
Submitted version of: W. P. du Plessis, “Path-Length Compensation in
Multi-Loop Retrodirective Cross-Eye Jamming,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 55, no. 1, pp. 397-406,
Feb. 2019. Published version is available online at: http://ieeexplore.
ieee.org/document/8401889

© 2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

ABBREVIATIONS

DF direction-finding
EA electronic attack
JSR jammer-to-signal ratio
MAW missile-approach warning
NRF National Research Foundation of South Africa

http://ieeexplore.ieee.org/document/8401889
http://ieeexplore.ieee.org/document/8401889


IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 1
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Abstract—Multi-loop retrodirective cross-eye jammers
offer the possibility of both simplifying system implemen-
tation and improving system performance. However, the
signals for each jammer loop propagate along different
paths, leading to potentially detrimental effects on system
performance. Static and dynamic compensation for path-
length differences are introduced and analysed. Of the
two, static compensation is simpler but is only effective
for limited engagement geometries. Dynamic compensation
is more general but requires an accurate estimate of the
engagement geometry.

Index Terms—Cross-eye jamming, multi-loop cross-eye
jamming, electronic warfare, and electronic countermea-
sures.

Manuscript received 27 December 2015; revised 9 April 2016;
accepted 17 May 2018. This work is based on the research supported
in part by the National Research Foundation of South Africa (NRF)
(Grant specific unique reference number (UID) 85845). The NRF
Grantholder acknowledges that opinions, findings and conclusions or
recommendations expressed in any publication generated by the NRF
supported research are that of the author(s), and that the NRF accepts
no liability whatsoever in this regard.

Warren P. du Plessis is with the University of Pretoria, Pretoria,
0002, South Africa (e-mail: wduplessis@ieee.org).

I. INTRODUCTION

Cross-eye jamming is an electronic attack (EA) tech-
nique which aims to recreate the worst-case angular
error due to glint [1]–[9]. Glint is a naturally-occurring
phenomenon which depends only on the characteristics
of a radar target, which affects all radar systems and
which can lead to large angular errors especially at short
ranges [10]. This combination of factors makes cross-eye
jamming an extremely attractive self-defence jamming
technique, especially in light of the small number of
jamming techniques which can induce an angular error
in monopulse radars [11], [12].

Despite two patents being filed on cross-eye jamming
in 1958 [13], [14], it was only in 2000 that the existence
of cross-eye jammers suitable for operational use was
first publicly announced [11]. This long delay between
the formulation of the concept underlying cross-eye
jamming and its successful implementation is due to
the practical challenges associated with realising a cross-
eye jammer. These challenges are predominantly related
to the high jammer-to-signal ratio (JSR) required by
cross-eye jamming [2]–[5], [15] and the extremely fine
matching required of a cross-eye jammer [1]–[7], [16].

Multi-loop cross-eye jamming is the case where mul-
tiple cross-eye jammer systems (loops) are used simul-
taneously. Each jammer loop adds a number of new
degrees of freedom to the system both in terms of system
geometry (loop positions, rotations, etc.) and electri-
cal parameters (amplitude and phase of each direction
through each loop). Previous studies of multi-loop cross-
eye jamming have suggested that both the JSR require-
ments and tolerance sensitivity can be reduced [17]–[21],
thereby simplifying the implementation of operational
cross-eye jammers. Furthermore, the possibility of using
a multi-loop cross-eye jammer instead of a number
of independent cross-eye jammer loops to increase the
performance of a cross-eye jammer as it rotates also
exists [21], [22].

While the two signals through a single cross-eye
jammer loop travel along identical paths as shown in
Fig. 1, the signals through each loop of a multi-loop
cross-eye jammer travel along different paths. It has
recently been shown these path-length differences can
have a major negative effect on system performance of
a multi-loop retrodirective cross-eye jammer [23], [24].
Significantly, it was shown that path-length effects can
even cause a multi-loop retrodirective cross-eye jammer
can act as a beacon, thereby defeating the objective
of the jammer by assisting rather than hindering the
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Fig. 1. The paths travelled by the signals through a single-loop
retrodirective cross-eye jammer.

threat radar. The implication of the results presented in
[23], [24] is thus that multi-loop retrodirective cross-eye
jammers may well be of rather limited practical value
unless some means to overcome path-length effects can
be found.

This paper seeks to address this problem by inves-
tigating two possibilities for compensating for path-
length differences in multi-loop retrodirective cross-eye
jamming. The first possibility is static compensation
where different delays (or equivalently, phase shifts) are
used for each loop of a multi-loop cross-eye jammer.
While static compensation significantly reduces path-
length effects, it is not able to provide adequate com-
pensation at high frequencies and over large jammer ro-
tations. Dynamic compensation, where the compensation
value is varied according to the engagement geometry,
is proposed as a means to overcome the limitations
of static compensation. While representing a significant
improvement over static compensation, the effective-
ness of dynamic compensation may be compromised
by inaccurate estimation of the engagement geometry.
Those engagement geometries which are most suitable
for practical implementation with static and dynamic
compensation are identified and evaluated.

