Geochemical and petrographical investigation of the Waaikraal gold deposit, northwest of Brits, Transvaal.

by

Sabine Marie Charlotte Verryn

Submitted in partial fulfilment of the requirements for the degree of

Magister Scientiae in the Faculty of Science of the University of Pretoria Pretoria

August 1989

ABSTRACT

The Waaikraal Gold Deposit is situated approximately 25 km northwest of Brits and 30 km northeast of Rustenburg.

The gold occurs in a sill-like body consisting of alternating layers and lenses of pyroxenite and a magnetite-rich rock, hosted in sediments belonging to the Rayton Formation of the Transvaal Sequence. The sediments are situated between the magnetite gabbros of the upper zone of the Bushveld Complex and the granites of the Lebowa Granite Suite.

The pyroxenite is composed of clinopyroxene (augite and hedenbergite), plagioclase (mainly andesine), orthoclase, quartz, amphibole (hastingsite and hastingsitic hornblende) and some magnetite and apatite. The magnetite-rich rock consists of magnetite, clinopyroxene (augite and hedenbergite) and plagioclase (mainly andesine). Olivine (fayalite), apatite and ilvaite are accessory constituents in the magnetite-rich rock.

The gold occurs in three different phases viz., very pure native gold, with Ag-content < 1.3 weight per cent, is the most prominent phase, in maldonite (Au₂Bi) and in a gold-copper compound (CuAu₃). It is associated with cobaltite (CoAsS), arsenopyrite (FeAsS), safflorite ((Co,Fe)As₂), native bismuth, bismuthinite (Bi₂S₃), joseite-B (Bi₄Te₂S) and chalcopyrite. Other ore minerals include pyrrhotite, pyrite and sphalerite.

The composition of silicates and the presence of high amounts of titanium in the magnetite grains suggest that the pyroxenite is related to the upper zone of the Bushveld Complex and that it crystallised from a highly differentiated upper zone type liquid, which was injected into the host rocks during the final stages of consolidation of the upper zone. The magnetite-rich rocks, on the other hand, are considered to be of sedimentary origin. Derivation of this rock from an iron-rich metamorphosed sediment is supported by its low titanium content, but comparison with iron-rich sediments shows that this possibility is unlikely. The presence of typical skarn minerals such as hedenbergite, magnetite and ilvaite, as well as the typical association of Cu, Co, As, Bi and Au with Fe, suggest that this rock could also be a calcic iron-skarn derived from sediments through metasomatism by iron-rich fluids. The "original sediment" is most likely is a marl with a composition eqivalent to equal parts of shale and lime-stone.

The temperature range of formation of the ore minerals associated with the gold and the mode of occurrence of the gold suggests a possibly Bushveld related, hydrothermal origin for the gold, where the gold may have been transported as sulfide complexes.

SAMEVATTING

Die Waaikraal goudafsetting is ongeveer 25 km noordwes van Brits en 30 km noordoos van Rustenburg geleë.

Die goud kom voor in 'n plaatagtige liggam bestaande uit afwisselende lae en lense van pirokseniet en magnetietryk gesteentes, in sedimente van die Rayton Formasie van die Transvaal Opeenvolging. Die sedimente lê tussen magnetietgabbros van die bosone van die Bosveldkompleks en graniete van die Lebowa Graniet Suite.

Die pirokseniet bestaan uit klinopirokseen (ougiet en hedenbergiet), plagioklaas (hoofsaaklik andesien), ortoklaas, kwarts, amfibool (hastingsiet en hastingsitiese horingblende) met mindere magnetiet en apatiet. Die magnetietryk gesteente bestaan uit magnetiet, klinopirokseen (ougiet en hedenbergiet) en plagioklaas (hoofsaaklik andesien). Olivien (fayaliet), apatiet en ilvaiet is bykomstige bestanddele van die magnetietryk gesteente.

Die goud kom in drie verskillende fases voor, te wete as baie suiwer goud met 'n silwerinhoud < 1.3 gewigspersent, wat die volopste is, in maldoniet (Au₂Bi) en in 'n goud-koper verbinding (CuAu₃). Die goud is met kobaltiet (CoAsS), arseenpiriet (FeAsS), saffloriet ((Co,Fe)As₂), bismut metaal, bismutiniet (Bi₂S₃), joseiet-B (Bi₄Te₂S) en chalkopiriet geassosieer. Ander ertsminerale sluit in pirrotiet, piriet en sinkblende.

Die samestelling van die silikate en die groot hoeveelhede titaan in die magnetietkorrels dui daarop dat die pirokseniet aan die bosone van die Bosveldkompleks verwant is. Hierdie gesteente het vermoedelik vanuit 'n hoogsgedifferensieerde bosone-tipe vloeistof gekristalliseer, wat gedurende die finale stadiums van konsolidasie van die bosone in die omgewingsgesteentes ingedring is. Die magnetietryk gesteentes aan die ander kant, mag van sedimentêre oorsprong wees, en wel van 'n ysterryk gemetamorfoseerde sediment, wat deur die lae titaaninhoud gesteun word. 'n Vergelyking met ysterryk sedimente toon egter dat hierdie moontlikheid onwaarskynlik is. Die teenwoordigheid van tipiese skarn minerale soos hedenbergiet, magnetiet en ilvaiet, sowel as die tipiese assosiasie van Cu, Co, As, Bi en Au met Fe dui daarop dat hierdie gesteente moontlik 'n kalsiese yster-skarn verteenwoordig wat deur metasomatose van oorspronklike sedimente deur ysterryk vloeistowwe sou kon ontstaan het. Die "oorspronklike sediment" was hoogs waarskynlik 'n mergel met 'n samestelling gelyk aan gelyke dele skalie en kalksteen.

Die temperatuur van vorming van die ertsminerale geassosieer met die goud en die voorkomswyse van die goud dui op 'n waarskynlik Bosveld-verwante, hidrotermale oorsprong vir die goud, waar die goud waarskynlik as sulfiedkomplekse vervoer is.

•

TABLE OF CONTENTS

.

	LIST OF TABLES	
	LIST OF FIGURES	
1.	INTRODUCTION	
	l.l General	
	1.2 Historical Mining Background	
	1.3 Previous Investigations	
2.	GEOLOGY	
3.	PETROGRAPHY	
	3.1 Petrography of the Ore Body	
	3.1.1 Modal Composition of Pyroxenite and Magnetite-Rich Rock	
	3.1.2 Pyroxenite	10
	3.1.3 Magnetite-Rich Rock	16
	3.2 Petrography of Pyroxene-Hornfels, Calc-Silicate Horn- fels, Magnetite Gabbro and Topmost Differentiates of the Bushveld Complex	22
4.	ANALYTICAL PROCEDURES	2
	4.1 Whole Rock Analyses	23
	4.1.1 Sampling	23
	4.1.2 Sample Preparation	23
	4.1.3 Analytical Procedures	24
	4.1.4 Reproducibility	25
	4.1.5 Correction of Analyses 4.2 Analyses of Mineral Compositions	20 29
5. 1	WHOLE-ROCK GEOCHEMISTRY	31
	5.1 Whole-Rock Compositions of Pyroxenite and Magnetite-	31
	Rich Rock	
-	5.2 Tukey-Test	34
-	5.3 Correlation Between Different Elements analysed in Waaikraal Rocks	35
	5.4 Comparison of Waaikraal Rocks with Rocks of the Upper Zone of the Bushveld Complex	37
6. 1	AINERAL CHEMISTRY	42
e	6.1 Pyroxene	42
6	5.2 Plagioclase	43
· e	5.3 Amphibole	46
6	5.4 Olivine	47
6	5.5 Magnetite and Ilmenite	48

