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Abstract 

This paper explores the use of support vector machines (SVM) for regression and genetic 

algorithm (GA) which may be referred to as SVMGA, to classify faults in low speed bearings 

over a specified speed range, with sinusoidal loads applied to the bearing along the radial and 

axial directions. GA is used as a heuristic tool to find an approximate solution to the difficult 

problem of solving the highly non-linear situation through the application of the principles of 

evolution by optimizing the statistical features selected for the SVM for regression training 

solution. It is used to determine the training parameters of SVM for regression which can 

optimize the model and thereby generate new features from the original dataset without prior 

knowledge of the probabilistic distribution. The fault recognition and the nonlinear regression is 

achieved by using SVM for regression. Classification is performed for three classes. In this work 

the GA is used to first optimize the statistical features for best performance before they are used 

to train the SVM for regression. Experimental studies using acoustic emission caused by bearing 

faults showed that SVMGA with a Gaussian kernel function better achieves classification on the 

bearings operated at low speeds, regardless the load type and, under different fault conditions, 

compared to the exponential kernel function and the other many kernel functions which also can 

be used for the same conditions.  
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1 Introduction 

The operational state and health of a machine is often determined through condition monitoring. 

Several factors may affect the operation of a machine and these may include machine speed, 

load, lubrication, alignment, etc. and often significantly affect the machine life. Researchers often 

distinguish different stages during the bearing life cycle, which are traditionally referred to as 

“infant mortality, useful life, and wear out”, “good, damaged, failure imminent” or “pre-failure, 

failure, near catastrophic” [1]. Different vibration techniques have been developed to detect the 

faults in rolling element bearings (REB). This has been done with two main purposes: firstly, to 

separate the bearing related signal from other components and to minimize the noise that may 

mask the bearing signal. The widely used techniques for this purpose are self-adaptive noise 

cancellation (SANC), adaptive filtering, synchronous averaging and discrete random separation. 

The second purpose is to identify the status of the bearing, thereby distinguishing the good and 

the faulty bearings to indicate the defective component [1]. 

In an experiment conducted by [2], it was reported that parameters such as amplitude and energy 

provided information on the condition of a particular low speed rotating bearing. [2,3] reported the 

exploration of acoustic emission (AE) for the monitoring of rolling element bearings at speeds 

from 10 to 1850 rpm and it was concluded that at low speeds and steady loads, the base 

bending/strain of the bearing housing enables the AE transducer to detect the AE signature from 

very small defect.  

An area that has gained much recognition in handling AE and vibration data in fault 

classification and recognition is Artificial Neural Networks, which has the capability of 

mimicking human experience gained in pattern recognition. Neural Networks may be designed to 

classify input patterns in predefined classes or to categorize the patterns by grouping them 

according to their similarities. They may also be designed to respond in real time to the changing 
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system state descriptions provided by continuous sensor inputs. Artificial-intelligence-based fault 

diagnosis methods have the potential to tackle problems without human intervention, with a 

method which aims at recognizing different machine health conditions via the features extracted 

from the AE signals, with the accuracy of the identification of these conditions been further 

enhanced through classifiers that exhibit good performance [4, 13, 14]. 

Support vector machines (SVMs) on the other hand are based on statistical learning theory that is 

special for solving learning problems of smaller sample numbers that provide better 

generalization than ANN and guarantees the local and global optimal solutions to be exactly the 

same. SVMs are hence introduced into rotating machinery for fault diagnosis with high accuracy 

and good generalization for smaller sample numbers [5]. SVMs represent a machine learning 

approach that is widely used for data analysis and pattern recognition. The algorithm was 

developed by Vapnik and the current standard incarnation was proposed by Cortes and Vapnik. 

SVMs have well defined formulations which are consistent with mathematical theory. 

As pointed out by [5,6], there are several challenges associated with the use of SVM, which is 

known for its time series predictions that span many practical application areas, among which is 

the free parameter selection. To date there is no universal method for hyper-parameter selection 

which contains some parameters such as the kernel parameter, the regularization parameter that 

controls the generalization performance of SVM and the ε-insensitive zone which determines the 

number of support vectors. Hence if one is using arbitrary SVM parameters, the performance of 

SVM could differ over a wide range. The original input space in SVM is mapped into high 

dimensional dot product space called feature space in which the optimal hyper-plane is 

determined to maximize the generalization ability of the classifier. 

