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ABSTRACT. A spatio-temporal mathematical model, in the form of a moving boundary
problem, to explain cancer dormancy is developed. Analysis of the model is carried out
for both temporal and spatio-temporal cases. Stability analysis and numerical simu-
lations of the temporal model replicate experimental observations of immune-induced
tumour dormancy. Travelling wave solutions of the spatio-temporal model are deter-
mined using the hyperbolic tangent method and minimum wave speeds of invasion
are calculated. Travelling wave analysis depicts that cell invasion dynamics are mainly
driven by their motion and growth rates. A stability analysis of the spatio-temporal
model shows a possibility of dynamical stabilization of the tumour-free steady state.
Simulation results reveal that the tumour swells to a dormant level.

1. Introduction. Research indicates that patients who have been treated for cancer
can still have circulating disseminating tumour cells 10 to 20 years later [1–4]. These
circulating tumour cells are either induced to a dormant state by its interaction with
immune cells or progress to become more aggressive tumours [1, 3]. The dormant tu-
mour cells appear and function like normal cells and over the years these cells develop
active drug resistance that protects them from responding to treatment [5]. The host’s
immune system is known to defend the body from any invading pathogens such as
virus or bacteria [6] and in some cases tumour cells [7–9]. Therefore, a lot of theoret-
ical and experimental research is being carried out to understand and investigate the
interactions between growing tumours and the immune system. However, it is hard
to experimentally control the dynamics of tumour cells as they change continuously.
Further, tumour cells develop mechanisms of suppressing anti-tumour activities [7–9].

The avascular stage which is the early stage of tumour formation happens in the ab-
sence of a vascular network. The transition from the avascular stage to vascular stage
depends on the ability of the tumour to induce new blood vessels which eventually
penetrate into the tumour to obtain blood supply, oxygen supply and micro-circulation
[10]. The avascular stage can last up to several years due to competition among tumour
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cells for metabolites or the competition between immune cells and tumour cells for
metabolites and space [10]. The avascular stage is characterized by chronic inflamma-
tory infiltrations of T-lymphocytes, B-lymphocytes, Natural-Killer (NK) cells, basophils,
eosinophils and neutrophils [7,11]. The tumour secretes soluble diffusible factors into
the surrounding tissues and this enables these cells to penetrate the interior of the tu-
mour [12,13]. These factors are called chemokines and the immune cells migration is
mostly driven by diffusion and chemotaxis in response to the presence of chemokines.
The migrated immune cells interact with the growing tumour cells to form tumour-
immune complexes which results in either the death of tumour cells or inactivation of
immune cells [12,13].

Avascular tumours can be effectively controlled by tumour infiltrating cytotoxic lym-
phocytes (TICLs) [14, 15]. The T-cells respond to the presence of a tumour since it
provokes an immune response depending on the antigenicity. If it is high, then the tu-
mour provokes a large immune response and the T-cells would eradicate the tumour.
The TICLs may be cytotoxic lymphocytes (CTLs, CD8+ cells), natural killer-like (NK-
like) cells or lymphokine activated killer (LAK) cells [11]. In this article, we refer to the
TICLs as immune cells.

In spite of the progress made in investigating the mechanisms of interaction between
tumour cells with immune cells, much is still unknown about the dynamics of tumour-
immune interactions to explain cancer dormancy, a situation when tumour cells remain
quiescent for a long time period [3, 16]. Lack of information on the mechanisms of
cancer dormancy and the active mechanisms during cancer dormancy has been a major
shortcoming in understanding the full complexes of metastatic growth [3,16–18]. The
complexity of tumour-immune interactions requires more research to capture more re-
alistic dynamics of the essential biology [19]. Mathematical models and analysis, for
example [18–25,38], can therefore be used to explain complex natural phenomena like
cancer dormancy.

As far as mathematical studies on tumour-immune interactions in line with cancer
dormancy are concerned, several models have been constructed and analysed using
deterministic approaches, for example [19,20,23–25], stochastic methods, e.g. [26–28]
and of recent using kinetic models stemming from theories of statistical mechanics,
for example [29]. We briefly review some mathematical studies on tumour-immune
dynamics on which some of the aspects are most essential to this study. Extensive
reviews on mathematical models of tumour-immune dynamics in relation to cancer
dormancy can be found in [30–32].

Matzavinos et al. [18] presented a model to investigate the spatio-temporal dynamics
of a tumour in the presence of an immune response. The study focussed on the interac-
tion between TICLs and a multicellular immunogenic tumour which was at some stage
prior to tumour-induced angiogenesis. Further, the study determined critical parame-
ter values for cancer cells to exist in the body but remain in a clinically undetectable
threshold for years to decades [17]. It was shown that the behaviour of the system was
determined by crucial parameters such as the rate of binding immune cells with cancer
cells, the chemotaxis of immune cells in response to the presence of chemokines and
the probability of inactivating the immune cell after its interaction with a tumour cell.

Mallet and de Pillis [21] presented a spatio-temporal mathematical model to describe
the immune response to a tumour growing in proximity of a nutrient source. Their
model considered the dynamics of the tumour with both the TICLs and NK cells. Their
analysis replicated the proliferation of the outer band of a tumour and the creation
of a necrotic core at the centre in the absence of the immune system. It was shown
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that the morphology of the tumour in response to immune cells depends on the choice
of immune cells’ recruitment and death. For almost all other immune cell parameters,
resulted into osculations in the tumour and immune concentrations. Further, they noted
that the immune cells had the ability of destroying the tumour depending on the TICLs
recruitment and death rates although the tumour could as well grow in a stable or
unstable oscillatory manner.

de Pillis et al. [22] in a follow up of the work of Mallet and de Pillis [21] examined
four mechanisms that can likely determine the morphological structure of a growing
tumour. Among these, was the response of different immune cell levels and induction
strengths to the tumour. They investigated the mechanisms by simulating an extended
model version of that in [21]. They showed that the immune cells were capable of
decreasing a tumour to a small size, although it could return to a second growth phase
hence evading the immune system control. It was further shown, just like in [21],
that a stronger recruitment of immune cells induces a fast and more effective response
to the tumour and thus reducing it to a small size or even destroying it. However,
a small initial immune recruitment would eventually result into the tumour growing
unboundedly. They further observed that, in the case of a high immune recruitment
rate, the immune cells appeared to surround and lyse tumour cells.

One essential aspect of tumour growth is that its morphology keeps changing over
time [33, 34]. Tumour growth as a free boundary has extensively been studied and
partial differential equation models to describe tumour radius growth have been for-
mulated [33–35]. These models are based on the principle of mass conservation and
reaction diffusion in the tumour [33]. Greenspan [33] proposed a simple mathemati-
cal model of tumour growth in terms of diffusion of nutrients from sorrounding body
tissue to the tumour. He assumed that the shape of a tumour is spherically symmetric
and applied the mass conservation principle. Friedman [34] gave a brief review of free
boundary tumour growth models and provided a methodical guide to the increasing
number of models.