7. GOLI) AND ORE MINERALOGY OF THE ORE BODY	52
7.1	Gold and Gold Compounds	52
. 7	/.l.1 Gold	52
7	/.l.2 Maldonite	56
7	/•1•3 CuAu ₃	56
7.2	Bismuth Minerals	59
7.3	Diarsenides	62
7.4	Sulfarsenides	64
7.5	Iron Sulfides	68
7.6	Copper - Bearing Sulfides	71
7.7	Sphalerite	72
7 . 8	Summary of Textural Relations of the Ore Minerals and Approximate Paragenetic Sequence	73
8. CONI	DITIONS OF ORE FORMATION	75
9. POSS	SIBLE TRANSPORT AND ORIGIN OF THE GOLD	79
9.1	Hydrothermal Transport of the Gold	79
9.2	Platinum-Group Element Content of Selected Waaikraal Rocks and possible Origin of the Gold	82
10. THE ROCK	ORIGIN OF THE GOLD-BEARING PYROXENITE AND MAGNETITE-RICH AS FROM WAAIKRAAL	86
10.1	Introduction	86
10.2	Other Ti-Poor Magnetite-Rich Rocks in the Bushveld	86
10.3	Sedimentary Origin of the Magnetite-Rich Rocks	88
10.4	Skarn Origin of the Magnetite-Rich Rocks	9 0
10.5	Conclusion	93
11. SUMM	LARY AND CONCLUSION	94
REFE	RENCES	98
ACKN	IOWLEDGEMENTS	104
APPENDICES		

LIST OF TABLES

Table 3.1	Summary of the abundancy of minerals in pyroxenite and magnetite-rich rock.
Table 4.1	${\rm Fe_20_3}$ contents of samples analysed at ISCOR and UP and ratios between them.
Table 5.1	Average whole rock compositions of pyroxenite and magne- tite-rich rock.
Table 5.2	Average trace element content of pyroxenite and magnetite- rich rock.
Table 5.3	Results of Tukey-test performed to detect differences bet- ween pyroxenite and magnetite-rich rock.
Table 5.4	Arithmetic means of major element and trace element con- tent of magnetite gabbro (N = 3) and rocks from Bierkraal (N = 6).
Table 6.1	Frequencies of different plagioclase compositions of py- roxenite, magnetite-rich rock and magnetite gabbro.
Table 7.1	Mineral assemblage and approximate paragenetic sequence at Waaikraal gold deposit.
Table 8.1	Thermal stabilities of ore minerals occuring with gold at Waaikraal
Table 9.1	Platinum-group element concentrations (in ppb) in Waaikraal pyroxenite (WK 5.2 and WK 6.3, average of two determina- tions), UG-2 (averages after von Gruenewaldt et al., 1986) and Merensky Reef (MR) (after Barnes et al., 1985), margi- nal rocks (basaltic and tholeitic suites) (after Davies and Tredoux, 1985) and C-1 chondrites (after Naldrett and Duke, 1980).
Table 10.1	Whole rock composition of a garnet-magnetite rock from Zeekoegat (van Biljoen, 1949), magnetite rock from the Dwars River Fragment (van Rensburg, 1962), and the means of Waaikraal magnetite-rich rock for comparison (all iron as Fe_2O_3).

Table 10.2 Average whole rock composition of Waaikraal calc-silicate (N = 4) (WK-CS), Waaikraal quartzite (N = 9) (WK-QZ), shale from Zeekoegat (van Biljon ,1949) and a combination (1 : 1) of calc-silicate and shale; together with their respective recalculated (as described in chapter 10.3) magnetite-rich rock from Waaikraal.

LIST OF FIGURES

LIST OF FIGURES				
Figure	2.1	Simplified geological map of part of the Western Bushveld Complex (modified after Geological Sheet 2526 Rustenburg 1 : 250 000, 1981).		
Figure	2.2	Geological map of the area surrounding Waaikraal Gold Mine.		
Figure	2.3	Mine plan indicating positions of sample profiles and gold distribution.		
Figure	3.1	Clinopyroxene with amphibole exsolutions and intersti- tial plagioclase in pyroxenite (WK 6.3).		
Figure	3.2	Amphibole exsolutions surrounding ore minerals in clino- pyroxene. Pyroxenite WK 20.5.		
Figure	3.3	Graphic intergrowth between quartz and feldspar in pyro- xenite (WK 14.4).		
Figure	3.4	Quartz grain veined by fibrous biotite and chlorite in pyroxenite (WK 14.4).		
Figure	3.5	Magnetite with ilmenite and spinel exsolutions in pyroxe- nite (WK 20.5).		
Figure	3.6	Magnetite grain replaced by amphibole, chlorite and other unidentified sheetsilicates with relic exsolution lamel- lae of ilmenite in pyroxenite (WK 12.3).		
Figure	3.7	Magnetite grain replaced by amphibole, chlorite and other unidentified sheetsilicates with relic exsolution lamel- lae of ilmenite in pyroxenite (WK 12.3).		
Figure	3.8	Calcite intergrown with clinopyroxene in pyroxenite (WK 36.8).		
Figure	3.9	Apatite in graphic intergrowth between quartz and plagio- clase in pyroxenite (WK 12.3).		
Figure	3.10	Prehnite and calcite as alteration product of plagioclase with some amphibole in pyroxenite (WK 36.6).		
Figure	3.11	Typical texture of magnetite-rich rock (WK 12.2). Note the small rouded to subhedral inclusions of magnetite in the clinopyroxene.		
Figure	3.12	Clinopyroxene surrounded by plagioclase in magnetite grains. Magnetite-rich rock WK 28.3.		
Figure	3.13	Magnetite with 120 ⁰ interlocking angles and spinel ex- solutions in magnetite-rich rock (WK 52.3).		

-	tite-rich rock (WK l).
Figure 3.15	Plagioclase altered to saussurite and clinozoisite in magnetite-rich rock (WK 28.3).
Figure 3.16	Olivine with clinopyroxene and magnetite in magnetite- rich rock (WK 14.1).
Figure 3.17	Chlorite veins in clinopyroxene and magnetite in magne- tite-rich rock (WK 14.1).
Figure 3.18	Apatite in clinopyroxene in magnetite-rich rock (WK 12.2).
Figure 4.1	Plot of Fe ₂ 0 ₃ content versus Total (in weight per cent).
Figure 4.2	Polished section of ashed sample. Remnant of magnetite with oxidised rim. Magnetite-rich rock WK 24.4.
Figure 4.3	Plot of Fe_2O_3 content of samples analysed at the University of Pretoria versus ISCOR.
Figure 5.1	Arithmetic means of major- and trace elements of Waai- kraal pyroxenite, Waaikraal magnetite-rich rock and mag- netite gabbro normalised to topmost differentiates of the

Figure 3.14 Primary and secondary magnetite with ilvaite in magne-

upper zone intersected by the Bierkraal borehole by division. Figure 5.2 Plot of MgO /(MgO + Fe₂O₃) versus Rb /(K₂O + Na₂O) of Waaikraal pyroxenite and topmost differentiates of the upper zone intersected by the Bierkraal borehole, with an

indication of the differentiation trend.

