
Vehicle suspension force and road profile prediction on undulating 
roads

1. Introduction

The aim of the proposed estimator and predictor is to predict the effect a change in suspen-
sion settings will have on the vehicle’s dynamic response before the change in suspension 
settings is made. The efficacy of advanced driver assist systems (ADAS) such as ABS, 
traction control, torque vectoring and others deteriorate significantly on undulating 
roads [1,2]. By changing or modulating the suspension settings, the performance of these 
systems may be improved. The control system thus needs to make a decision regarding 
spring and damper settings, and the proposed estimator and predictor is capable of giving 
information to the controller before it makes its control decision.

1.1. Background

The use of controllable suspensions is prevalent throughout the vehicle industry. Semi-
active suspensions are used on a wide array of vehicles, from heavy vehicle applications,
such as military, mining and agricultural vehicles to high performance passenger vehicles
and Sports Utility Vehicles (SUVs). The advantage of using a controllable suspension on a
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vehicle is that improved ride comfort and safety of a vehicle can be achieved compared to a
passive suspension system [3,4]. Controllable suspension systems require a decision to be
made regarding the switching of valves to achieve different spring or damper characteristics
[5] or selecting a continuously variable setting between two limits (e.g. for the case of a
magneto-rheological damper [6]). In the majority of these cases, a priori knowledge of
the dynamic response of the vehicle after executing the control decision may improve the
decision making significantly.

The aim of this study is to predict the suspension forces of a vehicle in suspension
settings that differ from the current setting when driving over an undulating road. The pre-
dicted forces will be comparedwith the actual forces (modelled theoretically andmeasured
experimentally) in the current suspension setting and with modelled forces in an alternate
suspension setting. If this could be successfully achieved, the controller can evaluate vehi-
cle performance (ride, handling, etc.) for all possible suspension settings simultaneously
and select the best settings for the current optimal controller.

This paper is structured as follows: Section 1.2 discusses existing literature on the pre-
diction of suspension forces based on the current vehicle state for different suspension 
settings. Section 2 introduces the suspension force prediction algorithm and illustrates its 
application to a linear quarter car model. Section 3 applies the algorithm to a fully 
nonlinear multibody dynamics model of a vehicle. Section 4 applies the algorithm to 
experimental results. Finally a conclusion is drawn and recommendations are made.

1.2. Existing approaches in the literature

Gillespie [7] states that all the primary control and disturbance forces that are applied to 
a vehicle, with the exception of the aerodynamic forces, are generated in the tyre-road 
contact patch. This is confirmed by Imine, Delanne [8] where the basic control inputs, 
sources of excitation and the resulting dynamic response is illustrated schematically.

Knowledge of the road profile is thus extremely important for the vehicle designer. A 
detailed description of the measurement techniques employed to determine the road 
profile is discussed by Becker and Els [9]. These methods include the use of single-
wheel trailers [8], inertial profilometers [10], laser scanners [9] and high resolution 
cameras [11] that give geometrically accurate 3D models of the terrain. The limitation 
of these techniques is that they are time consuming and require significant amounts of 
post-processing, thus limiting their application to online control strategies.

The reporting of road profiles is covered in depth by ISO 8608:2016. The ISO 8608:2016 
standard specifies that road profiles are reported as either displacement power spectral 
densities (PSDs) or acceleration PSDs. PSDs are reported versus spatial frequency (cycles/
m or rad/m) [12]. Agostinacchio, Ciampa [13] illustrated a method of reconstructing 
road profiles from ISO 8608:2016.

Several publications focusing on road profile estimation was published by collaborating
research groups at the Université de Versailles and the Laboratoire Centreal de Ponts et
Chaussées in France [8,14,15]. Their work established several methods of estimating the
road profile online, including adaptive observers [14] and several sliding mode observer
strategies [8,15]. The estimation results were compared with road profiles measured with a
longitudinal profile analyser – a single-wheel trailer that is towed behind a car at a constant
speed. The trailer is an inertial pendulum and makes use of inertial measurements and
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relative displacements to indirectly measure the road profile. The estimation results were
used to estimate the tyre vertical forces under each wheel on a four-poster rig. The tyre
vertical force estimation results are compared with force measurements of the four-poster
rig’s actuators [16].

Doumiati, Victorino [17] used a linear Kalman filter to estimate the road profile. The
measurement inputs to the Kalman filter consisted of the suspension deflections, vehi-
cle body vertical displacement (obtained by double integrating vertical acceleration) and
the filtered vertical acceleration of the vehicle body. Doumiati, Martinez [18] improved
on the Kalman filter strategy used by Doumiati, Victorino [17] by implementing Q-
parameterisation. Twomain advantages were obtained by usingQ-parameterisation rather
thanKalman filtering, namely that theQ-parameterisation is a less costlymethod requiring
fewer observations and that it has a simpler tuning approach.

Ben Hassen, Miladi [19] estimated the road profile through the implementation of a
new, fast and simple technique known as Independent Component Analysis. Four models
were studied, namely a quarter car, a half car (pitch-bounce and a roll model) and a full car
model. The advantage of using thismethod is the limited and easily obtainable observations
needed: sprung mass vertical acceleration and the suspension deflection. No experimental
validation of the results was included in this study.

Very little literature is available on suspension force prediction where the predicted force 
is for a change in suspension parameter or characteristics. There are numerous examples 
where the vehicle states such as heave, pitch, roll and the unsprung mass vertical motions 
are estimated making use of numerous estimation techniques. The interested reader is 
referred to Ray [20], Antonov, Fehn [21], Pence, Fathy [22] and Wenzel, Burnham  [23] 
for some examples. Vazquez, Vaseur [24] developed a road profile and suspension state 
estimator with a Kalman filter technique. The technique was validated with a high fidelity 
simulator on sinusoidal road profiles at various speeds. Furthermore, experimental 
validation was done to validate the state estimation portion of the observer they developed 
with excellent robustness.