The path-length differences between the loops of
a multi-loop retrodirective cross-eye jammer are con-
sidered in Section II. Compensation for path-length
differences is evaluated in Section III by evaluating
the extreme values of the path-length differences and
the sensitivity to engagement-geometry parameters. A
number of examples representative of real-world cross-
eye jamming engagements are presented in Section IV.
Finally, the main results are summarised in Section V.

II. PATH-LENGTH DIFFERENCES

The path-length differences which result from the
use of a multi-loop retrodirective cross-eye jammer are
considered below. The first step is the derivation of

Fig. 2. The geometry of a two-loop cross-eye jamming engagement.
The phase centres of the threat radar, and the first and second jammer-
loop antennas are denoted by circles, squares and crosses respectively.

 

Fig. 3. Computation of the range to each jammer antenna [23].

accurate approximations whose simplified forms allow
the relevant issues to be understood and which form
the basis of the remainder of this work. These results
are then used to investigate the path-length differences
encountered in realistic multi-loop cross-eye jamming
scenarios with a view to exploring the magnitude of
the path-length differences which will be encountered
in practice.

A. Analysis

The range to each of the jammer antennas in Fig. 2
can be computed using Fig. 3 giving

rjn (θcn) =

[(
rn +

dcn
2

sin [θcn]

)2

+

(
dcn
2

cos [θcn]

)2
] 1

2

(1)

=

√
r2
n + rndcn sin (θcn) +

(
dcn
2

)2

(2)

where the subscript n indicates a parameter of jammer
loop n, rn is the range to the centre of the jammer loop,
dcn is the separation of the jammer-loop antennas (the
baseline), and θcn is the jammer-loop rotation. Positive
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and negative values of θcn denote the jammer antennas
of loop n which are further from and nearer to the threat
radar respectively.

Using a Taylor-series expansion allows (2) to be
rewritten as [25]

rjn (θcn) =

∞∑
m=0

dmcn
m!
× ∂n

∂dmcn
rjn

∣∣∣∣
dcn=0

(3)

= rn + dcn
sin (θcn)

2
+ d2

cn

cos2 (θcn)

8rn
−

d3
cn

cos2 (θcn) sin2 (θcn)

16r2
n

−

d4
cn

cos2 (θcn)

128r3
n

[
5 cos2 (θcn)− 4

]
+ · · · (4)

where the expansion is made around the point dcn = 0.1

The nature of a retrodirective system is that the signal
received by the one antenna is retransmitted by the other
as shown in Fig. 1, so the total distance travelled by a
signal to and from jammer loop n is

rtn = rjn (θcn) + rjn (−θcn) (5)

= 2

[
rn + d2

cn

cos2 (θcn)

8rn
−

d4
cn

cos2 (θcn)

128r3
n

[
5 cos2 (θcn)− 4

]
+ · · ·

]
(6)

where rtn is the desired result. The total path length (rtn)
ignores the delay of the jammer system connecting the
two antennas because this delay depends on a number of
implementation-specific factors including the hardware
components and software processing used. This system
delay will be assumed to be identical for all jammer
loops in this section to limit the discussion to the effect
of the geometrical path-length differences. Section III
will show how the system delay can be manipulated to
compensate for path-length differences.

The error of a Taylor-series approximation is bounded
by the largest magnitude of the smallest-order term
which is neglected from the infinite series [25], so

rtn ≈ 2rn +
[dcn cos (θcn)]2

4rn
(7)

with an error less than

∆rtn ≤ max

∣∣∣∣d4
cn

cos2 (θcn)

64r3
n

[
5 cos2 (θcn)− 4

]∣∣∣∣ (8)

≤ d4
cn

64r3
n

(9)

1As an aside, the first two terms of the infinite series in (4)
constitute the far-field approximation for antennas which is derived
using a similar procedure [26].

where ∆rtn is the maximum error magnitude possible
when computing rtn using (7). For the conservative
baseline of 20 m (dcn = 20 m) [6] at a range of 1 km
(rn = 1 000 m), the maximum error obtained using (7)
to compute rtn is 2.5 µm which is only 0.12° at 40 GHz.
The approximation in (7) is thus extremely accurate for
cross-eye jamming scenarios.

Comparing the total distance travelled by the signals
for each of the two jammer loops in Fig. 2 shows that
the difference is given by

rt∆ = rt2 − rt1 (10)

= 2 (r2 − r1) +

1

4

[
[dc2 cos (θc2)]2

r2
− [dc1 cos (θc1)]2

r1

]
. (11)

This range difference (rt∆) causes a delay difference
between the signals of the jammer loops given by

∆t =
rt∆
c

(12)

where ∆t is the delay difference and c is the speed of
light. This delay difference is equivalent to a phase shift
between the jammer loops of

Φ = β rt∆ (13)

where Φ is the phase shift and β = 2π/λ is the free-
space phase constant with λ being the wavelength. The
negative effects of path-length differences on multi-loop
cross-eye jammers are a result of this phase difference
between the jammer loops [23], [24].