- Figure 6.1 Composition of clinopyroxenes of Waaikraal pyroxenite and magnetite-rich rock, Waaikraal hornfels, magnetite gabbro and topmost differentiates from the upper zone intersected by the Bierkraal borehole plotted as molecular proportion FeSiO₃:CaSiO₃:MgSiO₃. Compositional trends of Ca-rich pyroxenes from the eastern Bushveld (solid line) and from the western Bushveld (dashed line) are after Atkins, 1969 and Markraaff, 1976 respectively. Clinopyroxene classification according to Morimoto (1988).
- Figure 6.2 Composition of plagioclase of pyroxenite, magnetite-rich rock, magnetite gabbro and rocks from Bierkraal plotted as molecular percentages anorthite, albite and orthoclase.
- Figure 6.3 Plot of Mg $/(Mg + Fe^{2+})$ versus Si showing the compositional variation of amphiboles from the Waaikraal pyroxenite in terms of the nomenclature of Leake (1978).

- Figure 6.4 Composition of olivines from Waaikraal and Bierkraal plotted as ion proportion Fe:Mg:Mn (total Fe as Fe²⁺).
- Figure 6.5 Distribution of TiO₂ in the magnetite of Waaikraal pyroxenite and magnetite-rich rock.
- Figure 6.6 Composition of magnetite and ilmenite of the pyroxenite, magnetite-rich rock, magnetite gabbro and samples from Bierkraal.
- Figure 7.1 Individual gold grains together with joseite and safflorite in pyroxenite (WK 5.2).
- Figure 7.2 Gold with chalcopyrite, cobaltite, arsenopyrite and bismuthinite in pyroxenite (WK 5.2).
- Figure 7.3 Gold with chalcopyrite, cobaltite, arsenopyrite and bismuthinite in pyroxenite (WK 5.2). a: Secondary electron image. b: X-ray distribution pattern of Au.
- Figure 7.4 Droplets of maldonite in safflorite in magnetite-rich rock (WK 52.3).
- Figure 7.5 Maldonite together with safflorite and joseite between magnetite grains of the magnetite-rich rock (WK 52.3).
- Figure 7.6 CuAu₃ attached to safflorite in magnetite-rich rock (WK 52.3).
- Figure 7.7 Joseite (jo), safflorite (sa) and bismuthinite (bi) in magnetite-rich rock (WK 52.3).
- Figure 7.8 Native bismuth surrounded by bismuthinite in pyroxenite (WK 12.4).
- Figure 7.9 Native bismuth with typical twinning surrounding bismuthinite in pyroxenite (WK 12.4).
- Figure 7.10 FeAs₂-CoAs₂-NiAs₂ ternary diagram indicating the compositional variation of safflorites from Waaikraal and the compositional fields of safflorite I-V and rammelsbergite (after Radcliffe and Berry, 1968).
- Figure 7.11 FeAsS-CoAsS-NiAsS ternary diagram indicating the compositional variation of cobaltites and arsenopyrites from Waaikraal.
- Figure 7.12 Cobaltite enclosing safflorite in pyroxenite (WK 5.2).
- Figure 7.13 Cobaltite enclosing safflorite in pyroxenite (WK 5.2).
- Figure 7.14 Euhedral grain of arsenopyrite in pyroxenite (WK 12.4).

- Figure 7.15 (Fe, Co, Ni)-As-S ternary diagram indicating the compositional variation of arsenopyrites from Waaikraal.
- Figure 7.16 Pyrrhotite and chalcopyrite in magnetite grains of magnetite-rich rock (WK 1).
- Figure 7.17 Sphalerite with chalcopyrite disease and pyrrhotite in pyroxenite (WK 21.5).
- Figure 7.18 Compositional variation of pyrrhotite group minerals and analytical uncertaity for 3 sigma for this investigation.
- Figure 7.19 Compositional variation of pyrrhotites from Waaikraal (N = 110).
- Figure 7.20 Intermediate product ("Zwischenprodukt") and pyrrhotite in magnetite-rich rock (WK 1).
- Figure 8.1 The solid solution fields in the ternary diagram FeAsS-CoAsS-NiAsS (after Klemm, 1965), black area : Waaikraal cobaltites and arsenopyrites.
- Figure 8.2 Activity of S₂ versus temperature diagram for selected sulfidation reactions (after Barton and Skinner, 1979). Shaded area: principal regime for joseite bearing assemblages from Waaikraal.
- Figure 9.1 Chondrite normalised PGE and Au concentrations of Waaikraal pyroxenite (WK 5.2 and WK 6.3), UG-2, Merensky Reef and marginal rocks of the Bushveld Complex (basaltic and tholeitic suites) (for sources see Table 9.1).
- Figure 10.1 Average major- and trace element concentration of Algomaand Lake Superior type iron formation (after Gross, 1980) normalised to Waaikraal magnetite-rich rock.
- Figure 10.2 Average major element concentration of typical goethitic, hematitic, chamositic and sideritic ironstones (after Maynard, 1983) normalised to Waaikraal magnetite-rich rock.
- Figure 10.3 Average major element concentration of Waaikraal calcsilicate, Waaikraal quartzite, shale from Zeekoegat (van Biljon, 1949) and a combination of shale and calcsilicate (1:1) normalised to their respective recalculated (as described in chapter 10.3) Waaikraal magnetite-rich rock.

1. INTRODUCTION

1.1 General

Waaikraal Gold Mine is situated on Portion 2 of the farm Waaikraal 396JQ in Bophuthatswana, approximately 25 km north-west of Brits and 30 km north-east of Rustenburg (see Fig. 2.1).

The mine itself is fairly small, with underground reef development only about 100 metres in extent.

The deposit is a sill-like body of magnetite-rich rock and pyroxenite in a large xenolith of Transvaal sediments wedged between the upper zone and the Lebowa Granite Suite of the Bushveld Complex.

A long standing problem has been the question of the relationship of the Waaikraal deposit to the Bushveld Complex. The aim of this investigation is therefore to ascertain whether the petrography, ore mineralogy and chemistry of the various minerals, as well as the geochemical signature of the rocks, could provide an answer to the above question, and information on the origin of the gold and its host rocks.

1.2 Historical Mining Background

According to Wagner (1926a), free gold in fairly coarse grains had long been known to occur in the surface soils on the farm Waaikraal. The gold was traced back to its source in 1925 by Mr. W.M. Edwards, who named his discovery the "Moorcroft Reef".