1.3. Research question

The aim of this study, however, is to predict the suspension force with a change in the 
force-displacement and force-velocity characteristics. If the suspension system was able 
to switch from one state to another instantaneously, the force at that precise moment in 
time can be calculated from the suspension displacements and velocities, but the vehicle 
response at any other point in time will be unknown. Many control strategies that aim to 
adapt the suspension system from one setting to another rely on an average value (i.e. his-
torical values), such as the running root mean square (RMS) of vertical acceleration [3], to 
make their control decision. Knowledge of the vehicle’s dynamic response at a single point 
in time is thus not good enough to justify switching the suspension from one setting to 
another. Knowledge of the relevant vehicle states and of the suspension force-displacement 
and force-velocity characteristics enables one to calculate the suspension forces in the 
current suspension mode, but not if the suspension mode was to be switched to a 
different mode, especially if a statistics-based metric such as RMS or standard deviation 
is used to inform such a control decision. This is gap in the literature is what this 
paper hopes to address.
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2. Linear quarter car implementation

The proposed approach used to predict the suspension forces in this paper is by using
two linear Kalman Filters (KF) [25] and a suitable vehicle dynamics predictor model. The
approach is first detailed using a quarter car model, then it is extended to a fully nonlinear
multi-body dynamics vehicle model (Section 3) and finally validated experimentally in
Section 4. The prediction algorithm consists of the following steps:

(1) Estimate the sprung mass and unsprung mass vertical kinematics with a linear KF.
(2) Use the estimated results of Step 1 in a KF to estimate the road excitation.
(3) The estimated road excitation is given as input to a second linear quarter car model.

The second linear quarter car model (the predictor model) uses the changed 
suspension settings and predicts the suspension forces based on the estimated 
road excitation.

The fundamental assumption being made is that the road profile that lies ahead does not
deviate significantly from that which has already been traversed. This approach will thus
have limited benefits when traversing a single discrete obstacle such as a speed bump.

The measurements needed for the suspension force predictor algorithm consist of:

(1) Relative suspension displacement
(2) Unsprung mass vertical acceleration
(3) Sprung mass vertical acceleration
(4) Sprungmass pitch and roll rates when the observer model is extended beyond a linear

quarter car model (see Sections 3 and 4)

The measurements needed are thus relatively simple and may be performed with cost-
effective sensors that can easily be integrated to any ground vehicle. The linear quarter
car model used to introduce the predictor algorithm, as well as the road profile, is shown
in Figure 1. The equations of motion pertaining to the linear quarter car are given in
Equations (1) and (2). The model parameters are presented in Table 1.

Mz̈2 = k(z1 − z2) + c(ż1 − ż2) (1)

mz̈1 = k(z2 − z1) + c(ż2 − ż1) + kt(z0 − z1) + ct(ż0 − ż1) (2)

The quarter car model is excited by the input road profile. A random ISO 8608:2016 Class
D road profile was generated in the spatial domainwith amaximum spatial frequency of 25
cycles/m up to 0.04 cycles/m [12]. The quarter car model was driven over the Class D road
profile at a constant speed of 60 km/h. ISO 8608:2016 describes the road profile as a PSD
of the vertical displacement of the form given in Equation (3) [12]. The constants used for
the road profile generationwere n0 = 0.1cycles/m andGd(n0) = 1024 × 10−6m3 with a fit
exponent of w = −2. The randomly generated road profile is also shown in Figure 1. The
Fourier transformmagnitude is determined from the displacement PSDwith Equation (4).
Random phase information is then generated and the Fourier transform of the road profile
is then described by Equation (5). An inverse Fourier transform of F(iω) yields the road
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Figure 1. Linear quarter car model and road profile.

Table 1. Quarter car model parameters.

Parameter Value Unit

M 450 [kg]
m 80 [kg]
k 15e3 [N/m]
kt 450e3 [N/m]
c 1000 [N.s/m]
ct 10 [N.s/m]
fn,usm 12.13 [Hz]
fn,sm 0.90 [Hz]

profile in the spatial domain.

Gd(n) = Gd(n0) · (n/n0)−w (3)

|F(iω)| =
√
Gd(n) · fn/nPSD (4)

F(iω) = |F(iω)| cosα + i|F(iω)| sinα (5)

The linear quarter car model was modelled using Matlab Simulink [26]. A fourth
order Runge–Kutta solver with a fixed time step of 1ms was used to solve the differential
equations describing the system.

2.1. The Kalman filter

Kalman Filtering is also known as linear quadratic estimation. The estimation technique 
makes use of two steps, a prediction step and a correction step. The prediction step requires 
an observer model that uses states estimated in the previous time steps to predict the states 
at the current time step. The correction step updates these estimates based on noisy 
observations from sensors. The proposed estimator makes use of a simple kinematic 
observer model of the vehicle and easy to measure states as observations.

TheKF assumes that the states of the next time step develop from the states at the current
time step, where xk is the state vector at time step k, F is the state transition matrix, B is the
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control matrix, uk is the control vector and wk is the process noise (see Equation (6)). The
process noise has covarianceQk at time step k. An observation of some of the states in xk is
made, according to Equation (7), where zk is the observation vector, H is the observation
model, and vk is the observation noise. The observation noise has covariance Rk at time
step k.The subscript k|k − 1 indicates that the a priori information up to, but not including,
time step k is used and this is found in the prediction step of the algorithm. The subscript
k|k is the corrected estimate using information up to and including time step k [25].

xk = Fxk−1 + Buk + wk (6)

zk = Hxk + vk (7)

The first step is the prediction step, predicting the state estimate and its covariance:

x̂k|k−1 = Fx̂k−1|k−1 + Buk (8)

Pk|k−1 = FPk−1|k−1FT + Qk−1 (9)

The second step is updating the measurement residual z̃k and its covariance Sk:

z̃k = zk − Hx̂k|k−1 (10)

Sk = HPk|k−1HT + Rk (11)

The optimal Kalman gain is then calculated:

Kk = Pk|k−1HTS−1
k (12)

Finally, the state estimate and its covariance are updated:

x̂k|k = x̂k|k−1 + Kkz̃k (13)

Pk|k = (I − KkH)Pk|k−1 (14)

One limitation of the KF is that it applies only to linear systems, because it relies on the
transition matrix F to develop the new states from the old states. Several extensions of the
KF have been published, most notably the Extended KF and the Unscented KF. However,
for the purposes of this study, a simple linear KF with time invariant Q and R matrices
sufficed, rendering the subscript k in Equations (9) and (11) redundant. There is potential
for further improving the approach by dynamically updating the noise characteristics, but
this falls outside of the scope of this paper.