While the above analysis could be extended to include
the effect of additional retrodirective cross-eye jammer
loops, this addition would not offer additional insight
into the underlying issues, while significantly compli-
cating the exposition. The remainder of this document
will thus confine itself to the case of two retrodirective
cross-eye jammer loops without loss of generality.

B. Examples

A number of examples which highlight specific cases
of path-length differences are presented in Table I with
both the minimum and maximum path-length differences
being provided (see Section III). It should be noted that
these cases are slightly optimistic because the larger
jammer baseline is on the lower end of the normal range
of 10 m to 20 m [6], and a frequency of 3 GHz is
low for a tracking radar. Additionally, an angle of 30°
between the jammer loops was used, while a value of
90° is recommended by at least one study [22].

It has previously been shown that phase differences
close to 180° can cause a retrodirective multi-loop cross-



4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX

TABLE I
RANGE DIFFERENCES. JAMMER LOOP 2 HAS A RANGE OF 1 000 M AND A BASELINE OF 10 M.
Jammer 1 Relative Path Length Difference Path Phase Difference

Case Range Baseline Rotation Minimum Maximum 3 GHz 10 GHz
(m) (m) θc2 − θc1 (mm) (mm) Minimum Maximum Minimum Maximum

General
(Fig. 2)

1 999 5 30° 1 998 2 020 7 199° 7 278° 23 998° 24 260°
2 999 7 30° 1 997 2 016 7 194° 7 262° 23 980° 24 206°
3 999 10 30° 1 994 2 006 7 182° 7 227° 23 941° 24 091°

Concentric
(Fig. 4)

1 1 000 5 30° −1.562 20.31 −5.629° 73.18° −18.76° 243.9°
2 1 000 7 30° −3.062 15.81 −11.03° 56.96° −36.78° 189.9°
3 1 000 10 30° −6.250 6.250 −22.52° 22.52° −75.05° 75.05°

Collinear
(Fig. 5)

1 1 000 5 0° 0.000 18.75 0.000° 67.55° 0.000° 225.2°
2 1 000 7 0° 0.000 12.75 0.000° 45.93° 0.000° 153.1°
3 1 000 10 0° 0.000 0.000 0.000° 0.000° 0.000° 0.000°

 

Fig. 4. The change to the geometry in Fig. 2 to ensure that all jammer
loops have the same range r (the concentric case) [21], [24].

eye jammer to act as a beacon [23], [24], which is
precisely the opposite of what a cross-eye jammer seeks
to achieve. Furthermore, even in a case where care is
taken to minimise the likelihood of beacon operation,
a phase difference of greater than 112° can still cause
beacon operation [24].

The first three entries in Table I consider the general
case shown in Fig. 2. Equation (11) shows that the
path-length difference is primarily a result of the range
differences between the jammer-loop centres (r2 − r1)
leading to very large differences as a result of the
large values of the ranges. Perhaps more importantly,
small changes in the relative positions of the jammer
loops (e.g. through platform manoeuvre or even just
vibration) will lead to significant variations in ranges to
the jammer loops and thus the path-length differences.
This observation means that it is extremely unlikely that
this case will ever find practical application as there is
no way to reliably achieve a specified phase difference
between the jammer loops. The general case will thus
not be considered further in this work.

The concentric case where all jammer loops have

 

Fig. 5. The change to the geometry in Fig. 4 to ensure that all jammer
loops have the same rotation θc (the collinear case) [21], [23].

the same range (rn = r) is shown in Fig. 4.2 It has
been suggested that this case could increase the angular
range over which a cross-eye jammer is effective (though
without benefit over two independent cross-eye jammers)
[21] and could reduce the cross-eye gain variation as the
jammer rotates [22]. In this case, (11) shows that the
path-length difference is caused by a combination of the
differences between the baselines (dcn) and differences
between the jammer rotations (θcn). Table I shows that
the path-length difference in the concentric case is sig-
nificantly smaller than in the general case as a result
of the fact that the baselines are orders of magnitude
smaller than the ranges (dcn � rn). However, the path
phase differences are still large enough to compromise
the operation of a cross-eye jammer at 10 GHz.

The further requirement that all jammer loops have
the same rotation (θcn = θc) results in the collinear
case shown in Fig. 5. This is the case which has been

2This requirement is equivalent to the requirement that all the
antenna pairs in a Van-Atta array have coincident centres [27].
However, Van-Atta arrays operate in their far-field region while
cross-eye jammers operate in their near-field region [6], so further
comparisons between these two retrodirective systems are of only
limited value.
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considered in the majority of the multi-loop cross-eye
jamming literature [17]–[21]. Equation (11) shows that
the path-length differences in this case are solely a result
of the baseline differences. Table I shows that, while the
extreme values are comparable to those for the concentric
case, the range of values from the minimum to max-
imum path-length differences is substantially reduced.
The main reason for this reduction is the minimum range
difference of 0, which occurs because rtn = rn when
θcn = π/2. Increasing the baseline of the smaller loop
reduces both the extreme path-length differences and
their variation. Usefully, it has been shown that having
multiple loops with similar antenna positions is desirable
from the perspective of inducing the largest error in a
threat radar [21].