Open pit and underground mining activities started in 1926 and continued until about 1945, when mining ceased, possibly due to an intrusive dolerite dyke.

Bethanie Mining Corporation took over the mine in 1982 and their activities continued until the middle of 1986. This company mined underground and also reworked old slimes dumps.

1.3 Previous Investigations

Very few reports and publications are available on the gold deposit at Waaikraal.

The earliest study, and only official publication on this locality, was that by Wagner in 1926a, who described the major ore bearer as a pyroxenitic, quartz-bearing sill of soda gabbro, which he considered to belong to the Bushveld Complex. The gold was found to occur mainly with secondary limonite derived from oxidation of pyrrhotite and pyrite. The highest gold content was observed in the central part of the sill.

In a supplementary note, Wagner (1926b) described a greyish silvery-white mineral with a bright metallic lustre, which he considered to be krennerite, a telluride of gold.

Van Biljon (1974) briefly referred to the Waaikraal Gold Deposit and maintained that both the pyroxenitic quartz-bearing soda gabbro and the recrystallised ironstone (mainly magnetite) are products of replacement of banded cherty rocks over- and underlain by quartzite. The gold bearer is believed not to be injected into the ironstone as maintained by Wagner, but to be a replacement product.

The Waaikraal deposit was reinvestigated by the Bophuthatswana Geological Survey (Weston, 1980, 1981). Thin section study of samples collected in the quarry led Weston (1980) to the conclusions that the amount of magnetite decreases, while the amount of pyroxene increases from the top to the bottom of the sill and that there is a general increase in gold content towards the base of the sill.

Subsequent drilling down dip from the quarry indicated that the sequence of the rocks obtained from the cores is not identical to the sequence in the quarry (Weston, 1981). A magnetite-pyroxenite was believed to be the ore bearer although the gold values obtained were very low. Unfortunately, the drill cores were in a very bad condition and the exact drilling positions could not be obtained, which made a further study of those cores not feasable.

A mineralogical examination of the Moorcroft Reef was done by Swash in 1983. He states that the dominant ore mineral is joseite $(Bi_4(TeS)_3)$ (a very soft silvery coloured mineral), with which the gold is nearly always associated.

2. GEOLOGY

The Waaikraal deposit occurs in sediments belonging to the Rayton Formation of the Transvaal Sequence (Geological Survey, 1981), wedged between the magnetite gabbros of the upper zone of the Bushveld Complex and granites of the Lebowa Granite Suite.

The area around Waaikraal Gold Mine was mapped in detail at a scale of 1:12 000 (Fig. 2.2). Because of the poor outcrops, the Bethanie Mining Corporation dug 1-3 metre deep survey pits in order to determine the extent of the ore body. Many of these pits did not penetrate the soil cover, others exposed some of the underlying rock, whereas few exposed a succession of rocks consisting of hornfels, magnetiterich rock, pyroxenite and quartzite.

The detailed map (Fig. 2.2) includes many inferred contacts due to the poor exposure in the field. The positioning of the inferred faults is based on the outcrop pattern of the magnetite-rich rock and the pyroxenite in pits and trenches.

The oldest rocks in the area are the sediments belonging to the Transvaal Sequence. Quartzite is most abundant and consists of euhedral to subhedral interlocking quartz grains with 120° triple junctions. Small amounts of plagioclase, mica, chlorite and amphibole occupy the intergranular sites, whilst zircon is the only accessory mineral present.

Patchy outcrops of pyroxene-hornfels and calc-silicate hornfels probably represent remnants of originally interbedded shale and limestone. The sediments occupy the central part of the mapped area (Fig. 2.2) and host the ore body, which is an inclined, sill-like body of pyroxenite and magnetite-rich rock within the quartzite. Its lateral extension is uncertain because of the lack of outcrop. The distribution of the sill is largely inferred from the pits dug by Bethanie Mining Corporation. This investigation concentrates on exposures in the mine itself. The ore body dips approximately 30° to the northeast and strikes in a northwest-southeast direction. The sill consists of an irregularly alternating succession of lenses and layers of pyroxenite and magnetite-rich rock with thin lenses and bands of magnetite-rich rock in the pyroxenite and the vice versa. Within the old workings the hanging wall consists of pyroxene-hornfels and the foot wall of quartzite.

The distribution of the two rock types throughout the mine was mapped and is presented, together with the distribution of the gold values in Figure 2.3. The profiles indicated in this figure do not represent the whole succession from the foot- to the hanging wall, because the entire sill was not always mined. It is evident from this diagram that the individual layers are discontinuous and could therefore be interpreted as large, lenticular bodies.

The southern area consists of magnetite gabbros of the upper zone of the Bushveld Complex, which contain a prominent northwest-southeast striking layer of magnetite. Some pegmatoid layers can be observed in the magnetite gabbros. Magnetite gabbro was also found in pits dug within the quartzite to the south of the mine.

The northern part of the mapped area is occupied by granite of the Lebowa Granite Suite (SACS, 1980). A small amount of granite has intruded along the contact between the magnetite gabbro and the quartzite to the south of the mine.

The area is intersected by three northwest-southeast striking dolerite dykes.

LEGEND

Pyroxenite-Magnetite-rich rock 'sill']Lebowa Granite Suite BUSHVELD COMPLEX Magnetite Gabbro with magnetite layer // and pegmatoids Pyroxene hornfels TRANSVAAL SEQUENCE Rayton Formation Pretoria Group Gate Farm boundary Inferred contact Slimes dump 603 Rock dump 000 Quarry C 300 500m SCALE 1:12 000

Figure 2.2 Geological map of the area surrounding Waaikraal Gold Mine.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

3. PETROGRAPHY

3.1 Petrography of the Ore Body

3.1.1 Modal Composition of the Pyroxenite and Magnetite-Rich Rock

The mineral content in the pyroxenite and magnetite-rich rock was established by pointcounting sixteen thin sections with a Swift Point Counter (Appendix 1). Between 790 and 1031 points were counted per section. Plagioclase is frequently altered and is indicated as such in the Appendix.

The two rock types, pyroxenite and magnetite-rich rock, were distinguished on the basis of their macroscopic appearance in the field and although their respective modal compositions can vary widely (Table 3.1), contacts between the two rock types are always sharp and readily discernable in the mine.

	Volume %		
Mineral	Pyroxenite	Magnetite-rich rock	
	-		
	50 00	10 (0	
Clinopyroxene	50 - 90	10 - 60	
Plagioclase	0 - 25	3 - 17	
Orthoclase	1 - 7	-	
Quartz	1 - 20	-	
Hornblende	0 - 16	-	
Olivine	_	0 - 28	
Mica / Chlorite	0 - 2	0 - 5	
Opaque	0 - 12	30 - 53	
Accessory Minerals	0 - 2	0 - 1	

Table 3.1	Summary of th	e abundancy of	f minerals	in pyroxenite ar	ıd
	magnetite-ric	n rock.			

