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Abstract: We analyze Australian electricity price returns and find that they exhibit volatility clustering, long
memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two
alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving
average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving
average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory
GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching
multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss
functions), we compare the out-of-sample relative forecasting performance of the models. We find that the
(multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifica-
tions. In particular, the MSM model outperforms the alternative specifications, when using the daily squared
return as a proxy for latent volatility.

Keywords: electricity price volatility; GARCH-type processes; Markov-switching processes; multifractal
modeling; volatility forecasting.

JEL classification: C22; C52; C53.

1 Introduction

The deregulation of electricity markets and the rapid development of related financial products have
unleashed an enormous interest in establishing econometric models that appropriately reflect the unique
characteristics and dynamics of electricity price behavior. In particular, forecasting electricity price vola-
tility has become a major task for analysts, energy companies and investors, due to its dominant role in
power derivative pricing, hedging, and risk allocation. Volatile electricity prices also increase uncertainty as
to generators’ revenue and suppliers’ costs. For industry regulators, high electricity price volatility is a
serious issue, due to their concern that this might indicate, at least partly, the outcome of regulatory
malfunctioning with deficiencies in market design, and/or the exertion of market power. As a result, a
plethora of alternative econometric models have been proposed in the literature with the aim of appropri-
ately modeling price means and variances, and producing accurate volatility forecasts (We provide an
overview in Section 2).

In this paper, we apply an additional class of processes for modeling and forecasting electricity price
volatility, which originally stem from the analysis of turbulent flows (Mandelbrot 1974). Their adaptation to
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finance started with the work of Mandelbrot, Fisher, and Calvet (1997), which led to the first generation of
multifractal models. Calvet and Fisher (2001, 2004) then introduced the second model generation, by speci-
fying their Poisson multifractal model and its discretized version, the Markov-switching multifractal process.1

To date, multifractal processes have been applied successfully in the volatility modeling and forecasting of
different asset prices, including exchange rates (Calvet and Fisher 2004; Lux 2008), stock prices (Lux 2008)
and commodity prices (Lux, Segnon, and Gupta 2016; Segnon, Lux, and Gupta 2017; Wang, Wu, and Yang
2016). Overall, these processes appear to be robust tools for capturing well-documented stylized facts of
financial and commodity market volatility, and are therefore natural candidates for producing accurate
volatility forecasts in electricity markets.

The main objective of this study is to investigate whether the multifractal framework—which
accommodates both long-term persistence in the volatility process, and structural breaks through
regime-switching—(i) constitutes an appropriate tool for analyzing price volatility in deregulated
electricity markets, and (ii) provides a comprehensive approach that outperforms alternative volatility
models in terms of forecast-accuracy (Aggarwal, Saini, and Kumar 2009).2 To this end, we use (i) the
smooth transition fractionally integrated autoregressive moving average (STARFIMA) specification
(Hillebrand and Medeiros 2016), and (ii) the Markov-switching autoregressive fractionally integrated
moving average (MSARFIMA) specification (Tsay and Härdle 2009) to model the mean equation of
electricity price returns. For volatility modeling, we rely on (i) a Markov-switching multifractal (MSM)
process, and (ii) a set of (Markov-switching) GARCH-type processes.

To the best of our knowledge, this study is the first to combine the STARFIMA and MSM processes
in a consolidated econometric framework, which we apply to Australian data, for reasons that are
explained below. In contrast to previous studies, we do not confine ourselves to forecasting electricity
price volatility only for the Australian New South Wales, but provide an extended empirical analysis
covering all five Australian regions. Overall, our analysis proceeds in two steps. (i) We investigate
(multi-)fractal structures of Australian electricity price returns (by computing the multifractal spectrum)
via the so-called Multifractal Detrended Fluctuation Analysis (MDFA), as proposed by Kantelhardt et al.
(2002). (ii) We conduct a forecasting investigation in order to compare the volatility forecasting per-
formance of our combined STARFIMA-MSM model with the performance of several other combinations,
in each of which the mean equation still follows the STARFIMA or MSARFIMA process, but with the
volatility equation being governed by alternative (conventional and Markov-switching) GARCH-type
processes.

Our analysis yields two major findings. (i) Daily Australian electricity price returns exhibit multifractal

structures, structural breaks and long memory. These empirical findings provide a clear-cut motivation for

using multifractal and Markov-switching processes in the modeling of electricity-price dynamics. (ii) Incor-

porating multifractal structures into the volatility equation of the data-generating electricity-price process

yields volatility forecasts that match those of alternative conventional specifications, when using realized

variances as a proxy for latent volatility. However, when using the (daily) squared returns as the volatility

proxy (what is frequently encountered in the literature), the MSM volatility model outperforms the alternative

specifications (in terms of superior predictive ability).

The remainder of the paper is organized as follows. In Section 2, we motivate our interest in Australian

electricity markets and provide an overview of alternative forecasting models of electricity price dynamics. In

Section 3, we analyze electricity price changes and present the results of the Multifractal Detrended Fluctu-

ation Analysis. Section 4 presents our econometric modeling framework. In Section 5, we present the

forecasting procedures and our results. Section 6 concludes.

1 For details on the genesis of multifractal models and applications in finance, see Lux and Segnon (2018).
2 In a related context, Nowotarski et al. (2014) and Nowotarski and Weron (2015) consider forecast combinations of several
individual volatility models. In this paper, we do not pursue this approach any further.
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2 Preliminaries and literature review

2.1 Characteristics of Australian electricity markets

The literature has extensively explored the price dynamics in the Australian electricity markets, due to its
unique characteristics in terms of the scale of the power system and the source of electricity generation. The
National Electricity Market (NEM) is the world’s largest interconnected power system, running for more than
5000 km from North Queensland to Tasmania and central South Australia. In view of such a large inter-
connected power system, price volatility is high and uncertainty occurs for several reasons.

First, some generators do not follow the dispatch instructions issued by the Australian Energy Market
Operator (AEMO) as a way to increase their revenue at the expense of power-system safety and price uncer-
tainty for end-consumers.3 Price also varies due to supply issues such as plant outages or constraints in the
transmission network that limit transport capabilities. Another unique characteristic of NEM is its heavy
dependence on coal fired generators. As the highest dependency compared to other developed countries, 84
percent of electricity was derived from coal in 1998 and 61 percent in 2014. The adoption of a carbon tax policy,
implemented between July 2012 and July 2014, increased the cost of power production from coal.

Another policy uncertaintywas induced by the introduction of a greenhouse gas emissions trading scheme
by 2010. The legislation was initially passed by the House of Representatives, but rejected by the Senate.
Apergis and Lau (2015) provide evidence that the Australian electricity market is a volatile one with a high
degree of market power exercised by various generators, and one source of volatility stems from the failure to
introduce a greenhouse gas emissions trading scheme in 2010. Therefore, it is important to forecast electricity
price volatility in NEM, as its occurrence could be caused by demand shocks (e.g., extreme weather condi-
tions), supply disruption (e.g., outages of transmission lines), or political uncertainty (e.g., rejection of
greenhouse gas emissions trading scheme).

2.2 Forecasting electricity price dynamics: a literature review

To date, a multitude of models for forecasting electricity price volatility have been proposed in the literature,
whichwe can roughly divide into two groups. The first is based onnon-traditionalmethodologies, like artificial
intelligence and hybrid approaches, including (fuzzy) neural networks, fuzzy regression, cascaded architec-
ture of neural networks and committeemachines (e.g. Amjady 2006; Amjady 2012; Amjady andHemmati 2009;
Catalão et al. 2007; Vahidinasab and Kazemi 2008).