This paper introduces a support vector machine for regression [17] and genetic algorithm 

(SVMGA) based failure diagnostic method. The main contribution of the work lies in the 
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utilization of a support vector machine for regression and genetic algorithm optimization that 

uses interactive procedures to simulate the process of evolution of possible solutions populations 

to the particular non-linear, stochastic problem nature of the slow speed bearing loaded at 

varying conditions. SVMGA is a technique of mono-class classification, which tries to solve the 

problem of best features selection by applying the principles of evolution by optimizing the 

statistical components selected for the SVM for regression training solution. By optimizing, it 

solves the problem of outlier detection and reduces the dimensionality of the data. 

The choice of features can affect the performance of classification as features generated are often 

refined to try to achieve the desired level of performance. However, developing features 

manually can be time consuming; generated features should have the ability to identify complex 

relationship within large data dataset where the mapping from data to class labels is often 

obscure [22].  

Many research works dealing with support vector machine and regression for fault diagnosis 

have been reported in the recent literature. Examples of these include fault diagnosis of a rolling 

bearing based on feature extraction and neural network algorithm [11], bearing fault diagnosis 

based on Kullback-Leibler transform and support vector machine [14], and an investigation for 

fault diagnosis based on a hybrid approach using wavelet packet and support vector classification 

[19]. However, none of these works dealt with the preferred selection process of features for best 

performance. SVMGA, which aims at enhancing bearing fault diagnostic is developed by the 

fusion of multiple statistical features through SVMGA, where a selection of best features from 

experimental data is done at the classifier training stage. 

Unlike the target value of a SVM which can only be used to handle a binary problem, the target 

value of a SVMGA is continuous, having shown great potential in time series prediction and can 

also establish a stable nonlinear relationship between inputs and outputs. Outputs of small 
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deviations from their target values are formed when the feature vectors extracted from the 

samples belonging to the same class are fed to the trained SVR [3, 15]. In an article by [8], a 

complex dynamic model for aligning roller bearings was established, thereby studying the 

problem of surface damage, preload and radial clearance. [8] worked on a physical model and 

one-class support vector machine for rolling bearing fault diagnosis.   

SVM was originally designed for binary classification [9]. Some binary classification problems do 

not have a simple hyper-plane as a useful separating criterion. For SVM problems, there are 

variant of mathematical approaches that retain nearly all the simple separating hyper-plane such 

as “one-against one”, “one-against all” like in the classification of health states. 

In this work, features were extracted from AE signals and used to train the SVM for fault 

classification of low speed bearings which were loaded sinusoidally along axial and radial 

directions, and grouped into ‘good bearing’ data signals, faulty ‘debris induced bearing’ signals 

and an ‘outer race crack bearing’ signal. The essence of this work is to show that regardless the 

load applied and speed especially at varying conditions like in rolling mills plants, fault 

classifications can still be achieved. SVMGA have distinct advantages over SVM and other AI 

algorithms like ANN. Because it is used for classifying faults which is over two classes that the 

SVM supports. Also, SVMGA uses high dimensional input space that does not necessarily 

depend on the number of features, because they have the potential to handle large feature spaces 

[11, 17]. This has been shown in applications such as in text categorization, biological studies, etc. 

This has however not been applied to low speed bearings which are sinusoidally loaded along 

axial and radial directions. This emulates real life scenarios where bearings in functional 

equipment may be loaded with varying cyclic loads at frequencies that might be unrelated to the 

equipment rotational frequency and its harmonics, due to auxiliary equipment (such as pump) 

mounted on the machine and running at its own rotational frequency. Application of SVMGA, to 

low speed bearings potentially holds distinct advantages for the following reasons: 
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 High training speeds. 

 Good classification accuracy. 

 Unlike the target value of SVM which is only used to handle binary problem, the target 

value of SVMGA is continuous. 

 Feature vectors extracted from the samples belonging to the same class when fed to the 

trained SVMGA produces outputs of small deviation from the target values. [10] 

Therefore these properties are more attractive to be used for solving multi-class problem to when 

compared with SVM based classifier or other AI algorithms. [19] used a hybrid method that 

combines wavelet packet transform (WPT) and support vector classification (SVC) to deal with 

the difficulty to obtain a large number of fault samples under practical conditions for mechanical 

fault diagnosis. [20] developed a novel personalized diagnosis methodology and used it to 

investigate shaft unbalance, misalignment, rub-impact and their combinations. The method looks 

promising and the probable tools needed for it are the numerical simulation (including finite 

element method), the big data technique or a combination of the two. The associated draw-back 

with this method is its cumbersomeness and the large amounts of data involved which is not 

appropriate for online solution as is the case found in this paper. [24] used a Redundant Second-

Generation Wavelet Packet Transform (RSGWPT) and Local Characteristic-Scale 

Decomposition (LCD) to detect and extract fault feature from vibration signals. This method is 

based on the energy ratio in obtaining a set of desired intrinsic Scale Components (ISCs) while 

[25] did a fault classification and detection in a rotor bearing rig by using SVM and a 

compensation distance evaluation technique for selecting two sensitive features from the twelve- 

time domain features of the measured vibration signals from each of the accelerometer used. 