III. PATH-LENGTH COMPENSATION ANALYSIS

Table I clearly demonstrates that the range differences
between the loops of a multi-loop cross-eye jammer
are large enough to cause significant problems. The
discussion thus naturally moves to a consideration of
how these path-length differences can be compensated.

Path-length compensation is achieved by modifying
the jammer systems connecting the antennas of each
jammer loop to compensate for the phase shift between
the jammer loops (Φ). This compensation can be imple-
mented either by varying the phase shifts of the jammer
systems to compensate for Φ in (13) or by varying the
delays through the jammer systems to compensate for
∆t in (12).

The first possibility is static compensation where a
fixed additional phase shift or delay is introduced into
one of the jammer loops. Conceivably, it may even be
possible to implement static path-length compensation
by simply varying the lengths of the cables used to
connect the antennas to the jammer systems. This ap-
proach is motivated by the observation that half the
difference between the minimum and maximum path-
length differences in Table I is small enough to allow
reliable jammer operation in many cases. For example,
it has been shown that maximum path-length differences
of less than 100° can give a minimum cross-eye gain of
over 5 [24] resulting in a miss distance of more than 20 m
for a 10-m baseline [4]–[7]. However, (11) to (13) show
that the required path-length compensation is a function
of the engagement geometry, while this approach only
implements a fixed compensation value. The implica-
tions of this limitation are explored in Section III-A.

The second possibility is dynamic compensation
where the compensation applied to the jammer loops
is varied according to the engagement geometry. This

approach is motivated by the observation that accu-
rate estimates of the parameters which determine the
path-length difference (rn and θcn) can allow perfect
compensation of path-length differences using (11) to
(13). The challenge here is that accurate estimates of all
engagement parameters are not always available, and this
issue is explored in Section III-B.

A. Static Compensation

Static compensation only implements a single com-
pensation value, so this compensation must be effective
over all operating conditions. The optimum compensa-
tion value which minimises the maximum path-length
difference, and the maximum path-length difference ob-
tained in this way is derived below.

The difference between the jammer rotations is high-
lighted by defining θc = θc2 = θc1 + θc∆, allowing the
path-length difference in (11) to be rewritten as

rt∆ =
[dc2 cos (θc)]

2 − [dc1 cos (θc − θc∆)]2

4r
(14)

because r = rn in the concentric and collinear cases.
The extreme compensation values required can be

obtained from the gradient of the path-length difference
(rt∆) to jammer rotation (θc) which is given by

∂

∂θc
rt∆ =

d2
c1 sin (2θc − 2θc∆)− d2

c2 sin (2θc)

4r
. (15)

The extreme compensation values occur when

∂

∂θc
rt∆

∣∣∣∣
θc=θcx

= 0 (16)

tan (2θcx) =
d2
c1 sin (2θc∆)

d2
c1 cos (2θc∆)− d2

c2

(17)

θcx +m
π

2
=

1

2
arctan

[
d2
c1 sin (2θc∆)

d2
c1 cos (2θc∆)− d2

c2

]
(18)

where θcx denotes the values of θc which give the
extreme range-compensation values, and m is any in-
teger. Which of the values of θcx correspond to the
maximum and minimum values of rt∆ can be determined
by substituting (18) into

∂2

∂θ2
c

rt∆ =
d2
c1 cos (2θc − 2θc∆)− d2

c2 cos (2θc)

2r
(19)

giving

∂2

∂θ2
cx

rt∆

∣∣∣∣
θc=θcx

= ±
√
d4
c1 + d4

c2 − 2d2
c1d

2
c2 cos (2θc∆)

2r

(20)

with the upper and lower signs of the ± corresponding
to even and odd values of m respectively. The minimum
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and maximum path-length differences are thus obtained
for even and odd values of m respectively.

Substituting jammer rotation values which give the
extreme path-length differences (θcx) into (14) gives

rt∆max

min
=

1

8r

[
d2
c2 − d2

c1 ±√
d4
c1 + d4

c2 − 2d2
c1d

2
c2 cos (2θc∆)

]
(21)

where rtmax and rtmin are the extreme values of rt∆, and
the upper and lower signs of the ± symbol correspond to
rtmax and rtmin respectively. The required path-length
compensation is halfway between these extremes giving

rtc =
d2
c2 − d2

c1

4r
. (22)

Static compensation is achieved by making the delay or
phase through the loop with the narrower baseline longer
than the delay or phase through the loop with the wider
baseline line by an amount corresponding to rtc. The
difference between the extreme path-length differences
is given by

rt∆d =
1

4r

√
d4
c1 + d4

c2 − 2d2
c1d

2
c2 cos (2θc∆) (23)

where rt∆d is the path-length difference variation. As
outlined above, the largest residual path-length difference
which will be achieved with static compensation by rtc
is half of the path-length difference variation (rt∆d/2).

