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Abstract 

Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium 

tuberculosis that affects millions of people worldwide. Although many first and second line drugs 

are available for its treatment, but their irrational use has adversely lead to the emerging cases of 

multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense 

need to develop novel potent analogues for its treatment. This has prompted us to develop potent 

analogues against TB. The Mycobacterium tuberculosis genome provides us with number of 

validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A 

to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug 

design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme 

present in Mtb genome. To achieve this, we adopted an integrated computational approach 

involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation 

studies. The approach envisaged vital information about the role of molecular descriptors, essential 

pharmacophoric features and binding energy for compounds to bind into the active site of epoxide 

hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb 

epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low 

docking scores respectively were selected for molecular dynamics simulation studies. RMSD 

analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 

ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are 

flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea 

derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s 

has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase compared to 2s 

(ΔGtotal = -51.70 kcal/mol) and 15s (ΔGtotal = -49.97 kcal/mol). The structural features inferred 

in our study may provide the future directions to the scientists towards the discovery of new 

chemical entity exhibiting anti-TB property. 

Keywords: Molecular dynamics simulation, pharmacophore mapping, molecular docking, epoxide 

hydrolase, tuberculosis.  
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1. INTRODUCTION 

Tuberculosis (TB) is an infectious chronic disease caused by obligate pathogen Mycobacterium 

tuberculosis (Mtb). It is contagious due to transmission of pathogen through the air. Mtb is an 

airborne obligate pathogen which mainly affects the upper respiratory tract. The cell wall of the 

bacteria is made of characteristic long chain mycolic acids and multilayered peptidoglycans and 

possess high lipid content due to the waxy coating on the cell surface. When infected, it reaches the 

lungs where they are taken up by alveolar macrophages where they grow and invade [1, 2]. The 

Mtb conquers mostly pulmonary regions but extra-pulmonary regions may also be affected [3]. In 

2015, about 10.4 million new cases of TB and 1.4 million deaths are reported due to TB. TB 

remained one of top leading killer worldwide in 2015. Although the antibiotics can conquer the 

infectious disease but their irrational use has adversely lead to the emergence of resistance cases in 

TB patients. The MDR-TB (Multi-drug resistant tuberculosis) is caused by micro-organism which 

are resistant to treatment against rifampicin and isoniazid. The XDR-TB (extensively drug-resistant 

tuberculosis) is associated with resistance to rifampicin, isoniazid, one of the quinolones and one 

of the aminoglycosides and the total drug resistant TB (TDR-TB) is resistance to all of the first line 

and second line anti-TB drugs [4]. The random mutation/alteration in genes is majorly a basis of 

tuberculosis resistance cases [5]. The reactivation of latent infection, especially in case of HIV 

infected individuals leads to further challenge the success treatment therapy of TB [6]. WHO 

initiated DOTS therapy for the treatment of TB which includes administration of combinations of 

first line drugs as Isoniazid, Ethambutol, Rifampicin, Streptomycin, and Pyrazinamide. The therapy 

proved to be very efficient and economic [7]. But it is quite lengthy and takes about six to nine 

months. [8]. Moreover, it causes several adverse effects like peripheral neuritis, hepatotoxicity, 

ototoxicity, nephrotoxicity, cutaneous syndrome, respiratory syndrome and hyperuricemia [9].  

Tuberculosis is still one of top cause of mortality all over the world. Various researchers have been 

putting continuous efforts for the discovery of novel scaffolds. Jadhavar et al., established SAR and 

synthesized the diverse library of 2-styrylquinazolones by exploring its C and D ring for different 

derivatives. [10] Tanwar et al., modified the quinoline nucleus by incorporating amide group in it 

and prepared the series of compounds by doing substitution at various position of quinoline nucleus. 

They found quinoline-based compounds to be more potent than standard drugs having MIC value 

of 0.2 and 0.39 µg/ml [11]. Pancholia et al., modified and designed benzo[d]thiazol-2-yl(piperazin-

1-yl) methanone scaffold and attached to it piperazine moiety in their laboratory by covalent 

bonding. Out of the synthesized compounds, about seventeen showed MIC values in 1-10 µM range 

when tested for anti-mycobacterial potential. [12]. Also, the oxazolidinones compounds have 
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shown good anti-mycobacterial activity. The first oxazolidinones Dup-721 have shown good 

activity. The compounds as Linezolid, sutezolid and AZD5489 are in clinical phase evaluation. But 

the myelosuppression caused by this class of compounds have been a major limiting factor for their 

development [13]. Only two new molecules named bedaquinile and delamanid have been approved 

by WHO for treatment of selected TB cases over a period of fourty years. Recently, the drugs such 

as Carbapenems and linezolid have been repurposed for treatment of XDR-TB. In last few years, 

much attention has been given by WHO for treatment of TB in paediatric group. Those at a high 

risk of drug-drug interaction and toxicity have been monitored by therapeutic drug monitoring. 

However, no standard protocol has been designed to monitor and assess such type of cases [14].  

The toxicity of drug is a significant health problem occurring as result of administration of a single 

drug dose or combination of doses. It can occur if a drug dose increases than the prescribed dose 

either by intention or by accident. Sometimes, it is often undetected by the doctors when symptoms 

such as mental retardness, memory loss, weakness, blurring in vision are not suspected to be caused 

by it. It is a significant concern to pharmaceutical industry when toxicity issues can lead to 

withdrawn of drugs from the market [15]. In between 1975 to 2000, about 548 new chemical entities 

have been approved by Food and Drug administration (FDA), out of which 2.9% were withdrawn 

from the market.  Pharmacovigilance is the drug safety branch addressing the issues of adverse drug 

reactions and toxicities. The assessment of drug toxicity is done by calculating the risk to benefit 

ratio of a drug which is the ratio of risk of adverse effects associated with the drug to its potential 

benefit. It is calculated as the ratio of lethal dose to the effective dose (LD50/ED50). The higher the 

ratio, the safer the drug [16]. Various investigations as the measurement of plasma drug 

concentration, urine drug concentration, tissue concentrations, biopsies etc are means of addressing 

and monitoring these adverse effects. Further, the knowledge of human genome can help us to 

predict the action of drugs including the adverse effects, leading to a possibility of safe and effective 

therapy to a patient [17]. 

In the present scenario, it has become a challenge to discover appropriate therapeutic 

regimen for TB. [8]. Moreover, the genome of Mtb serve as a platform and provides with hundreds 

of validated targets to design and discover novel agents against TB. The epoxide hydrolase (EH) 

enzyme was found to present in genome of Mtb which  serves as a platform for rational drug design 

[18, 19].  The compounds containing epoxide moiety are highly toxic and destructive for 

mycobacterium [20]. The Mtb EH plays a significant role in detoxification and metabolizes toxic 

epoxides into non-toxic 1,2-diols via dihydroxylation reaction. [19]. Therefore, EH act as a potential 

drug target against tuberculosis. The carbanilide (1,3-disubstituted urea derivatives) inhibit EH and 
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expected to be bactericidal and was found to show an IC50 value of 19 µM against Mtb epoxide 

hydrolase B. It therefore acts as potential lead compound to develop and design novel effective 

analogues to battle against TB [18].  

