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Abstract 

Rhino poaching around the world has increased inordinately, to the extent that concerns exist over 

the possible survival of the species. An open access rhino poaching model is developed for South 

African rhino. The model is a hybrid dynamical model, as both a system dynamics model as well as a 

Bayesian network model are developed. The system dynamics model is used to estimate the unknown 

parameter values (through optimisation) and also to determine the intervals for the parameters. 

These intervals are then used in the Bayesian Belief Network model to assess uncertainty. Hybrid 

approaches improve the ability to validate models compared with conventional modelling. The 

resultant model indicates that reducing the price of rhino horn would not be effective at curbing 

poaching, unless poacher costs are also increased. However, increasing poacher costs is not a realistic 

policy option since these costs are largely beyond the control of decision-makers. The insensitivity of 

price to poaching effort has implications for methods proposed to reduce the value of rhinos, such as 

introducing synthetic rhino horn and the de-horning of rhinos. 
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1 Introduction 

 

Poaching of African rhino have increased immensely in recent years, threatening the very survival of 

the species. Data from CITES’ 16th meeting of the Conference of the Parties in Bangkok, Thailand in 

2013 (CITES 2013a, 2013b) paints a grim picture of the situation. Poaching has grown, on average, by 

52% per annum for the period 2006–2012. One reason for the high incidence of poaching in South 

Africa is the relative abundance of rhinos in that country. The vast majority (90%) of all African rhino 

are poached from South Africa. At the end of 2012, the African white rhino (Ceratotherium simum) 

population comprised 20 405 individuals and the African black rhino (Diceros bicornis) comprised 5 

055 individuals. South Africa’s rhino population comprises approximately 93% and 40% of the total 

white and black rhino populations, respectively. Another reason for the high poaching incidence in 

South Africa is the vast areas under conservation. The Kruger National Park alone spans 20 000 km2, 

which is roughly the size of Wales (Markham 2014). This makes patrolling very difficult. In spite of 
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these alarming statistics pointing to a major poaching problem, very little modelling work has been 

conducted to understand wildlife/poaching dynamics in South Africa. 

 

A number of approaches have been proposed to lower the price of rhino horn, arguing that this would 

eliminate the incentives to poach rhinos.  These include the introduction of synthetic rhino horn as a 

substitute for real horn (Ball 2015), de-horning of rhinos (Milner-Gulland 1999).  Other approaches 

include a shock stockpile offload, episodic auctions, incremental releases of small batches, or through 

a closely regulated cross-continental legalised supply chain. The argument is that these would devalue 

the rhino and reduce the incentive to poach. Lee and Roberts (2016) assess the effect of de-horning 

using game theory.  They found that only if all rhinos were dehorned would the incentive to poach be 

reduced.  However, this was a theoretical analysis and the effect of a lower price for rhino horn on 

poaching has not been assessed using actual poaching data. This research study examines the effect 

of a decreasing in the price of rhino (either through introducing synthetic rhino horn, dehorning or 

any other methods) on poaching behaviour, using data for South African rhino. 

 

A modelling approach that has gained increased prominence in modelling wildlife systems is system 

dynamics modelling (e.g. Ford 1999). There are, however, few applications to rhino. Swart et al. (1990) 

developed a model for black rhino in South Africa which mainly focusses on fecundity and population 

dynamics. Although it was primarily used to determine optimal offtake, it was nonetheless historic as 

it was able to predict a recovery of black rhino to a genetically viable population of approximately 

2 000 individuals over 30 years, which is more or less the situation prevalent today. Crookes and 

Blignaut (2015) developed a system dynamics model for market demand that considers rhino 

populations, game farms and consumer demand. The model did not, however, explicitly model 

poaching behaviour. Crookes and Blignaut (2016) found that policies aimed at the management of 

protected areas were more likely to be effective in the management of rhinos. Therefore, this study 

aims to examine in greater depth the conditions under which rhino populations may persist, by looking 

at a number of policy tools that aim at influencing poacher behaviour.  These policy tools include: 

policies that affect the price of rhino horn, the costs of poaching, and enforcement policy tools such 

as the policies that influence the probability that a poacher is detected and convicted, and the 

magnitude of the fine. 