The second group of studies, which are more relevant to our paper, include (i) traditional autoregressive
time series models (Contreras et al. 2003; Garcia-Martos, Rodriguez, and Sanchez 2007; Kristiansen 2012),
(ii) generalized autoregressive conditional heteroscedasticity (GARCH-type) models (Chan and Gray 2006;
Cifter 2013; Garcia et al. 2005; Gianfreda 2010; Koopman, Ooms, and Carnero 2007), (iii) jump-diffusionmodels
(Chan, Gray, and Campen 2008; Huisman and Mahieu 2003), (iv) autoregressive conditional hazard models
(Christensen, Hurn, and Lindsay 2012), and most recently, (v) multivariate models (Raviv, Bouwman, and van
Dijk 2015). Several authors apply alternative machine learning techniques, such as support vector regressions
and neural networks, in order to model nonlinear behavior in high-frequency electricity price returns (Lago,
De Ridder, and De Schutter 2018; Wu and Shahidehpour 2010). Yet others combine traditional models with
fundamentals (Huurman, Ravazzolo, and Zhou 2012; Karakatsani and Bunn 2008), use high-frequency data to
forecast price volatility (Gianfreda and Grossi 2012; Higgs and Worthington 2005; Haugom and Ullrich 2012;

3 In July 2014, an electricity generator Snowy Hydro failed to comply with dispatch instructions issued by the Australian Energy
Market Operator (AEMO), and the Australian Energy Regulator (AER) instigated proceedings against the company. Snowy Hydro
paid total penalties of $400,000, because of the potential hazard to public safety and material risk of damaging equipment.
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Haugom et al. 2011), and study the link between fundamentals, other energy markets and electricity price
volatility (Gianfreda 2010; Goss 2006; Jonsson and Dahl 2016).4

Although the literature has expressed a strong interest in studying the forecasting performance of elec-
tricity spot prices (Hong 2015; Maciejowska, Nowotarski, and Weron 2016; Nowotarski and Weron 2015;
Nowotarski et al. 2014; Weron 2014), only a few empirical studies have focused on forecasting realized
volatility inworld-wide electricitymarkets. Nowotarski et al. (2014) perform a backtesting analysis using seven
averaging and one selection scheme on day-ahead electricity prices in three major European and US markets.
While the authors find that averaging forecasting techniques outperforms the counterpart models under
normal market conditions, it fails to outperform an individual model in a more volatile environment or in the
presence of price spikes. According to Clements, Herrera, and Hurn (2015), there is an ample early literature
dealing with price spikes, when forecasting spot electricity prices with various modeling approaches,
including thresholds, Bernoulli and Poisson jump processes, heavy-tailed error processes, Markov-switching,
and diffusion models with time-varying intensity parameters. Examples include Misiorek et al. (2006); Knittel
and Roberts (2005); Swider and Weber (2007); Higgs and Worthington (2008).

Another strand of the recent literature focuses on forecasting the probability of such spike events, instead
of simply forecasting the level of spot prices. These authors apply a multivariate point process to model the
occurrence and size of extreme price events, and conclude that physical infrastructure is the main influential
factor in determining the transmission of price spikes in interconnected regions of the Australian electricity
market (Clements, Herrera, and Hurn 2015). Their econometric approaches also lead to improved forecast
indicators, such as forecasts and estimates of riskmeasures (for example value-at-risk and expected shortfall).

Qu et al. (2016) note that most of the early research uses the generalized autoregressive conditional
heteroscedastic (GARCH) model introduced by Bollerslev (1986), and related models for estimating and
forecasting electricity price volatility. The authors use a group of logistic smooth transition heterogeneous
autoregressive (LSTHAR) models to forecast realized volatility in the Australian New South Wales (NSW)
electricity market. Their modeling approaches enable simultaneously capturing long-memory behavior, as
well as sign and size asymmetries, and provide improved volatility forecasts.

3 Preparatory data analysis

Currently, there are five Australian states—Queensland (QLD), New SouthWales (NSW), Victoria (VIC), South
Australia (SA) and Tasmania (TAS)— operating via a nationally interconnected grid. Since December 1998, the
Australian Energy Market Operator (AEMO) has been responsible for operating Australia’s electricity markets
and power systems, and themain domestic network is known as theNational ElectricityMarket (NEM). In 1998,
NEM started operating as a wholesale market for the supply of electricity to retailers and end-users in
Queensland, New SouthWales, Victoria and South Australia, whereas Tasmania joined the NEMonly in 2005.5

Exchange between electricity producers and retailers is facilitated through a spot and future market
operated by the Australian Energy Market Operator, in which the output from all generators is aggregated and
scheduled to meet the demand of end-use customers. In our analysis, we use 5-min intraday data, and the
electricity dispatched price was obtained from AEMO with prices quoted in Australian dollars per MW hour
(MWh).6 In each 24-h period, there are 288 trading intervals, and we transform our 1087776 intraday obser-
vations, covering the time period from 1 January 2006 00:00 until 4 May 2016 23:55 into 3777 daily prices, by
averaging intraday prices. The spot price is the unit price received by generators, by selling electricity to the
pool, where the output from all generators is aggregated and scheduled to meet demand.

4 For a detailed review of the various methodologies, see Möst and Keles (2010), Zareipour (2012) and Weron (2014).
5 The NEM operates the world’s longest interconnected power system with a distance of around 5000 km. The annual turnover of
electricity traded is more than $10 billion, so as to meet the demand of more than eight million end-user consummers.
6 The data can be downloaded from http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard.
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In a first step, we compute the (daily) realized variance (RV) using 5-min (intraday) data. For t = 0, 1, 2,…,
we denote the daily logarithmic dispatch prices by pt. To formally establish the realized variance at date t, we
further partition the daily log dispatch electricity price process {pt}, by observing n + 1 equidistantly spaced
(log) intraday prices pt:0, pt:1,…, pt:n (where pt:0 � pt−1:n), and then define the realized variance at date t as

RVt � ∑
n

i�1
(pt:i − pt:i−1)2. (1)

The stochastic properties of the realized variance RVt from Eq. (1), in particular its use as a consistent estimator
of the so-called integrated variance from continuous-time (jump) diffusion models of the log electricity price,
have been discussed extensively in the literature (see McAleer and Medeiros 2008, for an in-depth overview).
However, in our subsequent empirical analysis, we consider not only RVt, but also daily squared returns as
proxies of the true (but in practice unobservable) daily volatility, and use both quantities for assessing the
accuracy of our volatility forecasts in Section 5.7 Our use of the daily squared returns is motivated by our loss
functions, applied in the subsequent forecast comparisons (see Awartani and Corradi 2005).

Figure 1 displays thedaily electricity price returns (definedas thedifferencebetween two successive daily log
prices, xt=pt−pt−1) and thedaily realizedvariancesRVt. Figure 2depicts thedaily squared returnsalongwith their
autocorrelation functions for thefiveAustralian states. Descriptive statistics of the time series for allfive states are
reported in Table 1. We observe negatively skewed electricity price returns in New South Wales, Queensland,
Tasmania and Victoria, and positively skewed price returns in South Australia. All return series exhibit excess
kurtosis, thus conflicting with the normal distribution. Table 1 also displays the tail index of the price returns,
which we computed via the Hill estimator.8 All tail indices range between 1.7 and 2.5, indicating that the returns
series for all five states exhibit heavy tails with (i) finite means, but infinite variances for New South Wales, and
Victoria (tail indices between 1 and 2), and (ii) finite means and finite variances for Queensland, South Australia
and Tasmania (tail indices larger than 2). In line with these latter findings, the Jarque-Bera test (JB in Table 1)
rejects the null hypothesis of normally distributed price returns for all five Australian states.