The computational aided drug design (CADD) based approaches play a remarkable role in drug 

design and discovery. The approach provides a crucial guidance and directs us towards rational 

drug design. It hastens speed, efficacy and minimize the time consumption and total expenditure 

associated, therefore facilitating the process of drug discovery [21, 22]. Molecular docking is one 

of the computational based approaches that predicts the binding orientation of the inhibitor 

compounds with the protein structure. It explores the active site amino acid residues which are 

significant for ligand binding. The GOLD (Genetic optimization ligand docking) is a genetic 

algorithm based docking program  [23]. Its goal is to achieve an optimized conformation for both 

ligand and receptor. [23, 24]. Molecular dynamics (MD) simulation is most important 

computational approach which predicts the behavior of protein ligand complex as a function of 

time. It provides insight into the atomic motions of individual particles. [25, 26].  In continuation 

of our earlier work and continuous efforts on various CADD techniques in the field of drug design 

and discovery, [27-32], a combined approach of quantitative structure activity relationships 

(QSAR), pharmacophore mapping, molecular docking and molecular dynamics simulation has been 

applied to the reported urea analogues against epoxide hydrolase. The approach was very helpful 

to probe essential features required for ligand binding into the binding site of epoxide hydrolase, 

active site amino acids residues involved in binding, binding free energy changes and per-residue 

contribution towards binding. The goal of our present study is to develop a hypothesis which states 

important structural requirements for ligands to bind into the active site of epoxide hydrolase 

enzyme and is helpful in drug design against TB. In the first part of our study, we present SAR 

studies of compounds containing urea moiety based on 2D-QSAR, 3D-QSAR and pharmacophore 

mapping analysis and then in second part, we present molecular docking of these compounds into 

the binding pocket of epoxide hydrolase. In addition, the docked complex obtained by molecular 

docking with high, moderate and low docking scores were analyzed for stability of complex, protein 

binding site flexibility, binding free energy and per residue energy contribution in binding by using 

molecular dynamics simulations approach.  
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2. MATERIALS AND METHODS  

2.1. Selection of data 

A set of 40 molecules with 1,3-disubstituted urea derivatives [33] was subjected to the QSAR 

analysis (2D-QSAR and 3D-QSAR), pharmacophore mapping and molecular docking. Further, the 

selected molecules were employed for molecular dynamics simulation analysis. All QSAR studies 

were performed by VLife Molecular design suite, version 4.4 [34]. Phamacophore and docking 

analysis was done by the PHASE, version 9.3 [35] and GOLD program, version 5.2. [36] 

respectively. Molecular dynamics simulation studies were performed using AMBER software [37] 

All the reported compounds and their corresponding biological activities are represented in Table 

1. The workflow for the employed approach is shown in figure 1. 

 

Table 1. Structural detail of the compounds in the series along with their biological activity 

ON

N
H

R1

H

R2
 

Compound R1 R2 IC50(nM) 

1s (2-Adamantyl) (2,3,4-trifluorophenyl 0.4 

2s (1-Adamantyl) (2,3,4-trifluorophenyl) 0.4 

3s (1-Adamantyl)methyl) (2,3,4-trifluorophenyl 0.4 

4s Heptyl (2,3,4-trifluorophenyl) 0.4 

5s (2,3,4-Trifluorophenyl) (2,6,6-trimethylbicyclo[3.1.1]-heptan-3-

yl 

0.4 

6s ((6,6-Dimethylbicyclo[3.1.1]heptan-2-

yl)methyl) 

(2,3,4-trifluorophenyl) 0.4 

7s Cyclooctyl (2,3,4-trifluorophenyl) 0.4 

8s Cyclohexyl (2,3,4-trifluorophenyl) 1.2 

9s Cyclopentyl (2,3,4-trifluorophenyl) 56.2 

10s (2-Adamantyl) (4-cyanophenyl 1.1 

11s (2-Adamantyl) phenethyl 4.5 

12s (3-Acetylphenyl) (2-adamantyl) 0.5 

13s (2-Adamantyl) benzyl 14.8 

14s (2-Adamantyl) (3-chloro-2-methylphenyl) 4.5 
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15s (2-Adamantyl) isopropyl 84.4 

16s (2-Adamantyl) tert-butyl 24.2 

17s (2-Adamantyl) propyl 61.4 

18s (2-Adamantyl) cyclohexyl 0.4 

19s (2-Adamantyl) pentyl 6.4 

20s (2-Adamantyl) hexyl 1.0 

21s (2-Adamantyl) heptyl 0.5 

22s (1-(1-Adamantyl)methyl) (3-chloro-4-methylphenyl) 0.4 

23s (3-Chloro-4-methylphenyl) heptyl 1.6 

24s (3-Chloro-4-methylphenyl) cyclooctyl 0.4 

25s (3-Chloro-4-methylphenyl) (3-fluorobenzyl) 16.6 

26s (3-Chloro-4-methylphenyl) (4-phenylbutan-2-yl)- 15.0 

27s (2-Fluoro-3-(trifluoromethyl)phenyl) heptyl 0.4 

28s Cyclooctyl (2-fluoro-3-(trifluoromethyl)phenyl) 0.4 

29s (2-Fluoro-3-(trifluoromethyl)phenyl) (4-phenylbutan-2-yl) 1.9 

30s (3-Chlorobenzyl) (2-fluoro-3-(trifluoromethyl)-phenyl) 3.7 

31s (2-Adamantyl) (2,3,4-trifluorophenyl)thiourea 4.8 

32s 2-Adamantyl 2,3,4-trifluorophenylcarbamate 463.8 

33s (2-Adamantyl) 3-methyl-3-(2,3,4-trifluorophenyl) 38.1 

34s (2-Adamantyl)-1,3-dimethyl (2,3,4-trifluorophenyl) 1838.1 

35s (2-Adamantyl) (4-methoxyphenyl) 14.3 

36s Methyl 4-(3-(1-adamantyl)ureido) -2-hydroxybenzoate 1.2 

37s (1-Adamantyl) (2-ethoxyethyl) 524.8 

38s (1-Adamantyl) (3-methoxypropyl) 386.1 

39s (1-Adamantyl) (2-isopropoxyethyl) 260.4 

40s (1-Adamantyl) (2-propoxyethyl) 242.6 
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Fig.1 Workflow of the employed computational approach 

 

2.2. Preparation of molecules for 2D-QSAR and 3D-QSAR analysis 

The molecules were sketched using Chemdraw 8.0 and optimized by Molecular Mechanics Force 

Field (MMFF) method. The molecules were subjected to 2D-QSAR and 3D-QSAR analysis and 

the validated model was developed for each of the analysis. The developed model set up a 

relationship between dependent and independent variables [38]. 

 

2.2.1. 2D-QSAR and 3D-QSAR analysis 

For 2D-QSAR, the compounds were divided into training and test set by manual selection method. 

The test set covers 1/5th of total molecules and was chosen within minimum-maximum range of 

training set. The uni-column statistics was performed for test and training set. The 2D-QSAR model 

was built by PLS (Partial Least Square) regression method using forward-backward as a variable 

selection method. The descriptors such as topological, physico-chemical and alignment-

independent were computed by 2D-QSAR.  [39]. The 3D-QSAR examines the electrostatic and 

steric regions present in the molecule against the biological response and quantitate the relationship 

between structural features and biological activity. For 3D-QSAR, the structures were aligned by 

template based alignment method using a reference molecule (Figure 2a) and a template (Figure 

2b). The regression analysis was performed by kNN (k-nearest neighbour) method. The alignment 

of molecules is shown in figure 3.[40].  
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Fig.2. Reference molecule (comp2s) (a) and urea substructure template (b) for alignment 

 

 
Fig.3. Aligned molecules by template based alignment method 

 

2.3. Pharmacophore Mapping 

In addition to set up the relationship between molecular descriptors and biological activity, we 

identified the important pharmacophoric features which are essential for biological activity by 

pharmacophore mapping using PHASE module. The PHASE module generated various 

pharmacophore hypotheses and computed their survival scores. Among those, the best one was 

selected containing the essential features responsible for the activity.  