 

It is important to take uncertainty into account when modelling and understanding the dynamics of 

ecological and economic systems (Bunnefeld et al. 2011). This study applies two methods to assess 

parameter uncertainty in the data. First, Monte Carlo simulation is used to define the interval 

boundaries of the study. This is conducted in the system dynamics software Vensim (Eberlein and 

Peterson 1994). Second, these interval boundaries are used in a Bayesian Belief Network (BBN) model 

to assess the effect of parameter uncertainty on the outputs of the model. The BBN model is 

constructed using the software package Netica (Norsys Software Corp. 1997). In this sense, although 

the two models are distinct, data from the systems model is used as input into the BBN model, and 

vice versa. The model is, therefore, a hybrid dynamical system, as both continuous and discrete 

dynamic behaviour is captured (Goebel et al. 2009). The system dynamics model employs continuous 

(feedback) dynamics, and the BBN model incorporates discrete probability nodes. In the next section 

the hybrid SD/BBN model is presented along with the steps in the modelling process. 
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2 Methodology 

 

2.1 System dynamics model 

 

System dynamics modelling is an approach that simulate the behaviour of complex systems over time, 

with feedback loops and time delays characterising the interactions of the system. It is important to 

model feedbacks in conservation systems given the propensity of these systems toward 

counterintuitive behaviour (Larrosa et al. 2016). Equations (1) and (2) indicate the feedback dynamics 

of the system, which follows a predator-prey specification. These dynamics could be analysed in an 

excel spreadsheet. However, there are a number of reasons for analysing these two equations in a 

system dynamics modelling platform such as Vensim. First, it provides a visual display of the 

interactions between the different elements in the system which is called a stock flow diagram. 

Second, it enables the comparison of the model with actual data and facilitates calibration of the 

model with actual data. Statistical tests may then be performed on goodness of fit.  Thirdly, a number 

of validation techniques may be employed on the model, for example dimensional (unit) consistency 

tests, behaviour reproduction and sensitivity analysis.  It would not be possible to conduct the full 

range of validation tests on a spreadsheet model. 

 

The system dynamics modelling framework makes it possible for the model to be interrogated in order 

to answer “what if”-type questions (Butterworth et al. 2015). This is done in two ways. First, the 

SynthesimTM mode enables real-time analysis of the effects of changes in the different parameters on 

the model. This enables one to evaluate different ranges in parameters without having to enter values 

discretely. Second, Monte Carlo simulation may be used to conduct a sensitivity analysis on a range of 

management parameters, such as the probability of detection and conviction, the magnitude of the 

penalty, the poaching costs and the price of rhino horn on poaching behaviour, and ultimately what 

the impact would be on the persistence of rhino populations. These two approaches are fairly novel 

in system dynamics applications focussed on wildlife population modelling (see Crookes 2016). Last, 

only model results need to be exported to excel for further analysis. 

 

The Gordon-Schaefer model is not the only framework used by system dynamics modellers in wildlife 

population modelling. In South Africa, Swart et al. (1990) use an age-structured density-dependent 

model for rhino. Although the Gordon-Schaefer model is common in the wildlife literature (e.g. Leclerc 

et al. 2015), its suitability will be assessed by examining how well it is able to replicate the historical 

data. In the next section the Bayesian Belief Network framework is presented. 

 

2.2 Bayesian Belief Network model 

 

BBNs and SD modelling are both decision-support systems (DSS) used to model uncertainty 

(Cain 2011). Netica is a probabilistic graphical model that uses the junction tree algorithm to obtain 

posterior distributions over hidden variables (Korb & Nicholson 2010). It uses Bayes’ rule for updating 

the distribution over parameters from the prior to the posterior distribution.  
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Vensim and Netica are similar in that both are used to model complex systems, and both are examples 

of decision support tools. Vensim uses Monte Carlo simulation by means of the Latin Hypercube 

sampling methodology. But the Bayesian inference is a more exact method of estimating uncertainty 

than Monte Carlo sampling (Cain 2011). Also, in a BBN model, a range of prior distributions may be 

defined and its effect on the posterior distribution assessed. Netica is used for undirected networks 

and it is therefore not possible to include feedback in the model.  

 

The approach adopted here is to use Monte Carlo simulation in the system dynamics package to define 

the boundaries of the different parameters, which are then converted into intervals in the Bayesian 

Belief Network (BBN) model.  A steady state version of the model was then constructed for use in the 

BBN.  The results of the BBN model were used to further validate the model, and also used for policy 

simulations. 

 

2.3 Steps in the modelling process 

 

This section presents the steps in the modelling process, with reference to the framework proposed 

by De Wit and Crookes (2013). These steps are based on a more generic systems analysis framework 

suitable for a variety of model types and draw from the natural resource management literature. The 

steps are the following: 

1. Model conceptualisation – model and subcomponents are described and discussed 

2. Model quantification – important empirical relationships underpinning the model are 

presented 

3. Model evaluation – model validation is presented on the key relationships in the model 

4. Model use – the model is used to estimate the value of unknown parameters and also to 

answer the research question 

5. Improving system performance – revisit some of the key assumptions of the model and make 

recommendations on the way forward 

 

2.3.1 Model conceptualisation 

 

The model is based on two strands of literature: predator-prey literature and open-access fisheries 

literature.  