In order to analyze longmemory properties in the data, we use the Hurst index, computed via the detrended
fluctuation analysis (DFA) described inWeron (2002). For all five states, the Hurst index values obtained for the
price returns (Hurst index1 in Table 1) are close to 0, indicating strongly anti-persistent (or mean-reverting)
dynamics. We note that this anti-persistence in Australian electricity-return data contrasts with the price-return
dynamics frequently observed for other commodities (where Hurst exponents are typically close to 0.5). For the
realized variances and squared returns, we obtain Hurst exponents (Hurst index2, Hurst index3 in Table 1)
substantially larger than 0.5, indicating the presence of long memory in return volatility.

The Ljung-Box Q-tests out to lag 5 (Q(5) in Table 1) reject the null hypothesis of no autocorrelation in the
electricity price returns and the Engle (1982) tests for heteroscedasticity (ARCH-tests at lag 1) indicate signif-
icant ARCH effects in the returns for all five states. The Phillips-Perron tests (PP and PP*) in Table 1 reject the
null hypothesis of a unit root for all states at the 1% level.

In order to test for structural breaks in the (unconditional) variance processes of the price returns,we apply
the modified iterated cumulative squares (ICSS) algorithm established by Sansó, Arragó, and Carrion (2004).
As reported in Table 2, the algortihm detects (at the 5% level) two breakpoints in the return variances for New
South Wales, 5 for Queensland, one for South Australia and Victoria, and two breakpoints for Tasmania. The
dates at which the breakpoints occur, are highlighted in Table 2. These breakpoints justify the use of Markov-
switching processes, and will become relevant in our forecasting analysis in Section 5.

Finally, we use the multifractal detrended fluctuation analysis (MDFA), as established by Kantelhardt
et al. (2002), to (i) detect long-range dependencies, and (ii) to determine (multi-)fractal scaling properties in

7 The concept of approximating unobservable daily volatility by the realized variance, obtained from intraday data, was proposed
by Andersen and Bollerslev (1998). See also Marcucci (2005) and Reher and Wilfling (2016), who recently use this approach in the
context of volatility forecasting.
8 We refer the reader to Resnick and Stǎricǎ (1995, 1997, 1998) for the computation of Hill’s estimator, when using dependent
data.
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Australian electricity price returns.9 The importance of the MDFA is twofold. First, it constitutes a robust
approach to estimating the multifractal spectrum, which describes the distribution of the Hölder exponents.
Second, the MDFA allows us to effectively discriminate between (i) multifractality (stemming from a broad
range of Hölder exponents), and (ii) monofractality (stemming from a narrow range of Hölder exponents).
While the Hölder exponents (denoted by α) represent local scaling rates governing the time series, the Hurst
exponent (denoted byH) quantifies the global scaling property of the series. Figure 3 displays the relationship
between the (generalized) Hurst exponent and the q-ordermoments. For allfiveAustralian states, we observe a
strong dependency, where for positive (negative) values of q, the Hurst exponent H(q) describes the scaling
behavior of the segments with large (small) fluctuations. Figure 4 displays the multifractal spectra, f(α), for
the 5 Australian states, each of which resembles a “large arc”. This characteristic is in contrast with the
“small arc”-spectra that are typically observed for monofractal time series.
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Figure 1: Daily electricity price
returns (left panels) and daily
realized variances (right
panels).

9 See Kantelhardt et al. 2002 for a detailed description of the MDFA, and Thompson and Wilson (2016) for a robust and compu-
tationally efficient software implementation of themethodology.We refer to the technical definition ofmultifractality from Lux and
Segnon (2018).
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Overall, our preparatory analysis yields the following major findings. First, we observe that structural
breaks and long memory are salient features of Australian electricity price returns. In line with Haldrup and
Nielsen (2006), a plausible theoretical specification of the return process could be a regime-switching long-
memory model. Second, we also find conditional heteroscedasticity and indication of multifractality. In all,
this extended set of properties suggests modeling the returns as aMarkov-switching GARCH-type process with
long-memory and multifractal components.

4 Econometric modeling

For modeling the Australian electricity price returns {xt}, we consider (i) two classes of autoregressive frac-
tionally integrated moving average (ARFIMA) processes, and (ii) a broad set of volatility specifications. In the
formal representation of the processes, we denote the conventional lag operator by L.
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Figure 2: Daily squared price
returns (left panels) and
autocorrelation functions
(right panels).
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Table : Descriptive statistics for seasonally adjusted electricity price returns.

NSW QLD SA TAS VIC

Nb. of observations     

Minimum −. −. −. −. −.
Maximum . . . . .
Mean .E- .E- .E- .E- .E-
Std . . . . .
Skewness −. −. . −. −.
Kurtosis . . . . .
Tail index . . . . .
JB .E+ .E+ .E+ .E+ .E+

(.) (.) (.) (.) (.)
Hurst index . . . . .
Hurst index . . . . .
Hurst index . . . . .
Q() . . . . .

(.) (.) (.) (.) (.)
ARCH-test() . . . . .

(.) (.) (.) (.) (.)
PP −. −. −. −. −.
PP* −. −. −. −. −.

The Hurst index denotes the Hurst values for electricity price returns, Hurst index for the realized variances, and Hurst index

for daily squared returns. p-values are in parentheses. PP and PP* are the Phillips-Perron adjusted t-statistics of the lagged
dependent variable in a regression with (i) intercept and time trend, and (ii) intercept only. The respective critical values at the %
level are −. and −.. The five Australian states are abbreviated as NSW, New South Wales; QLD, Queensland; SA, South
Australia; TAS, Tasmania; VIC, Victoria.

Table : Structural breaks in the (unconditional) variance processes of electricity price returns.

State No. of break points Date (dd/mm/yyyy) Standard deviation

New South Wales  //–// .
//–// .
//–// .

Queensland  //–// .
//–// .
//–// .
//–// .
//–// .
//–// .

South Australia  //–// .
//–// .

Tasmania  //–// .
//–// .
//–// .

Victoria  //–// .
//–// .

The bold dates represent the structural breakpoints, obtained from the modified iterated cumulated squares algorithm suggested
by Sansó, Arragó, and Carrion ().
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4.1 Mean-equation modeling

1. Smooth transition ARFIMA (STARFIMA) model:

The STARFIMA(p,d,q) process can be expressed as

Φzt ;η(L)(1 − L)dxt � θ(L)εt  . (2)

In Eq. (2), εt|Ωt−1 ∼ N(0, σ2
t ), where Ωt−1 is the σ-field generated by the past information set

{xt−1, xt−2,…, εt−1, εt−2,…}. While θ(L) � 1 + θ1L +⋯ + θqLq denotes a regular lag polynomial of order q, the left-
hand-side lag polynomial is defined as Φzt ;η(L) � 1 − ϕ1(zt ; η1)L −⋯ − ϕp(zt ; ηp)Lp, with coefficients

ϕi(zt , ηi) � ϕi0 + ϕi1G(zt , τ, c) for i = 1,…, p, that are nonlinear functions to be defined. zt is the transition

variable, c the location parameter, τ the transition parameter, and ηi � (ϕi0,ϕi1, τ, c)′ a vector of parameters.
For d ∈ ( −0.5,0.5), (1−L)d is the fractional differencing operator given by

(1 − L)d � ∑
∞

k�0

Γ(k − d)Lk

Γ(−d)Γ(k + 1) , (3)

where Γ(⋅) is the gamma function. The transition function G(zt, τ, c) is defined as the logistic function

Figure 3: Hurst exponent H(q) and q-order moments.