3.1.2 Pyroxenite

Clinopyroxene is the major constituent of the pyroxenite at Waaikraal. It is anhedral and varies in grain size from less than one millimetre to more than a centimetre (Fig. 3.1) and is slightly pleochroic in shades of light green. Amphibole occurs as inclusions in the clinopyroxene and often surrounds ore minerals (Figures 3.1 and 3.2). The amphibole is strongly pleochroic in shades of green. No orthopyroxene was observed.

Plagioclase was only found interstitially. In many cases the plagioclase has undergone saussuritisation, possibly as a result of weathering and hydrothermal activities. Albite twinning is very common (Fig. 3.1).

The pyroxenite contains up to 18 volume per cent quartz (Table 3.1), which occurs mostly interstitially together with feldspar. Graphic intergrowth between quartz and feldspar is very common in this rock (Fig. 3.3). Individual quartz grains are often veined by fibrous biotite and chlorite (Fig. 3.4), which are restricted to the quartz grains and are probably caused by hydrothermal alteration (Moorhouse, 1959).

Magnetite in the pyroxenite occurs as discrete subhedral to anhedral grains of up to five millimetres in length. The grains contain abundant exsolution lamellae of ilmenite, but frequently also spinel exsolutions (Fig. 3.5). The magnetite is occasionally replaced by amphibole, sericite and other unidentified sheetsilicates with relic exsolution lamellae of ilmenite (Figures 3.6 and 3.7).

Accessory minerals are calcite (Fig.3.8) and apatite, which is usually present as large euhedral crystals imbedded in quartz and plagioclase (Fig. 3.9). The calcite usually occurs as vein fillings, in which case it is evidently of secondary origin. In sample WK 36.8, however, abundant calcite was found to occur as large grains intergrown with clinopyroxene and prehnite (Fig. 3.10). In this case, prehnite together with calcite probably is a hydrothermal alteration product of plagioclase.

plag

Clinopyroxene (cpx) with amphibole exsolu-Figure 3.1 tions (amph) and interstitial plagioclase (plag) in pyroxenite (WK 6.3). Photomicrograph: transmitted light (TL), cross-polarized light (CPL). + 300 µm

Amphibole exsolutions surrounding ore mine-Figure 3.2 rals in clinopyroxene. Pyroxenite WK 20.5. Photomicrograph: TL, plane polarized light — → 300 µm (PPL).

Figure 3.3 Graphic intergrowth between quartz (qz) and feldspar (fsp) in pyroxenite (WK 14.4). Photomicrograph: TL, CPL. 300 µm

Figure 3.4 Quartz grain veined by fibrous biotite (bte) and chlorite (chl) in pyroxenite (WK 14.4). Photomicrograph: TL, CPL. 300 µm

Figure 3.5 Magnetite (mt) with ilmenite (il) and spinel (sp) exsolutions in pyroxenite (WK 20.5). Photomicrograph: reflected light (RL), PPL.

Figure 3.6 Magnetite grain replaced by amphibole, chlorite and other unidentified sheetsilicates with relic exsolution lamellae of ilmenite in pyroxenite (WK 12.3). Photomicrograph: TL, PPL.

Figure 3.7 Magnetite grain replaced by amphibole, chlorite and other unidentified sheetsilicates with relic exsolution lamellae of ilmenite in pyroxenite (WK 12.3). Photomicrograph: RL, PPL.

Figure 3.8 Calcite (ca) intergrown with clinopyroxene in pyroxenite (WK 36.8). Photomicrograph: TL, CPL.

14

Figure 3.9 Apatite (ap) in graphic intergrowth between quartz and plagioclase in pyroxenite (WK 12.3). Photomicrograph: TL, PPL. 300 µm

pre

3.1.3 Magnetite-Rich Rock

The clinopyroxene is more euhedral in the magnetite-rich rock than in the pyroxenite and does not contain any amphibole exsolutions. The grains are generally smaller than 2 millimetres in diameter, and frequently contain inclusions of small rounded to subhedral magnetite granules. Small clinopyroxene grains can also be found in magnetite were they are occasionally surrounded by plagioclase (Figures 3.11 and 3.12).

Larger (approximately 2 millimetres diameter) magnetite grains occur as anhedral to subhedral aggregates, which occasionally display 120° triple junctions. The magnetite of the magnetite-rich rock contains no ilmenite exsolutions, although spinel exsolutions occur throughout many of the grains (Fig. 3.13). Occasionally secondary magnetite occurs as rims surrounding several of the primary magnetite, or as veins together with chlorite and ilvaite. In polished section, the secondary magnetite is slightly darker than the primary magnetite (Fig.3.14).

Plagioclase occurs intersitially and is more altered than that in the pyroxenite, and apart from saussurite, clinozoisite was also identified as an alteration product (see Appendix 5.6 for composition) (Fig. 3.15).

Olivine was found to occur in one sample of magnetite-rich rock (WK 14.1). It occurs as anhedral grains together with clinopyroxene and magnetite (Fig. 3.16).

YIlvaite $(Ca(Fe^{2+},Mn,Mg)_2(Fe^{3+},A1)(SiO_4)_2OH)$ was observed in several samples of magnetite-rich rock. This mineral is present together with primary and secondary magnetite, clinopyroxene and sometimes chlorite. It forms aggregates of subhedral prismatic crystals which are randomly orientated (Fig. 3.14). Ilvaite usually occurs as a late stage mineral in Ca-Fe-Si skarn deposits (Burt, 1971), but can also occur as a reaction product between plagioclase and fayalite-rich olivine (Tröger, 1969) and is described as the latter in the upper zone of the Bushveld Complex (Reynolds, 1985). Thin veins often cut across grain boundaries of silicates and magnetite. They are generally filled with chlorite, but occasionally also contain some ilvaite and secondary magnetite (Fig. 3.17).

Apatite is found as an accessory mineral and occurs as small subhedral to euhedral inclusions in the clinopyroxene (Fig. 3.18).

mt

Figure 3.11 Typical texture of magnetite-rich rock (WK 12.2). Note the small rouded to subhedral inclusions of magnetite in the clinopyroxene (cpx). Photomicrograph: TL, CPL.

Figure 3.12 Clinopyroxene surrounded by plagioclase in magnetite grains. Magnetite-rich rock WK 28.3. Photomicrograph: TL, CPL.

Figure 3.13 Magnetite with 120⁰ interlocking angles and spinel exsolutions in magnetite-rich rock (WK 52.3). Photomicrograph: RL, PPL.

sec.mt

prim.mt

Figure 3.14 Primary and secondary magnetite with ilvaite (ilv) (dark grey to bluish grey) in magnetite-rich rock (WK 1). Photomicrograph: RL, PPL.

saus clz

Figure 3.15 Plagioclase altered to saussurite (saus) and clinozoisite (clz) in magnetite-rich rock (WK 28.3). Photomicrograph: TL, CPL.

1 Q

in magnetite-rich rock (WK 14.1). Photomicrograph: TL, CPL. How 300 µm

Figure 3.18 Apatite in clinopyroxene in magnetite-rich rock (WK 12.2). Photomicrograph: TL, PPL.

