj

8̧

n�N�1

λ
2β�1
n |Bnpupsq, upsqq|2ds

¤ λ
2β�1
N

» tj�1

tj

1Ωk

8̧

n�0

|Bnpupsq, upsqq|2ds

¤ λ
2β�1
N

» tj�1

tj

1Ωk |Bpupsq, upsqq|2ds

¤ Cλ
2β�1
N k sup

sPr0,Ts
}upsq}4

1
4
.

Hence, owing to (2.14) we find a constant C ¡ 0 such that

E1Ωk

» tj�1

tj

}pI� πNqBpupsq, upsqq}2
β� 1

2
ds ¤ Cλ

2β�1
N k.

Notice also that
M�1¸
j�0

}ej�1}2
βp}U

j�1}2
β � }upsq}2

βq

�
M�1¸
j�0

}Uj�1 �Uj �Uj � uptjq � uptjq � uptj�1q}
2
βp}U

j�1}2
β � }upsq}2

βq

¤ 3
M�1¸
j�0

�
}Uj�1 �Uj}2

β � }ej}2
β � }uptjq � uptj�1q}

2
β

	
p max

0¤j¤M
}Uj�1}2

β � }upsq}2
βq.

Therefore,

E

�
�1Ωk

M�1¸
j�0

}ej�1}2
βp}U

j�1}2
β � }upsq}2

βq

�

� C f pkqE

M�1¸
m�0

}ej}2
β � f pkqC7rψpkq � ks

¤ C

�
��E

�
�M�1¸

j�0

}Uj�1 �Uj}2
β

�



2
�
�


1
2 �

E max
0¤j¤M

}Uj}4
β �E sup

sPr0,Ts
}upsq}4

β

� 1
2

.
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As long as the initial data is concerned, we have

E}e0}2
β � }rπN � pI� πNqsu0 � πNu0}

2
β (4.7)

¤
8̧

n�N�1

λ
2pβ� 1

4 q
n λ

1
2
N|u0,n|

2 (4.8)

¤ λ
2pβ� 1

4 q
N }u0}

2. (4.9)

From all the above observations, (4.6), Assumption (B1)1, (2.25)-(2.27) and (2.29) we infer that there
exists a constant C9 ¡ 0 such that

max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
�

M�1¸
j�0

E
�
1Ωk}e

j�1 � ej}2
β

�
� k

M̧

j�1

E
�
1Ωk}e

j}2
1
2�β

�

¤ C9 f pkqrΨpkq � k1� 1
2�βs � C9 f pkqrΨpkq � ks � C9

�
λ

2β�1
N � λ2pβ� 1

4 q
	
� 2 max

1¤m¤M

m�1̧

j�0

E
�
1ΩkWj

�

�C9k f pkq
M�1¸
m�0

max
1¤j¤m

E
�
1Ωk}e

j}β
�
� 16C2

0k f pkq max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
.

(4.10)

Now we deal with the term containing Wj. After subtracting from Wj the martingale M0 with
mean zero defined by

M0 �

» tj�1

tj

xAβej�1, AβrGpupsqq � πNGpUjqsdWpsqy,

then taking the mathematical expectation, using the Young inequality and the Itô isometry give

E1ΩkWj ¤ CE1Ωk

∥∥∥∥ » tj�1

tj

rGpupsqq � πNGpUjqsdWpsq
∥∥∥∥2

β

�
1
4

E1Ωk‖ej�1 � ej‖2
β

¤ C
» tj�1

tj

E1Ωk‖Gpupsqq � πNGpUjq‖2
L pH ,Vβq

ds�
1
4

E1Ωk‖ej�1 � ej‖2
β

¤
3̧

i�1

Er1ΩkWj,is �
1
4

E1Ωk‖ej�1 � ej‖2
β,

where the first two symbols Wj,i, i P t1, 2u satisfy the following equalities and inequalities