Tumour structure and geometry is highly intricate [18,25,34]. It is therefore imper-
ative to extend existing tumour-immune models to account for a more realistic tumour
geometry. In the present paper we pick up on the growing literature of spatio-temporal
mathematical models to investigate tumour dormancy. The main goal here is to inves-
tigate tumour dormancy by constructing and analysing a moving boundary problem,
that is, with a consideration of the tumour radius as a function of time rather than
considering it to be constant as assumed in the literature of tumour-immune models
before. The model we construct considers a simplified process of a growing avascular
tumour that stimulates an immune response. Mathematical and numerical analyses are
performed to investigate the mechanisms of tumour-immune interactions to explain
tumour dormancy. Our objective is to (a) estimate the tumour radius with time, (b)
examine critical parameters that promote tumour dormancy and (c) analyse the spatial
distribution associated with an immune response to the presence of cancer cells by for
example determining analytical travelling wave solutions.

2. The model. The model we construct describes the growth of an avascular tumour,
in a spherical geometric setting under radial symmetry, with radius R(t) which is time
dependent.

2.1. Model assumptions and formulation. The following assumptions are made in
constructing the model:
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(1) Propagation dynamics of the tumour and immune cells are described using logistic
growth functions [18,21,22].

(2) Both immune and tumour cells diffuse in body tissue [18,21,22].
(3) Proliferation of immune cells due to the presence of tumour cells is of Michaelis-

Menten form [36, 37]. The term has been previously considered by some recent
models, for example, [25, 38] to indicate the saturation effects of an immune
response [39].

(4) The inactivated immune cells are quickly eliminated as they are produced. These
cells do not have an effect on any other variables in the system and the focus here
is on tumour-immune interactions [38].

(5) Chemokines are produced when lymphocytes are activated by tumour-immune
interactions [12,13]. Thus chemokine production is proportional to the cell com-
plex density [18].

(6) The volume of extracellular space in tumours is approximately between 25% −
65% of the total volume of cells therefore, there is no competition for space be-
tween immune and tumour cells [40].

At every given value of time t and space r, there exists four cell densities, a chemokine
concentration and a tumour radius: (i) X (t, r): immune cells density in cells cm−3, (ii)
Y (t, r) : tumour cell density in cells cm−3, (iii) X ∗(t): density of inactivated immune
cells in cells cm−3, (iv) Y ∗(t): density of dead tumour cells in cells cm−3, (v) U(t, r):
chemokine concentration in cells cm−3 and (vi) R(t): tumour radius in cm.

The interactions between the tumour and immune cells are represented by the schematic
diagram in Figure 1.

Immune cells (X) Tumour cells (Y) 

Growth 

Proliferation 

Death 

Growth 

Death 

Dead tumour cells (Y*) 

Inactivated immune cells (X*) 

+ 

FIGURE 1. A schematic diagram showing tumour-immune interac-
tions. The interactions lead to the death of tumour cells or inac-
tivation of immune cells.

A logistic growth function is used to describe the growth dynamics of immune cells,
together with a proliferation term and the local kinetic interactions shown in Figure 1.
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On top of the immune cells moving randomly, their movement is also directed by the
chemokine concentration secreted upon coming into contact with tumour cells. They
move in the direction opposite to the chemokine gradient, that is, towards a region with
a high chemokine concentration. Tumour growth is also assumed to progress logistically
and its interaction with immune cells is modelled by the local kinetic terms derived in
Matzavinos et al. [18]. Tumour-immune interactions can result in either the death
of tumour cells Y ∗ or the inactivation of immune cells X ∗. Immune and tumour cells
compete in a predator-prey fashion [41].

Going by the above assumptions we consider the following moving boundary prob-
lem:
∂ X
∂ t
=
ψX

r2

∂

∂ r

�

r2 ∂ X
∂ r

�

︸ ︷︷ ︸

diffusion

−βX
1
r2

∂

∂ r

�

r2 ∂ U
∂ r

�

− β
∂ X
∂ r
∂ U
∂ r

︸ ︷︷ ︸

chemotaxis

+α1X (1−α2X )
︸ ︷︷ ︸

logistic growth

+
f X Y
γ+ Y
︸ ︷︷ ︸

proliferation

−φ1X Y
︸ ︷︷ ︸

immune inactivation

, 0≤ r ≤ R(t)

∂ Y
∂ t
=
ψY

r2

∂
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r2 ∂ Y
∂ r

�
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diffusion

+β1Y (1− β2Y )
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logistic growth

−φ2X Y
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tumour lysis

, 0≤ r ≤ R(t)

∂ U
∂ t
=
ψU
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∂

∂ r

�

r2 ∂ U
∂ r

�
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diffusion

+ φ3X Y
︸ ︷︷ ︸
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−d1U
︸ ︷︷ ︸
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,

∂ X ∗

∂ t
= φ1X Y

︸ ︷︷ ︸
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−d2X ∗
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decay

,

∂ Y ∗

∂ t
= φ2X Y

︸ ︷︷ ︸

formation of Y*

−d3Y ∗
︸ ︷︷ ︸

decay

,, 0≤ r ≤ R(t)

(1)

The term ψX
r2

∂
∂ r

�

r2 ∂ X
∂ r

�

represents random movement of immune cells where ψX
is immune cells’ diffusivity. Directed movement of immune cells via the chemokine
gradient is described by the term −βX 1

r2
∂
∂ r

�

r2 ∂ U
∂ r

�

−β ∂ X
∂ r

∂ U
∂ r , where β is a chemotaxis

constant. The expression α1X (1−α2X ) describes immune cells propagation, where α1
and 1/α2 are respectively the intrinsic growth rate and the carrying capacity of immune
cells. The expression f X Y /(γ + Y ) describes immune cells proliferation where f is
the multiplication rate. The Michaelis constant γ represents the tumour concentration
when the immune density is half-maximal. The term −φ1X Y represents a proportion
of deactivated immune cells as a result of interacting with tumour cells where φ1 is the
rate of deactivation. The term ψY

r2
∂
∂ r

�

r2 ∂ Y
∂ r

�

represents tumour cells diffusion where
ψY is tumour cells’ diffusivity. β1Y (1− β2Y ) represents tumour growth where β1 and
1/β2 cells cm−3 are respectively the intrinsic growth rate and the carrying capacity of
the tumour cells. The expression −φ2X Y describes the proportion of dead tumour cells
as a result of their interaction with immune cells where φ2 is the lysis rate of tumour
cells by immune cells. The term ψU

r2
∂
∂ r

�

r2 ∂ U
∂ r

�

represents chemokine diffusion, where
ψU is the chemokine diffusion constant. φ3X Y describes chemokine production and
d1U describes its decay where φ3 is the rate of chemokine production and d1 is the
rate of decay measured per day. The formation of inactivated immune cells and dead
tumour cells is respectively represented by φ1X Y and φ2X Y . The parameters d2 and
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d3 denote the rate of decay of the inactivated immune cells and the dead tumour cells
respectively. The fourth equation in (1) has no effect on the rest of the system and our
aim is to study tumour-immune interactions. It therefore suffices to ignore it for the
rest of this study.