 

2.3.1. Preparation of ligands 

The molecules were refined using ‘LigPrep’ option provided by PHASE. The hydrogen atoms were 

added to complete the valency of the molecules, converted to 3D and optimized. The conformers 

HN

O

HN F

FF  
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were generated by Monte Carlo Molecular Mechanics (MCMM) method which were then 

employed for pharmacophore hypotheses generation [41]. 

 

2.3.2. Pharmacophore hypotheses generation 

Common pharmacophoric features were identified and the pharmacophore hypotheses were 

created. The hypotheses were examined using a scoring function as survival score. The site, vector, 

volume and selectivity scores, p-value and number of matches were computed for each of the 

generated hypotheses. The best hypothesis was selected among them based on the scoring values. 

The regression analysis was then performed by PLS method and pharmacophore-based 3D-QSAR 

model was generated for the hypotheses [42]. 

 

2.4. Molecular Docking analysis 

To find out the binding interaction of compounds containing essential pharmacophoric features, we 

performed their molecular docking with epoxide hydrolase enzyme. To perform molecular docking, 

the crystal structure of epoxide hydrolase enzyme in complex with diphenylurea (Figure 4) with 

resolution of 2.4 Å was obtained from the protein data bank having PDB ID-2ZJF with R-value 

work and R-value free as 0.202 and 0.256 respectively [18, 43]. The molecular docking was 

performed by GOLD program. The hydrogens were added to crystal structure of protein and co-

crystallized ligand was extracted from its binding pocket. The compounds (Table 1) were docked 

by keeping the default GA run as 10. The GA runs specify the number of times each ligand is to be 

docked. The CHEMPLP (Piecewise Linear Potential) has been found to give highest success rates 

and therefore used as scoring function to rank docked compounds in relation to each other. The 

docking was performed using the standard default settings as population size of 100, selection 

pressure of 1.1, no. of operation as 100000, no. of islands as 5 and niche size of 2 [44, 45].  
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Fig.4. 3D view of Mtb epoxide hydrolase (PDB ID-2ZJF) 

 

2.5. Molecular dynamics simulations 

2.5.1. Data Selection 

The complex systems were prepared using molecular docking protocol mentioned in the previous 

section. The molecule 2s has highest docking score while 37s and 15s have moderate and low 

docking scores respectively. The docked binary complexes comp_2s, comp_15s and comp_37s 

i.e. epoxide hydrolase (PDB ID: 2ZJF) in complex with molecules 2s, 15s and 37s were considered 

for molecular dynamics (MD) simulations studies.  

 

2.5.2. System preparation for molecular dynamics simulations 

The system preparation methodology is adopted as discussed by Kumar et al. [46, 47] The 

preparation of the topology and coordinate files for three systems was carried out using complexes 

comp_2s, comp_15s and comp_37s. The epoxide hydrolase enzyme was corrected for atoms and 

bond orders followed by energy minimization to potentially relax the structures. FF14SB force field 
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parameters were applied for the protein using the AMBER (Assisted Model Building with Energy 

Refinement) tLeaP module [48]. The ligands 2s, 15s and 37s were extracted and corrected for atom 

types using Discover Studio 2.5 [49]. The parameters missing for the ligands were generated using 

the general amber force field (GAFF) and the Parmchk module of Antechamber [50, 51]. The 

prepared complex systems were solvated with TIP3P water model by creating an isometric water 

box, where distance of the box was set to 10 Å from periphery of protein [52]. The solvated complex 

systems were then neutralized through the AMBER LeaP module by adding necessary amount of 

counter ions (Na+) to construct the system in electrostatically neutral positions. The whole 

assembly was then saved as per the requirement of free energy calculations. It involved preparing 

the parameter and coordinate files for the complex, protein and the ligand without solvation. 

Further, the prepared topology and coordinate files of solvated complexes were used as input for 

sander module of the AMBER16 [37]. The optimization and relaxation of solvent and ions were 

performed by means of two energy minimization cycles using 1500 and 2000 steps. The initial 1000 

steps of each minimization cycle were performed using steepest descent followed by conjugate 

gradient minimization for rest of the steps.  

In the first part of minimization, epoxide hydrolase-ligand complex was kept fixed to allow 

water and ion molecules to move, followed by the minimization of the whole system (water, ions 

and complex) in the second part. Heating was performed using a NVT ensemble for 20 ps where 

ATPase-ligand complex was restrained with a very small force constant of 5 kcal/mol/ Å2. The 

temperature was allowed to increase till 300 K. The system was further equilibrated under constant 

pressure at 300 K for the period of 100 ps without restrain on the complex. Final simulations i.e. 

production phase was performed for 10 ns on NPT ensemble at 300 K temperature and 1atm 

pressure. The step size of 2 fs was kept for whole simulation study. Langevin thermostat and 

barostat were used for temperature and pressure coupling. SHAKE algorithm was applied to 

constrain all bonds containing hydrogen atoms [53].  

Non-bonded cut-off was kept on 10 Å and long range electrostatic interactions were treated 

by Particle Mesh Ewald method (PME) with fast Fourier transform grid spacing of approximately 

0.1nm [54]. Trajectory snapshots were taken at each 10 ps of the production phase, which were 

used for final analysis. The minimization, heating and equilibration were performed by sander 

module of AMBER16, while production simulation was performed using Pmemd program of 

AMBER16 running on NVIDIA Tesla K20c GPU work station [55]. The production run was 

considered for the analysis which was carried out using the Ptraj module of the AMBER16 and 

VMD [56, 57].  
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2.5.3. Root-mean-square deviation (RMSD) and B-factor 

RMSD and B-factor, were calculated using the ptraj analysis tool in the AMBER program. 

RMSD is the measure of the average distance between the atoms (usually the backbone atoms) of 

superimposed protein structures [58]. The equation below illustrates the rmsd: 

                                   RMSD = 
1

𝑁
∑ 𝛿𝑖

2𝑁
𝑖                                                                    (1) 

where δ is the distance between N pairs of equivalent atoms.    

To compare the flexibility of the structures, B-factor or thermal factor was used to calculate the 

mobility of the residues present in the ATP lid. It was calculated from the mean square fluctuations 

(msf) using the following equation: 

 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑟 𝐵 − 𝑓𝑎𝑐𝑡𝑜𝑟 = [(8𝜋 ∗∗ 2) 3⁄ ](𝑚𝑠𝑓) (2) 

B-factor was calculated using the equation 2 for each residue and plotted against each residue [59].  

 

2.5.4. MM-GBSA binding free energy (ΔG) calculations 

The binding free energy calculations were performed for all complex systems using MM-GBSA 

(Molecular Mechanics-Generalized Born Surface Area) considering single trajectory approach. The 

various previous study find this approach useful in estimation of binding free energy [60, 61]. 

Binding free energy calculations were performed on production phase considering last 2 ns of 10 

ns run using the Born implicit solvent model of 2 (igb = 2).  

∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐺𝐶𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑃𝑟𝑜𝑡𝑒𝑖𝑛 − 𝐺𝐿𝑖𝑔𝑎𝑛𝑑 (3) 

The calculations include various energy components consisting of molecular mechanical energy 

(EMM) and polar contribution (GGB) towards solvation energy calculated by generalized Born (GB) 

method respectively (Eq. 7). GSA is the contribution from nonpolar terms towards solvation energy, 

and TS is the entropic contribution of the inhibitor. EMM was obtained by summing contributions 

from, electrostatic energy (Eele), VDW energy (Evdw), and internal energy including bond, angle, 

and torsional angle energy (Eint) using the same force field as that of MD simulations (Eq. 8). 