Er1ΩkWj,1s � C
» tj�1

tj

E1Ωk‖πNGpupsqq � πNGpuptjqq‖2
L pH ,Vβq

ds

¤ CC2
3

» tj�1

tj

E‖upsq � uptjq‖2
βds

¤ CC2
3C2

7krk2�2β � k2p 1
4�βq � ks;

Er1ΩkWj,2s � C
» tj�1

tj

E1Ωk‖πNGpuptjqq � πNGpU jq‖2
L pH ,Vβq

ds

¤ CC2
3kE1Ωk‖ej‖2

β,

where Lemma 4.1 was used to get the last line.
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The third term Wj,3 satisfies

Er1ΩkWj,3s �

» tj�1

tj

E
�
1Ωk‖pI� πNqGpupsqq‖2

L pH ,Vβq

	
ds

�

» tj�1

tj

E

�
1Ωk

8̧

n�N�1

λ
2pβ� 1

4 q
n λ

1
2
n sup

hPH ,}h}H ¤1

|Gnpupsqqh|2
�

ds

¤λ
2pβ� 1

4 q
N

» tj�1

tj

E

�
1Ωk

8̧

n�1

λ
1
2
n sup

hPH ,}h}H ¤1

|Gnpupsqqh|2
�

ds

¤λ
2pβ� 1

4 q
N kE

�
1Ωk sup

sPr0,Ts
}Gpupsqq}2

L pH ,V 1
4
q

�
.

Now, using Assumption (G) and the estimate (2.14) we infer that

Er1ΩkWj,3s ¤ CC2
3λ

2pβ� 1
4 q

N k,

for any j P r0, Ms. Thus, summing up we have obtained that

2 max
1¤m¤M

m�1̧

j�0

E
�
1ΩkWj

�
¤ CC2

3C2
7 Trψpkq � ks � CC2

3 Tλ
2pβ� 1

4 q
N

�CC2
3k

M�1¸
m�0

max
1¤j¤m

Er1Ωk}e
j}2

βs �
1
2

M�1¸
m�0

E
�
1Ωk}e

m�1 � em}2
β

	
.

By plugging this last estimate into (4.6), we find a constant C10 ¡ 0 such that

max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
�

M�1¸
j�0

E
�
1Ωk}e

j�1 � ej}2
β

�
� 2k

M̧

j�1

E
�
1Ωk}e

j}2
1
2�β

�

¤ C10 f pkqrΨpkq � k� k1� 1
2�βs � C10 f pkqrΨpkq � ks � C10λ

2β�1
N � C10λ

2pβ� 1
4 q

N

�C10kr f pkq � 1s
M�1¸
m�0

max
1¤j¤m

E
�
1Ωk}e

j}β
�

.

Now, an application of the discrete Gronwall lemma yields

max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
�

M�1¸
j�0

E
�
1Ωk}e

j�1 � ej}2
β

�
� 2k

M̧

j�1

E
�
1Ωk}e

j}2
1
2�β

�

¤

�
C10 f pkqrΨpkq � k� k1� 1

2�βs � C10 f pkqrΨpkq � ks � C10λ
2β�1
N � C10λ

2pβ� 1
4 q

N



eC10Tr f pkq�1s.

Since
mintk2�2β, k1� 1

2�β, k2p 1
4�βq, ku � k2p 1

4�βq and mintλ
2pβ� 1

4 q
N , λ

2β�1
N u � λ

2pβ� 1
4 q

N ,

for any β P r0, 1
4 q, and kε f pkq � kε log k�ε ¤ 1

2 , then for any k ¡ 0 and ε P
�

0, 2p 1
4 � βq

	
, we derive

that there exists a constant C ¡ 0 such that

max
1¤m¤M

E
�
1Ωk}e

m}2
β

�
�

M�1¸
j�0

E
�
1Ωk}e

j�1 � ej}2
β

�

�2k
M̧

j�1

E
�
1Ωk}e

j}2
1
2�β

�
¤ Ck�2εrk2p 1

4�βq � λ
�2p 1

4�βq
N s.

(4.11)

This estimate completes the proof of the Theorem 2.8.
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5. Motivating Examples

In this section we give two examples of evolution equations to which we can apply our abstract
result.