3.2 Petrography of Pyroxene Hornfels, Calc-Silicate Hornfels, Magnetite Gabbro and Topmost Differentiates of the Bushveld Complex

The **pyroxene-hornfels** consists mainly of euhedral to subhedral grains of clinopyroxene, which often display 120[°] triple junctions and frequently contain inclusions of small plagioclase granules. The sites between the clinopyroxenes are filled with saussurite. The only accessory mineral is apatite.

Subhedral wollastonite is the major constituent of the calc-silicate hornfels. The interstitial sites are occupied by garnet (approximately $An_{60}Py_{40}$, determined by microprobe). Tremolite occurs in a few places.

The most abundant constituent of the nearby **magnetite gabbro** is euhedral to subhedral plagioclase. Clinopyroxene, orthopyroxene, plagioclase and magnetite occur interstitially, whereas biotite and chlorite often surround magnetite grains.

Due to the lack of exposure of the **topmost differentiates of the Bushveld Complex**, rocks from the top of the Bierkraal-1 borehole (location indicated in Figure 2.1) were used for comparison. Reynolds (1985) briefly described the mineralogy of the rocks from this borehole. The rocks under consideration here are generally medium grained (1-5 millimetres in diameter) ferrodiorites and ferrogabbros. They contain plagioclase and abundant Fe-rich olivine, which commonly alters to fine grained aggregates of chlorite and/or iddingsite. Ilvaite is present as a minor alteration product of the olivine. Very dark brownish-green amphibole, quartz and alkali feldspar are common. Apatite occurs as small, isolated subhedral crystals located interstitially between silicate minerals. Opaque oxide minerals (magnetite and ilmenite) are minor constituents.

4. ANALYTICAL PROCEDURES

4.1 Whole Rock Analyses

4.1.1 Sampling

172 Samples of between 4 and 8 kilograms, depending on coarseness of the rocks, were taken from 31 vertical sections at regularly spaced intervals in the accessible parts of the old mine workings. This yielded a good coverage of that part of the sill exposed in the mine. Footwall quartzite was sampled wherever it was accessible, but hanging wall pyroxene hornfels was not exposed in the mine. Sample localities are indicated in Figure 2.3.

Sampling was done by hammer and chisel and care was taken that samples did not extend over lithological contacts. Each sample was split; one half was used for gold fire assays and the other for thin sectioning and geochemical analysis.

Additional samples of the footwall quartzite were taken outside the mine along strike at intervals of about 15 metres (QZ 1-6). One sample of pyroxene hornfels (HF1) was taken at a face outside the mine above the easternmost entrance and four samples of calc-silicate hornfels were taken to the east of the mine.

Three samples of magnetite gabbro were collected south of the magnetite layer.

4.1.2 Sample Preparation

In order to eliminate samples with large amounts of weathered surfaces only 148 samples were crushed in two stages in a jaw crusher. The first stage reduced the samples to a grain size of 3-4 centimetres in diameter. Fragments with signs of weathering were removed, prior to further crushing to a grain size of approximately 5 millimeters diameter. Representative portions were then powdered to -200 mesh using a mill with a chrome steel container. Although the extent of chrome contamination of the samples is not known, chrome values are indicated in the analytical tables and figures, but no conclusions are drawn from them. The presence of important cobalt-bearing mineral assemblages at Waaikraal prevented the use of tungsten carbide bowls, which are known to contain significant quantities of cobalt.

4.1.3 Analytical Procedures

Geochemical analyses were performed on an ARL 8420 XRF at the University of Pretoria. Operating conditions are presented in Appendix 2.1.

Major elements Si, Ti, Al, Fe, Mn, Mg, Ca, K, P, Cr and Ni were analysed on glass discs which were prepared according to the method of Norrish an Hutton (1969). 1.0000 g of Spectroflux, 0.1866 g of sample and 0.0134 g of NaNO₃ were used for the preparation of the discs.

The H_2O^- content was determined by weighing before and after heating to $110^{\circ}C$ for a minimum of 4 hours. Loss (gain) on ignition was determined by weighing before and after heating the sample to $950^{\circ}C$ for a minimum of 8 hours.

For Na and the trace elements Ba, Co, Cr, Cu, Ga, Mo, Nb, Ni, Pb, Rb, Sc, Sr, Th, U, V, Y, Zn and Zr approximately 15 grams of each sample powder was mixed with 12 drops of a binder (2% Moviol) and pelletized in aluminium cups.

Gold was analysed by fire assay at Rustenburg Platinum Mines.

Thin section investigation of the analysed rocks revealed the presence of bismuth bearing minerals. Seeing that the $\text{Bi}_{L_{\beta}}$ -line interferes with the $\text{Th}_{L_{\chi}}$ -line, Th values were discarded and are not shown in analytical tables (Appendix 3.2).
4.1.4 Reproducibility

Estimates for the reproducibility of analyses (Appendix 2.1.3) was obtained by calculating the standard deviation from duplicate analyses with the formula given by Kaiser and Specker (1956). Reproducibility was calculated for trace elements of whole rock analyses using two independantly prepared pellets for each of 10 samples.

4.1.5 Correction of Analyses

After matrix corrections (Norrish & Hutton, 1969) and after provision was made for loss (gain for most samples) of ignition and H_20^- , all but 26 analyses yielded totals of more than 101.5 weight per cent.

In order to determine the reason for this deficiency in the analytical data, Pearson correlation coefficients were calculated between the total and the major elements analysed. The highest correlation was found to be between the total and Fe_2O_3 (r = 0.64) and also between the total and loss on ignition (r = 0.53). As these two parameters are closely linked it is presumed that the high totals of the analyses are connected to the high iron content of the samples. A plot of Fe_2O_3 against the total is presented in Fig. 4.1.

Figure 4.1 Plot of Fe₂0₃ content versus Total (in weight per cent).

The following factors could be the cause of these high totals:

- 1. The material was possibly not ashed long enough at $950^{\circ}C_{\bullet}$
- 2. The magnetite, which contains most of the Fe²⁺ to be oxidised at 950^oC, was possibly not fully oxidised and could have oxidised further by the flux during melting. Consequently the mass of the sample analysed could have changed.
- 3. The calibration for Fe may not be correct.

26

The above three possibilities were evaluated in two different ways:

1. 5 grams of three samples with a high iron-content were ashed for 56 hours at 950°C and weighted at regular intervals, after heating at 110°C for 4 hours. The average gain in weight after heating to 950°C for 8 hours was 0.1179 grams. After a further 8 hours, the samples gained an average of another 0.0004 grams and after a further 16 hours there was another gain of 0.0055 grams. The amounts gained on further heating for 24 hours are negligable, and only amount to 0.12 per cent of the initial sample weight.

Examination of polished sections of three ashed samples under reflected light showed that the core of the magnetite grains were often not fully oxidised (Fig. 4.2). Consequently, there is a distinct possibility that the magnetite only oxidised fully in the presence of the flux during preparation of the glass discs.

— 1 50 µm

Figure 4.2 Polished section of ashed sample. Remnant of magnetite (mt) with oxidised rim (ox). Magnetite-rich rock WK 24.4. Photomicrograph: reflected light, plane polarized light. 2.