𝐺 = 𝐸𝑀𝑀 + 𝐺𝐺𝐵 + 𝐺𝑆𝐴 − 𝑇𝑆 (4) 

EMM = Evdw + Eele + Eint (5) 

 

2.5.5. The binding free energy decomposition analysis 

Free energy was decomposed to estimate the contribution of each residue in the ligand binding 

process and was performed by using MM-GBSA method[62]. Energy of each residue–ligand 

interaction is given by following equation: 
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 ∆𝐺𝑟𝑒𝑠𝑖𝑑𝑢𝑒−𝑙𝑖𝑔𝑎𝑛𝑑 = ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑊 + ∆𝐺𝐺𝐵 + ∆𝐺𝑆𝐴 (6) 

Where, ∆GGB is the polar group contribution to the solvation free energy calculated using GB 

model. ∆GSA is the non-polar group contribution to the solvation free energy calculated using 

ICOSA method. Similar to the binding free energy, the decomposition energy was also averaged 

over 200 frames taken at the interval of 100 ps over the last 2 ns of 10 ns production run. In addition, 

average structures for comparison of trajectories were also obtained using the 200 frames over the 

last 2 ns of 10 ns simulations. 

 

3. RESULTS AND DISCUSSION 

The goal of our present study is to develop a hypothesis which is helpful in anti-TB drug 

development. The goal is achieved by employing integrated computational approach involving 

techniques as QSAR, pharmacophore mapping, molecular docking and molecular dynamics 

simulation studies. In the first part of our study, we present SAR (structure activity relationships) 

studies for compounds containing urea moiety and then in second part, we present molecular 

docking of these compounds into the binding pocket of epoxide hydrolase. The selected compounds 

were further analyzed for stability, protein binding site flexibility and binding free energy by using 

molecular dynamics simulations analysis.  

 

3.1. 2D-QSAR analysis 

The 2D-QSAR model was developed by PLS method and the best 2D model was selected based on 

regression coefficient values and number of outlier compounds. The biological activity equation 

indicating the physico-chemical parameters coefficient and their correlation with the biological 

activity was constructed. The 2D model showed a r2 value of 0.827 and standard error of 0.4346 

(Table 2). The stability of the model was judged by leave-one-out procedure and found to be fairly 

good (q2=0.8101) implying that the model would be fruitful for significant predictions. The pred_r2 

value of 0.9559 indicated the complimentary potential of the developed model.  
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Table 2. Statistical results of 2D-QSAR equation generated by PLS method 

 

Equation 
pIC50 = - 0.4705 SssOE-index -2.1397 SsssNcount + 0.5987 chi1- 0.5920 

T_2_N_7+ 0.9016 SdO count+0.2131 K2alpha+0.6631 

Statistics 

N = 32 Degree of freedom = 26 F test = 35.6552 

r2 = 0.8727 q2 = 0.8101 pred_r2 = 0.9559 

r2 se = 0.4346 q2 se = 0.5309 pred_r2se= 0.2571 
 

 

The descriptors such as SssOE-index, SsssNcount, chi1, T_2_N_5, SdOcount and k2alpha were 

found to contribute to the biological activity. These descriptors are described as: SssOE-index: 

Electrotopological state indices for number of oxygen atom connected with two single bonds. 

SsssNcount: Defines the total number of nitrogen connected with three single bonds. Chi1: 

Signifies retention index derived from gradient retention times. T_2_N_7: This is the count of 

number of the double bonded atoms separated from nitrogen atom by 7 bonds. SdOcount: Defines 

the total number of oxygen connected with one double bond. K2alpha: Signifies second alpha 

modified shape index. The descriptors such as chi1, SdOcount and k2alpha have their role in 

enhancing the activity and the descriptors such as SssOE-index, SsssNcount and T_2_N_7 decrease 

the activity. The correlation matrix was calculated and given in Table S1 and the values less than 

0.6 indicate the absence of multi-colinearities in the model. The contribution chart indicates the % 

contribution of descriptors towards biological activity (Figure 5). The uni-column statistical 

analysis was performed to evaluate the selection criteria for compound in training and test set (Table 

S2). The predicted activity values were computed for each of the compounds (Table S3) and the 

graph was plotted between the actual and predicted biological activity values which showed a good 

correlation (R² = 0.9227) (Figure 6).  
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Fig. 5. Contribution chart of selected 2D descriptors towards antitubercular activity 

 
Fig. 6. Correlation plot between actual and predicted pIC50 values by 2D-QSAR 

 

3.2. 3D-QSAR analysis 

In addition to finding out the contribution of physico-chemical descriptors towards biological 

activity as mentioned in the above section, we estimated the contribution of steric and electrostatic 

parameters towards the biological activity by 3D-QSAR analysis using VLife. The 3D-QSAR 

model was generated by kNN-MFA analysis (k nearest neighbour molecular field analysis) method. 

The steric interaction energies were calculated at the lattice points of the grid using a methyl probe 

of +1 charge. The steric and electrostatic data points generated by 3D-QSAR analysis are shown in 

figure 7.  
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Fig. 7. Relative positions of the steric and electrostatic fields 

 

The best model showed a cross-validated correlation coefficient i.e q2, pred_r2 and K nearest 

neighbour values of 0.8105, 0.7015 and 2 respectively. The computed parameter values are shown 

in Table 3. The predicted activity values were computed for each of the compounds (Table S4) and 

the graph was plotted between the actual and predicted biological activity values which showed a 

correlation value R² = 0.7826 (Figure 8). The ranges of data point values were based on the variation 

of the field values at the chosen points using the most active molecule and its nearest neighbour set. 

Points generated in kNN–MFA 3D-QSAR model are S_565 (-0.378, -0.306), S_847 (-0.004, -

0.002) i.e. steric data points at lattice points 565 and 847 respectively. Negative values of steric 

field descriptors indicated the requirement of negative steric potential, for enhancing the biological 

activity of urea derivatives against Mtb EH. The negative value of steric factors indicates the 

preference of less steric substituents at generated data points S_565 (-0.378, -0.306) and S_847 (-

0.004, -0.002) around urea pharmacophore.  
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Table 3. Statistical results of 3D-QSAR model generated by kNN MFA method 

 

Model summary 

kNN Method 

Training Set Size = 31, Test Set Size = 7 

Statistics: 

k Nearest Neighbour= 2, n = 31 

Degree of freedom = 27 

q2 = 0.8105, q2_se = 0.4662 

Pred_r2 = 0.7015,  pred_r2se = 0.7331 

Selected descriptor & their range: 

S_565 (-0.378, -0.306) 

S_847 (-0.004, -0.002) 

 

 
Fig. 8. Correlation plot between actual and predicted pIC50 values by 3D-QSAR 

 

3.3. Pharmacophore mapping 

After finding out the role of physico-chemical, steric and electronic descriptors in biological activity 

by QSAR, we identified common features which are essential for biological activity. For the same 

reason, we generated pharmacophore hypotheses. The total of four pharmacophoric hypotheses 

were developed and their scoring function as survival scores and other as site, vector, volume and 

selectivity score are represented in Table 4. The top model comprised of five features hypothesis, 
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i.e. ADHHR.27 which include one acceptor group (A), one donor group (D), two hydrophobic 

groups (H) and one aromatic ring (R). This is denoted as A1D2H5H6R8.  