5.1. Stochastic GOY and Sabra shell models
The first examples we can take is the GOY and Sabra shell models. To describe this model let us

denote by C the field of complex numbers, CN the set of all C-valued sequences, and we set

H �

#
u � punqnPN � C;

8̧

n�1

|un|2   8

+
.

Let k0 be a positive number and λn � k02n be a sequence of positive numbers. The space H is a
separable Hilbert space when endowed with the scalar product defined by

xu, vy �
8̧

k�1

ukv̄k, for u, v P H,

where z̄ denotes the conjugate of any complex number z.
We define a linear map A with domain

DpAq � tu P H;
8̧

n�1

λ4
n|un|2   8u,

by setting
Au � pλ2

nunqnPN, for u P DpAq.

It is not hard to check that A is a self-adjoint and strictly positive operator. Moreover, the embedding
DpAαq � DpAα�εq is compact for any α P R and ε ¡ 0. Thanks to this observation we can and will
assume that there exists an orthonormal basis tψn; n P Nu of H such that

Aψn � λnψn.

We can characterize the spaces DpAαq, α P R as follow

DpAαq � tu � punqnPN � C;
8̧

n�1

λ4α
n |un|2   8u.

For any α P R the space Vα � DpAαq is a separable Hilbert space when equipped with the scalar
product

ppu, vqqα �
8̧

k�1

λ4α
k ukv̄k, for u, v P Vα. (5.1)

The norm associated to this scalar product will be denoted by }u}α, u P Vα. In what follows we set
V � DpA

1
2 q.

Now, let α0 ¡ 1
2 and twj; j P Nu be a sequence of mutually independent and identically dis-

tributed standard Brownian motions on filtered complete probability space U � pΩ, F , F, Pq satisfy-
ing the usual condition. We set

Wptq �
8̧

n�0

λ�α0
n wnptqψn.

The process W defines a H-valued process with covariance A�2α0 which is of trace class. We also
consider a Lipschitz map g : r0,8q Ñ R such that |gp0q|   8. We define a map G : H Ñ L pH, V 1

4
q

defined by
Gpuqh � gp‖u‖0qh, for any u P H, h P H.
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This map satisfies Assumption (G).
With the above notation, the stochastic evolution equation describing our randomly perturbed

GOY and Sabra shell models is given by#
du � rAu� Bpu, uqsdt� GpuqdW,

up0q � u0,
(5.2)

where Bp� , �q is a bilinear map defined on V�V taking values in the dual space V�. More precisely,
we assume that the nonlinear term

B : CN �CN Ñ CN,

pu, vq ÞÑ Bpu, vq � pb1pu, vq, . . . , bnpu, vq, . . . q

for the GOY shell model (see [30]) is defined by

bnpu, vq :� pBpu, vqqn

:� iλn

�
1
4

vn�1un�1 �
1
2
pun�1vn�2 � vn�1un�2q �

1
8

un�1vn�2



,

and for the Sabra shell model, it is defined by

bnpu, vq :�pBpu, vqqn :�
i
3

λn�1 rvn�1un�2 � 2un�1vn�2s

�
i
3

λn run�1vn�1 � vn�1un�1s

�
i
3

λn�1 r2un�1vn�2 � un�2vn�1s ,

for any u � pu1, . . . , un, . . . q P CN and v � pv1, . . . , vn, . . .q P CN.

Lemma 5.1. (a) For any non-negative numbers α and β such that α � β P p0, 1
2 s, there exists a constant

c0 ¡ 0 such that

}Bpu, vq}�α ¤ c0

$&
%
}u} 1

2�pα�βq}v}β for any u P V 1
2�pα�βq, v P Vβ

}u}β}v} 1
2�pα�βq for any v P V 1

2�pα�βq, u P Vβ.
(5.3)

(b) For any u P H, v P V
xBpu, vq, vy � 0. (5.4)