Four samples with varying iron contents were analysed wet chemically for Fe_2O_3 at ISCOR to determine possible inaccuracies of the calibration. Significant differences in the Fe_2O_3 content between analyses done at ISCOR and Pretoria University were detected (Table 4.1). The Fe_2O_3 contents of both analyses when plotted on a binary variation diagram (Fig. 4.3), yields a straight line relationship below the 1:1 line. The equation for the regression line is

$$ISCOR = 0.9347 * UP + 1.3375$$

and has a correlation coefficient of r = 0.9999.

Sample	Sample UP		Iscor/UP				
WK 28.5	55.40	53.00	1.045				
WK 3.1	68.34	65.40	1.045				
WK 28.1	74.83	71.30	1.050				
WK 14.1	87.25	82.80	1.054				

Table 4.1 Fe₂O₃ contents of samples analysed at ISCOR and UP and ratios between them.

Figure 4.3 Plot of Fe_2O_3 content of samples analysed at the University of Pretoria versus ISCOR (in weight per cent).

Seeing that only 26 analyses have totals between 98.5 and 101.5 weight percent, it was decided to correct all the analyses for the Fe₂O₃ content as follows:

i) Analyses with an Fe_2O_3 content above 50 weight per cent were corrected using the formula of the regression line:

$$Fe_2O_3(corr) = 0.9347 * Fe_2O_3 + 1.3375$$

ii) Analyses with an Fe_2O_3 content below 50 weight per cent were corrected by dividing the Fe_2O_3 content obtained at UP by 1.045, which is the ratio between the two analyses for samples with the lowest iron content (Table 4.1).

These above corrections resulted in 82 samples with a total of between 98.5 and 101.5 weight per cent, which are presented in Appendix 3.1. 56 samples had a total above 101.5 and 6 samples below 98.5 weight per cent and are not represented in the appendix.

4.2 Analyses of Mineral Compositions

Mineral compositions of silicates, magnetite, ilmenite and other ore minerals were obtained by microprobe analyses on a JEOL 733 Superprobe with 4 spectrometers at the University of Pretoria. Operating conditions for the different minerals are summarised in Appendix 2.2.1, whilst analytical results are presented in Appendix 5.

Only analyses with totals ranging between 98.5 and 101.5 weight per cent were accepted for clinopyroxene, feldspars, magnetite and ore minerals. Due to the presence of water, OH^- and other light elements such as F and Cl which cannot be readily analysed with the electron microprobe, totals for the amphibole analyses usually do not add up to 100 per cent.

Total iron content is referred to as FeO, exept in the case of magnetite analyses, for which Fe_2O_3 was calculated, assuming stoichio-

metry.

Estimates for the reproducibility were calculated according to Kaiser and Specker (1956) (Appendix 2.2.3). Duplicate analyses of identical spots on minerals could only be obtained for clinopyroxene, magnetite, ilmenite and ore minerals. The sodium in albite-rich plagioclase evaporates when exposed to the electron-beam for too long. Limits of detection (Appendix 2.2.2) for microprobe analyses were determined at the 3 sigma level.

5. WHOLE ROCK GEOCHEMISTRY

5.1 Whole Rock Compositions of Pyroxenite and Magnetite-Rich Rock

Arithmetic means and standard deviations of each element analysed were calculated for the two different rock types. Although 70 samples of pyroxenite and 54 samples of magnetite-rich rock were analysed, the correction procedure for Fe_2O_3 outlined in chapter 4.1.5 resulted in 37 and 24 analyses with acceptable Fe_2O_3 values respectively. Nevertheless, all analyses were considered in the calculations for the remaining elements. Where concentrations of elements are below the lower limit of detection (1.1.d.) they were not included in the calculations. Consequently, the mean values and the standard deviations shown in Tables 5.1 and 5.2 are not always representative of the entire population, because they were calculated only from that part of the population with element values above the lower limit of detection (see N in Tables 5.1 and 5.2).

Table 5.1 Average whole rock compositions of pyroxenite (a) and magnetite-rich rock (b) (in weight per cent) $(N = number of values > 1.1.d., except for Fe_2O_3$ which is explained in chapter 5.1).

a: Pyroxenite

Element	Mean	s .	min	max	N
$\begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_{2}\text{O}_3 \\ \text{Fe}_{2}\text{O}_3 \\ \text{MnO} \\ \text{MgO} \\ \text{CaO} \\ \text{Na}_{2}\text{O} \\ \text{K}_{2}\text{O} \\ \text{P}_{2}\text{O}_5 \\ \text{Cr}_{2}\text{O}_3 \\ \text{NiO} \end{array}$	46.51 0.62 4.66 31.81 0.58 1.57 15.28 0.90 0.57 0.08 0.08 ≤ 1.1.44	6.53 0.34 1.45 9.21 0.11 0.85 2.11 0.35 0.23 0.06 0.01 ≤ 1.1.d.	29.23 0.11 1.67 21.38 0.31 0.22 7.89 < 1.1.d. 0.12 < 1.1.d. < 1.1.d. < 1.1.d.	62.72 1.69 9.74 54.32 1.01 4.07 21.20 2.14 1.12 0.37 0.13 ≤ 1.1.d.	70 70 37 70 70 70 70 69 70 57 66 0

b: Magnetite-rich rock

Element	Mean	s	min	max	N
SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Cr2O3 NIO K2O Cr2O3 NIO K2O K2O K2O K2O K2O K2O K2O K2O K2O K2	26.12 0.62 4.77 60.87 0.56 0.49 10.07 0.33 0.19 0.04 0.09 1.1.d.	7.15 0.50 1.19 14.21 0.19 0.33 3.67 0.27 0.12 0.02 0.02 < 1.1.d.	13.43 0.20 2.60 31.38 0.38 0.10 1.91 < 1.1.d. < 1.1.d. < 1.1.d. < 1.1.d. < 1.1.d. < 1.1.d.	46.49 2.82 8.48 82.89 1.24 1.67 21.29 1.21 0.57 0.09 0.13 < 1.1.d.	54 54 24 54 54 54 54 30 53 24 54 0

2.2

Table 5.2 Average trace element content of pyroxenite (a) and magnetite-rich rock (b) (in ppm). (N = number of values > l.l.d.).

×

a: Pyroxenite

Element	Mean	S	Min	Max	N
Element Zn * Cu * Ni ** Co Ga Mo Nb *** Zr Y	Mean 161 22 25 234 11 5 7 134 28	s 43 14 22 151 4 2 3 48 17	Min 17 < 1.1.d. 4 4 < 1.1.d. < 1.1.d. < 1.1.d. 14 11	Max 247 109 138 667 24 11 16 287 112	N 70 67 68 70 62 18 59 70 70 70
Sr Rb U**** Pb Cr V Ba Sc Au	60 24 11 12 57 36 300 29 4	28 13 5 22 17 108 17 12	9 < 1.1.d. < 1.1.d. < 1.1.d. < 1.1.d. 8 47 < 1.1.d. 0	158 103 24 27 120 83 617 63 83	70 66 32 52 69 70 70 34 70

* Extreme value of 1592 omitted in calculation of mean. ** Extreme values of 209 and 380 omitted in calculation of mean. ***

Extreme values of 90, 135, 152, 181 and 211 omitted in calculation of mean.
**** Extreme value of 103 omitted in calculation of mean.