2.2. Step 1: Estimating the sprung mass and unsprung mass displacement

The first KF is used to estimate the sprung mass and unsprung mass displacement. The
observer model used for this estimator is purely kinematic and relies on measuring the
sprung mass and unsprung mass vertical acceleration and the relative suspension dis-
placement and disregards the suspension force (stiffness and damping characteristics). To
remove some of the integration drift, the sprung mass vertical displacement is given as a
high uncertainty measurement of zero. This forces the sprung mass to oscillate about the
zero position. The high uncertainty is indicated in the measurement covariance matrix,
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Figure 2. Sprung and unsprung mass displacement estimation results.

assigning it a value of 1e6 where the suspension strut displacement is assigned a value of 
one. The sprung and unsprung mass displacement observer model is given in Equation (15) 
and the measurement vector in Equation (16). Figure 2 shows the sprung and unsprung 
mass displacement simulation and estimation results using the road input of Equation 
(3). The estimation results show that the velocities are matched very accurately for both 
the sprung and unsprung masses. The displacement results show some slight 
discrepancies. This may be caused by the high uncertainty ‘measurement’ of the 
sprung mass displacement. Removing the high uncertainty measurement will however 
render the model unobservable and is thus required.
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2.3. Step 2: Estimating the road excitation

The second step of the suspension force prediction algorithm is to estimate the road 
excitation. This is also done with a linear Kalman Filter, but the road excitation 
estimation requires an observer model that includes kinetics. The following parameters 
need to be known:
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(1) Current suspension setting force characteristics (spring stiffness and damping coeffi-
cient in the case of the linear quarter car)

(2) Tyre vertical stiffness

Although tyre vertical damping was included in Equation (2), this is often very difficult 
to determine. The tyre vertical damping is known to be very low, especially in cases of tyres 
with large aspect ratios as used on off-road vehicles [27]. For the road profile estimation, 
the tyre vertical damping was thus neglected. It will be demonstrated in this section that 
the road profile estimation still gives acceptable results with this assumption. Referring to 
the quarter car model of Figure 1, the observer model and measurement vector are given 
in Equations (17) and (18), respectively. The sprung and unsprung mass displacement esti-
mation results are used as control input and measurement observations. The ‘hat’ in the 
notation indicates estimated values, rather than directly measured values. The road 
profile is included as a state in the state vector and the corresponding process 
covariance is increased several orders of magnitude to allow for some uncertainty of its 
value.⎧⎨
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Figure 3 shows the actual road profile and the estimated road profile (Figure 3a). Also
shown is a single-sided spectrum magnitude of the Fast Fourier Transform (FFT) of the
actual and estimated road profile at the frequency range of interest (Figure 3c and d) along
with a displacement power spectral density (Figure 3b). It is evident in Figure 3 that the
estimation results accurately represent the road profile. There are some slight discrepancies
at very low frequencies. This may be due to the high uncertainty measurement imposed on
the sprung mass displacement in Step 1 (Section 2.2) and due to the fact that tyre damping
is neglected. Figure 3b, c and d indicate that the estimation results are remarkably similar
at the range of excitation frequencies present in the road profile.

It is important to note that the road profile is thus estimated and may also be used by
suspension controllers to classify the type of road in conjunction with standards such as
ISO8608:2016 [12]. Thismay allow a controller to classify road roughness online and adapt
the suspension, tyre pressure or braking algorithm accordingly.

2.4. Step 3: Predicting the suspension force

The final step in the suspension force prediction algorithm is using the estimated road pro-
file as input to a quarter car model. The quarter car model used in this step is the same as
that shown in Figure 1 and given in Equations (1) and (2), with the exception that the road
input is now that estimated in Section 2.3 rather than that of Equation (3). For the pre-
diction step, the tyre damping is neglected again, as the tyre damping is usually unknown
and difficult to determine. The resulting suspension force prediction (including the static
suspension force) is shown in Figure 4.
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Figure 3. Road profile estimation results.

Figure 4. Suspension force prediction results at current suspension setting.

The prediction result shown in Figure 4 indicates that the suspension force prediction
algorithm can accurately predict the suspension strut force when the suspension settings
are left unaltered. The aim of the prediction algorithm, however, is to predict what the
suspension settings will be if they are changed (without changing them). To investigate
the prediction algorithm’s capability, the quarter car model parameters are changed to new
values. The suspension stiffness and damping values were changed to k = 100kN/m and
c = 4000N.s/m. The modified suspension parameters are used together with the predictor
model of Step 3. Additionally, a separate simulation is run with the modified parameters.
The actual modelled suspension forces are compared with the predicted forces in Figure
5. It must be emphasised that the two results shown in Figure 5 share no information, it
is based on two completely separate simulations, and only the inputs (road excitation) are
the same. The prediction results in Figure 5 show an excellent correlation between the
predicted and simulated suspension forces. The next step in evaluating the performance
of the suspension force prediction algorithm is applying it to a fully nonlinear multibody
dynamics model of a vehicle.
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Figure 5. Suspension force prediction results with modified suspension setting.

Note that the tyre damping is excluded in the estimation and prediction models, but is 
indeed included in the simulation model that is excited by the road profile. This is how 
the suspension force prediction algorithm would be implemented in real life, with the 
real tyre having some damping and the estimator and predictor assuming that its 
contribution is negligible.

2.5. Analysis and discussion of results

The results of the linear quarter car implementation are very promising. Kat and Els [28]
proposed a relative error metric to quantify the quality of estimated results. The validation
metric gives a probability that the estimated value is below the mean relative error, with
the mean relative error expressed as a percentage. This effectively indicates the probability
that the relative error of the estimation is below the mean relative error. The following
observations are made on the presented results:

(1) The mean relative error for the unmodified suspension force prediction is 3.76% with
a 62.08%probability that the relative error is below themean relative error. The relative
error is below 10% for 94.38% of the time.