Figure 4: Multifractal spectra (f (α)) and Hölder
exponents (α).
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G(zt , τ, c) � 1
1 + exp( − τ(zt − c)), τ > 0 . (4)

Remark: For d = 0, q = 0, the STARFIMA(p,d,q) model reduces to the STAR(p)model. The logistic function has the
following properties: (i) limzt→−∞G(zt , τ, c) � 0, (ii) limzt→∞G(zt , τ, c) � 1, (iii) G(zt ,0, c) � 1/2, (iv)
limτ→−∞G(zt , τ, c) � 0, (v) limτ→∞G(zt , τ, c) � 1. The transition parameter τ is assumed to be positive (for iden-
tification purposes) and characterizes the speed of transition between extreme regimes.

2. Markov-switching ARFIMA (MSARFIMA) model:

TheMSARFIMA(p,d,q) process, proposed by Tsay andHärdle (2009), treats the concepts of ‘Markov-switching’
and ‘long memory’ in a unified framework. We state it as

xt � μΔtI{t ≥ 1} + (1 − L)−dΔtϕ(L)−1θ(L)εtI(t ≥ 1) . (5)

In Eq. (5), the lag polynomials are ϕ(L) � 1 − ∑p
i�1ϕi, θ(L) � 1 + ∑q

i�1θi, and I(⋅) is the indicator function. Δt
denotes the Markov-chain regime-indicator with state space S = {1, 2}, and transition probability matrix

P � (pij) � (Pr(Δt � j|Δt−1 � i)), i, j = 1, 2, with ∑2
j�1pij � 1 for i = 1, 2. Finally, εt ∼ N(0, σ2

t ).

Remark: It is assumed that Δt is independent of εs for all t, s. The indicator function permits us to truncate the
influence of (distantly) past observations of εt on xt, since dΔt may be greater than or equal to 0.5.

4.2 Volatility-equation modeling

It remains to specify the innovation process {εt} in Eqs. (2) and (5), for which we assume the general form

εt � utσt  , (6)

where ut∼ i.i.d.N(0, 1). We consider the following volatility models for capturing the time-varying dynamics
of σt:
1. Markov-switching multifractal (MSM) model:

The MSM model assumes that the volatility dynamics are driven by the hidden Markov-chain vector Mt,

consisting of the k independent random volatility components (called multipliers) M(1)
t ,M(2)

t ,…,M(k)
t . The

volatility equation is

σt � σ

������
∏
k

j�1
M(j)

t

√
 , (7)

with σ denoting the scaling factor. The dynamics governing the k multipliers characterize the multifractal
structure. At date t, each multiplier M(j)

t is drawn from the base distribution F (to be specified) which has
positive support and unit expectation. Depending on its rank within the hierarchy of multipliers,M(j)

t changes
fromoneperiod to the nextwith probability γj (and remains unchangedw.p. 1−γj), thus providing a spectrumof
low and high frequencies of multiplier renewal.

The k transition probabilities are specified as

γj � 2j−k , j � 1,…, k , (8)

and the transition matrix related to the jth multiplier is given by

Pj � ( 1 − 0.5γj 0.5γj
0.5γj 1 − 0.5γj

) .
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In the event of a change, each multiplier, M(j)
t is drawn from a (two-point) distribution with support {m0,

2−m0}, 1 < m0 < 2 , and equal point probability 0.5, implying the unconditional expectation E(Mj
t) � 1. The

transition matrix of the vector Mt � (M(1)
t ,…,M(k)

t )′ becomes the 2k×2k matrix P � P1 ⊗ P2 ⊗⋯ ⊗ Pk (⊗ is the
Kronecker product). Letting each multiplier follow this translated binomial base distribution F, we obtain the

finite support Γ ≡ {m0, 2 −m0}k for Mt, which renders maximum likelihood estimation feasible.10. We finally
note that Calvet and Fisher (2004) provide details on the computation of various relevant conditional distri-
butions of Mt.

2. Short-memory GARCH-type models:

Hentschel (1995) proposes a comprehensive family of short-memory GARCH-type models via the Box and Cox
(1964) transformation of the conditional standard deviation,

σδ
t

δ
� ω + ασδ

t−1f
ν(ut) + β

σδ
t−1 − 1
δ

 . (9)

In Eq. (9), ω > 0, α > 0, β > 0 are parameters, and ut is a shock term with zero mean and unit variance. For the
parameters b, c, the absolute value function f(⋅) is defined as f(ut) � |ut − b| − c(ut − b). Its ν-power, f ν(⋅),
controls for the impact of the shock ut on the Box-Cox transformed conditional standard deviation σt. The
parameter δ determines the curvature of the Box-Cox transformation.11

Hentschel’s (1995) volatility Eq. (9) includes, among others, the GARCH-type specifications of Bollerslev
(1986) (standard GARCH), Glosten, Jagannathan, and Runkle (1993) (GJR-GARCH), Nelson (1991) (EGARCH),
and Ding, Granger, and Engle (1993) (APARCH). See Ling and McAleer (2002a, b) for moment conditions in
GARCH and APARCHmodels, Bougerol and Picard (1992) for stationarity conditions of GARCH processes, and
Lux, Segnon, and Gupta (2016) for volatility forecasting formulas in GARCH(1,1)-type models. The following
parameter restrictions in Eq. (9) lead to the above-mentioned submodels:
– (standard) GARCH: δ � 2, ν = 2, b = 0, c = 0.
– GJR-GARCH: δ � 2, ν = 2, b = 0, c = free.
– EGARCH: δ � 0, ν = 1, b = 0, c = free.12

– APARCH: δ � free, ν = δ, b = 0, |c| ≤ 1.
3. Fractionally integrated GARCH (FIGARCH) model:

Via fractional differences in the GARCH process, Baillie, Bollerslev, and Mikkelsen (1996) establish a frame-
work for reproducing long-term dependence in electricity price volatility. For the fractional-differentiation
parameter d ∈ (0, 1), the conditional variance in the FIGARCH(1, d, 1) model can be formalized as

σ2
t � ω + [1 − βL − (1 − ϕL)(1 − L)d]ε2t + βσ2

t−1
� ω(1 − β)−1 + ψ(L)ε2t  ,

(10)

where ψ(L) � ψ1L + ψ2L
2 +⋯ � [1 − (1 − βL)−1(1 − ϕL)(1 − L)d] with ψi ≥ 0 for i = 1, 2,…,∞.13

To ensure the non-negativity of theψi-coefficients, the following parameter conditions have to be satisfied:

10 Liu, diMatteo, and Lux (2007)find that other basedistributions (e.g., adequately parameterized lognormal andgamma) produce
very similar results in empirical applications.
11 δ offers the GARCH-type processes the flexibility to capture the Taylor-property (Taylor 1986). See He and Teräsvirta (1999) for a
detailed discussion.
12 We note that the EGARCH process specifies the log variance, so that some positivity constraints on the parameters in Eq. (9) can
be relaxed. However, EGARCH volatility forecasts may have optimality properties for log variances, but are biased with respect to
(non-log) variances, due to Jensen’s inequality.
13 Theψi-coefficients in the series expansion can be obtained via the following recursions:ψ1 � ϕ − β + d;ψi � βψi−1 + (i−1−d

i − ϕ)χd, i−1
for i = 2,…,∞, where χd, i � χd, i−1(i − 1 − d)/i and χd, 1 � d. In our estimation procedure, we impose a truncation at lag 1000.
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β − d ≤ ϕ ≤
(2 − d)

3
(11)

and

d[ϕ − (1 − d)
2

] ≤ β(d − β + ϕ) . (12)

Conrad and Haag (2006) establish generalized restrictions on the parameters in the FIGARCH model.