Proof. The item (b) was proved in [19, Proposition 1], thus we omit its proof.
Item (a) can be viewed as a generalization of [19, Proposition 1]. We will just prove the latter item

for the Sabra shell model since the proofs for the two models are very similar. Let u P V 1
2�pα�βq,

v P Vβ, and w P Vα such that }w}α ¤ 1. We have

|xBpu, vq, wy| �|
8̧

n�1

bnpu, vqw̄n| ¤
8̧

n�1

|bnpu, vq||wn|

¤
1
3

8̧

n�1

λn�1 p|un�1| � |vn�2| � |un�2| � |vn�1|q |wn|

�
1
3

8̧

n�1

λn p|un�1| � |vn�1| � |un�1| � |vn�1|q |wn|

�
1
3

8̧

n�1

λn�1 p|un�1| � |vn�2| � |un�2| � |vn�1|q |wn|

¤I1 � I2 � I3.
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For the term I1 we have

I1 ¤
1
3

8̧

n�1

λn�1|un�1| � |vn�2||wn|�
1
3

8̧

n�1

λn�1|un�2| � |vn�1||wn|

¤I1,1 � I1,2.

We will treat the term I1,1. By Hölder’s inequality we have

I1,1 ¤
1
3

8̧

n�1

k02λ1�2α|un�1| � |vn�2|λ2α
n |wn|

¤
2
3

k0

�
8̧

n�1

k02λ
2�4pα�βq
n |un�1|2λ

4β
n |vn�2|

2

� 1
2
�

8̧

n�1

λ4α
n |wn|2

� 1
2

.

Since }w}α ¤ 1 and λn�p � kp
02pλn we can find a constant C ¡ 0 depending only on α, β and k0 such

that

I1,1 ¤ C
�

max
kPN

λ
2�4pα�βq
n�1 |un�1|2


 1
2
�

8̧

n�1

λ
4β
n�2|vn|2

� 1
2

¤ C

�
� 1

2̧

n�1

λ
4r 1

2�pα�βqs
n�1 |un�1|2

�



1
2 �

8̧

n�1

λ
4β
n�2|vn|2

� 1
2

,

from which we easily derive that
I1,1 ¤ C}u} 1

2�pα�βq}v}β.

One can use an analogous argument to show that

I1,2 ¤ C}u} 1
2�pα�βq}v}β.

Hence,
I1 ¤ C}u} 1

2�pα�βq}v}β.

Using a similar argument we can also prove that for any non-negative numbers α and β satisfying
α� β P p0, 1

2 s there exists a constant C ¡ 0 such that

I2 � I3 ¤ C}u} 1
2�pα�βq}v}β,

for any u P V 1
2�pα�βq and v P Vβ. Therefore, for any non-negative numbers α and β satisfying

α� β P p0, 1
2 s we can find a constant C ¡ 0 such that

}Bpu, vq}�α ¤ C}u} 1
2�pα�βq}v}β,

for any u P V 1
2�pα�βq and v P Vβ. Interchanging the role of u and v we obtain that for any two

numbers α and β as above there exists a positive constant C such that

}Bpu, vq}�α ¤ C}v} 1
2�pα�βq}u}β,

for any v P V 1
2�pα�βq and u P Vβ. Thus, we have just completed the proof of the lemma for the

Sabra shell model. As we mentioned earlier, the case of the GOY model can be dealt with a similar
argument.

For more mathematical results related to shell models we refer to [3], [6], [7], and references
therein.
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5.2. Stochastic nonlinear heat equation
Let O be a bounded domain of Rd, d � 1, 2. We assume that its boundary BO is of class C8.