(2) The mean relative error of the modified suspension force prediction is 9.25% and the
relative error is below the mean relative error 76% of the time.

(3) The road profile estimation successfully estimated the road profile to be aClassD road,
as indicated in Figure 3b. The displacement spectral density indicates that the road
profile is generally within the bounds of a Class D road as specified by ISO 8608:2016.

3. Full vehicle model implementation

The proposed algorithm, that gave excellent results in the linear quarter car implemen-
tation, is now expanded for a full vehicle model. Figure 6 provides an overview of the
approach used in this section.

The observer and predictor models now employ a seven DOF linear vehicle model. To
quantify the performance of this approach, estimation and prediction results are compared
to simulations performed on a fully nonlinear multibody dynamics vehicle model. The
fully nonlinear multibody dynamics vehicle model is based on a Land Rover Defender
modelled in Adams [29] by Thoresson, Uys [30]. The process to determine the mass
moments of inertia of the vehicle was described in detail by Uys, Els [31]. The vehicle
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Figure 6. Simulation approach used in Section 3.

has leading arms and a Parnhard rod connecting to the front solid axle, trailing arms and
an A-arm connecting to the rear axle, and an anti-roll bar fitted to the rear suspension.
The simulation model contains sixteen (16) DOFs. The Land Rover Defender is also the
experimental vehicle used in Section 4.

The vehicle’s original passive suspension system was replaced by Els [3] with a hydrop-
neumatic suspension that includes two gas accumulators and a valve manifold. The
hydropneumatic suspension, called the Four State Semi-Active Suspension System (4S4),
allows the selection of two discrete force-displacement characteristics and two damping
settings. The gas accumulators were modelled by Van der Westhuizen and Els [32] and
the damping characteristics determined experimentally by Theron and Els [33]. The sus-
pension model assumes adiabatic compression of the accumulator gas and heat transfer
is accounted for by including the first law of thermodynamics (also known as the energy
equation). The vehicle model includes the suspension kinematics, bump stops, suspension
bushings and an FTire [34] tyremodel, parameterised by Bosch, Hamersma [35]. The vehi-
cle is simulated on experimentallymeasured road profiles [9] that were implemented as 3D
regular grid roads (RGR). The experimental vehicle is driven over the exact same road pro-
file in Section 4. This model has been developed over many years and has been extensively
verified against experimental data for various suspension settings.

Els [3] developed a suspension control system that chose between two suspension 
modes, ‘Ride Comfort’ and ‘Handling’. The ‘Ride Comfort’ mode utilises both accumu-
lators and the lowest damping setting, resulting in a soft suspension that reduces the RMS 
of the sprung mass vertical acceleration. The ‘Handling’ suspension mode allows only the 
smaller of the two gas accumulators to be compressed and utilises the highest damping 
setting. The ‘Handling’ mode thus results in a stiffer suspension that prevents excessive 
body roll and the vehicle will start sliding before it rolls.

Since the model being used to perform the measurements for input to the algorithm
is more complicated than the quarter car model of Section 2, the observer and predictor
models used in Section 2 need to be modified to include more degrees of freedom. A seven
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Figure 7. Seven degrees of freedom observer model (dampers not shown).

degree-of-freedom (DOF) model is used for the two observer models of Steps 1 and 2 
and for the predictor model of Step 3.

3.1. Modified observer and predictor models

The modified observer and predictor models use a seven DOF approach. The seven DOF
model is shown in Figure 7. Figure 7 does not show the suspension dampers and tyre damp-
ing effects, as this would clutter the image. The suspension damping effects are included in
the equations of motion describing the model’s response.

The kinematic observer model used for Step 1 of the suspension force prediction
algorithm is given in Equations (19) to (24). The seven degrees of freedom in the mod-
ified model are the four unsprung mass vertical displacements, the sprung mass vertical
displacement and roll and pitch motions. Since the observer model now contains more
degrees of freedom (compared to the linear quarter car model implementation), addi-
tional control inputs and measurements are added. For the observer model of Step 1, the
control vector (Equation (19)) consists of the vertical accelerations of the five masses in
the model. The measurement vector (Equation (23)) consists of the four suspension strut
displacements, the roll and pitch rates of the sprung mass and finally a high uncertainty
measurement of the sprung mass vertical displacement.

Where

xk = 〈
z1 ż1 z2 ż2 z3 ż3 z4 ż4 z5 ż5 θx θ̇x θy θ̇y

〉T (19)

And

uk = 〈
z̈1 z̈2 z̈3 z̈4 z̈5

〉T (20)
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And

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 Δt 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 Δt 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 Δt 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 Δt 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 Δt 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 Δt
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

And

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

0.5�t2 0 0 0 0
�t 0 0 0 0
0 0.5�t2 0 0 0
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0 0 0.5�t2 0 0
0 0 �t 0 0
0 0 0 0.5�t2 0
0 0 0 �t 0
0 0 0 0 0.5�t2
0 0 0 0 �t
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

Where

zk = 〈
xFL xFR xRL xRR θ̇x θ̇y z5

〉T (23)

And

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 1 0 tl 0 −lf 0
0 0 −1 0 0 0 0 0 1 0 −tr 0 −lf 0
0 0 0 0 −1 0 0 0 1 0 tl 0 lr 0
0 0 0 0 0 0 −1 0 1 0 −tr 0 lr 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

The kinetic observer model used to estimate the road profile in Step 2, is presented from
Equations (25) to (30). The state vector (Equation (31)) contains the four wheel hop dis-
placements and velocities and the road profile input. The control vector (Equation (26))



14

contains four suspension strut forces that are estimated based on the displacement 
measurements and suspension velocity estimations. The measurement vector (Equation 
(29)) consists of the estimated unsprung mass displacements and velocities determined with 
Step 1 of the algorithm.