From (21) to (23), it can be seen that the extreme com-
pensation values (rt∆ max and rt∆ min), their difference
(rt∆d) and the compensation delay (rtc) are inversely
proportional to the range (r). Additionally, decreasing
the baseline of the inner jammer loop (dc1) increases
both the compensation required and the residual path-
length difference. The combination of range and baseline
required for effective static path-length compensation are
thus the opposites of the combination of these parameters
required for a cross-eye jammer to induce a large angular
error in a threat radar [21].

The optimum value of the narrower jammer baseline
(dc1) which gives the minimum residual path-length
difference (rt∆d/2) for a multi-loop cross-eye jammer
can be computed from

0 =
∂

∂dc1
rt∆d (24)

= dc1
[
d2
c1 − d2

c2 cos (2θc∆)
]

(25)

dc1 = dc2
√

cos (2θc∆) (26)

where solutions dc1 = −dc2
√

cos (2θc∆) and dc1 = 0
were discarded because a cross-eye jammer’s baseline
is positive by definition (dcn > 0). The corresponding

Fig. 6. The placement of multi-loop cross-eye jammer antennas on
an aircraft to minimise path-length compensation requirements.

path-length compensation variation is

rt∆dmin =

[
dc2
2

]2 |sin (2θc∆)|
r

(27)

with the smallest residual error being half this value.
Observing that the argument of the square-root factor

in (21) and (23) can be rewritten as

d4
c2 + d4

c1 − 2d2
c2d

2
c1 cos (2θc∆) (28)

=
(
d2
c2 − d2

c1

)2
+ [2dc2dc1 sin (θc∆)]2 (29)

shows that smaller jammer direction differences (θc∆)
reduce the path-length compensation requirements. This
agrees with Table I where minimum compensation re-
quirements are achieved when the jammer antennas are
collinear (θc∆ = 0).

Equation 22 shows that no compensation is required
(rt∆ = 0) when the jammer antennas are concentric
with equal baselines (rn = r and dcn = dc). Perhaps
more significantly, (23) shows that there is no path
length difference (rt∆d = 0) when jammer antennas are
collinear and have equal baselines (rn = r, θcn = θc
and dcn = dc). The optimum jammer-antenna place-
ment to minimise compensation effects for a two-loop
retrodirective cross-eye jammer is thus that shown in
Fig. 6. However, this case may not always be possible
or desirable as a result of other considerations.

An important point to note at this stage is that the
extreme-value results derived above are premised on the
assumption that the jammer-rotation angles where the ex-
treme range-compensation values are obtained (θcx) are
within the range of jammer-rotation angles over which
the jammer is effective (θc). For example, extreme values
obtained at rotation angles of over 60° (|θcx| > 60°)
are not relevant to a jammer which is only effective
over a 120° sector [12] because the jammer rotation is
limited to a maximum of 60° (−60° ≤ θc ≤ 60°). Where
the required jammer rotation is outside the angular
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sector over which the jammer is effective, the values
derived above will be conservative in the sense that they
overestimate the required compensation.

B. Dynamic Compensation

Dynamic compensation is accomplished by using (11)
or (14), and (12) and (13) to determine the amount by
which the phase or delay of the jammer loops must be
adjusted to compensate for path-length differences. As
a result, the sensitivity of the path-length difference to
errors in the estimated range and angle of the threat radar
(r and θc) will determine the effectiveness of dynamic
compensation.

This sensitivity (gradient of the path-length difference)
to jammer rotation (θc) will reach its extreme values
when

∂2rt∆
∂θ2

c

∣∣∣∣
θc=θcsx

= 0 (30)

tan (2θcsx) =
d2
c2 − d2

c1 cos (2θc∆)

d2
c1 sin (2θc∆)

(31)

θcsx +m
π

2
=

1

2
arctan

[
d2
c2 − d2

c1 cos (2θc∆)

d2
c1 sin (2θc∆)

]
(32)

where θcsx is the value of θc at which the sensitivities
with the largest magnitudes are obtained. Substituting
this value of θcsx into (15) gives

∂rt∆
∂θc

∣∣∣∣
θc=θcsx

=

± 1

4r

√
d4
c1 + d4

c2 − 2d2
c2d

2
c1 cos (2θc∆) (33)

which remarkably, has the same magnitude as the max-
imum path-length difference (rt∆d) in (23).

The sensitivity of the path-length difference to range
is given by

∂rt∆
∂r

=
[dc1 cos (θc1)]2 − [dc2 cos (θc2)]2

4r2
. (34)

The angles at which the range sensitivity will be max-
imised will be the same as the angles at which the path-
length difference magnitudes are maximised (θcx). This
is a result of the fact that the values of θcx maximise
magnitude of the numerator of (14) which is identical to
the magnitude of the numerator of (34).