4. Fractionally integrated APARCH (FIAPARCH) model:

Tse (1998) merges the FIGARCH framework with the asymmetric power ARCH (APARCH) model of Ding,
Granger, and Engle (1993). In the resulting FIAPARCH(1,d,1) specification, the volatility equation is given by

σδ
t � ω(1 − β)−1 + ψ(L)(|εt| − ρεt)δ, (13)

where δ,ω > 0,0 < β < 1, and with lag polynomial ψ(L) as defined in the FIGARCH framework with ψi ≥ 0 for
i = 1, 2,…,∞, and fractional differentiation parameter d ∈ (0, 1). ρ(∣∣∣∣ρ∣∣∣∣ < 1) is an asymmetry parameter,
ensuring that positive and negative shocks of identical absolute value can have asymmetric effects on con-
ditional volatility. For δ � 0, ρ � 0, the FIAPARCH(1,d,1) model reduces to FIGARCH(1,d,1).

5. Smooth transition FIGARCH (STFIGARCH) model:

In order to simultaneously account for long-memory and nonlinear volatility dynamics, Kiliç (2011) proposes
the STFIGARCH(1, d, 1) process, by formalizing the conditional variance as

σ2
t � ω + [1 − [β̃G(zt , τ, c)L + β(1 − G(zt , τ, c))L] − (1 − ϕL)(1 − L)d]ε2t (14)

+β̃G(zt , τ, c)σ2
t−1 + β(1 − G(zt , τ, c))σ2

t−1  .

In Eq. (14), the transition function G(⋅) is defined as in Eq. (4), the FIGARCH elements are from Eq. (10), and β
and β̃ are the volatility dynamics parameters.

6. Smooth transition FIAPARCH (STFIAPARCH) model:

The STFIAPARCH model is a natural generalization of Kiliç’s (2011) STFIGARCH process, with the objective of
accounting for the Taylor-property (Taylor 1986). The STFIAPARCH(1,d,1) volatility equation is

σδ
t � ω + [1 − [β̃G(zt , τ, c)L + β(1 − G(zt , τ, c))L] − (1 − ϕL)(1 − L)d](|εt| − ρεt)δ (15)

+β̃G(zt , τ, c)σδ
t−1 + β(1 − G(zt , τ, c))σδ

t−1  ,

where the elements in Eq. (15) are adopted from the previous volatility Eqs. (4), (13) and (14). The parameter
δ > 0 enables the STFIAPARCH model to capture the Taylor-property.

7. Markov-switching GARCH (MSGARCH) model:

We consider the two-regime MSGARCH(1,1) approach suggested by Haas, Mittnik, and Paolella (2004), where
the conditional variance equation in regime i is given by

σ2
t, i � ωi + αiε2t−1 + βiσ

2
t−1, i � 1, 2 , (16)

withωi > 0,αi, βi ≥0. In this framework, the regime dynamics are governedby the two-stateMarkov-chain regime-
indicator Δt with irreducible, aperiodic (2 × 2) transition probability matrix P � (pij) � (Pr{Δt � j|Δt−1 � i}) for i,
j= 1, 2. It is assumed that εt and Δt are independent. Liu (2006) presents details on stationarity conditions and the
existence of moments.
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8. Markov-switching FIGARCH (MSFIGARCH) model:

Combining the FIGARCHprocesswith theMarkov-switching approach fromHaas,Mittnik, andPaolella (2004),
we obtain the MSFIGARCH(1,d,1) model with the regime-i volatility equation

σ2
t, i � ωi + [1 − βiL − (1 − ϕiL)(1 − L)di]ε2t + βiσ

2
t−1, i, i � 1, 2 . (17)

In Eq. (17), βi,ϕi are regime-specific autoregressive and moving average parameters. The (regime-specific)
fractional differencing parameters satisfy 0 < di < 1.

9. Markov-switching FIAPARCH (MSFIAPARCH) model:

The MSFIAPARCH(1,d,1) model generalizes the MSFIGARCH(1,d,1) model to capture the Taylor-property. The
volatility equation in regime i is given by

σδi
t, i � ωi + [1 − βiL − (1 − ϕiL)(1 − L)di](|εt| − ρiεt)δi + βiσ

δi
t−1, i, i � 1, 2 , (18)

where all parameters correspond, apart from indexation, to their counterparts in the FIAPARCH and MSFI-
GARCH volatility specifications.

4.3 Volatility forecasting specifications

Prior to selecting our volatility forecastingmodels, we set up a vector autoregressive (VAR) frameworkwith the
objective of testing for potential volatility spillovers from adjacent markets and/or trading days (to assess, for
example, whether volatility at time t in one state might be affected by volatility in another state at date t−1 and
earlier). For this purpose, we used the state-specific daily squared returns as volatility measures in our VAR
model and conducted two types of Granger causality tests: (i) multivariate tests of the null hypothesis that
volatility in one specific state (e.g., NSW) does not Granger-cause (↛) volatility in all remaining states (QLD,
SA, TAS, VIC), via an F-type test statistic. (ii) Bivariate causality tests of the null hypothesis that volatility in one
specific state (e.g., NSW) does not Granger-cause (↛) volatility in a second specific state alone (e.g., QLD),
again using an appropriate F-test.14

Table 3 displays the results of the multivariate and bivariate Granger causality tests for the daily squared
returns. As a robustness check, we implemented all tests using (i) the full data set (3776 observations), (ii) the
last half, and (iii) the last quarter of the data set (1888 and 944 observations). The multivariate tests (column
‘Remaining states’ in Table 3) reveal (i) no evidence of any volatility spillovers for the full data set, and (ii)
minimal evidence that volatility in Victoria might Granger-cause volatility in the remaining states for the last
half and the last quarter of the data set (at 5 and 1% levels).15 By contrast, the bivariate tests indicate various
causality relations, when applied to the full data set. In particular, volatility in South Australia (SA) and
Victoria (VIC) appears to (bivariately) Granger-cause volatility in NSW, QLD, VIC and NSW, QLD, SA at the 1%
level. However, many of these causality relations seem to vanish with the shortened data sets, as shown in the
middle and the lower blocks of Table 3. In view of these results, the univariate volatility forecasting framework
described in Sections 4.1 and 4.2 appears acceptable for our study. Nonetheless, establishing a fully-fledged
multivariate volatility forecasting approach would be desirable, a challenging task that we leave for future
research (see our concluding comments in Section 6).

We briefly report the complete (univariate) specifications (i.e. the explicit mean-volatility models), which
we use in our forecasting analysis of Australian electricity-price volatility in Section 5. We experimented with

14 In both types of test, we selected the optimal lag lengths via the Bayesian information criterion (BIC). In the computation of the
multivariate test statistics, we used a heteroscedasticity-robust covariance-matrix estimator.
15 Sincewe conducted amultitude of testswith the samedata set, our resultsmight bemisleadingdue todata-snoopingdistortions. As a
precautionary measure, we disclose the Granger-causality results (↛,→) in Table 3, as obtained from testing at the 1% level.
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several combinations of the 2mean and 12 volatility specifications, and ultimately decided to use the following
mean-volatility models:
– Mean equation: STARFIMA [Eq. (2)]

Volatility equations: GARCH [Eq. (9)], GJR [Eq. (9)], EGARCH [Eq. (9)], APARCH [Eq. (9)], FIGARCH [Eq.
(10)], STFIGARCH [Eq. (14)], STFIAPARCH [Eq. (15)]

Table : Granger causality tests for daily squared returns.