2.2. Derivation of tumour radius. The tumour is assumed to be spherical with radius
R(t). To generate an equation for the tumour radius with time, the total tumour mass
inside the sphere is determined by firstly integrating the sum of the second and last
equations in (1) over the solid spherical volume as

∫ R(t)

0

r2
�

∂ Y
∂ t
+
∂ Y ∗

∂ t

�

dr =

∫ R(t)

0

−
∂ (1− Y )
∂ t

r2dr +

∫ R(t)

0

−
∂ (1− Y ∗)
∂ t

r2dr

=ψY

∫ R(t)

0

∂

∂ r

�

r2 ∂ Y
∂ r

�

dr +

∫ R(t)

0

r2 (β1Y (1− β2Y )− d3Y ∗) dr.

(2)

Let the total tumour density Y + Y ∗ = T . By using Leibniz’s rule, the left hand side of
Equation (2) becomes:
∫ R(t)

0

−
∂ (1− Y )
∂ t

r2dr +

∫ R(t)

0

−
∂ (1− Y ∗)
∂ t

r2dr = −
∫ R(t)

0

∂ (1− T )
∂ t

r2dr

= −
d
d t

∫ R(t)

0

(1− T )r2dr + (1− T1)R
2 dR

d t
,

where T1 = T (t, R(t)) 6= 1. By evaluating the spatial integral, the right hand side of
Equation (2) becomes:

ψY

∫ R(t)

0

∂

∂ r

�

r2 ∂ Y
∂ r

�

dr +

∫ R(t)

0

r2 (β1Y (1− β2Y )− d3Y ∗) dr

=ψY R2 ∂ Y
∂ r
(t, R(t)) +

∫ R(t)

0

r2 (β1Y (1− β2Y )− d3Y ∗) dr.

Therefore,

−
d
d t

∫ R(t)

0

(1− T )r2dr + (1− T1)R
2 dR

d t

=ψY R2 ∂ Y
∂ r
[t, R(t)] +

∫ R(t)

0

r2 (β1Y (1− β2Y )− d3Y ∗) dr.

Noting that ∂ Y
∂ r (t, R(t)) = 0, the tumour radius is found to obey the equation

R2 dR
d t
=

1
1− T1

∫ R(t)

0

r2 (β1Y (1− β2Y )− d3Y ∗) dr +
1

1− T1

d
d t

∫ R(t)

0

(1− T )r2dr. (3)

2.3. Boundary and initial conditions. The choice of boundary conditions is influ-
enced by the assumption that we consider an avascular tumour and therefore cells do
not escape from the tissue membranes in which they are initially contained. We there-
fore consider the following zero-flux boundary conditions for the immune and tumour
cells, and chemokine concentration

n · ∇X = n · ∇Y = n · ∇U = 0. (4)
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where n is a normal to the vectors X , Y and U . Initially, we consider that the tumour
occupies a bigger part of the domain and that immune cells occupy more of the region
towards the sheath of the tumour, that is, near r = 0 and r = 1. The initial tumour and
immune cell densities are therefore taken to be Gaussian profiles just like in [42, 43].
We consider constant initial concentrations for the chemokine concentration and dead
tumour cells.

X (0, r) = X0e
1
2 (x−0.5)2 , 0≤ r ≤ 1,

Y (0, r) = Y0e−
1
2 ( x−0.5

0.1 )
2

, 0≤ r ≤ 1,

U(0, r) = U0, 0≤ r ≤ 1,

Y ∗(0) = Y ∗0 , X ∗(0) = X ∗0, R(0) = R0.

(5)

2.4. Model re-scaling and boundary transformation. We use the Landau [44] bound-
ary fixing transformation

r̄ =
r

R(t)
(6)

so that 0 ≤ r < R(t) is mapped to 0 ≤ r̄ < 1. The model variables are rescaled by
defining new variables in terms of their initial concentrations x = X/X0, y = Y /Y0,
y∗ = Y ∗/Y ∗0 , u= U/U0, R̄= R/R0, t̄ = t/t0, r̄ = r/r0 where t0 = d−1

1 and r0 is taken to
be 1. The parameters become:

ψx =
ψX t0

R2
0

, β̄ =
β t0

R2
0

, ψy =
ψY t0

R2
0

, ψu =
ψU t0

R2
0

, ϕ1 = α1 t0, ϕ2 = α2X0,

δ = f1 t0, γ̄=
γ

Y0
, ν1 = φ1Y0 t0, σ1 = β1 t0, σ2 = β2X0, ν2 = φ2X0 t0,

µ1 = d1 t0, ρ =
φ2X0Y0 t0

Y ∗0
, ν3 =

φ3X0Y0 t0

U0
, µ2 = d3 t0.

Dropping the bars for simplicity gives the following rescaled system:
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r
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+
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∂ x
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�
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− ν1 x y,

∂ y
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R(t)2

�
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+
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r
∂ y
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�

+σ1 y(1−σ2 y)− ν2 x y,
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=
ψu

R(t)2

�

∂ 2u
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+
2
r
∂ u
∂ r

�

+ ν3 x y −µ1u,

∂ y∗

∂ t
= ρx y −µ2 y∗,

R2 dR
d t
=

1
1− T̄1

∫ R(t)

0

r2 (σ1 y(1−σ2 y)−µ2 y∗) dr +
1

1− T̄1

d
d t

∫ R(t)

0

(1− T̄ )r2dr,

(7)

where T̄ = y + y∗ and T̄1 = T̄ (t, 1) with initial condition:

x(0, r) = x0e
1
2 (r−0.5)2 , y(0, r) = y0e−

1
2 (

r−0.5
0.1 )

2
, u(0, r) = u0, y∗(0) = y0, & R(0) = R0

(8)
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and boundary conditions:

∂ x
∂ r
(0, t) =

∂ x
∂ r
(1, t) =

∂ x
∂ r
(0, t) =

∂ y
∂ r
(1, t) =

∂ u
∂ r
(0, t) =

∂ u
∂ r
(1, t) = 0. (9)

3. Temporal model analysis. In this section, the temporal model phase space proper-
ties are investigated and a stability analysis of its steady state solutions is carried out.
Without the consideration of space, that is, all model variables are independent of r
and assuming that

d
d t

∫ R(t)

0

(1− T )r2dr = 0,

the tumour radius is given by

dR
d t
=

R
3 [1− (y + y∗)]

�

σ1 y(1−σ2 y)−µ2 y∗
�

. (10)

Model (7) is transformed to the following system of differential equations:

d x
d t
= ϕ1 x(1−ϕ2 x) +

δx y
γ+ y

− ν1 x y,

d y
d t
= σ1 y(1−σ2 y)− ν2 x y,

du
d t
= ν3 x y −µ1u,

d y∗

d t
= ρx y −µ2 y∗,

dR
d t
=

R
3 [1− (y + y∗)]

�

σ1 y(1−σ2 y)−µ2 y∗
�

.