IV. EXAMPLES OF PATH-LENGTH COMPENSATION

A number of examples of path-length effects and their
compensation are presented in this section to highlight
both the value of proposed path-length compensation

techniques and the use of the results derived in Sec-
tion III.

The feasibility of static path-length compensation is
evaluated in Section IV-A by determining the magnitude
of the required path-length compensation for a number
of cases as the maximum residual path-length difference
after static compensation is half this value. The effect of
inaccuracies in the estimates of the direction and range
to a threat radar are studied in Sections IV-B and IV-C to
determine whether dynamic compensation is a practical
proposition.

Unless otherwise indicated, the following values of the
parameters in Fig. 4 are used to simulate a representative
missile threat against an aircraft or ship [7], [8], [23]:
• 3 and 10 GHz threat radar frequencies,
• 1 km engagement range (r = 1 000 m),
• 5 m smaller jammer baseline (dc1 = 5 m), and
• 10 m larger jammer baseline (dc2 = 10 m),
• −30° jammer-rotation difference (θc∆).

These values are considered reasonable, but optimistic
in the sense that they will lead to lower compensation
values for the following reasons:
• a frequency of 3 GHz is low for a tracking radar, es-

pecially in a missile, leading to longer wavelengths
and and thus smaller phase differences,

• baselines of 10 to 20 m are recommended [6],
• dc1/dc2 = 1/2 to reduce the compensation values

required, whereas a ratio of dc1/dc2 = 1/3 is used
in [18], [20], and

• the worst-case jammer rotations (θcx) are not con-
sidered in all cases.

Note that the discussion below considers path-length
compensation with only limited reference to other per-
formance measures. However, the angular error a retro-
directive multi-loop cross-eye jammer will induce in a
threat radar is considered in detail in [21].

A. Path-Length Difference Magnitudes

The minimum and maximum path-length differences
for a number of cases described below are presented
in Table II. Providing a static compensation which does
not account for the jammer rotation angle (θc) inherently
implies a maximum compensation error of half the
difference between the maximum and minimum values.

The extreme path-length difference results for the
default parameters were computed using (21) and (23),
and are presented in Table II as Case 1. The maximum
static-compensated errors at 3 GHz and 10 GHz for
this case are 40.6° and 135.3° respectively. Based on
previously-published results [24], this means that static
compensation will achieve a minimum cross-eye gain of
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TABLE II
EXTREME PATH-LENGTH DIFFERENCE VALUES FOR THE CASES

DESCRIBED IN THE TEXT.

Path-length difference
Description Distance 3 GHz 10 GHz θc

Case 1: Default parameters
Minimum −1.89 mm −6.8° −22.7° −83.1°
Maximum 20.64 mm 74.4° 247.9° 6.9°
Difference 22.53 mm 81.2° 270.6° 90.0°

Case 2: Optimum jammer baseline
Minimum −4.58 mm −16.5° −54.9° −75.0°
Maximum 17.08 mm 61.5° 205.0° 15.0°
Difference 21.65 mm 78.0° 260.0° 90.0°

Case 3: Limited angular coverage
Minimum 1.56 mm 5.6° 18.8° −60.0°
Maximum 20.64 mm 74.4° 247.9° 6.9°
Difference 19.08 mm 68.7° 229.1° 66.9°

Case 4: Case 3 at longer range
Minimum 0.78 mm 2.8° 9.4° −60.0°
Maximum 10.32 mm 37.2° 123.9° 6.9°
Difference 9.54 mm 34.4° 114.6° 66.9°

Case 5: Collinear antennas
Minimum 0.00 mm 0.0° 0.0° ±90.0°
Maximum 18.75 mm 67.5° 225.2° 0.0°
Difference 18.75 mm 67.5° 225.2° 90.0°

Case 6: Collinear with limited angular coverage
Minimum 4.69 mm 16.9° 56.3° ±60.0°
Maximum 18.75 mm 67.5° 225.2° 0.0°
Difference 14.06 mm 50.7° 168.9° 60.0°

over 6.5 at 3 GHz, but will not avoid beacon operation
at 10 GHz because the maximum residual path-length
difference is more than 112°.

The effect of varying the narrower baseline on the
maximum path-length difference is shown in Fig. 7.
The existence of an optimum value for the smaller
baseline is clearly shown at the baseline given by (27).
Using this optimum baseline for the smaller jammer loop
(dc1 = 7.071 m) gives the results shown in Table II
as Case 2. Comparing Case 2 to Case 1 shows that
the reduction in the range of path-length differences is
small as anticipated based on Fig. 7. Use of the optimum
baseline does thus not make a significant difference to
the performance of static path-length compensation.

The range of jammer rotation angles in Cases 1 and
2 stretches up to a maximum of 90° from the broadside
direction of the jammer loop with the larger baseline.
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Fig. 7. The path-length difference as a function of the narrower
baseline. The specified and optimum values for the smaller jammer
baseline are indicated on the top axis.