 

A predator-prey model is developed using system dynamics modelling employing a Gordon-Schaefer 

fisheries model. This model is based on Nobel laureate Gary Becker’s theory of crime and punishment 

(Becker 1968). It is applied to both fisheries (Mazany et al. 1989) and rhino (Milner-Gulland & Leader-

Williams 1992) where poaching effort is not only a function of costs and prices, but also of various 

enforcement parameters. A similar model was developed for an abalone fishery subject to illegal 

exploitation (Crookes 2016). Despite featuring strongly in theoretical or teaching presentations of 

system dynamics (e.g. Venkat 2005), applications of predator-prey models to natural resources are 

not all that common. A possible reason for this is that the Gordon-Schaefer model can be developed 
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in spreadsheets which are accessible to most people and do not require advanced modelling software 

to implement. One notable exception to this relatively scarce application to natural resources is 

Uehara (2013), who developed a predator-prey model based on the Easter Island model of Brander 

and Taylor (1998). His motive for using system dynamics modelling is “the complexity of the model” 

(Uehara 2013:375). The next section presents the enforcement component of the model. 

 

The model is also based on the open-access fisheries literature (e.g. Wilen 1976; Bjørndal & Conrad 

1987; Opsomer & Conrad 1994), using a rhino horn poaching model by Milner-Gulland and Leader-

Williams (1992). The model was originally developed for the Luangwa valley, Zambia, but the input 

parameters were adapted to match historical data from the South African rhino horn trade. In the 

next section, important empirical relationships underpinning the model are presented. 

 

2.3.2 Model quantification 

 

Following Milner-Gulland and Leader-Williams (1992), the poacher’s profit maximisation function is: 

max 𝜋
𝐸

(ℎ) = 𝑝ℎ − 𝑐𝐸 − 𝜃𝐹     (1) 

Where p is the price of rhino horn, c is the unit cost of poaching, θ is the coefficient of detection and 

conviction, and F is the penalty, and E is the poaching effort, measured in number of expeditions. 

Harvest is assumed to be a linear function of poaching effort: 

ℎ𝑡 = 𝑚𝑞𝐸𝑡𝑥𝑡      (2) 

Where q is the catchability coefficient and x is the rhino population, and m is a mortality coefficient 

relating efforts and stocks to harvests (Crookes 2016). 

 

The fine F is a flat rate and includes the confiscation of the rhino horn, since monitoring data indicates 

that each group of poachers only captures one horn on each expedition: 

F= f + p                 (3) 

In the case of rhino poaching in South Africa, the penalty is a prison sentence, but in order to obtain a 

monetary value for f, the number of years the poacher spends in jail is multiplied by the average 

annual wage rate (see supplementary material). 

 

The coefficient of detection and conviction is a function of effort: 

θ = bE, where 0 < b <1        (4) 

 

Where b is the probability of detection.  The rhino population growth follows an adapted logistic 

formulation to take into consideration a non-linear response to density: 

𝑓(𝑥) = 𝑟𝑥 (1 − [
𝑥

𝑘
]

𝑧
) − ℎ    (5) 
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This appears to be the most realistic formulation of rhino population dynamics, following an 

evaluation of models by Cromsigt et al. (2002). In order to transform the equilibrium model into a 

dynamic model, we write the dynamics of poacher effort as follows: 

𝐸𝑡+1 = 𝐸𝑡 + 𝑛(𝑝𝑞𝐸𝑡𝑥𝑡 − 𝑐𝐸𝑡 − 𝜃(𝑓 + 𝑝))    (6) 

 

Equation 6 states that poaching effort increases or decreases depending on revenues pqEtxt, costs cEt, 

and levels of enforcement θ(f+p), and a parameter n, which is an adjustment parameter determining 

the time frame over which effort responds to changes in profits and enforcement. Substituting n’ = np 

and θ = bE and re-arranging gives the following: 

 

𝐸𝑡+1 = 𝐸𝑡 + 𝑛′𝐸𝑡(𝑞𝑥𝑡 −
𝑐

𝑝
−

𝑏(𝑓+𝑝)

𝑝
)     (7) 

 

The terms in brackets indicate that poaching effort is an increasing function of the price of rhino horn, 

and a decreasing function of the cost price ratio and the probability of detection b and the fine f. 