(11)

3.1. Solution properties.

Theorem 3.1. The following model solution properties are preserved:

1. The tumour-immune interaction Model (11) has a positive unique solution that exists
and remains in some domain D = [0, b), b > 0 for all t ¾ 0 for positive initial
conditions.

2. The solutions to the model (11) are bounded from above and the trajectories evolve
in an attracting region Ω where

Ω=
�

(x , y, u, y∗, R) ∈ R5
+ | 0< x ≤

ϕ1 − A
ϕ1ϕ2

, 0≤ y ≤
1
σ2

, 0≤ u≤
Bν3

µ1
,

0≤ y∗ ≤
Bρ
µ2

, 0< R≤ R∗
	

,

A=
ν1

σ2
, B =

ϕ1 − A
ϕ1ϕ2σ2

and R∗ = R0 exp
�

T max
0≤t≤T

φ(s)
�

.

Proof of Theorem 3.1. 1. We use Theorem A.4. in [45] to prove existence and posi-
tivity. It is stated as follows: Let Rn

+ = [0,∞) be the cone of non-negative vectors
in Rn. Let F : Rn+1

+ → Rn be locally Lipschitz,

F(t, x) = (F1(t, x), · · · Fn(t, x)) , x = (x1, · · · xn),

and satisfy
F j(t, x)≥ 0 whenever t ≥ 0, x ∈ Rn

+, x j = 0. (12)
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Then, for every x◦ ∈ Rn
+, there exists a unique solution of x ′ = F(t, x), x(0) = x◦,

with values in Rn
+, defined on some interval [0, b), b > 0.

The functions, F(x , y, u, y∗, R), on the left of Equations (11) and their partial
derivatives are continuous onR+ and the conditions in Equation (12) are satisfied.

2. From Equation (11)

d y
d t
= σ1 y(1−σ2 y)− ν2 x y ¶ σ1 y(1−σ2 y) since ν2, x , y ¾ 0.

Let us consider
dP
d t
= σ1P(1−σ2P) such that P(t)¾ y(t) for all t ∈ [0,∞).

P(t) =
P(0)

�

1−σ2P(0)
�

e(−σ1 t) +σ2P(0)
.

lim
t→∞

P(t) =
1
σ2

which implies that limsup
t→∞

y(t) =
1
σ2

. (13)

Using the upper bound for the tumour cells we can rewrite the rate of change in
immune cell concentration as

d x
d t
¶ ϕ1 x(1−ϕ2 x)− Ax .

Let
dS
d t
= ϕ1S(1−ϕ2S)− AS such that S(t)¾ x(t) for all t ∈ [0,∞).

S(t) =
S(0)(ϕ1 − A)

�

ϕ1(1−ϕ2S(0))− A
�

e(−t(ϕ1−A)) +ϕ1ϕ2S(0)
.

lim
t→∞

S(t) =
ϕ1 − A
ϕ1ϕ2

which implies limsup
t→∞

x(t) =
ϕ1 − A
ϕ1ϕ2

.

Similarly, the third and fourth equations of (11) can be written as

du
d t
≤ Bν3 −µ1u and

d y∗

d t
≤ Bρ −µ2 y∗,

for which one has

u(t)≤
Bν3

µ1
+
�

u0 −
Bν3

µ1

�

exp (−µ1 t) and y∗(t)≤
Bρ
µ2
+
�

y∗0 −
Bρ
µ2

�

exp (−µ2 t)),

and consequently

lim sup
t→∞

u(t)≤
Bν3

µ1
and lim sup

t→∞
y∗(t)≤

Bρ
µ2

. (14)

Finally, the radius equation in (11) can be solved to give

R(t) = R0 exp

∫ t

0

φ(s)ds, 0≤ t ≤ T,

where

φ(s) =

∫ t

o

�

σ1 y(s) (1−σ2 y(s))−µ2 y∗

3 [1− (y(s) + y∗(s))]

�

ds.
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This implies that

R∗ = R0 exp

�

∫ T

0

max
0≤t≤T

(φ(s)ds)

�

= R0 exp
�

T max
0≤t≤T

φ(s)
�

.

Theorem 3.1 implies that for any finite time, the cell and chemokine concentrations
and tumour radius are not only non-negative but also bounded. The tumour cells are
bounded by their carrying capacity and the immune cells are bounded by a fraction of
their carrying capacity. This indicates that the model solutions are biologically mean-
ingful. Next, the long-term behaviour of the temporal model solutions is investigated
by determining steady states and their stability.

3.2. Steady state solutions and stability analysis. Without the consideration of space,
it is important to note that, the third to fifth equations in (11) do not affect the first two
equations. That is to say, the chemokine, dead tumour cells and the tumour radius have
no effect on the immune and tumour cells growth. Here, we are interested in the long
term dynamics of the immune and tumour cells in (15). Nonetheless we later, while
doing numerical simulations, estimate the tumour radius.

d x
d t
= ϕ1 x(1−ϕ2 x) +

δx y
γ1 + y

− ν1 x y,

d y
d t
= σ1 y(1−σ2 y)− ν2 x y.

(15)

The Model (15) has five steady states with only two being biologically well defined
in the domain Ω. There are five states with three biologically meaningful ones, that is,
X ∗2, X ∗4 and X ∗5.