However, if each jammer loop is assumed to be effective
only up to 60° from its broadside direction [12], the
range of jammer-rotation angles was thus reduced to
extend only from −60° to 30° leading to the results
provided in Table II as Case 3.

Comparing Case 3 to Case 1 in Table II shows that
the worst-case results in Case 1 are conservative as
highlighted in Section III-A. However, the change in the
difference between the maximum and minimum path-
length differences (rt∆d) from Case 1 to Case 3 is only
15.3%. The worst-case results thus still provide a useful
indication of the performance of static compensation
even when narrower angular sectors are considered. That
said, it is notable that the maximum path-length phase
at 10 GHz is below 112° in Case 3, so beacon operation
will be avoided [24].

Section III-A notes that the path-length difference is
inversely proportional to the range of an engagement (r).
Case 4 in Table II considers Case 3 but at the increased
range of 2 km to demonstrate this range dependence.
As expected, doubling the range halves the path-length
differences, so static compensation which works at a
shorter range will also work at a longer range. The
smaller path-length phase differences in Case 4 will lead
to a minimum cross-eye gain of over 6 even at 10 GHz
[24].

As outlined in Section III-A, the use of collinear
jammer baselines shown in Fig. 5 will reduce the path-
length difference. The one drawback of this approach
is that the possibility of using a multi-loop cross-eye
jammer to increase the angular coverage of the jammer
system is removed, though the other potential benefits
of multi-loop cross-eye jamming are retained. Case 5 in
Table II considers this possibility when the jammer has
an unlimited angular coverage, while Case 6 limits the
angular sector to 120° [12].
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The use of collinear jammer baselines leads to a sig-
nificant reduction in the range of path-length differences.
Comparing Case 5 to Case 1 and Case 6 to Case 3, shows
improvements of 16.8% and 26.3% respectively. Notably,
Case 5 has slightly smaller compensation requirements
than Case 3 despite the fact that Case 5 considers a much
wider angular sector (180° versus 90°). The significantly
reduced path-length phase differences in Case 6 mean
that minimum cross-eye gains of over 6.5 at 3 GHz and
more than 6 at 10 GHz are achieved except at the extreme
jammer rotations [24].

The results in Table II show that static compensation
can be effective under certain circumstances. The most
important consideration is the frequency because lower
frequencies have smaller path-length phase differences
as a result of their longer wavelengths. Should static
compensation not sufficiently reduce path-length differ-
ences, the system geometry can be modified by rotating
the jammer baselines so that they are closer to collinear
(θc∆ → 0), by adjusting the smaller jammer baseline
to its optimal value given by (27), by reducing the
larger jammer baseline (dc2), and by increasing the
range (r). Unfortunately, each of these options comes
at a cost. Collinear baselines mean that the angular
coverage of a cross-eye jammer may be decreased,
the optimum smaller baseline does not make a large
difference, decreasing the larger baseline will reduce the
angular error induced in the threat radar, and the range
of an engagement is usually not under control of the
system designer.

While static path-length compensation will be useful
in many cases, it is likely that dynamic path-length
compensation will be required by many multi-loop retro-
directive cross-eye jammer systems.

B. Effect of Angle-Estimate Inaccuracies

The sensitivity of dynamic path-length compensation
to estimates of the jammer rotation angle (θc) is crucial to
determining the effectiveness of dynamic compensation.
A high sensitivity would indicate a requirement for
extremely accurate direction-finding (DF) systems to
provide the necessary estimation accuracy, for example.

As noted in Section III-B, the difference between the
maximum and minimum path-length differences (rt∆d)
and the greatest sensitivity of the path-length difference
to the jammer rotation angle (∂rt∆/∂θc) have identical
magnitudes. Usefully, this means that any changes to
the system geometry which reduce the required static
compensation will also reduce the sensitivity to angle-
estimate inaccuracies. Additionally, this means that the
path-length differences in Table II can be reused as the

TABLE III
ANGLE-SENSITIVITY MAGNITUDES FOR THE CASES DESCRIBED

IN THE TEXT.

Sensitivity (∂rt∆/∂θc|θc=θcsx
)

Distance 3 GHz 10 GHz θcsx
Case 1: Default parameters

0.39 mm/° 1.4°/° 4.7°/° −51.9° 38.1°
Case 2: Optimum jammer baseline

0.38 mm/° 1.4°/° 4.5°/° −60.0° 30.0°
Case 3: Limited angular coverage

0.39 mm/° 1.4°/° 4.7°/° −51.9° 38.1°
Case 4: Case 3 at longer range

0.20 mm/° 0.7°/° 2.4°/° −51.9° 38.1°
Case 5: Collinear antennas

0.33 mm/° 1.2°/° 3.9°/° −45.0° 45.0°
Case 6: Collinear with limited angular coverage
0.33 mm/° 1.2°/° 3.9°/° −45.0° 45.0°

maximum sensitivity of the path-length difference to
angular-estimate errors if interpreted as being in units
of mm/radian.