Where

xk = 〈
z1 ż1 z01 z2 ż2 z02 z3 ż3 z03 z4 ż4 z04

〉T (25)

And

uk = FFL FFR FRL FRR
T (26)

And

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 0 0 0 0 0 0 0 0 0
−Δtkt
m1

1
Δtkt
m1

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 Δt 0 0 0 0 0 0 0

0 0 0
−Δtkt
m2

1
Δtkt
m2

0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 Δt 0 0 0 0

0 0 0 0 0 0
−Δtkt
m3

1
Δtkt
m3

0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 Δt 0

0 0 0 0 0 0 0 0 0
−Δtkt
m4

1
Δtkt
m4

0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

And

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−�t
m1

0 0 0

0 0 0 0
0 0 0 0

0
−�t
m2

0 0

0 0 0 0
0 0 0 0

0 0
−�t
m3

0

0 0 0 0
0 0 0 0

0 0 0
−�t
m4

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)
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Where

zk = 〈
ẑ1 ˙̂z1 ẑ2 ˙̂z2 ẑ3 ˙̂z3 ẑ4 ˙̂z4

〉T (29)

And

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

The prediction model used to predict the suspension forces in Step 3 uses a seven DOF
model, complete with nonlinear suspension effects as modelled by Van der Westhuizen
and Els [32]. The predictor model neglects tyre damping and assumes that the tyre may be
modelled as a linear single point contact model that does not lose contact with the road.
The predictor model is given in Equations (31) to (34).

Where

x = 〈
z1 ż1 z2 ż2 z3 ż3 z4 ż4 z5 ż5 θx θ̇x θy θ̇y

〉T (31)

u = 〈
F̂FL F̂FR F̂RL F̂RR ẑ01 ẑ02 ẑ03 ẑ03 g

〉T (32)

And

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0
−kt
m1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0
−kt
m2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0
−kt
m3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0
−kt
m4

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)
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And

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
−1
m1

0 0 0
kt
m1

0 0 0 −1

0 0 0 0 0 0 0 0 0

0
−1
m2

0 0 0
kt
m2

0 0 −1

0 0 0 0 0 0 0 0 0

0 0
−1
m3

0 0 0
kt
m3

0 −1

0 0 0 0 0 0 0 0 0

0 0 0
−1
m4

0 0 0
kt
m4

−1

0 0 0 0 0 0 0 0 0
1
m

1
m

1
m

1
m

0 0 0 0 −1
0 0 0 0 0 0 0 0 0
tl
Ix

−tr
Ix

tl
Ix

−tr
Ix

0 0 0 0 0

0 0 0 0 0 0 0 0 0
−lf
Iy

−lf
Iy

lr
Iy

lr
Iy

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

3.2. Prediction results

The vehicle model is first simulated driving on a Belgian paving in Adams [29] with the
4S4 suspension in the ‘Ride Comfort’ mode. The Belgian paving is part of the Suspension
Track at Gerotek Test Facilities [36] and was measured experimentally by Becker and Els
[9]. This road profile was implemented as a 3D regular grid road (RGR) model in Adams
[29]. The simulated states are given as inputs to the suspension force prediction algorithm.
The ‘Ride Comfort’ mode simulation is used to predict what the suspension strut force
would be if the suspension mode was changed to ‘Handling’ mode.

Figure 8 shows the prediction results if the ‘Ride Comfort’ simulation is used to predict
the suspension strut forces in that same suspension mode. Figure 9 shows the ‘Handling’
mode prediction results, based on the ‘Ride Comfort’ mode simulation.

Figures 8 and 9 show that the prediction algorithm can predict the suspension forces
quite accurately, although the results are not as good as that of the linear quarter car results
in Section 2. This is due to the fact that a seven DOF model is used to predict the forces
simulated by a very complex vehicle model. The frequency content of the predicted forces
is themost important aspect pertaining to the vehicle dynamics, a scaled, single-sizedmag-
nitude of the Fourier Transform of the front left suspension was included in Figures 8 and
9. Figure 8f shows that the frequency content of predicted suspension force in the ‘Ride
Comfort’ suspension mode clearly indicates the peaks that are present in the simulated
suspension forces. Figure 9f shows that the predicted suspension force in the ‘Handling’
mode (based on the measurements in the ride comfort mode) fails to capture the peak at
2Hz, but that the peak at 4Hz is captured accurately. This may be due to the suspension
that is set to the ‘Ride Comfort’ mode attenuates low frequency content that is present due
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Figure 8. Suspension force prediction with ‘Ride Comfort’ suspension mode.

to the road profile content. The predicted force in the ‘Handling’ suspension mode (based
on the ‘Ride Comfort’ mode measurements) thus underestimates the frequency content at
very low frequencies.

One of the main contributing factors to the deterioration in performance may be the
way that the tyre model is implemented in Step 3 of the prediction algorithm. Assuming
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Figure 9. Prediction of suspension forces in ‘Handling’ suspension mode.

that the tyre may be modelled as a linear spring with no damping and that the tyre con-
tact may be modelled as a single point contact that does not lose contact with the road is
not really representative of the true tyre response and tyre-road interface. Including these
effects will require the use of a more complex tyre model that can be used on rough roads
with short wavelength irregularities. This tyre model will also need to run online, as the
aimof the prediction algorithm is to provide information to the control system that chooses
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Table 2. Sensors on instrumentedtest vehicle and their expected noise levels.

State Symbol Sensor noise Location Algorithm section

z¨1
Sensor

MEMSIC tri-axial accelerometer 25 mg
z¨2 25 mg
z¨3 25 mg
z¨4 25 mg

Front leftunsprung mass acceleration 
Front right unsprung mass acceleration 
Rear left unsprung mass acceleration 
Rear right unsprung mass acceleration 
Sprung mass vertical acceleration z¨5 VBOXIntertial Measurement

Unit (IMU)
150 μg

Front left upright 
Front right upright 
Rear left upright 
Rear right upright 
Sprung mass X-YCG

Kinematic observer controlvector (Equation (24)) 
Kinematic observer controlvector (Equation (24)) 
Kinematic observer controlvector (Equation (24)) 
Kinematic observercontrol vector (Equation (24)) 
Kinematic observer control vector (Equation (24))