X ∗1 := (x∗, y∗) = (0, 0), X ∗2 := (x∗, y∗) =
�

1
ϕ2

, 0
�

, X ∗3 := (x∗, y∗) =
�

0,
1
σ2

�

,

X ∗4 := (x∗, y∗) =
�ϕ1 +

δ y∗

κ+y∗ − ν1 y∗

ϕ1ϕ2
,
−ω2 ±

q

ω2
2 − 4ω1ω3

2ω1

�

,

X ∗5 := (x∗, y∗) =
�−φ2 ±

q

φ2
2 − 4φ1φ3

2φ1
,
σ1 − ν2 x∗

σ1σ2

�

,

where

ω1 = ν1ν2 −σ1σ2ϕ1ϕ2, ω2 = ϕ1ϕ2σ1 −κϕ1ϕ2σ1σ2 −ϕ1ν2 −δν2 +κν1ν2,

ω3 = κϕ1ϕ2σ1 −κϕ1ν2, φ1 = ϕ1ϕ2ν2,

φ2 = −σ1σ2ϕ1ϕ2κ−ϕ1ν2 −ϕ1ϕ2σ1 −δν2 +
κν1ν2

ϕ1ϕ2
+

2σ1ν1ν2

ϕ1ϕ2σ1σ2
,

φ3 = κϕ1σ1σ2 +ϕ1σ1 +δσ1 − (κν1σ1)/(ϕ1ϕ2)−
σ2

1ν1

σ1σ2ϕ1ϕ2
.

At any given time body tissue should at least contain immune cells. This makes
the trivial steady state X ∗1 and X ∗3 biologically unrealistic. The fifth steady state, X ∗5, is
not biologically meaningful because σ1 − ν2 x∗ < 0. This makes X ∗2 and X ∗4 the only
biologically meaningful steady states.

Next, stability analysis of the tumour-free state X ∗2 and the tumour-dormant state X ∗4
is investigated.
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Proposition 1. The tumour-free state X ∗2 is asymptotically stable if σ1 < ν2/ϕ2 and
unstable otherwise.

Proof of Theorem 1. The Jacobian matrix for the tumour-free state X ∗2 is

DF(X ∗2) =

�

−ϕ1
δ
ϕ2γ1
− ν1
ϕ2

0 σ1 −
ν2
ϕ2

�

, with eigenvalues −ϕ1 and σ1 −
ν2

ϕ2
.

Proposition 2. If σ1 ≥ ν2/ϕ2, the tumour-dormant state X ∗4 is globally stable for the
feasible parameter values in Table 1.

Proof of Theorem 2. Suppose a positive definite Lyapunov function candidate is defined
by V (X ) = Ax2 + B y2, A, B > 0. The rate of change of V (X ) at the tumour-dormant
state X ∗4 is given as

dV (X∗
4)

d t
=
�

∂ V
∂ x

∂ V
∂ y

�

�

f1(t, x∗, y∗)
f2(t, x∗, y∗)

�

,

=
�

2Ax∗ 2B y∗
�

�

ϕ1 x∗(1−ϕ2 x∗) + δx∗ y∗

κ+y∗ − ν1 x∗ y∗

σ1 y∗(1−σ2 y∗)− ν2 x∗ y∗

�

.

Substituting the non-dimensional parameter values derived from Table 1 into the first
derivative of the lyapunov function

dV (X∗
4)

d t gives

V̇ (X ∗4) = −(3.296A+ 0.0023B)< 0 for all t.

This proves that the tumour-dormant state X ∗4 is globally stable. Possibly this may be the
same reason why a person can live with tumour cells for their entire life time without
clinically detecting them.

4. Spatio-temporal model analysis. Travelling wave solutions describe invasion dy-
namics and the parameters involved in wave solutions are therefore highly critical in
determining the future cell densities in this case. In calculating the minimum wave
speeds, we seek to determine the critical parameters which describe the potential with
which cell densities invade each other.

4.1. Travelling wave analysis. A special type of exact solutions to the Model (7) are
determined on a fixed domain in one dimension (1D). That is, radius not dependent on
time (r 6= R(t)). The hyperbolic tangent method is used to determine these solutions
[46–48].

Travelling wave solutions. In order to determine the travelling wave solutions admitted
by (7), we consider waves moving from the left to right with a wave number c and
speed v 6= c. By letting z = c(r − vt), Equations (7) (1-3) are transformed to

cv
d x
dz
+ψx c2 d2 x

dz2
− β c2

�

x
d2u
dz2
+

du
dz

d x
dz

�

+ϕ1 x(1−ϕ2 x) +
δx y
γ+ y

− ν1 x y = 0,

cv
d y
dz
+ψy c2 d2 y

dz2
+σ1 y(1−σ2 y)− ν2 x y = 0,

cv
du
dz
+ψuc2 d2u

dz2
+ ν3 x y −µ1u= 0

(16)
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with boundary conditions:

lim
t→−∞

(x , y, u) = X 0 and lim
t→−∞

(x , y, u) = X 1

where X 0 = (0, 0,0) or X 0 = (1/ϕ2, 0, 0) and X 1 := (x∗, y∗, u∗) is the tumour endemic
state.

Theorem 4.1. The equations (16) exhibit closed form solutions of the form:

x(t, r) =
1

4ϕ2

�

1− tanh (c(r − vt))
�2

, where c =
1

2
p

6

√

√ϕ1

ψx
and v =

5
p

6

Æ

ϕ1ψx

and

y(t, r) =
1

4σ2

�

1− tanh (c(r − vt))
�2

, where c =
1

2
p

6

√

√σ1

ψy
and v =

5
p

6

q

σ1ψy .

Proof. Using the hyperbolic tangent method, the following transformations are intro-
duced:

W = tanh (z),

x(W ) = F1(W ) = (1−W )p1(1+W )q1

N−p1−q1
∑

i=0

aiW
n,

y(W ) = F2(W ) = (1−W )p2(1+W )q2

N−p2−q2
∑

i=0

biW
n,

u(W ) = F3(W ) = (1−W )p3(1+W )q3

N−p3−q3
∑

i=0

ciW
n,

(17)

where p1 + q1 = 2, 3, · · · , N , p2 + q2 = 2,3, · · · , N , p3 + q3 = 2, 3, · · · , N .
Equations (16) become

cv(1−W 2)
dF1

dW
+ψx c2(1−W 2)

d
dW

�

(1−W 2)
dF1

dW

�

−β c2F1(W )(1−W 2)
d

dW

�

(1−W 2)
dF3

dW

�

− β c2
�

c2v2(1−W 2)2
dF1

dW
dF3

dW

�

+ϕ1F1(W )(1−ϕ2F1(W )) +
δF1(W )F2(W )
γ+ F2(W )

− ν1F1(W )F2(W ) = 0,

cv(1−W 2)
dF2

dW
+ψy c2(1−W 2)

d
dW

�

(1−W 2)
dF2

dW

�

+σ1F2(W )(1−σ2F2(W ))− ν2F1(W )F2(W ) = 0,

cv(1−W 2)
dF3

dW
+ψuc2(1−W 2)

d
dW

�

(1−W 2)
dF3

dW

�

+ F1(w)F2(W )−µ1F3(W ) = 0.