Full data set: 01/01/2006 – 03/05/2016 (3776 observations)

State Remaining states NSW QLD SA TAS VIC

NSW ↛ ↛ → ↛ ↛
(.) (.) (.) (.) (.)

QLD ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

SA ↛ → → ↛ →
(.) (.) (.) (.) (.)

TAS ↛ → ↛ ↛ ↛
(.) (.) (.) (.) (.)

VIC ↛ → → → ↛
(.) (.) (.) (.) (.)

Last half of the data set: // – // ( observations)

NSW ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

QLD ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

SA ↛ → ↛ ↛ →
(.) (.) (.) (.) (.)

TAS ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

VIC ↛ → ↛ → ↛
(.) (.) (.) (.) (.)

Last quarter of the data set: // – // ( observations)

NSW ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

QLD ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

SA ↛ → ↛ ↛ →
(.) (.) (.) (.) (.)

TAS ↛ ↛ ↛ ↛ ↛
(.) (.) (.) (.) (.)

VIC → → ↛ → ↛
(.) (.) (.) (.) (.)

The five Australian states are abbreviated as NSW, New South Wales; QLD, Queensland; SA, South Australia; TAS, Tasmania; VIC,
Victoria. y → x (y↛x) denotes ‘y does (does not) Granger-cause x’. p-values are in parentheses. The displayed results (↛ versus→)
are obtained from testing at the % level.
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– Mean equation: MSARFIMA [Eq. (5)]
Volatility equations: MSGARCH [Eq. (16)], MSFIGARCH [Eq. (17)], MSFIAPARCH [Eq. (18)]

We emphasize that any volatility specification is unequivocally assigned either to (i) the STARFIMA, or (ii)
the MSARFIMA mean equation. Thus, to economize on space, we henceforth denote the complete specifica-
tions by their volatility nomenclature (e.g., GARCH, GJR, MSGARCH).

5 Volatility-forecasting performance

In this section, we evaluate the quality of volatility forecasts for the alternative models presented in Section 4.
To this end, we divided each of our five regional data sets into appropriate in-sample and out-of-sample
periods and then applied a daily rollingwindow, in order to fix the number of observations used to estimate the
respective models over time. We estimated all econometric specifications with the maximum likelihood
techniques suggested in the original articles.

Prior to estimating the STARFIMA and MSARFIMA specifications from Eqs. (2) and (5), we corrected all
series for deterministic (weekly and annual) seasonalities via the trigonometric functions

st � a1sin(2πt) + a2cos(2πt) + a3sin(4πt) + a4cos(4πt) + a5  ,

with parameters a1,…, a5, and the annualized time factor t. For the STARFIMA specification, we selected the
number of transitions and the lag lengths via the Bayesian information criterion (BIC). Specifically, we selected
one transition, and the lag lengths (i) p = 4, q = 0 for New South Wales, and (ii) p = 2, q = 0 for Queensland,
South Australia, Tasmania and Victoria. For the MSARFIMA and the MSGARCH-type models, we set p = q = 1
(see Bollerslev, Engle, and Nelson 1994). For the MSARFIMA estimation, we used the Durbin-Levinson-Viterbi
algorithm, as described in Tsay and Härdle (2009).

To initialize the rolling window for each region, we separated the in-sample from the out-of-sample period
at the first breakpoint detected in the five sub-data sets via themodified ICSS algorithm, as proposed by Sansó,
Arragó, and Carrion (2004). Table 2 reports all breakpoints detected via this algorithm in the date format “dd/
mm/yyyy”. Thus, the initializing in-sample (out-of-sample) periods are given by (i) 01/01/2006 – 01/11/2009
(02/11/2009 – 04/05/2016) for New SouthWales and Tasmania, (ii) 01/01/2006 – 15/02/2010 (16/02/2010 – 04/
05/2016) for Queensland, (iii) 01/01/2006 – 0/02/2010 (11/02/2010 – 04/05/2016) for South Australia, and (iv)
01/01/2006 – 22/04/2010 (23/04/2010 – 04/05/2016) for Victoria.

5.1 Forecast evaluation criteria

For each state, we computed the model-specific volatility forecasts for the four alternative forecast horizons
h = 1, 5, 10, 20 trading days. In order to evaluate forecasting performance, we need an adequate proxy for the
latent conditional variance. Patton (2011) theoretically motivates the choice of the realized variance RVt from
Eq. (1) as a proxy, with the objective of avoiding distortions in ranking the competing forecasts. Nevertheless,

besides the realized variance, we also consider the daily squared return, x2t , which has been used as a proxy in
many studies.16

In a first step, we assess forecast accuracy on the basis of the two most frequently used measures, the root
mean squared error (RMSE) and the mean absolute error (MAE), which are given respectively by

16 Awartani and Corradi (2005) recommend using the proxy ‘squared return’, when comparing the relative predictive forecasting
performance of alternative models under a quadratic loss function. It is well-known that the proxy ‘daily squared return’ may be
noisy and lead to problematic rankings of the competing forecastingmodels. However, as shown in Patton (2011), the concrete form
of the loss function can help to consistently rank volatility forecasts in the presence of noise (see Footnote 17 below).
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RMSE �
���������������
T−1 ∑

T

t�1
(σ̂2

t,M − σ2
t)2√

 , (19)

MAE � T−1 ∑
T

t�1

∣∣∣∣σ̂2
t,M − σ2

t

∣∣∣∣ , (20)

where σ̂2
t,M denotes the volatility forecast for date t (given the forecast horizon h), M the specific model from

which the forecast is obtained (e.g., σ̂2
t,GARCH(1,1)), σ

2
t is either (i) the actually observed realized variance (RVt), or

(ii) the daily squared return x2t , and T denotes the number of out-of-sample observations.
In a second step, we make statistical inferences about the relative forecasting performance of our alter-

native volatility models by reporting the results of the Equal Predictive Ability (EPA) test suggested by Diebold
andMariano (1995), and the Superior Predictive Ability (SPA) test fromHansen (2005). The EPA test enables us
to compare the forecasting accuracy of two competing models (say M1 and M2) by considering the loss
differential

dt � g(et,M1) − g(et,M2), (21)

where et,M1 � σ̂2
t,M1

− σ2
t and et,M2 � σ̂2

t,M2
− σ2

t are the model-specific forecast errors at date t and the loss
function g(⋅) either denotes the squared error loss g(et,Mi) � e2t,Mi

or the absolute error loss g(et,Mi) �
∣∣∣∣et,Mi

∣∣∣∣.17
Then, the null hypothesis of the EPA test states that there is no difference in the forecast accuracy between two
competing models:

H0 : E(dt) � 0 for all  t . (22)

For large sample sizes, an appropriate test statistic of the EPA test is given by

EPA � d�������������
1/T ∑N

k�−N γ̂(k)
√  , (23)

where d � 1/T∑T
t�1dt, N is the nearest integer larger than T1/3 and

γ̂(k) � 1
T

∑
T

t�|k|+1
(dt − d)(dt−|k| − d) .