 

Table 4. Scoring results of the different pharmacophore hypotheses  

 

 

The top hypotheses showed the survival score of 3.297. The distances and angles between the 

different pharmacophore features of hypothesis ADHHR.27 were computed and given in Table S5 

& S6 respectively. The pictorial representation of distances between various features is given in 

figure 9. The pharmacophore hypotheses also yielded a 3D-QSAR model with good PLS statistics 

(Table 5). In the table, the standard deviation of the regression is the RMS error in the fitted activity 

values. R2 is the coefficient of regression. A value of 0.80, means that the model accounts for 80% 

of the variance in the observed activity data. R2 is always between 0 and 1. Stability of the model 

predictions to changes in the training set composition. Maximum value is 1. F value is the ratio of 

the model variance to the observed activity variance. Large values of F indicate a more statistically 

significant regression. P is the significance level of F when treated as a ratio of Chi-squared 

distributions. Smaller values indicate greater degree of confidence. A P value of 0.05 means F is 

significant at the 95% level. RMSE is the root-mean-square error in the test set predictions. Q2 

refers for the predicted activities. It is directly analogous to R-squared, but based on the test set 

predictions and the Pearson-r value is for the correlation between the predicted and observed 

activity for the test set. The basic pharmacophore was mapped over the molecule of the dataset and 

represented in fig. 10(a). The graph was plotted between the predicted activity and actual activity 

values and showed a correlation r2 = 0.9322 (Figure 10 (b) The fitness scores of training and test 

set molecules are presented in the Table S7 which shows the fitness of molecules onto the generated 

hypothesis. 

 

 

 

S.No. ID Survival Survival -

inactive 

Post-

hoc 

Site Vector Volume Selectivity # Matches 

1 ADHHR.27 3.297 1.676 3.297 0.7 0.97 0.624 1.92 9 

2 ADHHR.167 3.249 1.504 3.249 0.67 0.969 0.606 1.922 9 

3 ADHHR.168 3.124 1.284 3.124 0.67 0.972 0.477 1.923 9 

4 ADHHR.20 3.261 1.878 3.261 0.68 0.975 0.605 1.903 9 
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Table 5. Statistical results of the generated 3D-QSAR models 

 

PLS SD R2 F p-value Stability RMSE Q2 Pearson-R 

1 0.8095 0.6114 40.9 8.943e-07 0.8357 0.4338 0.473 0.8993 

2 0.572 0.8135 54.5 7.671e-10 0.4444 0.5156 0.2556 0.7004 

3 0.2553 0.9643 216.3 1.68e-17 0.1392 0.5052 0.2852 0.6884 

4 0.1744 0.984 354.6 2.656e-20 0.137 0.4587 0.4108 0.7373 

5 0.1264 0.992 544.2 2.815e-22 0.182 0.503 0.2915 0.6887 

 

 
Fig.9. Hypotheses: ADHHR.27, showing distance between different mapped features 
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Fig. 10(a). Pharmacophore mapped over the molecule of the dataset 

 

 
Fig.10(b). Correlation plot between actual and predicted activity values 
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3.3.1. Contour analysis 

The contour analysis is done to find out the blue and red regions present in the pharmacophore. The 

red regions are the called as contours where substitutions cause depreciation of activity and blue 

region substitution cause appreciation in activity. These contour plots generated as a result of 3D- 

QSAR model development are displayed as positive and negative activity coefficients of the 

properties detected as a result of the output of best generated hypotheses (Figure 11). The blue 

regions represent that the substitution at the positions is favourable for the activity and the red 

regions represent the devaluating activity. That means, if there is a substitution around blue regions 

it will be enhancing the activity and if there is substitution around red regions, it will lead to 

diminish the activity. 

3.3.1.1.Hydrogen bond acceptor property contour 

The blue contours at the oxygen of urea signified the importance of H-bond acceptor group at this 

position. (Figure 11 (a)). The H-bond acceptor oxygen is important for anti-tubercular action. 

3.3.1.2. Hydrogen bond donor property contour 

As shown in figure 11 (b), the blue contours at the nitrogen atom of urea moiety demonstrated the 

importance of H-bond donor group at this position. This H-bond donor group is important for 

enzyme inhibition for the treatment of tuberculosis. 
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Fig.11. Stereoviews of contour maps for 3D-QSAR model hydrogen bond acceptor (a), hydrogen 

bond donor (b) properties 

 

The SAR was developed on the basis of the above studies (Figure 12) which demonstrated that the 

one hydrogen bond acceptor group i.e carbonyl and one hydrogen bond donor i.e. NH played a 

significant role in the inhibition of the Mtb epoxide hydrolase. The compounds with admantane 

ring on one side of urea moiety and tri-fluorophenyl ring on other side displayed significant 

goldscores. The polar groups when substituted at R2 position showed less affinity towards receptor 

binding and lowered the fitness scores when compared to other derivatives.  
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Cycloalkyl such as 

adamantane ring is important 

for EH inhibitory activity 

NH act as hydrogen bond 

donor and is important for 

EH inhibitory activity 

Carbonyl group act as hydrogen 

bond acceptor which is important 

for EH inhibitory activity 

 

Substitution by polar group 

(36s) such as hydroxy group 

lowered down the gold score 

and decreased the binding 

affinity 

Substitution by aromatic ring 

such as 2,3,4-trifluorophenyl 

(1s, 2s, 3s, 6s, 7s, 8s, 9s) 

increased the EH inhibitory 

activity 

 
Fig.12. Proposed pictorial representation of structure activity relationship (SAR) of 1,3-disubstituted 

urea derivatives towards Mtb epoxide hydrolase (EH) 

 

3.4. Molecular docking analysis 

In pharmacophore mapping part of our study, we found the pharmacophoric features which are 

essential for the biological activity. This is followed by the next part of our study in which we 

docked the compounds containing these pharmacophoric features into the binding pocket of 

epoxide hydrolase which predict their binding orientation at the active sites of epoxide hydrolase. 

The GOLD, a genetic algorithm based program successfully docked the urea derivative compounds 

into the active sites of epoxide hydrolase and the most stable conformation based on the CHEMPLP 

scoring function was considered to analyze various drug receptor interactions. The gold fitness 

scores of the docked compounds and their H bond (HB) interactions are shown in Table 6.  
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Table 6. Gold fitness score of 1,3-disubstituted urea analogues and HB formed with amino acid 

residues of Mtb epoxide hydrolase 

 

Compounds Gold fitness 

score 

Residue involved in H Bond 

interaction with epoxide 

hydrolase 

Compounds Gold 

fitness 

score 

Residue involved in H 

Bond interaction with 

epoxide hydrolase 

1s 88.64 Asp104 & Tyr164 21s 85.57 Asp104 & Tyr164 

2s 98.85 Asp104 & Tyr272 22s 93.42 Asp104 & Tyr164 

3s 96.91 Asp104 & Tyr164 23s 86.76 Asp104 & Tyr164 

4s 89.81 Asp104 & Tyr164 24s 77.63 Asp104 & Tyr164 

5s 93.63 Asp104 & Tyr164 25s 84.10 Asp104 & Tyr164 

6s 91.19 Asp104 & Tyr164 26s 81.82 Asp104 & Tyr164 

7s 93.27 Asp104 & Tyr164 27s 78.06 Asp104 & Tyr164 

8s 90.45 Asp104, Tyr164 & Tyr272 28s 72.77 Asp104 & Tyr164 

9s 88.34 Asp104, Tyr164 & Tyr272 29s 78.06 Asp104 & Tyr164 

10s 77.66 Asp104 30s 77.45 Asp104 & Tyr164 

11s 88.15 Tyr272 31s 89.23  

12s 95.05 Asp104 & Tyr164 32s 89.36 Asp104 & Tyr164 

13s 89.43 Asp104, Tyr164 & Tyr272 33s 87.61 Tyr164 & Tyr272 

14s 88.07 Asp104 & Tyr164 34s 87.74 Tyr272 

15s 67.23 Asp104 & Tyr164 35s 82.61 Asp104, Tyr164& 

Tyr272 

16s 63.19 Asp104 & Tyr164 36s 71.50 Asp104 & Tyr164 

17s 72.61 Asp104 & Tyr164 37s 79.49 Asp104 & Tyr164 

18s 89.30 Asp104 & Tyr164 38s 81.29 Asp104, Tyr164& 

Tyr272 

19s 84.21 Asp104 & Tyr164 39s 79.35 Asp104, Tyr164 & 

Tyr272 

20s 85.07 Asp104 & Tyr164 40s 85.54 Asp104, Tyr164 & 

Tyr272 

Co-crystal 

ligand 

82.44 Asp104 & Tyr164    

 