θ̇x 0.015°/s
θ̇y 0.015°/s

Sprung mass roll rate
Sprung mass pitch rate
Front leftsuspension displacement xFL Celesco SP1 string

potentiometer
0.25%

Sprung mass X-YCG 
Sprung mass X-YCG 
Front leftstrut

Kinematic observer measurement vector (Equation (28)) 
Kinematic observer measurement vector (Equation (28)) 
Kinematic observer measurement vector (Equation (28))

xFR 0.25% Front right strut
xRL 0.25% Rear left strut
xRR 0.25% Rear right strut

Frontright suspension displacement 
Rear left suspension displacement 
Rear right suspension displacement 
Front leftstrut pressure PFL WikaHigh-qualityS10pressure

transducer
2bar Front leftstrut

Kinematic observer measurement vector (Equation (28)) 
Kinematic observer measurement vector (Equation (28)) 
Kinematic observer measurement vector (Equation (28)) 
Algorithm validation

PFR 2bar Front right strut
PRL 2bar Rear left strut
PRR 1.25bar Rear right strut

Frontright strut pressure 
Rear left strut pressure 
Rear right strut pressure 
Vehicle speed v VBOX 3i RTK dual antenna GPS 0.03 km/h Vehicle roof

Algorithm validation 
Algorithm validation 
Algorithm validation 
General information
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Figure 10. Sensor time histories on Belgian paving in ‘Ride Comfort’ suspension mode (limited to FL 
suspension strut for clarity).

the suspension mode. Recently, cosin [37] has developed a real-time version of FTire that
may be used in the future [38]. All of these factors may contribute to the overestimation of
higher frequency content and underestimation of lower frequency content in the predicted
suspension forces.

4. Experimental results

The final step in validating the suspension force prediction algorithm is to implement it
on the test vehicle. The test vehicle (the Land Rover Defender discussed in Section 3) was
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Figure 11. Front left suspension strut force with (a) ‘Ride Comfort’ mode prediction and (b) ‘Handling’ 
mode prediction.

instrumented with the equipment listed in Table 2. The sensor noise indicated in Table 
2 influenced the tuning of the covariance matrices included in Appendix A. Data 
was recorded on a dSPACE MicroAutoBox II, a robust and compact stand-alone real-time 
system that combines high performance with comprehensive I/O [39]. Data was 
sampled at 1000 Hz.

Tests were conducted on the Belgian paving at Gerotek Test Facilities [36]. The test
vehicle was driven at a constant speed across the Belgian paving while recording the time
histories of the sensors listed in Table 2. Test runs were conducted in ‘Ride Comfort’ and
‘Handling’ suspension modes. Figure 10 shows an example of the measured data during a
test run in ‘Ride Comfort’ mode on the Belgian paving.

The recorded data of the ‘Ride Comfort’ mode test runs were given as input to the sus-
pension force prediction algorithm. The predicted suspension forces were then compared
with suspension forces measured during ‘Handling’ mode runs. Because the predicted
‘Handling’ mode suspension force is based on ‘Ride Comfort’ mode test runs, it is difficult
to compare the prediction in the time domain. Normalised histograms of the suspension
forces (both the predicted force and the force derived from the suspension strut pressure
measurements) are used to visually compare the prediction results. The results of the front
left suspension force prediction on the Belgian paving at 30 km/h are shown in Figure 11.
Figure 12 shows the ‘Handling’ mode prediction results for all four suspension struts on
the Belgian paving based on data recorded during a ‘Ride Comfort’ test run.

The results shown in Figures 11 and 12 indicate that the suspension force prediction
algorithm is capable of predicting the suspension force before switching the suspension
from one mode to another. There are some discrepancies between the measured and
predicted forces. These discrepancies are due to:

(1) During testing, it is impossible to drive exactly the same path at the same speed in suc-
cessive test runs. These differences in speed and positionmay influence the suspension
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Figure 12. ‘Handling’ mode prediction results for all four struts on Belgian paving with ‘Ride Comfort’ 
measurements.

forces when comparing measurements and predictions from two separate test
runs.

(2) The predictionmodel relies on accuratemodels of the suspension force characteristics.
While all practicable measures were taken to ensure that the suspensionmodel used is
accurate (such as ensuring that the gas mass charged into the accumulators is correct),
small inaccuracies may accumulate in large errors. This was confirmed by Van der
Westhuizen and Els [32], especially for the case of the ‘Handling’ suspensionmode. In
the ‘Handling’ suspension mode, the gas volume is very small. Even the slightest error
when charging gas to the accumulator may have a significant effect.

(3) The estimation and prediction models neglect suspension kinematics, tyre non-
linearity and tyre damping. The tyre-road interface is also simplified significantly.

During analysis of the data, it was also noticed that the quality of the sensor 
measurements significantly influences the performance of the algorithm and care 
should be taken when instrumenting and maintaining a vehicle with sensors such as 
these.
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Despite these discrepancies, the performance of the algorithm on the Belgian paving is
seen to be similar to that reported in Sections 2 and 3.

5. Conclusion and future work

The aim of this paper was to develop a suspension force prediction algorithm that can
predict the suspension force before a control decision is made. The developed algorithm
uses three stages, namely (1) estimating the sprung and unsprung mass motions with
a kinematic KF, (2) estimating the road excitation with a kinetic KF and (3) predicting
the suspension force with a predictor model. The algorithm’s performance was evaluated
in simulation first, using a linear quarter car and then a full vehicle model in Adams
for comparing. Finally the algorithm’s performance was evaluated against experimental
results.

It is concluded that the algorithm successfully predicted the suspension forces in
‘Handling’ mode while the suspension was set to ‘Ride Comfort’ mode.

Future work and further investigations and fine tuning of the prediction algorithm
include:

(1) Conducting a sensitivity analysis to see how the algorithm performs on different road
surfaces and at different speeds.

(2) The current investigation focussed mainly on predicting suspension forces on undu-
lating roads where comfort is the default suspension setting in all likelihood. The
investigation may be extended to other manoeuvres such as a double lane change
where the suspension is probably in a handling mode. In the event that the vehicle
then leaves the road (due to the avoidance manoeuvre), it may be beneficial to revert
back to a comfort suspension setting.