Following Diebold and Mariano (1995), the test statistic EPA is approximately standard normally distributed
under the null hypothesis in large samples.18

In contrast to the EPA test, the SPA test suggested by Hansen (2005) enables us to compare a benchmark
forecast modelM0 with K competitive forecast modelsM1,… ,MK under a given loss function. In line with Eq.
(21), we define the loss differential between the benchmark model M0 and the alternative model Mk ∈
{M1,…,MK} as

dt,Mk
� g(et,M0) − g(et,Mk) . (24)

Based on these K loss differentials, we can state the null hypothesis that the benchmark model M0 is not
inferior to any of the other K competing models as

H0 :max{E(dt,M1),…,E(dt,MK)} ≤ 0 for all  t . (25)

In order to express the test statistic of the SPA test, we define the sample mean of the kth loss differential as

dMk � 1/T∑T
t�1dt,Mk and consider the estimated variance V̂ar( ��

T
√

⋅ dMk) for k = 1,…, K. We note that this latter
variance is estimated by using a bootstrapmethod (Hansen 2005). Oneway to test the null hypothesis from Eq.
(25) is now to consider the test statistic

17 According to Proposition 4 in Patton (2011), the (mean) squared error belongs to the family of robust homogeneous loss
functions.
18 We refer the reader to Diebold (2015), who provides a detailed overview and an in-depth discussion of the EPA framework.
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SPA � max
⎧⎨⎩ ��

T
√

dM1

V̂ar( ��
T

√
⋅ dM1),…,

��
T

√
dMK

V̂ar( ��
T

√
⋅ dMK)⎫⎬⎭  , (26)

the p-values of which can be obtained via a stationary bootstrap procedure.

5.2 Out-of-sample forecasting results

We report our forecasting results separately under the respective volatility proxies ‘realized variance’ and
‘daily squared return’.

5.2.1 The volatility proxy ‘realized variance’

Table 4 reports the root mean squared (RMSE) and mean absolute forecast errors (MAE) for the 12 volatility
specifications across the five Australian states, where the forecast horizons were chosen as 1, 5, 10, and 20
trading days. Prima facie, the forecast errors appear to be rather similar for all volatility models in all five
Australian states. This rough forecast-error analysis may suggest that all volatility models exhibit quasi
indistinguishable forecasting performance across all Australian states and over all forecast horizons.

In order to inferentially compare the volatility forecasting performance among the distinct specifica-
tions, we applied the EPA and SPA tests, as described in Section 5.1. Tables 5 and 6 report the results, for the
computation of which we used 5000 bootstrap samples to establish p-values of the SPA tests. For the EPA
tests in Table 5, we chose the MSM model as the benchmark specification (Model 2), against which we
compare all other specifications. Only in very few cases does the MSMmodel significantly outperform any of
the other specifications at the 5% level. In particular, this is the case for (i) the EGARCHmodel in New South
Wales for the horizons h = 5 (squared error loss) and h = 1 (absolute error loss), and (ii) the STFIGARCHmodel
in South Australia for the horizons h = 5, 10 (squared error loss) and h = 1, 5, 10 (absolute error loss) and in
Tasmania for all horizons under both error losses. In total, this amounts to a significant EPA volatility-
forecasting outperformance of the MSM model over any other specification in only 3.41 % (15 out of 440) of
the cases analyzed.

We emphasize that the EPA analysis from Table 5 only provides pairwise performance comparisons of the
MSMmodelwith each of the other specifications. It does not provide an overall evaluation of theMSMvolatility
forecasting performance, when compared with all other volatility specifications simultaneously. Statistical
evidence on this latter issue is revealed in the results of the SPA tests in Table 6, where the null hypothesis
states that the benchmark model is not inferior to any of the other 11 competingmodels. When considering the
MSM specification as the benchmarkmodel, the SPA tests in Table 6 always reject the null hypothesis across all
five states, and for all forecast horizons under both error losses (that is, in 40 out of 40 tests) at the 5% level.
This yields the robust result that for each of the 40 volatility forecast settings (that is, across five states, four
forecast horizons, two error loss functions) there is at least one competing specification that significantly
outperforms the MSM model. Viewed from this angle, it is interesting to note that the MSFIAPARCH model
performs best with 20 out of 40 (20/40) rejections of the null hypothesis at the 5% level, followed by MSFI-
GARCH (23/40), STFIAPARCH (24/40), APARCH (30/40), FIAPARCH (30/40), MSGARCH (30/40), GARCH (32/
40), FIGARCH (32/40), GJR (35/40), EGARCH (38/40), STFIGARCH(39/40), and MSM (40/40).

Overall, we are not able to identify a unique model that systematically outperforms all alternative spec-
ifications across the five Australian states at every forecast horizon, when using the volatility proxy ‘realized
variance’. At least, it appears that someMSGARCH- and STGARCH-type specifications produce better volatility
forecasts than other specifications, andmay therefore serve as tools in power derivative pricing. However, our
overall finding is compatible with the results of previous forecasting studies, using data from deregulated
electricity markets. In a comparative study, comprising 47 published works on forecasting electricity prices,
Aggarwal, Saini, and Kumar (2009) conclude that
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Table : Root mean squared errors (RMSE) and mean absolute errors (MAE).

Model Forecast horizon (trading days)

1 5 10 20 1 5 10 20 1 5 10 20
Realized variance as proxy Daily squared return as proxy

RMSE MAE RMSE

New South Wales

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

Queensland

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

South Australia

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

Tasmania

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
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… there is no systematic evidence of out-performance of one model over other models on a consistent basis.

In similar vein, Weron (2014) reports mixed forecasting performance of the same model in different studies.

5.2.2 The volatility proxy ‘daily squared return’

In order to check whether the choice of the volatility proxy affects the forecasting results, we now address the
proxy ‘daily squared return’. Following the recommendation of Awartani and Corradi (2005), we only consider
the squared loss (see Footnote 16). Tables 4–6 reveal that the forecasting results differ substantially from those
under the volatility proxy ‘realized variance’. From Table 4, we find that the MSM model now has the
unambiguously lowest RMSEs (among all 12 specifications) for the horizons h = 5, 10, 20 across all of the five
Australian states. This picture is broadly confirmed by the EPA and SPA tests in Tables 5 and 6. For example,
the SPA tests in Table 6—with the MSM specification as the benchmark model—reject the null hypothesis (that
MSM is not inferior to any of the other 11 competing models) at the 5% level only in 1 out of 20 (1/20) cases.
According to this ranking, the MSMmodel now performs best, followed by EGARCH (4/20), MSGARCH (8/20),
APARCH (9/20), MSFIGARCH (10/20), STFIGARCH (10/20), FIGARCH (11/20), STFIGARCH (12/20), FIAPARCH
(13/20), GJR (14/20), GARCH (16/20), and MSFIAPARCH (16/20). Obviously, the choice of the volatility proxy
strongly impacts on this type of ranking among the forecast models.

6 Conclusion

In this paper, we analyze electricity price dynamics by means of a unique intraday data set covering 5-min
electricity prices for five Australian states. In a multifractal detrended fluctuation analysis, we find that

Table : (continued)

Tasmania

MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

Victoria

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

The volatility models are abbreviated as MSM, Markov-switching multifractal; GARCH, generalized autoregressive conditional
heteroscedasticity; GJR, Glosten-Jagannathan-Runkle GARCH; EGARCH, exponential GARCH; APARCH, asymmetric power ARCH;
FIGARCH, fractionally integrated GARCH; FIAPARCH, fractionally integrated APARCH; MSGARCH, Markov-switching GARCH;
MSFIGARCH, Markov-switching FIGARCH, MSFIAPARCH, Markov-switching FIAPARCH; STFIGARCH, smooth transition FIGARCH;
STFIAPARCH, smooth transition FIAPARCH.

M. Segnon et al.: Multifractal processes and electricity price volatility 19



Ta
bl
e

:
Eq

ua
lp

re
di
ci
tv
e
ab

ili
ty

(E
PA

)t
es
ts

(p
-v
al
ue

s)
.