(18)

The substitution of Fi(W ) in Equations (18) yields pi = qi = 1, i = 1, 2,3, that is,

F1(W ) = a0(1−W )2, F2(W ) = b0(1−W )2, F3(W ) = c0(1−W )2. (19)

The following results are obtained after substituting (19) into (18):
Either

a0 =
1

4ϕ2
, b0 = 0, c =

1

2
p

6

√

√ϕ1

ψx
, v =

5
p

6

Æ

ϕ1ψx , c0 = 0 (20)
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or

a0 = 0, b0 =
1

4σ2
, c =

1

2
p

6

√

√σ1

ψy
, v =

5
p

6

q

σ1ψy , c0 = 0. (21)

The results in Equations (20) and (21) respectively imply that the immune and tu-
mour cells wave fronts are given by:

x(t, r) =
1

4ϕ2

�

1− tanh (c(r − vt))
�2

, where c =
1

2
p

6

√

√ϕ1

ψx
and v =

5
p

6

Æ

ϕ1ψx

and

y(t, r) =
1

4σ2

�

1− tanh (c(r − vt))
�2

, where c =
1

2
p

6

√

√σ1

ψy
and v =

5
p

6

q

σ1ψy .

Minimum wave speed.

Theorem 4.2. The minimum wave speeds of invasion for the tumour and immune travel-
ling wave fronts, respectively, are:

v y
min = 2

√

√σ1ψy

c3
and v x

min = 2
Æ

ϕ1ψx . (22)

Proof of Theorem 4.2. Equations (16) are transformed into first order differential equa-
tions by letting y1 = d x/dz, y2 = d y/dz, y3 = du/dz to get

d y1

d t
=

1
c2ψx

�

β c2(x y3 + y1 y3)− cv y1 −ϕ1 x(1−ϕ2 x)−
δx y
γ+ y

+ ν1 x y
�

,

d x
d t
= x1,

d y2

d t
=

1
c2ψy

�

− cv y2 −σ1 y(1−σ2) + ν2 x y)
�

,

d y
d t
= y2,

d y3

d t
=

1
c2ψu

�

− cv y3 − ν3 x y +µ1u
�

,

du
dz
= y3.

(23)

The travelling wave solutions are trajectories connecting equilibrium X 0 to X 1. The
trajectory leaving X 0 is therefore not required to oscillate, that is, the eigenvalues of the
Jacobian matrix of (23) evaluated at X 0 must not have complex roots. The minimum
wave speeds are thus determined by evaluating the eigenvalues of the Jacobian matrix
(24) at X 0.

J(X 0) =



















v
(−ψx )c

ψ1
(−ψx )c2 0 0 0 0

1 0 0 0 0 0

0 0 − c3 v
ψy

− c2σ1
ψy

0 0
0 0 1 0 0 0

0 0 0 0 − c3 v
ψu

c2µ1
ψu

0 0 0 0 1 0



















. (24)
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The eigenvalues are:

−
c3v +

Æ

c4v2 − 4ψyσ1c

2ψy
,−

c3v −
Æ

c4v2 − 4ψyσ1c

2ψy
,

v −
p

−4ψ1ψx + v2

22ψx
,

v +
p

−4ψ1ψx + v2

2 2ψx
,−

c3v +
p

c4v2 + 4µ1ψuc
2ψu

,−
c3v −

p

c4v2 + 4µ1ψuc
2ψu

.

(25)

The conditions
q

c4v2 − 4ψyσ1c and
Æ

−4ψ1ψx + v2 (26)

must determine the minimum wave speed since all the other eigenvalues are real except
for those with these terms. That is c4v2 − 4ψyσ1 ≥ 0 and −4ψ1ψx + v2 ≥ 0 which
gives

v y
min = 2

√

√σ1ψy

c3
and v x

min = 2
Æ

ϕ1ψx .

Both the travelling wave solutions in Equations (20) & (21) and the minimum wave
speeds in Equation (22) are characterized by the cell carrying capacities, diffusion con-
stants. This implies that the cell invasion dynamics are mainly driven by their motion
and growth rates. Treatment options should therefore strive to improve immune recog-
nition of tumour cells, reduce the intrinsic growth rate of tumour cells and increase that
for immune cells.

4.2. Turing instability analysis. We determine conditions for the formation of Turing
patterns by perturbing the stable tumour-dormant state with small heterogeneous per-
turbations [49,50]. It is important to note that, for simplicity, Turing instability analysis
was carried out for the model without chemotaxis (i.e β∇· (X .∇U) = 0) and on a fixed
domain (i.e with the radius not depending on time). To investigate the influence of
the presence of diffusion terms on the temporal system, consider a small perturbation
[δx ,δ y] to the steady state [x∗, y∗]:

δx = x − x∗,

δ y = y − y∗.

The corresponding linearised reaction-diffusion system is

∂

∂ t

�

δx
δ y

�

= Ψ
∂ 2

∂ r2

�

δx
δ y

�

+ DF(X ∗)
�

δx
δ y

�

(27)

where δx and δ y are displacements from the steady states X ∗ = [x∗, y∗]T and are
dependent on both time and space. DF(X ∗) is the Jacobian matrix evaluated at the

steady state X ∗. The matrix Ψ =
�

1 0
0 ψy

�

contains diffusion constants for the spatio-

temporal model. We determined the stability of the homogeneous steady states against
small perturbations considering both time and spatial effects.

Suppose that the perturbations are inhomogeneous in space and since Equation (27)
is linear, we can seek a particular solution which has a convenient form that can be given
as:

�

δx
δ y

�

=
�

δx0
δ y0

�

eλk t eikr , (28)
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where λk is the eigenvalue which determines the temporal growth rate. The spatial
variation is assumed to be eikr = cos(kr)+ i sin(kr) and corresponds to the wave num-
ber k. We choose eλk t to be the temporal variation to allow the perturbations to grow,
diminish, or oscillate. Both δx0 and δ y0 have similar dependence on time and space
and they are components of the perturbation vector [δx , δ y]T . Substituting Equa-
tion (28) into (27) and cancelling off the common exponentials yields the following
linearized reaction-diffusion system:

λk

�

δx0
δ y0

�

=
�

−k2 0
0 −k2Ψy

��

δx0
δ y0

�

+ DF (X∗)
�

δx0
δ y0

�

. (29)

Rearranging we have
�

λkI+ k2Ψ − DF (X∗)
	

�

δx0
δ y0

�

= 0,

where I is the identity matrix. This is a homogeneous equation in [δx0 δ y0] which has
non trivial solutions only if the determinant,

�

�λkI+ k2Ψ − DF (X∗)
�

�= 0.