The structure of this paper is organized as follows. Section 2 gives a brief preview of the 

theoretical background of SVM for regression and GA. Section 3 gives the layout of the 
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experimental setup. Feature extraction methods are presented in section 4 and section 5 covers 

the results, discussion and conclusion. 

2.1 Theoretical Background of SVM For Regression 

Support vector machine genetic algorithm SVMGA theory is formed based on the principle of a 

support vector machine (SVM) which is used for time series prediction and genetic algorithm 

(GA) which is a probabilistic search technique for attaining an optimum solution to 

combinatorial problems that work on the principles of genetics. In a genetic algorithm, 

populations of candidate solutions (called individuals, creatures, or phenotypes) to an 

optimization problem are evolved towards better solutions. It is a method for solving 

optimization problems that are both constrained and unconstrained and is based on natural 

selection. With a GA-based solution, the basic form of the solution is predefined. The main 

difference between ANN and SVM is in the principle of risk minimization (RM). In SVM, the 

structural risk minimization (SRM) principle is used, thereby minimizing an upper bound on the 

expected risk while in ANN, traditional empirical risk minimization (ERM) is used minimizing 

the error on the training data and the difference in RM leads to better generalization performance 

in SVM than ANN [10, 12, 16, 21]. The aim of SVM is to obtain a function 𝑓(𝑥) which can predict 

the output 𝑦𝑖 within the error limit of 𝜀 with the estimation function 𝑓(𝑥) being as flat as possible 

to ensure good generalization and variance.  

The function is given as follows 

𝑓(𝑠) = 𝑤 ∙ 𝑥 + 𝑏 (1) 

  

where 𝑤 is the weight vector and 𝑏 is a constant. This function is obtained by solving the 

following optimization problem 
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SVM for regression uses the same principles as SVM, for classification. With regression, a 

margin of tolerance 𝜖 is set in approximation to the SVM. Once trained, the SVMGA will 

generate predictions using the formula: 

𝑓(𝑥) ≡∑𝜗𝑖∅(𝑥, 𝑥𝑖) + 𝑏

𝑚

𝑖=1

 
                     

(2) 

 

 

For us to minimize the error, we will be individualizing the hyper-plane that maximizes the 

margin knowing fully well that of the error is been tolerated. 

    

  Fig. 1 The loss function of SVM 

The quadratic optimization problem becomes 

min
𝑤

1

2
𝑤𝑇 ∙ 𝑤                        (3) 

𝑠. 𝑡. {
𝑦𝑖 − (𝑤

𝑇 ∙ ∅(𝑥) + 𝑏) ≤ 𝜖

(𝑤𝑇 ∙ ∅(𝑥) + 𝑏) − 𝑦𝑖 ≤ 𝜖
 

where ∅(𝑥) is the kernel function and 𝑤 is the margin. 

If the bound is added to the set, the tolerance on error that can be committed will be giving as; 

min
𝑤,𝑏

1

2
𝑤𝑇 ∙ 𝑤 + 𝐶 ∑ (𝜉𝑖 + ξ𝑖

∗)𝑚
𝑖=1                (4) 

𝑠. 𝑡. {

𝑦𝑖 − (𝑤
𝑇 ∙ ∅(𝑥) + 𝑏) ≤ 𝜖 + 𝜉𝑖

(𝑤𝑇 ∙ ∅(𝑥) + 𝑏) − 𝑦𝑖 ≤ 𝜖 + ξ𝑖
∗

𝜉𝑖, ξ𝑖
∗ ≥ 0,     𝑖 = 1……………𝑚
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where 𝜉𝑖  and ξ𝑖
∗ are the slack variables and 𝐶 is a positive constant which penalizes the 

errors larger than ±𝜀 using 𝜀- insensitive loss function given. Now been a minimization 

problem, we can set all constraints ≥ 0 by multiplying through by negative sign 

 