M
od

el
1

M
od

el
2

Fo
re
ca
st

ho
ri
zo

n
(t
ra
di
ng

da
ys
)

1
5

10
20

1
5

10
20

1
5

10
20

R
ea

liz
ed

va
ri
an

ce
as

pr
ox

y
D
ai
ly

sq
ua

re
d
re
tu
rn

as
pr
ox

y

S
qu

ar
ed

er
ro
r
lo
ss

A
bs

ol
ut
e
er
ro
r
lo
ss

S
qu

ar
ed

er
ro
r
lo
ss

N
ew

S
ou

th
W
al
es

G
A
RC

H
M
S
M


.




.




.




.




.




.




.




.




.




.




.




.



G
JR


.




.




.




.




.




.




.




.




.




.




.




.



EG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



A
PA

RC
H


.




.




.




.




. 




.




.




.




.




.




.




.



FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



M
S
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IA
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



Q
ue

en
sl
an

d

G
A
RC

H
M
S
M


.




.




.




.




.




.




.




.




.




.




.




.



G
JR


.




.




.




.




.




.




.




.




.




.




.




.



EG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



M
S
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IA
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



S
ou

th
A
us

tr
al
ia

G
A
RC

H
M
S
M


.




.




.




.




.




.




.




.




.




.




.




.



G
JR


.




.




.




.




.




.




.




.




.




.




.




.



EG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



20 M. Segnon et al.: Multifractal processes and electricity price volatility



Ta
bl
e

:
(c
on

ti
nu

ed
)

S
ou

th
A
us

tr
al
ia

FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



M
S
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IA
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



Ta
sm

an
ia

G
A
RC

H
M
S
M


.




.




.




.




.




.




.




.




.




.




.




.



G
JR


.




.




.




.




.




.




.




.




.




.




.




.



EG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



FI
G
A
RC

H

.




.




.




.




. 




.




.




.




.




.




.




.



FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



M
S
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IA
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



Vi
ct
or
ia

G
A
RC

H
M
S
M


.




.




.




.




.




.




.




.




.




.




.




.



G
JR


.




.




.




.




.




.




.




.




.




.




.




.



EG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



M
S
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
G
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



M
S
FI
A
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IG
A
RC

H

.




.




.




.




.




.




.




.




.




.




.




.



S
TF
IA
PA

RC
H


.




.




.




.




.




.




.




.




.




.




.




.



p-
va
lu
es

ob
ta
in
ed

fo
rt
he

nu
ll
hy

po
th
es
is
th
at
,f
or

a
gi
ve
n
fo
re
ca
st

ho
ri
zo
n,

th
er
e
is
no

di
ff
er
en

ce
in

fo
re
ca
st

ac
cu
ra
cy

be
tw

ee
n
M
od

el

an

d
M
od

el

,a

s
op

po
se
d
to

th
e
on

e-
si
de

d
al
te
rn
at
iv
e

th
at

th
e
fo
re
ca
st
s
fr
om

M
od

el

ar
e
in
fe
ri
or

to
th
os

e
fr
om

M
od

el

.T
he

vo
la
ti
lit
y
m
od

el
s
ar
e
ab

br
ev
ia
te
d
as

M
S
M
,M

ar
ko

v-
sw

it
ch

in
g
m
ul
ti
fr
ac
ta
l;
G
A
RC

H
,g
en

er
al
iz
ed

au
to
re
gr
es
si
ve

co
nd

it
io
na

l
he

te
ro
sc
ed

as
ti
ci
ty
;G

JR
,G

lo
st
en

-J
ag

an
na

th
an

-R
un

kl
e
G
A
RC

H
;E
G
A
RC

H
,e
xp

on
en

ti
al
G
A
RC

H
;A

PA
RC

H
,a

sy
m
m
et
ri
c
po

w
er

A
RC

H
;F
IG
A
RC

H
,f
ra
ct
io
na

lly
in
te
gr
at
ed

G
AR

C
H
;F
IA
PA

RC
H
,f
ra
ct
io
na

lly
in
te
gr
at
ed

A
PA

RC
H
;M

S
G
AR

C
H
,M

ar
ko

v-
sw

it
ch

in
g
G
A
RC

H
;M

S
FI
G
A
RC

H
,M

ar
ko

v-
sw

it
ch

in
g
FI
G
A
RC

H
;M

S
FI
A
PA

RC
H
,M

ar
ko

v-
sw

it
ch

in
g
FI
AP

A
RC

H
;S

TF
IG
A
RC

H
,s

m
oo

th
tr
an

si
ti
on

FI
G
A
RC

H
;

S
TF
IA
PA

RC
H
(s
m
oo

th
tr
an

si
ti
on

FI
A
PA

RC
H
).

M. Segnon et al.: Multifractal processes and electricity price volatility 21



Table : Superior predicitve ability (SPA) tests (p-values).

Benchmark model Forecast horizon (trading days)

1 5 10 20 1 5 10 20 1 5 10 20
Realized variance as proxy Daily squared return as proxy

Squared error loss Absolute error loss Squared error loss

New South Wales

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

Queensland

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

South Australia

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

Tasmania

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
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electricity price returns exhibit multifractal behavior, encouraging us to model the returns as a smooth-
transition autoregressive fractionally integrated moving process with a Markov-switching multifractal vola-
tility component (STARFIMA-MSMmodel). In an out-of-sample volatility-forecasting analysis, we compare the
MSM model with several alternative GARCH- and MSGARCH-type specifications. Our major findings are
twofold. On the one hand, the (multifractal) MSM process can compete (to some degree) with the alternative
volatility specifications, when using the latent volatility proxy ‘realized variance’. On the other hand, theMSM
model outperforms all competing models under the volatility proxy ‘daily squared return’ in terms of superior
predictive ability. The choice of the volatility proxy substantially affects the ranking of the forecast models, a
result which conforms to the theoretical considerations in Patton (2011).

A desirable and useful line of future research could consist of extending our univariate volatility-
forecasting framework to a genuine multivariate volatility model, in order to capture volatility co-movements
and spillovers among the five Australian states. In Section 4.3 we attempted to approach these issues via
Granger-causality testing and found empirical evidence of spillover effects, encouraging the derivation of an
econometrically feasible multivariate multifractal framework.

Acknowledgments: We are grateful to Bruce Mizrach, Christian Hafner, and two reviewers for their
constructive comments, which greatly improved the paper. The usual disclaimer applies.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Table : (continued)

Tasmania

MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

Victoria

MSM . . . . . . . . . . . .
GARCH . . . . . . . . . . . .
GJR . . . . . . . . . . . .
EGARCH . . . . . . . . . . . .
APARCH . . . . . . . . . . . .
FIGARCH . . . . . . . . . . . .
FIAPARCH . . . . . . . . . . . .
MSGARCH . . . . . . . . . . . .
MSFIGARCH . . . . . . . . . . . .
MSFIAPARCH . . . . . . . . . . . .
STFIGARCH . . . . . . . . . . . .
STFIAPARCH . . . . . . . . . . . .

p-values obtained for the null hypothesis that the benchmark model is not inferior to any of the other competing models. The
volatility models are abbreviated as MSM, Markov-switching multifractal; GARCH, generalized autoregressive conditional
heteroscedasticity; GJR, Glosten-Jagannathan-Runkle GARCH; EGARCH, exponential GARCH; APARCH, asymmetric power ARCH;
FIGARCH, ractionally integrated GARCH; FIAPARCH, fractionally integrated APARCH; MSGARCH, Markov-switching GARCH;
MSFIGARCH, Markov-switching FIGARCH; MSFIAPARCH, Markov-switching FIAPARCH; STFIGARCH, smooth transition FIGARCH;
STFIAPARCH, smooth transition FIAPARCH.
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