 

Similarly, rhino populations may also be re-written in dynamic form by incorporating equations (2) 

and (5).  Rhino population dynamics are then as follows: 

𝑥𝑡+1 = 𝑥𝑡 + 𝑠𝑥𝑡(𝑎 − 𝑑𝑥𝑡
𝑧 − 𝑚𝑞𝐸𝑡)    (8) 

 

Where  

𝑎 = 𝑟 𝑎𝑛𝑑 𝑑 =
𝑎

𝑘𝑧
  

 

The parameters s allows for delays in the adjustment of populations to both growth and harvests, but 

in the basic model s = 1.  

 

2.3.3 Model validation 

Model validation is discussed in the supplementary material (S.1). 
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3 Results 

 

3.1 System dynamics model 

 

3.1.1 Stock flow diagram 

 

A stock flow diagram shows the interactions between the various components in the model (Figure 

1). A box represents a stock variable, which accumulates or decreases depending on the flow variables 

coming into or leaving it. Other variables in the system include constants or other auxilary variables 

represented by an equation. This relatively simple model captures some fairly complex dynamic 

behaviour. 

 

Figure 1 indicates that poaching effort may either increase or decrease depending on a number of 

parameters.  Poaching effort increases due to an increase in the net birth rate of rhinos, and decreases 

based on the poacher’s cost price ratio and the penalty for infringement, which is a function of the 

fine (f) and the probability of detecton and conviction (b).  

 

 

Figure 1 Stock flow diagram for poaching model 
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3.1.2 Model calibration 

 

Baseline parameter values were obtained from a range of literature sources (see Supplementary 

Material S.2) while others were derived from model simulations. The unknown parameters, namely 

the intrinsic growth rate r and the adjustment parameter n’, were estimated using optimisation so 

that the best fit with the historical data was achieved. Figure 2A (rhino dynamics) and Figure 2B (effort 

dynamics) indicate the results of this fit. 

 

 

Figure 2A Rhino population dynamics, 1980-2013 and Figure 2B Effort dynamics, 1990-2013 

 

The results show that the rhino population model provides a slightly better fit (R2=0.996) than the 

effort data’s fit with the historical data (R2=0.889). Both therefore provide a reasonable fit with the 

historical data. While the effort function does not capture the long lag before effort rises, it is not 

necessary for a system dynamics model to replicate the exact behaviour of the system, but rather that 
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the model captures the major “dynamic patterns” of the model (Saysel & Barlas 2001). This is indeed 

satisfied in the present model. Although R2 values are not the only criteria for assessing the goodness 

of fit, the results nonetheless suggest that the model is suitable for replicating the system and the 

Gordon Schaefer model provides a reasonable proxy for exploring rhino population dynamics in South 

Africa. 

 

3.1.3 Model parameters 

 

Table 1 summarises the parameters used in the model, including those that gave the best fit to the 

data. The parameters highlight two surprising results. The first relates to the value of the intrinsic 

growth rate for rhino populations. Hall-Martin (1986) estimates a value of the intrinsic growth rate of 

0.096 (rmax=0.16) for the black rhino population at Addo Elephant National Park. This is slightly higher 

than their earlier estimates of 0.09 (rmax=0.15) for the Kruger National Park’s rhino population. This 

model does not model black and white rhinos separately as both species are hunted indiscriminately. 

The value for r used in the study is therefore a composite value and is estimated based on the best fit 

of the rhino population to the historical data. A similar approach was pursued by Cromsigt et al. (2002) 

for black rhino populations in Hluhluwe-Umfolozi and Mkuzi Game Reserves, South Africa. Their 

estimates for r (for the logistic and Fowler models) ranged between 0.06 and 0.1, with the model that 

gave the best fit at the upper end of the range (r=0.1).  

 

Table 1 Parameters used in the model 

Parameter Symbol Value Units Description 

Cost1 c 36.36 dollars/expeditions Cost of poaching 

Catchability 
coefficient1 

q  4.48366e-
005 

1/expeditions Ease with which rhinos may be 
poached 

Probability of 
detection1 

b 0.007 rhino/expeditions Likelihood of detection prior to a 
poaching event 

Adjustment 
coefficient2 

n' 0.275 expeditions/rhino 
/year 

Rate at which poaching effort 
responds to changes in profits and 
enforcement 

Price1 p 15000 dollars/rhino Price of rhino horn 

Fine 
coefficient1 

f 2695.53 dollars/rhino Monetary value of penalty 

Fowler 
(curvilinear) 
factor3 

z 7 Dimensionless Density dependent term 

Carrying 
capacity3 

K 0.4 rhino/km2 Maximum population level 

Intrinsic growth 
rate2 

r 0.061 Dimensionless Rhino population growth rate 

Mortality 
coefficient1 

m 1 Dimensionless Extent to which populations 
respond to harvests 

Source: 1 Own calc=see supplementary material; 2 Model=Value that gave best fit of model with 

historical data (i.e. that maximised R2); 3 Milner-Gulland & Leader-Williams (1992) 
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The literature does, however, show wide disparities between different populations even in close 

proximity to each other. For example, Hitchins and Anderson (1983) found an r of 0.053 for the 

Hlulhluwe black rhino population, and 0.11 for Umfolozi populations, a figure more than twice as 

great. The present study’s estimate for r of 0.061 suggest that rhino populations on the whole are 

growing at the lower end of the range of value estimates from the literature rather than at the upper 

end. This has important implications for rhino sustainability modelling. 