(3) Currently, the algorithm is driven by road input. Possible expansion to changes in
suspension force due to driver input may further enhance its capability.

(4) At the moment, the suspension force prediction was only evaluated while the vehi-
cle was driving at a constant speed. The performance should also be evaluated while
the vehicle is accelerating or decelerating, as would be the case when performing an
emergency stop.

(5) Quantifying the performance using an objective metric.
(6) Further investigating and evaluating the value of the estimated road profile and its

relation to the actual road profile.

Nomenclature

Symbol Description Unit Symbol Description Unit

B Control matrix [−] R Observation noise covariance
matrix

[−]

CG Centre of gravity [−] Q Process noise covariance
matrix

[−]
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c Damping coefficient [N.s/m] RL Rear left [−]
ct Tyre vertical damping [N.s/m] RMS Root mean square [−]
DGPS Differential global positioning

system
[−] RR Rear right [−]

DOF Degree of freedom [−] S Measurement residual
covariance matrix

[−]

F State transition matrix [−] t Time [s]
Fi Suspension strut force, where

i ∈ {FL, FR, RL, RR}
[N] tl Distance from left wheels to

sprung mass CG
[m]

F̂i Estimated suspension strut force,
where i ∈ {FL, FR, RL, RR}

[N] tr Distance from right wheels to
sprung mass CG

[m]

F(iω) Fourier series [−] uk Control vector at time step k [−]
FL Front left [−] v Vehicle speed [m/s]
fn,sm Sprung mass natural frequency [Hz] vk Observation noise at time

step k
[−]

fn,usm Unsprung mass natural
frequency

[Hz] w Exponent of fitted PSD
calculated on Gd

[−]

FR Front right [−] wk Process noise at time step k [−]
Gd(.) Vertical displacement PSD of

road profile
[m3] xi Suspension strut relative

displacement, where
i ∈ {FL, FR, RL, RR}

[m]

g Gravitational acceleration [m/s2] xk State vector at time step k [−]
H Observation model [−] x̂ State vector estimate [−]
I Identity matrix [−] zk Observation vector at time

step k
[−]

IMU Inertial measurement unit z̃k Measurement residual at
time step k

[−]

I/O Input / Output [−] z0 Road profile input [m]
Ix Sprung mass roll inertia [kg.m2] zi Road profile input, where

i ∈ {01, 02, 03, 04}
[m]

Iy Sprung mass pitch inertia [kg.m2] ẑi Estimated road profile input,
where i ∈ {01, 02, 03, 04}

[m]

K Optimal Kalman gain [−] z1 Unsprung mass vertical
displacement or front left
unsprung mass vertical
displacement, depending
on context

[m]

k Spring stiffness [N/m] z2 Sprung mass vertical
displacement or front right
unsprung mass vertical
displacement, depending
on context

[m]

KF Kalman filter z3 Rear left unsprung mass
vertical displacement

[m]

kt Tyre vertical stiffness [N/m] z4 Rear right unsprung mass
vertical displacement

[m]

LVDT Linear variable differential
transformer

[−] z5 Sprung mass vertical
displacement

[m]

lf Distance from front axle to
sprung mass CG

[m] żi Time derivative of zi , where
i ∈ {1, 2, 3, 4, 5}

[m/s]

lr Distance from rear axle to sprung
mass CG

[m] z̈i Time derivative of żi , where
i ∈ {1, 2, 3, 4, 5}

[m/s2]

M Sprung mass [kg]
m Unsprung mass [kg] α Fourier series phase angle [rad]
mi Unsprung mass of ith corner,

where i ∈ {1, 2, 3, 4}
[kg] θx Sprung mass roll angle [rad]

n Spatial frequency [cycles/m] θ̇x Sprung mass roll rate [rad/s]
n0 Reference spatial frequency [cycles/m] θy Sprung mass pitch angle [rad]
P State estimate covariance matrix [−] θ̇y Sprung mass pitch rate [rad/s]
Pi Pressure in suspension strut,

where i ∈ {FL, FR, RL, RR}
[Pa]



25

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Els PS, Botha T, Hamersma H, et al., editors. The effect of controllable suspension settings on
the ABS braking performance of an off-road vehicle on rough terrain. Proceedings of the 7th
ISTVS Regional Americas Conference at Tampa, Florida; 2013.

[2] Hamersma HA, Els PS. Improving the braking performance of a vehicle with ABS and a semi-
active suspension system on a rough road. J Terramechanics. 2014 Dec;56:91–101.

[3] Els PS. The ride comfort vs. handling compromise for off-road vehicles [PhD dissertation].
Pretoria: University of Pretoria; 2006.

[4] Fischer D, Isermann R. Mechatronic semi-active and active vehicle suspensions. Control Eng
Pract. 2004;12(11):1353–1367.

[5] Giliomee CL, Els PS. Semi-active hydropneumatic spring and damper system. J Terramechan-
ics. 1998 Apr;35(2):109–117.

[6] Strydom A, Els PS, Kaul S. Magneto-Rheological (Mr) Damper modeling for semi-active
control without force feedback. Proceedings of the Asme International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference 2012, Vol
1, Pts a and B. 2012:1145–1153.

[7] Gillespie TD. Fundamentals of vehicle dynamics. Warrendale (PA): SAE International; 1992.
[8] ImineH,DelanneY,M’SirdiNK. Road profile input estimation in vehicle dynamics simulation.

Vehicle Syst Dyn. 2006;44(4):285–303.
[9] Becker CM, Els PS. Profiling of rough terrain. Int J Vehicle Des. 2014;64(2–4):240–261.
[10] Splanger E, Kelly W. Road profilometer method for measuring road profile. General Motors

Research Publication GMR-452. 1964.
[11] Botha TR, Els PS. Rough terrain profiling using digital image correlation. J Terramechanics.