Overall, these compounds showed good fitness scores which suggested favorable binding of the 

compounds with that of the enzyme. In the present series, the compound 2s, 3s, 5s, 12s and 22s 
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showed greater fitness scores as compared to rest of the compounds. The compound 2s (containing 

trifluorophenyl and admantane ring) was found to dock into the active site of the enzyme with a 

highest fitness score of 98.85. It formed three hydrogen bonds, one with Tyr272 and two with Asp 

104; wherein the oxygen atom of the carbonyl group showed H bond interaction with phenolic 

oxygen of Tyr272 and two nitrogen atoms of urea showed H bond interaction with acidic oxygen 

of Asp104.  The trifluorophenyl and 1-adamantyl ring of the 2s is surrounded by Phe36, Pro37, 

Asp104, Trp105, Ile137, Leu226, Tyr272 and Trp307 amino acid residues (figure 13). The 

interaction with the Tyr272, Tyr164 and Asp104 is important for the enzyme inhibitory activity. 

Moreover, to validate the process, co-crystallized ligand (1,3-diphenyl urea/carbanilide) was 

extracted and redocked into the active site of the enzyme. The conformation of docked ligand was 

found similar to the conformation of co-crystal ligand. The comparison of docked and crystal 

structure conformation is shown in figure 14(a). It was found to show the H bond interaction with 

the Tyr164 and Asp104 (figure 14 (b)) as similar to the majority of compounds and displayed a 

goldscore of 82.44; wherein the carbonyl oxygen interacted with the oxygen of the phenolic group 

of Tyr164 and two nitrogens interacted with the acidic oxygen of Asp 104. This carbanilide based 

inhibitor represents an outstanding scaffold to design and develop potential structural based 

inhibitors against the Mtb EH. 

 
Fig.13. Docking interaction pose of compound 2s at the active site of Mtb epoxide hydrolase; 

interacting residues are shown as sticks whereas compound 2s is shown in ball and stick 

representation 
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Fig. 14(a). Superimposition of co-crystal ligand over the docked conformation of the same ligand 

 
 

Fig.14(b). Docking interaction pose of 1,3-diphenyl urea (co-crystallized ligand) at the active site of 

Mtb epoxide hydrolase; interacting residues are shown as sticks whereas co-crystal ligand is shown 

in ball and stick representation 

 

3.5. Molecular dynamics simulations 

The docked complex systems were prepared using molecular docking protocol mentioned in the 

previous section. These docked binary complexes comp_2s, comp_15s and comp_37s i.e. epoxide 
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hydrolase (PDB ID: 2ZJF) in complex with molecules 2s, 15s and 37s were considered for 

molecular dynamics (MD) simulations studies. 

 

3.5.1. RMSD and B-factor analysis 

To estimate the stability of the trajectories, RMSD calculation was carried out (Figure 15 (a)). The 

trajectories showed that RMSD gets stabilized after 6 ns of simulation. The comp_2s showed an 

average RMSD of 1.79 Å with standard deviation (SD) of ±0.33. Similarly, comp_37s showed an 

average RMSD of 1.98 Å with SD ±0.24. The comp_15s showed lowest average RMSD of 1.52 Å 

with SD ±0.19. All complexes showed overall as well as average RMSD below 2 Å throughout the 

10 ns simulations which showed MD trajectories are stable and can be used for further analysis to 

calculate the B-factor, H-bond and distance analysis. 

 The estimation of the B-factor showed the flexibility of various parts of epoxide hydrolase 

enzyme (Figure 15 (b)). The N-terminal of the epoxide hydrolase showed a B-factor of about ~100 

Å2 while C-terminals showed a maximum B-factor of about ~1700 Å2. It indicated that C-terminal 

is highly flexible part among all the domains available in the epoxide hydrolase enzyme. In addition 

to C-terminal, residue ranging ~200 to 220 as well as residue around ~150 showed a B-factor value 

≥100 Å2 indicating second most flexible part in the epoxide hydrolase enzyme. The flexibility of 

this part is in agreement of expectation as it covers active site cavity where epoxide hydrolase 

inhibitors bind.   

 

Fig.15 (a) RMSD and (b) B-factor calculations for the MD trajectory. 
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Fig. 16. Interaction of epoxide hydrolase with molecule (a) 2s, (b) 15s and (c) 37s in the analyzed 

complexes comp_2s, comp_15s and comp_37s respectively 

 

3.5.2. Epoxide hydrolase-inhibitor interaction analysis 

The B-factor analysis showed that active site residues of epoxide hydrolase are flexible enough to 

interact with the bound inhibitor. The analysis of protein-ligand complex is very important to 

emphasize on pre-existing non-bonded interactions [63, 64]. Also, it provides an opportunity to 

identify hotspot residues involved in protein-ligand interactions [65-70]. The complexes comp_2s, 

comp_15s and comp_37s were analyzed for the protein-ligand interactions to identify the active 

site residues involved in the non-bonded interactions. The residues within 6 Å around the bound 
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inhibitors were considered as active site residues and analyzed for the pre-existing interactions. 

Only, three residues Asp104, Tyr164 and Tyr272 were observed to make the H-bond interactions 

with the bound ligand 2s, 15s and 37s (Figure 16). In complex comp_2s, COO- group of Asp104 

was observed to make H-bond interactions with H24 and H25 atoms of amino groups in molecule 

2s with H-bond occupancy of 67.67 % (Table 7). In addition, OH group of Tyr164 and Tyr272 was 

observed to make H-bond interactions with O3 atom of carboxyl with H-bond occupancy 54.50 % 

and 61.30 % respectively.  

Similarly, in complex comp_15s, COO- group of Asp104 was found to form H-bond 

interactions with H18 and H19 atoms of amino groups in molecule 15s with H-bond occupancy 

37.30 % while OH group of Tyr164 and Tyr272 was observed to make H-bond interactions with 

O3 atom of carboxyl group with H-bond occupancy 75.90 % and 66.10 % respectively. In the 

complex comp_37s, COO- group of Asp104 was observed to make H-bond interactions with H20 

and H21 atoms of amino groups in molecule 37s with H-bond occupancy 48.10 %. And, OH group 

of Tyr164 and Tyr272 was observed to make H-bond interactions with O3 atom of carboxyl group 

with H-bond occupancy 77.60 % and 69.20 % respectively.  

 

Table 7. H-bond occupancy with molecules 2s, 15s and 37s 

 

H-bond occupancy with molecule 2s in comp_2s 

S.No Residue H-bond occupancy 

1. Asp104 67.67% 

2. Tyr164 54.40% 

3. Tyr272 61.30% 

H-bond occupancy with molecule 15s in comp_15s 

1. Asp104 37.30% 

2. Tyr164 75.90% 

3. Tyr272 66.10% 

H-bond occupancy with molecule 37s in comp_37s 

1. Asp104 48.10% 

2. Tyr164 77.60% 

3. Tyr272 69.20% 



31 
 

 

Fig.17. Number of H-bond interactions and H-bond distance in the complexes comp_2s, comp_15s 

and comp_37s. 
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The average H-bond interaction was observed 1.87 between all binding residues and 

molecule 2s while average binding interaction of about 1.79 was observed between all binding 

residues and molecule 15s (Figure 17 (A) and 17 (B)). The highest average H-bond interaction of 

about 1.94 was observed between all binding residues and molecule 37s (Figure 17 (C)). It is very 

little opposite to the obtained docking score where molecule 2s was observed with highest molecule 

docking score of 98.85 and molecule 37s was observed with moderate docking score of about 79.49. 