  

R = min
                 𝑤,𝑏

1

2
𝑤𝑇 ∙ 𝑤 + 𝐶∑(𝜉𝑖 + ξ𝑖

∗)

𝑚

𝑖=1

 
                                               (5) 

𝑠. 𝑡. {

−𝑦𝑖 + (𝑤
𝑇 ∙ ∅(𝑥𝑖) + 𝑏) + 𝜖 + 𝜉𝑖 ≥ 0

𝑦𝑖 − (𝑤
𝑇 ∙ ∅(𝑥𝑖) + 𝑏) + 𝜖 + ξ𝑖

∗ ≥ 0

𝜉𝑖, ξ𝑖
∗ ≥ 0,     𝑖 = 1……………𝑚

 

 

 

Fig. 2 The regression line of SVM 

 
    

 

 

Fig. 2 show the regression line of SVM, the upper and lower boundary lines while Fig. 1 showing 

the loss function for SVR. For solving the optimization problem given in eq. (3) the following 

Lagrangian is needed 

𝐿 =
1

2
𝑤𝑇 ∙ 𝑤 +∑𝐶(𝜉𝑖 + ξ𝑖

∗) −∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗ξ𝑖
∗)

𝑚

𝑖=1

𝑚

𝑖=1

−∑𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 𝑤 ∙ 𝑥𝑖 + 𝑏) −∑𝛼𝑖
∗(𝜀 + ξ𝑖

∗ + 𝑦𝑖 −𝑤 ∙ 𝑥𝑖 − 𝑏)

𝑚

𝑖=1

𝑚

𝑖=1

 

(

(6) 

 

Subject to 𝛼𝑖, 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0, 𝑖 ………𝑚 are Lagrange multipliers that must be satisfied with the 

partial derivatives of the Lagrange equation 𝐿 w.r.t. the primal variables 𝑤, 𝑏, 𝜉𝑖 , ξ𝑖
∗ having to 

vanish for optimality  
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝜕𝐿

𝜕𝑏
=∑(𝛼𝑖

∗ − 𝛼𝑖) = 0

𝑚

𝑖=1

                                                                                      

𝜕𝐿

𝜕𝑤
= 𝑤 −∑(𝛼𝑖 − 𝛼𝑖

∗)∅(𝑥𝑖) = 0                → 𝑤 =∑∅(𝑥𝑖)(𝛼𝑖 − 𝛼𝑖
∗)

𝑚

𝑖=1

𝑚

𝑖=1

𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0                                   → 𝜂𝑖 = 𝐶 − 𝛼𝑖,     𝛼𝑖 ∈ [0, 𝐶]

𝜕𝐿

𝜕𝜉𝑖
∗ = 𝐶 − 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0                                → 𝜂𝑖

∗ = 𝐶 − 𝛼𝑖
∗,      𝛼𝑖

∗ ∈ [0, 𝐶]

𝜕𝐿

𝜕𝜂𝑖
=∑𝜉𝑖

𝑚

𝑖=1

= 0                                                                                                   

𝜕𝐿

𝜕𝜂𝑖
∗ =∑𝜉𝑖

∗

𝑚

𝑖=1

= 0                                                                                                

 

(7) 

 

   

Substituting eq. (7) into eq. (6), the dual optimization problem is given, for the sake of space a lot 

of substitution has been omitted to arrive at the following  

𝑚𝑎𝑥
−1

2
∑∑∅(𝑥𝑖)(𝑥𝑗)

𝑚

𝑗=1

(𝛼𝑖 − 𝛼𝑖
∗)

𝑚

𝑖=1

(𝛼𝑗 − 𝛼𝑗
∗) − 𝜀∑(𝛼𝑖 + 𝛼𝑖

∗) +∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑚

𝑖=1

 

𝑠. 𝑡.∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑚

𝑖=1

= 0     𝑎𝑛𝑑 𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶] 

(8) 

 

By solving the optimization problem, a linear regression function is presented as follows 

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)(𝑥𝑖 ∙ 𝑥) + 𝑏

𝑚

𝑖=1

 
(9) 

To compute for 𝑏 we exploit the Karush-Kuhn-Tucker (KKT) conditions which state that at the 

point of the solution the product between dual variables and constraints has to vanish,  

𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏) = 0 

𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏) = 0 

And 

(𝐶 − 𝛼𝑖)𝜉𝑖 = 0 

(10) 

 

(𝐶 − 𝛼𝑖
∗)𝜉𝑖

∗ = 0 

 