The diffusion constants for the immune cells ΨX and tumour cells ΨY are equal. Hence,
the diffusion ratio Ψy equals 1. Stability analysis involves evaluating the new Jacobian
matrix at the homogeneous steady states.

Theorem 4.3. There is a possibility of a diffusion induced stability of the tumour free state
if k2 > σ

ν2
ψ2

.

Proof of Theorem 4.3. Evaluating the Jacobian matrix at the tumour free state X ∗2, one
obtains

λk

�

δx0
δ y0

�

=

�

−k2 −ψ1
δ
ψ2γ
+ ν1
ψ2

0 −k2 −
�

σ1 −
ν2
ψ2

�

�

�

δx0
δ y0

�

The eigenvalues for the tumour free steady state are:

−k2 −ψ1 and − k2 −
�

σ1 −
ν2

ψ2

�

.

Dynamical stabilization is likely to be observed for the unstable tumour-free steady state
if and only if k2 >

�

σ1 −
ν2
ψ2

�

. Otherwise, it is an unstable saddle point. The stabilization
of the tumour-free steady state depends on the wave number. This means that there is
a possibility of achieving a tumour-free state for sometime though this state might not
last for a very long time and the tumour cells may reoccur.

The tumour dormant state involves huge expressions and determining its stability
is not an easy undertaking. Non-dimensional parameter values in non-dimensional
in Equation (31) are therefore used. Evaluating the Jacobian matrix at the tumour-
dormant steady state X ∗4 gives:

λk

�

δx0
δ y0

�

=
�

−k2 − 5.8062 4.6405
−0.2689 −k2 − 0.7174

�

︸ ︷︷ ︸

DF (X∗
4 )

�

δx0
δ y0

�

.

One of the signs of the off-diagonal entries in the Jacobian matrix are not opposite as
required by Turing instability. Therefore, in this case diffusion does not have a desta-
bilizing effect on the globally stable tumour-dormant steady state. Moreover, the trace
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and determinant of the Jacobian matrix indicate that the eigenvalues are always nega-
tive.

t r(DF (X∗
4)) = −2k2 − 6.5236< 0,

det(DF (X∗
4)) = k4 + 6.5236k2 + 4.1654> 0.

The trace is always negative and the only way diffusion could destabilize the system
is when the determinant becomes negative. This means that the random movement of
tumour and immune cells does not destabilise the tumour-dormant state. This could
as well explain why some people can have a dormant tumour for their entire lifetime.
Next, Equations (7) are numerically simulated.

5. Numerical simulations. In this section, numerical simulations of both the temporal
and spatiotemporal models are determined. Estimated parameter values were obtained
from Chaplian et al. [51], Hahnfeldt [52] and Matzavinos et al. [18]. Their estimates,
descriptions and numerical values are stated in Table 1.
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FIGURE 2. A plot of cell densities with time for non-dimensional
parameter values in Equation (30) and x0 = 0.3, y0 = 0.8, u0 =
10−6, y∗ = 0.1 and R0 = 0.8. The simulations show the cell densi-
ties settling at a stable tumour dormant state. One density unit is
equivalent to 106 cells cm −3 and 1 unit of time is equivalent to 24
days.

5.1. Homogeneous simulations. We present numerical simulations of the model Equa-
tions (11) to predict changes in tumour size in response to the immune response. The
ode23s [53], a stiff ODE solver, in Matlab c© is used to integrate the equations. The initial
tumour, immune and chemokine densities are respectively considered to be X0 = 106,
Y0 = 107 and U0 = 10−10 cells per unit volume [18] and the initial tumour radius is
taken to be R0 = 0.1 cm. 1% of the initial tumour density is considered to be dead, that
is Y ∗0 = 105 cells per unit volume. In rescaling the model, time is rescaled relative to the
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FIGURE 3. A plot of tumour radius against time (a) with different
initial radii and (b) with different initial tumour densities. The
simulations show the tumour radius increasing with increasing
initial tumour radius and initial tumour cell density.

rate of chemokine decay, that is, t0 = d−1
1 . One density unit is equivalent to 106 cells

cm −3 and 1 unit of time is equivalent to 24 days and the following non-dimensional
parameter values in Equation (30) are used in doing all the temporal model simulations.

ϕ1 = 1.3398, ϕ2 = 0.25, δ = 3.0218, ν1 = 0.00218, σ1 = 3.8835, σ2 = 0.5,

ν2 = 0.7279, ν3 = 300, µ1 = 1, ρ = 0.1, µ2 = 0.24.
(30)

Figure 2 shows that the tumour cells reduce by half as a result of the interactions
between tumour cells with immune cells. The tumour cells decrease by approximately
62% from an initial concentration of 0.8 to 0.3 as a result of its interaction with immune
cells instead of growing to their carrying capacity. Unfortunately, tumour cells are not
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completely eliminated from the host’s body but are rather reduced to a dormant lower
concentration.

Figure 3 is a numerical representation of the tumour radius with time for different
initial tumour radii and tumour densities. The figure shows that the radius, generally,
increases to a dormant state. It is important to note that without tumour immune
interactions, the tumour density would rise to its carrying capacity and the tumour
radius would exponentially grow. Both Figures 3 (a) and (b) respectively show that
increasing the initial tumour radius and initial tumour density leads to an increase in
the tumour radius.

FIGURE 4. Spatio-temporal distribution of immune cells after 100,
150, 200 and 250 days respectively. The immune cell density in-
creases to its carrying capacity with time. One density unit is
equivalent to 106 cells cm −3 and 1 unit of time is equivalent to
100 days.

FIGURE 5. Spatio-temporal distribution of tumour cells corre-
sponding to 100, 150, 200 and 250 days respectively. The tumour
cell density reduces with time. One density unit is equivalent to
106 cells cm −3 and 1 unit of time is equivalent to 100 days.
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FIGURE 6. Tumour radius against time after (a) 500, (b) 1000 (c)
2000 days and (d) 4000 days respectively. The tumour swells to
a dormant state.

5.2. Spatio-temporal model simulations. We now present numerical simulations of
the moving boundary problem (7) to investigate tumour-immune interactions in a spher-
ical geometric setting under the assumption of radial symmetry. The method of lines
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(MOL) in Mathematica c© [54], that is NDSolve, is used to integrate the equations. The
initial tumour, immune and chemokine concentrations are respectively taken to be
X0 = 106, Y0 = 107 and U0 = 10−10 cells per unit volume [18]. The initial tumour
radius is assumed to be 0.1 cm and 1% of the initial tumour density is considered to be
dead, that is Y ∗0 = 105 cells per unit volume. In rescaling we take t0 = d−1

2 which gives
rise to the following non-dimensional parameter values:

ψx =ψy = β = 0.01, ϕ1 = 22, ϕ2 = 2.5, γ= 202, ν1 = 0.00009, ν2 = 1

σ1 = 0.016, σ2 = 50, ν3 = 30000, µ1 = 4.17× 10−12, ρ = 0.1.
(31)

The non-dimensional parameter values in Equation (31) were used in all spatio-
temporal model simulations unless stated otherwise. Figure 4 shows the spatio-temporal
distribution of immune cells after 100, 150, 200 and 250 days respectively. The figure
shows that the immune density increases with time. For example after the 10th day, the
density had risen from 0.3× 106 to about 0.36− 0.39× 106 cells per unit volume. The
immune cells re-distribute to occupy more of the regions 0.1≤ r ≤ 0.3 and 0.7≤ r ≤ 1.