 

A second surprising result is the low probabilities of detection prior to a poaching event (b) observed 

in the study. This is in spite of apparent increases in enforcement effort and severity of sentences. In 

Lwangwa valley (Zambia), Milner-Gulland and Leader-Williams (1992) observed a probability of 

detection and sentencing of 0.05. In this analysis, the literature from South Africa indicates a 

probability of detection and conviction of 0.007 (Table 1). Furthermore, this value has remained 

relatively stable over the past five years (see supplementary material). A reason for the low and 

invariable probability of detection is most likely because increases in enforcement effort have merely 

served to keep pace with increases in poaching effort, and have therefore not managed to increase to 

a level where the probability of detection increases. 

 

In most bioeconomic analyses, the adjustment parameter n’ is unknown and needs to be simulated 

using sensitivity analysis. A novel feature of this model was that it was possible to estimate a value for 

this parameter using the fit of the model to the existing historical data. The adjustment parameter 

normally measures the sensitivity of effort in time t+1 to profits, and although this is technically 

correct, only indirectly so. In the first instance the adjustment parameter measures the elasticity of 

effort with respect to rhino abundance. According to the model, it takes a change in rhino abundance 

of 3.64 individuals per year to change the number of poaching expeditions by 1. Rhino abundance, in 

turn, is a function of the price of rhino horn, expedition costs, the magnitude of the fine, the 

probability of detection, and the catchability coefficient. This model outcome holds under current 

conditions of increasing rhino abundance and increasing levels of poaching, and therefore predicts 

that should rhino populations begin to decline then poaching effort would also decline, but that this 

would be insufficient to prevent local extinctions of rhino populations. 

 

3.1.4 Simulation results 

 

The model predicts that, under current conditions, local extinction of rhino populations will occur over 

the next 20 years or so. This is in accordance with the findings of both Crookes and Blignaut (2015) 

and Di Minin et al. (2015).  

 

It is clear from Equation 1 that the variables which affect poaching effort are the cost price ratio, the 

adjustment coefficient n’, the price of rhino horn, the probability of detection and prosecution (b), 

and the magnitude of the fine coefficient f. Changes in poaching effort, on the other hand, affect the 

dynamics of rhino populations (Equation 2). The question then is whether there are values for the 

enforcement parameters that would result in sustainable rhino populations? In order to answer this 



11 
 

question, Monte Carlo simulations are conducted on the key policy variables in order to assess the 

effectiveness of different policies. 

 

Monte Carlo simulations were conducted on the following key policy variables in the model – costs, 

prices, the fine parameter f and the probability of detection prior to a poaching event b. A uniform 

distribution is used to generate a random sample across a range of values that are not weighted in 

any way. The probability density function of the uniform distribution is the following:  

𝑓(𝑤) =
1

ℎ−𝑔
 𝑓𝑜𝑟 𝑔 ≤ 𝑤 ≤ ℎ, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

The first and second set of simulations assess the effect of varying different combinations of policy 

parameters. In the first set of simulations the enforcement parameters b ~ U(•, 0.3) and f ~ 

U(•,100000) are varied, while in the second set of simulations the profitability parameter c=U(•, 5000) 

and p=U(1000,•) are varied, where • is the value of the baseline parameter (see Table 2). The first 

scenario, therefore, simulates the effect of increasing the probability of detection and the magnitude 

of the fine, for various combinations of b and f; the second scenario simulates the effect of increasing 

costs and decreasing prices. All simulations were run for an ensemble of 200 realisations, giving 

continuous values for p, c, b and f. The outcome variable was rhino abundance. The results are plotted 

on bubble charts where the size of the bubble indicates rhino abundance at the end of the simulation 

(Figure 3).  

 

Increasing the probability of detection and the magnitude of the fine increases the sustainability of 

rhino populations (increasing b and f – see Figure 3A). This supports the assertion that command and 

control measures are important in rhino management in South Africa. However, reducing the price of 

rhino horn does not, for the most part, improve sustainability of rhinos (see Figure 3B). The cost of 

rhino poaching would have to increase and the price of rhino horn reduce dramatically for rhinosto 

persist.  