(11) 

which allows us to make relevant conclusions that are useful. Firstly only samples (𝑥𝑖 , 𝑦𝑖) with 

corresponding 𝛼𝑖
〈∗〉 = 𝐶 lie outside the 𝜀-insensitive tube and secondly 𝛼𝑖 , 𝛼𝑖

∗ = 0, meaning that 
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there can never be a set of dual variables 𝛼𝑖 , 𝛼𝑖
∗

 
which are both simultaneously nonzero [18]. Thus 

allowing us to conclude that 

𝜀 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏 ≥ 0     𝑎𝑛𝑑     𝜉𝑖 = 0      𝑖𝑓     𝛼𝑖 < 𝐶                                                       (12) 

 

𝜀 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏 ≤ 0     𝑖𝑓     𝛼𝑖 > 0   (13) 

 

The kernel function is applied here to map the input vector into a high dimensional space because 

the linear regression function is not sufficient enough to process the non-linear problem. Hence 

the regression function is derived as follows 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛
𝑖=1                                                                                       (14) 

where 𝐾(𝑥𝑖, 𝑥) = 𝜑(𝑥𝑖) ∙ 𝜑(𝑥) is a symmetric positive defined kernel function given by the 

Mercer’s theorem [7,9]. In this paper the Gaussian and the exponential kernel functions are 

adopted which are respectively examples of the radial function kernel and the cubic polynomial 

function  

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 [
−‖𝑥 − 𝑦‖2

2𝜎2
] 

(15) 

 

where 𝜎 is a positive real number, alternatively it could be implemented using 

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑦‖2) (16) 

 

The adjustable parameter 𝜎 plays an important role in the performance of the kernel and hence 

should be carefully tuned (by either using the classical technique which employs some method of 

determining a subset of centres or by first clustering to select a subset of centres) to the problem 

being solved. If overestimated, the exponential will behave almost linearly and the higher 

dimensional projection will start to lose its non-linear power, and if underestimated the function 

will lack regularization making the decision boundary highly sensitive to noise in the training 

data. 
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2.2 Genetic Algorithm to Configure SVR For Regression 

A genetic algorithm is employed here to configure the SVR for regression. In these genetic 

algorithms consecutive populations of feasible solutions are created. It then evolves a population 

of chromosomes as potential solutions to an optimization problem for which the optimal solution 

is often obtained after a series of iterative operations. 

To evaluate the fitness function of the chromosomes and genetic operators, selection and 

reproduction are employed to create new populations. A typical genetic algorithm requires: (1) A 

genetic representation of the solution domain and (2) A fitness function to evaluate the solution 

domain. 

Once the genetic representation and the fitness function are both defined, the GA proceeds to 

initialize a population of solutions and then to improve it through repetitive application of the 

mutation, crossover, inversion and selection operators [23]. 

The three most important aspects of using GA are: (1) definition of the objective function, (2) 

definition and implementation of the genetic representation, and (3) definition and 

implementation of the genetic operators. Once these three have been defined, the generic GA 

should work fairly well.  

Since a solution must represent a SVM for regression, the corresponding chromosomes are 

composed by two genes i.e. one for each SVM for regression parameter and the values of the 

genes which are obtained in ranges [0.01, 60000] and [1.0E-6, 8] for the genes representing 𝐶 

and 𝛾 respectively. The values of 𝐶 and 𝛾  are limited into certain ranges to assure the 

generalization capability of the SVM for regression. These chromosomes are constructed by 

using a binary coding system (see table 2). To determine the optimal values of the regularization 

parameter 𝐶 and 𝛾 which determines the tradeoff between the fitting error of the SVR for 

regression model and the model complexity and which assures the optimal accuracy and 
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generalization stability simultaneously, the GA is used. It should be noted that the values of 

parameters 𝐶 and 𝛾 are limited to certain ranges so as to assure the generalization capability of 

the SVR for regression. The values of these parameters in this work were set for [0.01, 60000] 

and [1.0E-6, 8]. The crossover and mutation rates were set to 0.5 and 0.1 respectively. The 

evolutionary process was terminated using two stopping criteria which are after 600 generations 

or if the fitness value of the best solution does not change after 60 generations. The formula for 

the fitness function used is 𝑓 = 𝑠𝑢𝑚(𝑥.∗ 𝑧)/𝑠𝑢𝑚(𝑧) and the constraints is 0 < 𝑥 <

1,     𝑠𝑢𝑚(𝑧.∗ 𝑥) = 𝑐𝑙𝑎𝑠𝑠 

3. EXPERIMENTAL SETUP 

The test rig setup comprises of a brushless AC motor (Rockwell Automation MPL-3680B) 

mounted on a NSK 6309 single row bearing used to drive the system as shown in Fig. 3. The 

angular velocity of the motor was retrieved from one of the angular outputs made available in the 

motor drive, which is a Rockwell Automation Kinetix 6000 series BM-01 and allows a 

continuous speed variation from 0 to 3600 rpm. A Soundwel AE sensor with model number SR 

150M with a frequency range of 25-530kHz was used for measurement. 