However, similar to average H-bond interaction observation, molecule 15s was found with lowest 

docking score of 67.23. This observation of average H-bond interaction is in agreement with the 

obtained H-bond occupancy results where molecule 37s was observed to have highest H-bond 

occupancy with binding site residues. The H-bond distances were observed between the lengths 

ranging from 1.8 Å to 2.8 Å (Figure 17 (a), 17 (b) and 17 (c)).      

 

3.5.3. MM-GBSA binding free energy analysis 

The MM-GBSA binding free energy for the molecule 2s, 15s and 37s was estimated to verify the 

observed H-bond interaction contributions. Similar to the observed average H-bond analysis, the 

value of ΔGtotal = -52.24 kcal/mol, was observed highest for the molecule 37s. It was found ΔGtotal 

= -51.70 kcal/mol and ΔGtotal = -49.97 kcal/mol for the molecules 2s and 15s respectively. The van 

der Waals interactions showed slightly poor contribution towards ligand binding as compared to 

electrostatic interactions in case of comp_2s and comp_37s while both interactions found almost 

equally contributed in case of comp_15s. Also, ΔGnonpolar,solvation was observed about ~5 kcal/mol 

which was similar in cases of all three complexes (Table 8)  Further, the observed binding free 

energy is in agreement of the H-bond interactions between epoxide hydrolase and inhibitors. The 

ΔG was contributed by the various binding site residues, thus, decomposition of free energy into 

per-residue can help to identify and estimate role of particular residue in the ligand binding.    

 

Table 8. Binding free energy components estimated for the complexes (kcal/mol) 

 

Energy components Comp_2s Comp_15s Comp_37s 

ΔEvdW -43.33 -39.06 -40.36 

ΔEelec -48.87 -37.94 -46.75 

ΔGpolar, solvation 45.82 31.80 40.10 

ΔGnonpolar, solvation -5.31 -4.77 -5.22 

ΔGtotal -51.70 -49.97 -52.24 
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3.5.4. Per-residue free energy decomposition 

To find the function of particular residue in binding of ligand, free energy decomposition was 

performed. The residues involved in H-bond interactions were observed to contribute differently as 

Asp104 showed very little ΔG = -0.13 kcal/mol towards molecule 2s. While Asp104 contributed 

negatively as ΔG was found +4.29 kcal/mol and +2.35 kcal/mol towards 15s and 37s respectively. 

The residues Tyr164 and Tyr272 contributed ΔG of about ~1 kcal/mol towards all molecules. In 

addition to residues involved in H-bond interactions, free energy decomposition analysis also 

helped in identification of additional residues involved in non-bonded hydrophobic or van der 

Waals interactions. Among these residues, Trp105 contributed highest ΔG of ~4.19 kcal/mol, -3.42 

kcal/mol and -3.87 kcal/mol towards binding of molecules 2s, 15s and 37s respectively. In addition, 

residues Ile137, Gln165, Leu189, Val193 and Val296 were identified to make the hydrophobic 

interactions with the molecules 2s, 15s and 37s (Table 9).   

 

Table 9. Per-residue decomposition of binding free energy (kcal/mol) 

S.No. Residue Comp_2s Comp_15s Comp_37s 

1. Asp104 -0.13 4.29 2.35 

2. Trp105 -4.18 -3.42 -3.87 

3. Ile137 -1.33 -0.76 -1.58 

4. Tyr164 -1.14 -1.84 -1.70 

5. Gln165 -1.18 -1.46 -2.04 

6. Leu189 -0.83 -1.05 -1.00 

7. Val193 -0.75 -1.04 -1.01 

8. Tyr272 -1.00 -1.01 -1.06 

9. Val296 -0.82 -1.43 -1.45 

 

4. CONCLUSION 

The 1,3-disubstituted urea derivatives were subjected to an integrated approach involving QSAR, 

pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The 

QSAR studies revealed that the descriptors as SssOE-index, SsssNcount, chi1, T_2_N_5, SdOcount 

and k2alpha were found to contribute towards the biological activity. When docked, the ligand 2s 

containing adamantly ring on one end and 2,3,4-trifluorophenyl on the other end of urea moiety 

showed a highest gold score of 98.85. The amino acids Asp104, Tyr164 and Tyr272 were found to 

be involved in H-bonding interaction and played a key role in ligand-receptor binding interactions. 
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To validate the docking results, 1,3-diphenylurea was extracted and re-docked into the pocket of 

epoxide hydrolase and was found to achieve gold score of 82.44 and showed H-bond interaction 

with Asp104 and Tyr164 amino acid residues. Also, the docked conformation is found almost 

similar to that of the co-crystal ligand. The molecular dynamics studies of three selected docked 

complexes showed that the complexes are stable with average RMSD below 2 Å. The residues such 

as Asp104, Tyr164 and Tyr272 made H-bond interactions with bound ligand 2s, 15s and 37s with 

average H-bond occupancy of 61.12 %, 59.77 % and 65.0 % respectively. Similar to H-bond 

analysis, the binding free energy was observed highest for 37s and lowest for 15s. The residues 

involved in H-bond interactions such as Tyr164 and Tyr272 contributed ΔG of about ~1 kcal/mol 

towards all molecules. The important structural features that are inferred from our study include 

that a) The descriptors such as chi1, SdOcount and k2alpha have their role in enhancing the activity 

and the descriptors such as SssOE-index, SsssNcount and T_2_N_7 play role in decreasing the 

activity. b) The group as hydrogen bond acceptor, hydrogen bond donor, aromatic ring and 

hydrophobic group too is required for the epoxide hydrolase inhibitors for exhibiting the anti-TB 

activity. c) The presence of polar group such as hydroxyl group can lower down the binding affinity 

and therefore the anti-TB activity. d) The active site amino acids residues involved in H-bond 

interactions include Asp104, Tyr164 and Tyr272. e) The active amino acid residues are flexible 

enough to interact with the inhibitors. f) The residues as Trp105, Ile137, Gln165, Leu189, Val193 

and Val296 were identified to make the hydrophobic interactions with the molecules. Among these, 

Trp105 contributed highest as revealed by ΔG values. These findings have opened a path for the 

development of potent inhibitor analogues against Mtb EH and provided crucial clues and guidance 

regarding important structural features that can be used in successful designing of novel highly 

active analogues against Mtb EH. 
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Appendix A. Supplementary data 

 

Table S1. Correlation matrix for the descriptors contributing to the 2D QSAR model 

 

 Chi1 K2alpha SsssNcount SdOcount SssOE T_2_N_7 SCORE 

Chi1 1      5 

K2alpha 0.110904 1     5 

SsssNcount 0.343417 -0.063986 1    5 

SdOcount 0.177054 -0.003655 -0.025048 1   5 

SssOEcount 0.065343 -0.194961 -0.104268 0.205061 1  5 

T_2_N_7 0.331234 0.304349 -0.10829 0.219269 -0.091624 1 5 

 

Table S2. Uni-Column statistics for training set and test set 

  
Set Column 

Name 

Average Max Min Standard 

Deviation 

Sum 

Training pIC50 8.4292 9.3970 5.7350 1.1156 269.7360 

Test pIC50 7.7977 9.0000 6.2800 1.0209 62.3820 
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Table S3. Actual and predicted activity values of all compounds of dataset by 2D QSAR 

 

Comp 

No. 

Actual 

pIC50(nM) 

Predicted 

pIC50(nM) 

Residual Comp 

No. 