 

3.2 Bayesian Belief Network model 

 

The Bayesian Belief Network (BBN) model produces similar results than the system dynamics model. 

Under the baseline scenario, the probability that effort would increase compared with current (2013) 

levels is 29 percent (see Figure 4A). Reducing the price of rhino horn to $3 000 per rhino only reduced 

the probability that effort would increase by 7 percent, to 22 percent (see Figure 4B). On the other 

hand, increasing the probability of detection to 0.4, and increasing the magnitude of the fine to 

$60 000 per rhino significantly reduces the probability of effort increasing above current levels. The 

probability of effort increasing drops by more than half, from 29 percent to 13 percent (see Figure 4C). 

The advantage of BBN models is that they improve decision-makers’ understanding of the ecological 

and economic system, while at the same time enabling them to come to their own conclusions based 

on that knowledge (Cain 2011). The results, therefore, indicate that there is still a (small) probability 

that effort will increase even if a rigid enforcement and prosecution strategy is pursued. Furthermore, 

there is also a (small) probability that a price reduction strategy will be effective. This is due to 
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uncertainty in the parameters in the model. It is left to the decision-makers to decide whether or not 

these probabilities are small enough. 

 

 

  

Figure 3 Effects of varying policy parameters 

Bubble plots of enforcement parameters (Figure 3A), and profitability parameters (Figure 3B). The size of the 

bubbles and the shading indicate the relative magnitude of rhino abundance at the end of the simulation period. 

Four categories are used (represented by the different shading), indicating different levels of rhino abundance 

(less than 0.1 rhino/km2- darkest shading through to greater than 0.3 rhino/km2- lightest shading). The blank 

space (bottom left in Fig. 3A and bottom right in Fig. 3B) indicate no viable populations for the given values of 

the policy parameters. The small blue circles indicate the baseline values, showing that under prevailing 

conditions rhino populations will not persist (circles in the white zone of the graph). The axes of parameters b, 

f, c and p contain negative values because of the size of the bubbles. The nuclei of the bubbles, representing the 

value of the parameters, are all positive. 
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Figure 4 BBN model outputs: A. Baseline B. Reduction in rhino horn price (p) to $3000/rhino 

C. Increase in fine (f) to $60,000/rhino and increase in probability of detection (b) to 0.4 
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4 Is the model valid? 

 

In order to assess whether or not the model is valid, it is first necessary to consider a key assumption 

of the model. For the model conditions to hold, the model requires that an open-access situation 

prevails with regards to rhino poaching. Do open-access conditions hold for rhino populations in South 

Africa? Milner-Gulland and Leader Williams (1992) and Bulte (2003) developed open-access models 

for black rhino in the Luangwa Valley, Zambia, so there is some precedent in the literature. According 

to Hall et al. (2008:78), “open-access exploitation assumes that hunters are subject to no restrictions, 

and has therefore been widely applied to species that are weakly protected by law, where hunting 

restrictions are weakly enforced and to poaching”.  

 

It is possible that these conditions exist in South Africa. Sixty percent of South Africa’s rhinos are in 

one game reserve, Kruger National Park (KNP), and 75 percent of all rhinos are poached in KNP (DEA, 

2014). The border with Mozambique is long, spanning 356km, making it difficult to patrol and highly 

‘porous’ (Save the Rhino 2013). Approximately 80 percent of poachers at KNP come from Mozambique 

(Macleod 2014). The extremely low probability of detection and conviction observed in the sentencing 

records also points to an open-access situation prevailing in South Africa at present. Although efforts 

to curb poaching have increased, as have the number of arrests, the threat of poaching has continued 

to escalate as addressing the issue of poaching, according to South African Minster of Environment 

Affairs, “is not simple” (DEA 2014). The possible translocation of up to 500 rhino from KNP to ‘safer’ 

areas (Markham 2014) also points to the difficulties that park authorities are experiencing with 

protecting the rhino within their borders. Another reason why open-access conditions appear to hold 

for rhino populations in South Africa, is that the open-access model fits the historical data on rhino 

populations and effort reasonably well. This evidence strongly supports an open-access harvesting 

regime currently prevailing in South Africa. 

 

The model passes all the validation tests discussed in the Supplementary material (S.1), as well as the 

sensitivity analysis test discussed in the results section. There is some surprising findings from the 

model, notably the low probabilities of detection and intrinsic growth rates, but the BBN model 

incorporates uncertainties and appears to substantiate the outcomes from the system dynamics 

model. The replication of the historical data is also adequate. The extreme conditions test, conducted 

using the BBN model, shows that sometimes parameters do take values that fall outside the bounds 

of realism. For example, under the baseline scenario, there is a 13.6 percent probability that rhino 

populations will exceed the population carrying capacity; furthermore, there is a 19.3 percent 

probability that poaching effort will be negative (see Figure 4A). This is clearly unrealistic and indicates 

that not all policy combinations are feasible.  