  

Fig. 3  Test rig setup 

Two servo-hydraulic actuators were used for loading sinusoidally, axial and radial loads on test 

bearings whose purpose is to allow simulating a real life scenario of the bearings of a functional 
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machine experiencing varying cyclic loads at different rotational speeds and frequencies. The test 

bearings used were three taper roller bearings (Timken HR 30307 J) which were inserted into the 

test rig one after the other with two having been introduced with defects and the third bearing 

been left undamaged. The test rotating speeds for the slow rotating bearings ranged from 70 to 

100 rpm. Fig. 4 shows a schematic view of the test rig setup. 

   

Fig. 4  Schematic diagram of test rig setup 

The first bearing (good) was loaded sinusoidally with forces of amplitude 500N at a frequency of 

2Hz on the axial load and amplitude of 900N at a frequency of 1Hz on the radial load. Bearing 

two, in which debris was introduced, was also loaded sinusoidally with forces of amplitude of 

500N at a frequency of 2Hz in the axial direction and amplitude of 900N at a frequency of 1Hz in 

the radial direction. Bearing three, with a crack on the outer race was loaded sinusoidally with 

forces of amplitude of 500N on the axial at a frequency of 2Hz and 900N at a frequency of 1Hz 

in the radial direction as the other two bearings. The three roller bearing AE signatures were 

collected for four speeds, set at 70 rpm, 80 rpm, 90 rpm and 100 rpm using an FFT analyzer, a 

National Instrument data acquisition card (BNC-2110) with a shielded BNC connector block. 

The induced crack was seeded on the outer raceway of the bearing (as shown in Fig. 5) with the 

use of a small hand drilling machine to which a small disk was mounted, which was then used to 

introduce a groove on the outer raceway of the taper bearing. 
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Fig. 5 Seeded damage on outer race of a bearing 

4 Feature Extraction 

The procedure used to develop the classifier in order to achieve the fault classification for the 

three conditions of consideration starts from the acoustic emission acquisition from two bearings 

which have faults induced and a good bearing. GA is used to determine the optimal values of the 

regularization parameter 𝐶 and 𝛾 which determines the tradeoff between the fitting error of the 

SVR for regression model and the model complexity and assures the optimal accuracy and 

generalization stability simultaneously. It evolves a population of chromosomes as potential 

solutions to an optimization problem which is obtained after a series of iterative operations. The 

fitness function in GA is used to evaluate the goodness (i.e. the fitness) of the chromosomes and 

the genetic operators based on selection to create new populations (i.e. generations). The 

individual which gives the best solution in the final population was taken to define the best 

approximation to the optimum problem of investigation. After the signals created by the machine 

with normal and faulty conditions were measured, the optimized developed classifier was then 

used to classify the operational conditions of the machines. The GA is used to find the optimal 

values of 𝐶 and 𝛾 that assures the optimal predication accuracy and generalization ability of the 

SVM for regression simultaneously. To determine the individuals that are included in the next 

generation (i.e. survivals) we employed tournament selection where only the best n solutions are 

copied straight into the next generation. 
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The three groups of bearing problems and their classification are presented in table 1. 

 

Table 1: Bearing grouping and their classification 

Fault Grouping Classification Bearing speed 

(rpm) 

Class index Binary code used 

Good bearing Good 70 1 0      0       1 

Good bearing Good 80 1 0      0       1 

Good bearing Good 90 1 0      0       1 

Good bearing Good 100 1 0      0       1 

Debris induced bearing Debris induced 70 2 0      1       0 

Debris induced bearing Debris induced 80 2 0      1       0 

Debris induced bearing Debris induced 90 2 0      1       0 

Debris induced bearing Debris induced 100 2 0      1       0 

Outer race crack bearing Outer race 70 3 1      0       0 

Outer race crack bearing Outer race 80 3 1      0       0 

Outer race crack bearing Outer race 90 3 1      0       0 

Outer race crack bearing Outer race 100 3 1      0       0 

 

5. Results and Discussion  

Fig. 6 shows a typical acoustic emission signal obtained from the test rig of the three bearing 

conditions at 100 rpm speed level. The skewness and kurtosis indicator used as input to the 

system often provide good detection at high speeds and decreases sharply in their detection 

abilities as the speed decrease as is reported in the literature. 
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Fig. 6 Acoustic emission obtained from test rig 

A test was done on neural network pattern recognition and table 2 shows the result obtained after 

the training was done for the neural network (NN).  