Figure 5 is a spatio-temporal representation of tumour cells after 100, 150, 200 and
250 days respectively. The figure depicts the tumour density reducing with time for
example after 250 days, the density had dropped from 0.8 × 106, its initial value, to
approximately 0.1 × 106 cells per unit volume. The region in which the tumour cells
occupy slightly widens.

Figure 6 shows the moving boundary. It is a plot of the tumour radius with time after
500, 1000, 2000 and 4000 days respectively. The figure depicts that tumour radius
increasing to a dormant state. Nonetheless, figure 6(d) depicts that the radius may
begin to increase after about 8.2 years (3000 days).

6. Conclusion. The primary role of the immune system is to defend and protect the
body from invading pathogens such as viruses, bacteria, fungi, or in some cases, cells
in the body that may become cancerous [7–9,55]. The mechanisms of tumour-immune
interactions are however not fully understood. A full characterisation of these inter-
actions can lead to the development of more efficient cancer therapies [3, 16]. In an
attempt to extend previous studies on the growth dynamics of tumour cells in the pres-
ence of an immune response, we developed a mathematical model in the form of a
moving boundary problem. The model describes the growth of an avascular tumour, in
a spherically goemetric setting under radial symmetry, with a time dependent radius.

The main aim in this article was to give further insights on tumour-immune inter-
actions by keeping track of the tumour radius with time, examining critical parameters
that promote cancer dormancy and analysing the spatial distribution associated with
an immune response to the presence of cancer cells. Analysis of the temporal model
included studying the model phase properties, determining asymptotic solutions and
analysing their stability. The spatio-temporal model was analysed by determining an-
alytical travelling wave solutions, calculating their minimum wave speeds and investi-
gating the effect of diffusion on the homogeneous steady states. Numerical experiments
of both temporal and spatiotemporal models were done using data from clinical exper-
iments on dormant tumours in vitro.

Analysis of the temporal model in Section 3 revealed that there exists a globally
stable tumour dormant state for certain parameter sets for example those in Table 1.
This could perhaps be proof as to why someone can live with a dormant tumour for
ages [4,5]. Further, it was shown that a tumour free steady state may be achieved only
if intrinsic tumour growth rate is less than the immune strength. This condition points
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out that any cancer treatment should seek to reduce the tumour growth rate, increase
the tumour induced death by immune cells and increase their carrying capacity.

The travelling wave solutions which we determined in Equations (20) & (21) to-
gether with their minimum wave speeds in Equation (22) were characterized by the cell
growth rates and diffusivity. This suggests that the cell invasion dynamics are mainly
driven by their motion and growth rates. Treatment options should indeed strive to
improve immune recognition of tumour cells, reduce the intrinsic growth rate of tu-
mour cells and increase that for immune cells. Immune cell growth rate can probably
be increased by boosting the immune system and tumour growth can be curtailed by
producing effective drugs. Turing instability analysis showed that diffusion does not
have a destabilizing effect on both of the homogeneous states. This could also possibly
explain why one can live with a dormant tumour for many years.

Numerical simulations of the temporal model in Section 5 showed the cell concentra-
tions stabilising at a stable dormant state. The tumour radius was also found to increase
to a dormant level. The tumour radius plots in Figure 6 showed the tumour swelling to
a dormant state although it would regrow after several years. This result is in line with
clinical evidence that some people have lived with a benign tumour for a long period of
time with relapse 5-25 years later. Moreover this condition is common in patients with
breast cancer, cell lymphoma, and melanoma [3]. The results in this study may lead
to a deeper understanding of cancer dormancy and this may be helpful in the future
development of better and effective therapeutic methods.

Appendix.

Parameter estimation. The kinetic parameters in Table 1 are estimated from clinical
experiments of dormant tumours in vitro. The estimates are obtained from Chaplain et
al. [51] and Wilkie & Hahnfeldt [52]. These values are taken from experimental data on
Marine B cell lymphoma (BCL1). BCL1 lymphomas are considered to be very good for
in vivo experimental models given that the tumour cells are spatially contained within
the lymph tissue of the spleen. The diffusion and chemotaxis constants are obtained
from Matzavinos et al. [18]. Table 1 gives a summary of the dimensional parameter
descriptions together with their values and units of measurements.
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TABLE 1. A summary of the dimensional parameters with their val-
ues and units. All obtained or derived from Chaplian et al. [51],
Hahnfeldt [52] and Matzavinos et al. [18].

Parameter Description Value Unit of measure
ψX Immune cells’ diffusivity 10−6 cm3 day−1

ψY Tumour cells’ diffusivity 10−6 cm3 day−1

ψU Chemokine diffusivity 0.6− 9× 10−6 cm3 day−1

β Chemotaxis constant 1.728× 106 day−1 moles−1cells · cm−3

α1 Intrinsic growth rate of immune cells 0.22 day−1

α2 Inverse carrying capacity of immune cells 2.5× 10−7 cells−3 cm3

β1 Intrinsic growth rate of tumour cells 0.16 day−1

β2 Inverse carrying capacity of tumour cells 5× 10−5 cells−3 cm3

f Immune cells’ proliferation rate 0.2988× 108 day−1cells · cm3

γ Michaelis-Menten constant 2.02× 107 cells · cm−3

k1 Immune cells’ binding rate to tumour cells 1.3× 10−7 day−1

k2 Immune cells’ detachment rate 7.2 day−1

k−1 Tumour cells’ detachment rate 24 day−1

d1 Rate of decay of chemokine concentration 0.0417 day−1

d2 Rate of decay of dead immune cells 0.01 day−1

d3 Rate of decay of dead tumour cells 0.01 day−1

φ1 Immune cell deactivation rate rate 9× 10−11 cells · cm−3day−1

φ2 Tumour cell deactivation rate 3× 10−8 cells · cm−3day−1

φ3 Chemokine production rate 3× 10−6 cells · cm−3day−1

φ1 =
k1k2(1−p)

k−1+k2
, φ2 =

k1k2 p
k−1+k2

.
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