 

The model passes most validation tests, with the exception of the extreme conditions test, which it 

fails 10–20 percent of the time. There are no clear standards in the system dynamics validation 

literature as to whether or not this is acceptable.  The extreme conditions test in the SD literature is, 

for the most part, subjective.  Barlas’ (1996) recommends that “further research is needed to quantify 

and formalize such [extreme-condition testing] procedures, which are somewhat qualitative and semi-

formal at this stage” (p.192).  The BBN/SD hybrid dynamical model developed here provides a means 
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of quantifying the failure rate of the extreme conditions test.   Although no absolute standard exists 

in the literature, it is argued that a 10-20 percent margin of error is acceptable, especially given that 

the BBN is assessing uncertainty in all the parameters of the model simultaneously.   

 

Therefore, although there are some problems with the model, the overall conclusion from the 

validation exercise is that the model passes an adequate number of validation tests, and is therefore 

suitable for use. No model can be completely validated. However, our conclusion is that hybrid 

modelling approaches such as ours can actually provide better information about the validity of a 

model compared with conventional modelling alone.  

 

In the next section, we consider the final step in the modelling process, namely improving system 

performance. 

 

5 Improving system performance 

 

In this final step of the modelling process, we revisit some of the key assumptions of the model and 

make recommendations on the way forward. First, the model assumes that poachers are a 

homogenous grouping. This is due to a lack of available disaggregation of poaching data. Further work 

is required to explore this assumption. Second, little mention is made of the on-the-ground 

institutional factors which may impinge on poaching. This is largely due to the changing nature of the 

institutional environment at present, and therefore would date the study. Institutional factors are, 

however, important and this aspect requires revisiting. Third, the behavioural aspects of the model, 

for example how poachers make decisions, are novel and require further exploration and validation. 

 

System dynamics models are capable of modelling some very complex interactions between the 

parameters. However, this model is deliberately kept simple for two important reasons. The first is 

the paucity of data available to model more complex interactions between poachers and rhino 

populations. And the second is the need to ensure the defendbility of the model. Some system 

dynamics models have been criticised for not taking sufficient cognisance of “traditional” population 

modelling approaches (Butterworth et al. 2015). The model developed here is therefore firmly 

anchored in the population modelling literature.  

 

The simplicity of the model and limitations on data availability, however also meant that the costs of 

enforcement are not taken into consideration in the model.  Further work should consider optimal 

regulator strategies, such as the implications of increasing enforcement and the costs thereof.  Finally, 

the model has elsewhere been applied in a range of contexts and for a number of species.  Crookes 

and Blignaut (2016) model the global steel industry by coupling the predator prey formulation and 

system dynamics modelling, Crookes (2016) model South African abalone using a similar model, in 

addition to the present model that considers South African rhinos.  Future work should consider a 

meta-analysis of studies, where lessons learnt from the different studies may be compared. 
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6  Policy implications 

 

Milner-Gullland (1993) and Crookes and Blignaut (2015) found that rhino horn consumers were 

insensitive to changes in the price of rhino horn, preferring to demand rhino horn regardless of the 

price.  The present study finds that poachers also, are insensitive to changes in the price of rhino horn, 

continuing to hunt even if the price falls.  The reason for this is unclear.  One possible reason is the 

low cost of hunting, making hunting profitable even at low rhino horn prices.  Another reason may be 

the low socioeconomic circumstances of hunters, being heavily reliant on revenues from poaching.  

Regardless, his finding is important, since it has implications for rhino horn management strategies 

that attempt to influence the price of rhino horn.   

 

In particular, we consider the implications of price insensitivity on four management strategies 

proposed recently in response to poaching.  These four policies were selected based on feedback from 

several role players.  The four policies are: 1] the proposed introduction of synthetic rhino horn (Ball, 

2015); 2] the de-horning of rhinos (Lee and Roberts 2016); 3] stockpiling and release on the market 

(Collins et al. 2017); and 4] A legalised trade in rhino horn (De Minin et al. 2015).    

 

De-Horning seeks to de-value (reduce the price of) rhinos by removing the item of value from it, 

namely the horn.  De-horning still leaves a stump, and our model shows that if the value of that stump 

exceeds $3,000, then poaching effort is not reduced by any great margin. Approximately 1.2kgs remain 

on the stump after cropping (Eustace, 2012), and at an estimated selling price for poachers of 

$5,000/kg (Crookes and Blignaut 2016), the value of a stump is $6,000.  The conclusion is therefore 

that de-horning cannot reduces the value of rhino horn remaining on the animal sufficiently to advert 

poaching. 