Table 2: NN output classification result 

 Result at speed 70 rpm, 

took 27 iterations 

Target class             2 1 3 

Simulated 

class       

1 1 3 

 Result at speed 80 rpm, 

took 21 iterations 

Target class             2 1 3 

Simulated 

class       

2 1 3 

 Result at speed 90 rpm, 

took 42 iterations 

Target class             2 1 3 

Simulated 

class       

2 1 3 

 Result at speed 100 rpm, 

took 26 iterations 

Target class             2 1 3 

Simulated 

class       

2 1 3 

 

The network has three layers (the input layer, the hidden layer and the output layer) with the 

hidden layer having 10 states. It was observed from the training run that at low speed under the 
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varying load and low speed conditions which mimicked the rolling mills plants, the NN was not 

able to classify correctly at a low speed of 70 rpm but shows correct classification at higher 

speed. Figure 7 shows the confusion matrix for the neural network classification method. 

   

Fig. 7  The confusion matrix for the NN classification method 

The total percentage of correctly classified cases with the NN as specified in Fig. 7 is 61.7 % 

while the misclassified cases is 38.3 %. This result from the confusion matrix shows that NN is 

not a very good classifier for the varying load and low speed condition of rolling element 

bearing. 

As indicated in the previous section, the number of inputs to the network for the SVM for 

regression in this paper is thirteen. The SVMGA can be used for several applications in the field 

of engineering of which it is an innovation of SVM. Here it is used to develop the condition 

monitoring of the bearing i.e. to identify whether the bearing is defective or normal and to 

achieve this the Gaussian kernel and exponential kernel, spline, radial basis function (rbf), 

polynomial, periodic and sigmod function were used to perform various test of classification, so 

as to classify the simulated output to the target class that was set for the various conditions of the 
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bearings as indicated in the experimental setup to check for which that can be used under this 

scenario. Only the Gaussian kernel functions proved effective for this purpose under this test at 

varying load and at low speed condition. However due to space limitations results for only few 

samples are shown here, for only the Gaussian and exponential kernel functions. 

Table 3: Genetic Algorithm best fitness values for the bearings. 

Bearing types Applying classifier class Generated GA possible class value matching to a 

measurement 

Speed 

(rpm) 
Good bearing Debris 

induced 

bearing 

Outer race 

cracked 

bearing 

Good bearing 1.000000e+00 1.0000 -0.3968 -2.9452 70 

Debris 

induced 

bearing 

2.000000e+00 -0.6540 2.0000 1.2329 

Outer race 

cracked 

bearing 

3.000001e+00 -1.0547 0.7102 3.0000 

Good bearing 9.999999e-01 1.0000 0.1936 -2.9858 80 

Debris 

induced 

bearing 

2.000000e+00 -0.7467 2.0000 0.3255 

Outer race 

cracked 

bearing 

3.000000e+00 -1.1085 0.1383 3.0000 

Good bearing 1.898637e+00 1.0000 0.8860 1.8986 90 

Debris 

induced 

bearing 

1.142809e+00 1.1428 -0.5207 -0.7566 

Outer race 

cracked 

bearing 

3.000000e+00 0.0005 1.4212 3.0000 

Good bearing 1.000000e+00 1.0000 0.4193 -0.9147 100 

Debris 

induced 

bearing 

2.000000e+00 -1.2400 2.0000 -0.2920 

Outer race 

cracked 

bearing 

1.274203e+00 1.2742 0.0401 -0.8171 

 

The most suitable method was chosen according to the application constraints and the number of 

training samples, for easy recognition of classes. Target data for recognition was set to consist of 

vectors of all zero values except for a 1 in element I, where I is the class they represent (see table 
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1). Table 3 presents the values of the best possible classification values generated by GA by 

looking for weight values that produces the best fitness result based on the set of constrains 

provided in section 2.2. The debris induced bearing was classed 2, while the good bearing was 

classed 1 and the outer race cracked bearing was classed 3.  