Throughout this section we will denote by HθpOq, θ P R, the (fractional) Sobolev spaces as defined in
[43] and H1

0pOq be the space of functions u P H1 such that u|O � 0. In particular, we set H � L2pOq

and we denote its scalar product by p�, �q.
We define a continuous bilinear map a : H1

0pOq �H1
0pOq Ñ R by setting

apu, vq � p∇u,∇vq,

for any u, v P H1
0pOq. Thanks to the Riesz representation there exists a densely linear map A with

domain DpAq � H such that
xAv, uy � apv, uq,

for any u, v P H1
0pOq. It is well known that A is a self-adjoint and definite positive and its eigenfunc-

tions tψn; n P Nu � C8pOq form an orthonormal basis of H. The family of eigenvalues associated to
tψn; n P Nu is denoted by tλn; n P Nu. Observe that the asymptotic behaviour of the eigenvalues is
given by λn � λ1n

2
d . For any α P R we set Vα � DpAαq, in particular we put V :� DpA

1
2 q. We always

understand that the norm in Vα is denoted by ‖�‖0.
Now, let α0 ¡ d�1

4 and twj; j P Nu be a sequence of mutually independent and identically
distributed standard Brownian motions on filtered complete probability space U � pΩ, F , F, Pq sat-
isfying the usual condition. We set

Wptq �
8̧

n�0

λ�α0
n wnptqψn.

The process W defines a H-valued with covariance A�2α0 which is of trace class. We also consider a
Lipschitz map g : r0,8q Ñ R such that |gp0q|   8. We define a map G : H Ñ L pH, V 1

4
q defined by

Gpuqh � gp‖u‖0qh, for any u P H, h P H.

This map satisfies Assumption (G).
The second example we can treat is the stochastic nonlinear heat equation

du� r∆u� |u|usdt � gp‖u‖0qdW, (5.5a)

u � 0 on BO , (5.5b)

up0, xq � u0 x P O . (5.5c)

This stochastic system can be rewritten as an abstract stochastic evolution equation

du� rAu� Bpu, uqsdt � GpuqdW, up0q � u0 P H,

where A and G are defined as above and the DpA� 1
2 q-valued nonlinear map B is defined on H �

DpA
1
2 q or DpA

1
2 q �H by setting

Bpu, vq � |u|v,

for any pu, vq P H� DpA
1
2 q or pu, vqDpA

1
2 q �H. It is clear that

xAv� Bpu, vq, vy ¥ }v}2
1
2
, (5.6)

for any u, v P V. Here we should note that thanks to the solution of Kato’s square root problem in [2,
Theorem 1], see also [34, Section 7], we have }u} 1

2
� |∇u| for any u P H1

0pOq, i.e, V � H1
0pOq.

Now we claim that for any numbers α P r0, 1
2 q and β P p0, 1

2 q such that α� β P p0, 1
2 q, there exists

a constant c0 ¡ 0 such that

}Bpu, vq}�α ¤ c0

$&
%
}u} 1

2�pα�βq}v}β for any u P V 1
2�pα�βq, v P Vβ

}u}β}v} 1
2�pα�βq for any v P V 1

2�pα�βq, u P Vβ,
(5.7)
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and
}Bpu, vq}� 1

2
¤ c0}u} 1

4
}v} 1

4
for any v P V 1

4
, u P V 1

4
. (5.8)

To prove these inequalities, let β ¡ 0 such that α� β   1
2 . Since�

1
2
� α



�

�
1
2
� 1� 2pα� βq



�

�
1
2
� β



� 1,

we have
|x|u|v, wy| ¤ C0}u}Lr}v}Ls}w}Lq , (5.9)

where the constants q, r, s are defined through

1
q
�

1
2
� α,

1
s
� α� β,

1
r
�

1
2
� β.

Recall that Vα � H2α � Lq with 1
q � 1

2 � α if α P p0, 1
2 q and q P r2,8q arbitrary if α � 1

2 . Then, we
derive from (5.9) that the second inequality in (5.7) holds. By interchanging the role of r and s we
derive that the first inequality in (5.7) also holds. One can establish (5.8) with the same argument.
The estimates (5.7) and (5.8) easily imply (2.2) and (2.6).

Now we need to check that Bp�, �q satisfies (2.3). For this purpose we observe that there exists a
constant C ¡ 0 such that

|Bpu, vq| ¤ C‖u‖0‖v‖L8 ,

which with the continuous embedding V 1
2�ε � L8 for any ε ¡ 0 implies (2.3).
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