 

Synthetic rhino horn, stockpiling and release, and a legalised trade all work by the same principle.  

Flooding the market with horn (or synthetic alternatives) reduces the price, thereby (it is theorised), 

reducing the levels of poaching.  However, since we show here that poaching is insensitive to price, 

none of these policies are likely to curb poaching.   

 

Our results show that poachers respond to levels of enforcement and the severity of the penalty, 

rather than policies that attempt to influence the price of rhino horn. 

 

7 Discussion 

 

This article aims to achieve two objectives. The first is that to estimate the values of unknown and 

difficult to obtain parameters in the open-access harvesting literature. For example, it estimates the 

intrinsic growth rate of rhino populations in South Africa, as well as the adjustment parameter n’. The 

model obtains these values in a novel fashion. First, a system dynamics model is developed and then 

optimisation is used to adjust the parameters until the best fit with the historical data is achieved. This 
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method was also employed by Crookes (2016) for abalone stocks. Second, the model uses these 

estimates in order to determine under what conditions rhino populations may persist. This is 

undertaken by varying a number of enforcement parameters, costs, price, the probability of detection 

prior to a poaching event, and the magnitude of the fine. In this study only policies that directly affect 

poachers are considered. Market level interventions are considered elsewhere (see e.g. Crookes and 

Blignaut 2015). 

 

As far as the parameter estimates are concerned, the adjustment parameter n’, which measures 

changes in effort in response to rhino abundance, is relatively inelastic. This means that poachers will 

continue to hunt rhinos even if levels of abundance change dramatically. Poachers, therefore, are not 

motivated by the need for conserving rhinos. This is a novel finding since very little has been reported 

on the motives of poachers. Most research considers the motives of market participants. This has 

implications for rhino management as the education of poachers regarding the conservation value of 

the species may be beneficial in changing perceptions. The implication of this low elasticity of the 

adjustment parameter is that effort will fall with declines in rhino populations, but would be 

insufficient to prevent local extinctions of rhino populations namely the South African sub-species. 

This model, therefore, supports the findings of Di Minin et al. (2015) and Crookes and Blignaut (2015) 

that under current conditions rhino populations will be extinct over the next 20 years. One reason for 

this (from the model) is that rhino growth rates are on the lower end of the literature range estimates. 

The model is used to identify policy variables that are suitable for assessing conditions in which rhino 

populations are sustainable. Ling and Milner-Gulland (2008) develop a suite of measures for assessing 

the sustainability of wildlife populations. This article extends their analysis to include not only 

Beckerian enforcement measures such as probability of detection and magnitude of fine as 

sustainability criteria, but also profitability measures such as cost and price parameters.  

 

We find that influencing the probability of detection and conviction prior to a poaching event produces 

equilibrium conditions favourable for regulating poaching behaviour. This is similar to the findings of 

De Minin et al. (2015). Even if we assume that market price reduction measures had a commensurate 

effect on the supply chain, resulting in the reduction of the rhino horn price for poachers, we find that 

reducing the price of rhino horn as a standalone policy would not be effective in curbing rhino 

poaching. Price would have to be very low, and poacher costs also increased, for this policy to be 

effective. In reality, influencing poacher costs is a difficult variable to manage on a macro level, and is 

therefore not regarded as an appropriate management intervention. The results from the BBN model 

corroborate these findings. Even under parameter uncertainty, on-the-ground management through 

patrolling and enforcement as well as levying a higher magnitude of fines, are more effective than 

price reduction strategies. This finding is important, given the recent South African legal judgement to 

lift the ‘domestic’ trade ban, effectively giving poachers a de jure means to sell rhino horn. 

 

 

This article proposes that the probability of detection and conviction prior to a poaching event (b) is 

used as a tool for managing rhino populations. Crookes (2016) found that, if there is a legitimate trade, 

there is an incentive for wildlife management authorities to increase the probability of detection after 

a poaching event in order to maximise the revenues from selling wildlife products on the legal market.  

This results in a “trading on extinction” effect, with high revenues for authorities in the short term, 
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but the non-persistence of the traded species over the longer term.  We find that “command and 

control” measures that prevent poaching are the likely to be the most effective management measure. 

The data show that this approach does appear to be working, with numbers of rhinos poached falling 

since 2014. In 2016 1,054 rhinos were poached in South Africa, in 2015, this was 1,175, compared with 

1,215 in 2014.  
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