Actual 

pIC50(nM) 

Predicted  

pIC50(nM) 

Residual 

1s 9.397 9.34816 0.04884 21s 9.301 9.24819 0.05281 

2s 9.397 9.24588 0.15112 22s 9.397 9.40885 -0.01185 

4s 9.397 9.14256 0.25444 24s 9.397 8.99658 0.40042 

5s 9.397 9.11637 0.28063 25s* 7.779 8.09404 -0.31504 

6s 9.397 8.64166 0.75534 26s 7.823 7.82284 0.00016 

7s 9.397 9.20865 0.18835 27s 9.397 9.65179 -0.25479 

8s 8.920 8.31177 0.60823 28s 9.397 9.75477 -0.35777 

9s 7.250 7.86979 -0.61979 29s 8.721 8.58728 0.13372 

10s* 8.958 8.55426 0.40374 30s 8.431 8.92876 -0.49776 

11s* 8.346 8.13893 0.20707 31s 8.318 8.49575 -0.17775 

12s 9.301 9.75268 -0.45168 32s 6.333 7.00886 -0.67586 

13s 7.829 8.30608 -0.47708 33s 7.419 7.51716 -0.09816 

14s 8.346 9.10846 -0.76246 34s 5.735 5.68621 0.04879 

15s 7.073 7.35176 -0.27876 35s 7.844 7.25923 0.58477 

16s 7.616 7.51496 0.10104 36s 8.920 8.64702 0.27298 

 17s* 7.211 7.50926 -0.29826 37s* 6.280 6.28403 -0.00403 

18s 9.397 8.57171 0.82529 38s 6.413 6.49391 -0.08091 

 19s* 8.193 8.36988 -0.17688 39s 6.584 6.52753 0.05647 

 20s* 9.000 8.807 0.193 40s* 6.615 6.62823 -0.01323 

* indicates test set molecules 
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Table S4. Actual and predicted activity values of all compounds of dataset by 3D QSAR 

 

Comp 

No. 

Actual 

pIC50(nM) 

Predicted 

pIC50(nM) 

Residual Comp 

No. 

Actual 

pIC50(nM) 

Predicted  

pIC50(nM) 

Residual 

1s 9.397 8.82343 0.57357 21s  9.301 9.1585 0.1425 

2s 9.397 9.17855 0.21845 22s 9.397 9.397 0 

3s 9.397 9.17881 0.21819  23s* 8.795 8.40349 0.39151 

4s 9.397 9.15824 0.23876 24s 9.397 8.82052 0.57648 

5s 9.397 8.82043 0.57657 25s 7.779 7.821 -0.042 

6s 9.397 9.397 0 26s 7.823 8.193 -0.37 

7s 9.397 9.397 0 27s 9.397 9.15853 0.23847 

8s 8.920 9.397 -0.477 28s 9.397 9.397 0 

 9s* 7.250 8.10485 -0.85485 29s 8.721 9.15859 -0.43759 

10s 8.958 8.61595 0.34205 30s 8.431 8.82358 -0.39258 

 11s* 8.346 9.397 -1.051 31s 8.318 - - 

12s 9.301 8.38851 0.91249 32s 6.333 - - 

13s* 7.829 7.02478 0.80422 33s 7.419 7.90619 -0.48719 

14s 8.346 8.91406 -0.56806 34s 5.735 6.49848 -0.76348 

15s 7.073 7.49478 -0.42178 35s 7.844 9.17619 -1.33219 

16s 7.616 7.4951 0.1209 36s 8.920 9.05891 -0.13891 

17s 7.211 7.42573 -0.21473  37s* 6.280 6.80956 -0.52956 

18s 9.397 9.397 0 38s 6.413 6.16024 0.25276 

19s 8.193 7.823 0.37 39s 6.584 6.07465 0.50935 

 20s* 9.000 8.47954 0.52046 40s* 6.615 6.80956 -0.19456 

* indicates test set of compounds 

Table S5. Distances between pharmacophore features of hypothesis ADHHR.27 

 

Site1 Site2 Distance 

A1 D2 3.131 

A1 H5 6.537 

A1 H6 6.563 

A1 R8 4.047 

D2 H5 6.712 

D2 H6 7.846 

D2 R8 5.092 

H5 H6 2.764 

H5 R8 2.763 

H6 R8 2.765 
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Table S6. Angles formed between pharmacophore features of hypothesis ADHHR.27 

 

Site1 Site2 Site3 Angle Site1 Site2 Site3 Angle 

D2 A1 H5 79.5 D2 H5 H6 103.8 

D2 A1 H6 102.2 D2 H5 R8 43.8 

D2 A1 R8 89.4 H6 H5 R8 60 

H5 A1 H6 24.4 A1 H6 D2 23 

H5 A1 R8 13.4 A1 H6 H5 77.3 

H6 A1 R8 12.8 A1 H6 R8 18.9 

A1 D2 H5 73.2 D2 H6 H5 56.2 

A1 D2 H6 54.9 D2 H6 R8 4.1 

A1 D2 R8 52.6 H5 H6 R8 60 

H5 D2 H6 20 A1 R8 D2 37.9 

H5 D2 R8 22.1 A1 R8 H5 146.8 

H6 D2 R8 2.2 A1 R8 H6 148.4 

A1 H5 D2 27.3 D2 R8 H5 114.1 

A1 H5 H6 78.4 D2 R8 H6 173.7 

A1 H5 R8 19.8 H5 R8 H6 60 
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Table S7. Fitness scores of all the training and test set compounds dataset of training and test set 

molecules 

 

Compound 

name 

QSAR 

Set 

Pharm Set Fitness Actual 

activity 

Predicted 

activity 

 Comp 1s  training  active 2.04 9.397 9.34 

 Comp 2s  training  active 1.82 9.397 9.47 

 Comp 3s  training  active 2.53 9.397 9.33 

 Comp 4s  training  active 2.63 9.397 9.42 

 Comp 5s  training  active 2.09 9.397 9.24 

 Comp 6s  training  active 2.08 9.397 9.49 

 Comp 7s  training  active 3 9.397 9.46 

 Comp 8s  test   2.9 8.921 9.09 

 Comp 9s  training   2.17 7.25 7.61 

 Comp 10s  test   1.92 8.959 8.61 

 Comp 11s  test   1.71 8.347 8.65 

 Comp 12s  training  active 1.5 9.301 9.36 

 Comp 13s  test   1.75 7.83 8.42 

 Comp 14s  test   2.09 8.347 8.12 

 Comp 15s  test   1.66 7.074 7.62 

 Comp 16s  test   1.79 7.616 7.75 

 Comp 17s  training   1.86 7.212 7.23 

 Comp 18s  training  active 1.66 9.398 9.43 

 Comp 19s  test   1.77 8.194 8.38 

 Comp 20s  training  active 1.76 9 9.05 

 Comp 21s  training  active 1.79 9.301 9.2 

 Comp 22s  training  active 2.38 9.398 9.41 

 Comp 23s  test   2.04 8.796 9.66 

 Comp 24s  training  active 2.8 9.398 9.35 

 Comp 25s  test   1.95 7.78 8.28 

 Comp 26s  training   2.42 7.824 7.72 

 Comp 27s  training  active 1.86 9.398 9.6 

 Comp 28s  training  active 2.39 9.398 9.27 

 Comp 29s  test   2.07 8.721 7.69 

 Comp 30s  training   1.79 8.432 8.42 

 Comp 31s  training   1.97 8.319 8.2 

 Comp 32s  training  inactive 1.9 6.334 6.23 

Comp 33s  test   1.45 7.419 7.4 

 Comp 34s  training  inactive 1.33 5.736 5.85 

 Comp 35s  training   1.9 7.845 7.74 

 Comp 36s  training   1.5 8.921 8.88 

 Comp 37s  training  inactive 1.64 6.28 6.39 

 Comp 38s  training  inactive 1.63 6.413 6.39 

 Comp 39s  training  inactive 1.61 6.584 6.6 

 Comp 40s  training  inactive 1.62 6.615 6.47 
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