The sensitivity magnitudes associated with each of
the cases in Table II are presented in Table III with
the results being in terms of the phase variation versus
angle-estimation error in degrees. The observations for
the magnitudes of the results are similar to those for the
path-length differences in Table II due to the similarity
between the results outlined above.

However, the sensitivities in Table III are small, with
the worst value being less than 5°/° at 10 GHz. As a
result, it should thus be possible to make use of the DF
system already installed on a platform to perform the
angular estimation required for dynamic compensation.
For example, even a DF angular error of 20° should still
avoid beacon operation as a sensitivity of 5°/° suggests
the path-length difference will be on the order of 100°.

C. Effect of Range-Estimate Inaccuracies

While DF techniques are relatively well-established,
the same is not true of range estimation from a single
platform. This means that range-estimate errors are likely
to have a greater effect on the effectiveness of dynamic
compensation than the angle-estimate errors considered
in Section IV-B.

Table IV lists the sensitivities to range-error estimates
obtained using (34) with a 10% range-estimate error for
the cases described previously.

The first important observation from Table IV is that
the jammer-rotation angles (θc) where the maximum
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TABLE IV
RANGE-SENSITIVITY MAGNITUDES FOR THE CASES DESCRIBED

IN THE TEXT WITH RANGE ESTIMATION ERRORS OF 10%.

Sensitivity (∂rt∆/∂r|r=r0)
Distance 3 GHz 10 GHz θcx

Case 1: Default parameters
2.06 mm/100 m 7.4°/100 m 24.8°/100 m −6.9°

Case 2: Optimum jammer baseline
1.71 mm/100 m 6.2°/100 m 20.5°/100 m −15.0°

Case 3: Limited angular coverage
2.06 mm/100 m 7.4°/100 m 24.7°/100 m −6.9°

Case 4: Case 3 at longer range
1.03 mm/200 m 3.7°/200 m 12.4°/200 m −6.9°

Case 5: Collinear antennas
1.88 mm/100 m 6.8°/100 m 22.5°/100 m 0.0°

Case 6: Collinear with limited angular coverage
1.88 mm/100 m 6.8°/100 m 22.5°/100 m 0.0°

range sensitivity is achieved are well within the range
of angles over which a multi-loop cross-eye jammer will
be effective. This means that, unlike the other analyses
above, the worst-case range sensitivity will be relevant
in practice.

While the range sensitivities in Table IV are not large
in absolute terms, the inaccuracies associated with range
estimation mean that the resulting errors may be great
enough to compromise the effectiveness of dynamic
compensation.

The similarity between (14) and (34) shows that it
is possible to reduce the effect of erroneous range
estimates on path-length compensation by making the
same changes as those described at the end of Sec-
tion IV-A in connection with increasing the effectiveness
of static compensation. The similarity of the required
changes means that both static and dynamic path-length
compensation will simultaneously be made more effec-
tive. Unfortunately, the same reasons for not wishing to
perform the required changes also apply.

The major challenge to achieving effective dynamic
path-length compensation thus appears to be the ac-
curacy of the range estimate. This difficulty may be
mitigated in some cases by the use of active missile-
approach warning (MAW) systems which are able to
provide accurate ranges of approaching missiles.

V. CONCLUSION

Path-length differences between the loops of a multi-
loop retrodirective cross-eye jammer have previously

been shown to potentially have a major detrimental effect
on the operation of the jammer system [23], [24]. The
compensation of these path-length differences is thus
essential to ensure the effectiveness of a multi-loop
cross-eye jammer system.

The engagement geometry was shown to determine the
path-length differences. The general case where cross-
eye jammer loops are arbitrarily positioned leads to large
path-length differences which will depend very strongly
on the jammer orientation making path-length compen-
sation impractical. Ensuring that the cross-eye jammer
loops share a common centre (the concentric case) avoids
this problem, but large path-length differences remain.
Making the cross-eye jammer loops collinear further
reduces the path-length differences, but not enough to
make these differences negligible in all cases. The best
case is where the antennas of each jammer loop share
identical positions as no path-length compensation is re-
quired. However, the use of suitable compensation means
that this configuration is not an absolute requirement
for effective multi-loop retrodirective cross-eye jammer
systems.

Path-length compensation is achieved by adjusting
the delay and phase of each path through a multi-loop
cross-eye jammer relative to the other paths, thereby
counteracting for the effects of path-length differences.
Static path-length compensation, where the compensa-
tion is fixed, appears to be a viable option in cases with
a low enough frequency and/or a suitable engagement
geometry. However, dynamic compensation, where the
compensation is varied according to the engagement
geometry, is likely to be required in many cases, partic-
ularly where the frequency is high. The effectiveness of
dynamic compensation is likely to be dominated by the
accuracy of the estimate of the engagement range. The
analysis developed allows the determination of whether
static or dynamic compensation will be most suitable.
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