2015 Jun;59:1–17.
[12] International Organisation of Standardisation. ISO 8608:2016 Mechanical vibration – Road

surface profiles – Reporting of measured data. Geneva, Switzerland.
[13] Agostinacchio M, Ciampa D, Olita S. The vibrations induced by surface irregularities in road

pavements – a Matlab® approach. Eur Transp Res Rev. 2014 Sept;6(3):267–275.
[14] Imine H, M’sirdi N, Delanne Y. Adaptive observers and estimation of the road profile. SAE

Technical Paper; 2003.
[15] Imine H, Fridman L. Road profile estimation in heavy vehicle dynamics simulation. Int J

Vehicle Des. 2008;47(1/2/3/4):234–249.
[16] Imine H, Madani T. Heavy vehicle suspension parameters identification and estimation of

vertical forces: experimental results. Int J Control. 2015;88(2):324–334.
[17] Doumiati M, Victorino A, Charara A, et al., editors. Estimation of road profile for vehicle

dynamics motion: experimental validation. 2011 American Control Conference; 2011 June
29–July 1, 2011; San Francisco, CA, USA.

[18] Doumiati M, Martinez J, Sename O, et al. Road profile estimation using an adap-
tive Youla–Kučera parametric observer: comparison to real profilers. Control Eng Pract.
2017;61:270–278.

[19] BenHassen B,MiladiM, AbbesMS, et al. Road profile estimation using the dynamic responses
of the full vehicle model. Appl Acoust. 2017;147(April 2019):87–99.

[20] Ray LR. Nonlinear state and tire force estimation for advanced vehicle control. IEEE Trans
Control Syst Technol. 1995;3(1):117–124.



26

[21] Antonov S, Fehn A, Kugi A. Unscented Kalman filter for vehicle state estimation. Vehicle Syst
Dyn. 2011;49(9):1497–1520.

[22] Pence BL, Fathy HK, Stein JL. Sprung mass estimation for off-road vehicles via base-excitation
suspension dynamics and recursive least squares. 2009 American Control Conference; June
10–12, 2009; St Louis, MO, USE2009.

[23] Wenzel TA, Burnham KJ, Blundell MV, et al. Dual extended Kalman filter for vehicle state and
parameter estimation. Vehicle Syst Dyn. 2006;44(2):153–171.

[24] Vazquez AGA, Vaseur C, Correa-Victorino A, et al. Road profile and suspension state estima-
tion boosted with vehicle dynamics conjectures. 2019 IEEE Intelligent Vehicles Symposium
(IV); 2019 9–12 June 2019.

[25] Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng.
1960;82(1):35–45.

[26] MathWorks. MATLAB and Simulink 2016 [20 July 2016]. Available from: http://www.math
works.com/

[27] StallmannMJ, Els PS. Parameterization and modelling of large off-road tyres for ride analyses:
part 2 – parameterization and validation of tyre models. J Terramechanics. 2014 Oct;55:85–94.

[28] Kat CJ, Els PS. Validation metric based on relative error. Math Comp Model Dyn.
2012;18(5):487–520.

[29] MSC Software. Adams: MSC Software Corporation; 2016 [18 July 2016]. Available from:
http://www.mscsoftware.com/product/adams

[30] Thoresson MJ, Uys PE, Els PS, et al. Efficient optimisation of a vehicle suspension system,
using a gradient-based approximationmethod, Part 1: mathematical modelling.Math Comput
Model. 2009 Nov;50(9–10):1421–1436.

[31] Uys P, Els P, Thoresson M, et al. Experimental determination of moments of inertia for an
off-road vehicle in a regular engineering laboratory. Int J Mech Eng Educ. 2006;34(4):291–314.

[32] Van derWesthuizen SF, Els PS. Comparison of different gasmodels to calculate the spring force
of a hydropneumatic suspension. J Terramechanics. 2015 Feb;57:41–59.

[33] Theron NJ, Els PS. Modelling of a semi-active hydropneumatic spring damper unit. Int J
Vehicle Des. 2007;45(4):501–521.

[34] Gipser M. FTire – the tire simulation model for all applications related to vehicle dynamics.
Vehicle Syst Dyn. 2007;45(Supp1):139–151.

[35] Bosch H-RB, Hamersma HA, Els PS. Parameterisation, validation and implementation of an
all-terrain SUV FTire tyre model. J Terramechanics. 2016;67:11–23.

[36] Armscor Defence Institutes SOC. Gerotek Test Facilities [12 July 2016]. Available from:
http://www.armscordi.com/SubSites/Gerotek1/Gerotek01_landing.asp

[37] Cosin Scientific Software. Cosin scientific software 2018 [22 March 2018]. Available from:
https://www.cosin.eu/

[38] dSPACE GmbH. FTire and ASM - Sophisticated Models for Real-Time Vehicle Dynamics
Simulation 2016 [22 March 2018]. Available from: https://www.cosin.eu/wp-content/uploads/
FTire_Artikel_VehicleDynamic_1601213.pdf

[39] dSPACE GmbH. MicroAutoBox II 2017 [16 October 2018]. Available from: https://www.
dspace.com/shared/data/pdf/2017/dSPACE_MicroAutoBoxII_Brochure_2017-A_170703_
E.pdf

Appendix A. Kalman filter noise covariance matrices

Linear quarter car implementation

Step 1: Estimating the sprung mass and unsprung mass displacement

Qk = diag(0.5 0.5)

Rk = diag
(
1 1e6

)
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(
0.01 0.1 100

)
Step 2: Estimating the road excitation 

Qk = diag

Rk = diag
(
0.01 0.1

)

Full vehicle model implementation

Step 1: Estimating the sprung mass and unsprung mass displacement

Qk = I[14×14]

Rk = diag
(
0.1 0.1 0.1 0.1 1 1 1 1 1 1 100

)

Step 2: Estimating the road excitation

Qk = I[12×12]

Rk = diag
(
1 1 1 1 1 1 1 1 100 100 100 100

)

Physical implementation on experimental vehicle

Step 1: Estimating the sprung mass and unsprung mass displacement

Qk = diag
(
10 1e4 1 1e4 1 1e4 1 1e4 1 1e3 10 100 10 100

)
Rk = diag

(
0.5 0.5 0.5 0.5 1 1 1e6 1e6 1e6 1e6 1e6

)

Step 2: Estimating the road excitation

Qk = I[12×12]

Rk = I[8×8]