The results obtained for the classification of the bearings at different low speeds using the kernel 

functions of Gaussian and exponential is presented in table 4 and 5 below. 

Table 4. Result of bearing classification using Gaussian kernel function. 

Class Kernel 

function 

Debris 

bearing 

Good 

bearing 

Outer race 

crack bearing 

Speed 

(rpm) 

Classifying 

result 

Target Gaussian 2 1 3 70 Correctly 

classified Simulated 2 1 3 

Target Gaussian 2 1 3 80 Correctly 

classified Simulated 2 1 3 

Target Gaussian 2 1 3 90 Correctly 

classified Simulated 2 1 3 

Target Gaussian 2 1 3 100 Correctly 

classified Simulated 2 1 3 

 

Table 5. Result of bearing classification using exponential kernel function. 

Class Kernel 

function 

Debris 

bearing 

Good 

bearing 

Outer race 

crack bearing 

Speed 

(rpm) 

Classifying 

result 

Target Exponential 2 1 3 70 Incorrectly 

classified Simulated 0 2 -2 

Target Exponential 2 1 3 80 Correctly 

classified Simulated 2 1 3 

Target Exponential 2 1 3 90 Correctly 

classified Simulated 2 1 3 

Target Exponential 2 1 3 100 Correctly 

classified Simulated 2 1 3 

  

In table 5 it is observed that at the lowest bearing speed of 70 rpm the exponential kernel function 

could not classify the three bearing conditions according to the index created to them. There was 

wrong classification of the good bearing, outer-race defect and the exponential function could not 

classify the debris bearing as shown in figure 8, Index 2 was repeated twice but in opposite 

direction. At every other speed it rightly classified the bearing. The precision obtained from the 
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classification made by the Gaussian kernel function was perfect at the various speed category of 

the bearing condition. The simulated classes rightfully met their respective target class.  

 

   

  Fig. 8 Bearing classification as simulated at 70 rpm 

The change in speed as indicated in the simulation done in table 5 did not affect the expected 

result for the Gaussian kernel. We were restricted to just three classes here in this work; the class 

of the good bearing indicated from table 1 as index 1, the debris induced bearing which is 

indicated as index 2 and the outer race cracked bearing indicated as index 3. To reduce space 

consumption bearing classification simulated at 90 rpm is given in figure 9. 

   

  Fig. 9 Bearing classification as simulated at 90 rpm 
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Conclusion: 

This work involves extracting representative statistical parameters by using a GA-based feature 

extractor from a raw acoustic emission dataset and using it to classify the inputs for SVM for 

regression. The GA was not only able to enhance the classification performance, but also reduced 

the dimensionality that describes the problem. Thus, the features extracted proved to be good 

indicators of defect intensity and it also showed that with the Gaussian kernel function, effective 

classification can be achieved over exponential kernel function with SVMGA as it classified 

correctly in all damage conditional cases of the bearing faults with all the data set generated in 

this experimental work.  

The SVMGA algorithm has high accuracy in classification performance and wider generalization 

ability in small group of samples using the learning and testing pattern as revealed by the 

simulation results. Moreover a combination of GA and SVM for regression has been used for 

intelligent fault diagnostic, showing that the proposed method can reduce the dimensionality in 

dataset, solve the problem of outliers and be used to optimize features parameter selection for 

training purpose. SVMGA proves to be a better classifier that maximizes the fault classification 

accuracy as it was able to identify faults and classify better with the Gaussian kernel function 

than any other kernel function like the polynomial function.      

There are several challenges associated with the use of only SVM which is known for its time 

series prediction, among which is the free parameter selection. To date there is no universal 

method for hyper-parameter selection which contains some parameters such as the kernel 

parameter, the regularization parameter that control the generalization performance of SVM and 

the ε-insensitive zone which determines the number of support vectors. Hence if one is using 

arbitrary SVM parameters, the performance of SVM could differ over a wide range. This makes 

SVMGA (an innovation to SVM) a better option for solving classification problem especially at 
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low speed conditions as it gives a decision that is much unique than SVM while retaining its 

classification accuracy. 

Hence the SVMGA with the use of Gaussian kernel function proves to be superior to the 

exponential kernel function in the classification of faults. Compared with the traditional 

classification methods reported in many other studies, this study accomplished effective 

classifying of different bearing fault patterns especially at low speeds and at varying load 

condition for which the results showed whether the bearing is normal or defective.  
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