Element	Mean	S	min	max	N
Zn	32	25	16	205	54
Cu	21	20	6	152	54
Ni*	216	169	<1.1.d.	745	43
Co**	9	4	<1.1.d.	23	46
Ga	8	2	<1.1.d.	14	47
Mo	9	3	<1.1.d.	19	52
Nb	171	66	9	446	54
Zr	16	16	<1.1.d.	123	52
Y	56	36	3	173	54
Sr	13	8	< 1.1.d.	44	48
· Rb	6	5	<1.1.d.	18	16
U	22	17	< 1.1.d.	58 ·	21
РЪ	-	-	< 1.1.d.	16	1
Cr	91	32	21	20 9	54
v	57	27	< 1.1.d.	120	49
Ba	161	108	41	627	54
Sc	< 1.1.d.	< 1.1.d.	<1.1.d.	< 1.1.d.	0
Au	1	5	0	30	54
		<u></u>			

b: Magnetite-rich rock

* Extreme value of 4853 omitted in calculation of mean.
** Extreme value of 259 omitted in calculation of mean.

5.2 Tukey-Test

The modified Tukey-test (Neave, 1979) was used to establish whether there is a significant geochemical difference between the pyroxenite and the magnetite-rich rock. The test compares the positions of the different populations (content of each element in pyroxenite and the magnetite-rich rock) and is based on the zero-hypothesis (H_0) that a difference exsists between the two rock types.

The critical values for the acceptance of H_0 at a certain significance level (= error probability) for the evaluation of a difference in Fe₂0₃ had to be corrected because the ratio between the numbers of samples was too large.

The following are the critical values for the two-sided test and their corresponding error-probabilities (in parentheses).

for	Fe ₂ 0 ₃ :	11	(5%)	14	(1%)	17	(0.1%)
a11	other elements:	10	(5%)	13	(1%)	16	(0.1%)

The results of the Tukey-test are indicated in Table 5.3 below:

		<u> </u>
Element	Test Statistics	Error Probability*
SiO ₂ TiO ₂ Fe ₂ O ₃ MnO MgO	85 5 47 9 42	<< 0.1 % > 5 % << 0.1 % > 5 % << 0.1 %
CaO Na ₂ O	23 44	< 0.1 % << 0.1 %
Zn Cu Co Nb	66 3 70 74	<< 0.1 % > 5 % << 0.1 % << 0.1 %
Zr Sr Cr Ba Au	93 83 31 14 4	< 0.1 % $< 0.1 %$ $< 0.1 %$ $< 0.1 %$ $< 0.1 %$ $> 5 %$
	1	

Table 5.3 Results of Tukey-test performed to detect differences between pyroxenite and magnetite-rich rock

for H that there is a difference between the two rock types.

२ ८

No evaluation of a difference can be made for P_2O_5 , Sc, Pb, U, Rb, Mo and Ga because the lowest values for both populations lie below the limit of detection and it is therefore not possible to work out the test statistics. For Al_2O_3 , V, Y and Ni the test can also not be applied, because here the highest and the lowest values observed come from the same rock type, even though one extreme value may be omitted in the modified Tukey-test.

The test does, however, indicate that significant differences exsist for most of the other elements. Only TiO₂, MnO, Cu and Au show error-probabilities higher than 5 per cent, which implies that the two rock types can not be distinguished on the basis of these elements.

The significant differences in the SiO_2 , Fe_2O_3 , MgO and CaO contents can readily be explained by the difference in the mineralogy of the two rock types. Si, Mg, Ca and some Fe are concentrated in clinopyroxene, quartz, plagioclase and amphibole, whereas the bulk of the Fe is concentrated in magnetite, which is much more abundant in the magnetite-rich rock.

5.3 Correlations between Different Elements analysed in Waaikraal Rocks

Element concentrations obtained for the pyroxenite and the magnetite-rich rock were used in Spearman correlation matrices for each rock type seperately (Appendix 4). Values below the lower limit of detection were omitted in the calculations.

In the magnetite-rich rock, very strong positive correlations (r = 0.802 to 0.866) between SiO_2 , CaO and Al_2O_3 and very strong negative correlations (r = -0.836 to -0.976) between these elements and Fe₂O₃ result. MgO and K₂O show somewhat less pronounced positive correlations (r = 0.441 to 0.691) with SiO₂, CaO and Al₂O₃, and negative correlations (r = -0.542 to -0.715) with Fe₂O₃. SiO₂, CaO, Al₂O₃, MgO and K₂O are thought to reflect the silicate component (clinopyroxene, plagioclase, orthoclase and quartz) of the rock, whereas

 Fe_2O_3 reflects the magnetite component.

A relatively strong negative correlation between TiO_2 and Fe_2O_3 (r = -0.668) indicates that TiO_2 is concentrated in silicates (r = 0.360 between TiO_2 and SiO_2) rather than in the magnetite, which is substantiated by the absence of ilmenite exsolutions in the magnetite. The positive correlation between Al_2O_3 and Sr, Y, Ba, Zr and Nb

The positive correlation between $A1_{2}O_{3}$ and S1, 1, 5a, 21 and NB (r = 0.370 to 0.883) indicates that these elements could have been adsorbed onto sheetsilicates or the feldspars, which is also supported by the positive correlation between Sr, Y, Zr, Ba and K₂O. A principal component analysis groups K₂O and Al₂O₃ together with Nb, Zr, Y, Ba and Sr in one factor and K₂O, Ba and Sr without Nb, Zr and Y in another factor. These inter-element relations indicate that Nb, Zr, Y, Ba and Sr were preferentially concentrated in sheetsilicates like clay minerals and mica, whereas Ba and Sr were also concentrated in orthoclase. Adsorbtion of Nb, Zr, Y, Ba and Sr onto clay minerals is mentioned for example by Tobschall (1975) to occur in the Steiger Slates (Vosges, France).

The positive correlation between Zn and Fe_2O_3 (r = 0.481) and negative correlations of Zn with CaO, Al_2O_3 and SiO_2 (r = -0.593 to -0.757) suggests that the Zn is contained in the magnetite.

Similar to the magnetite-rich rock, there is a very strong negative correlation (r = -0.894) between SiO₂ and Fe₂O₃ in the pyroxenite. SiO₂, MgO, Na₂O and K₂O are positively correlated with each other (r = 0.347 to 0.587) and negatively correlated with Fe₂O₃ (r = -0.499 to -0.894) reflecting the major mineralogical phases. Al₂O₃ shows positive correlations (r = 0.374 to 0.449) with Na₂O and K₂O and a negative one (r = -0.433) with CaO. Al₂O₃, Na₂O and K₂O are thought to represent the feldspar component of the pyroxenite, whereas the negative correlation between Al₂O₃ and CaO is reflected by the inverse proportion of modal clinopyroxene and plagloclase observed in these rocks. The CaO content of the feldspar is disguised by the CaO in the clinopyroxene, which results in a lack of correlation between CaO and the feldspar component (Al₂O₃, Na₂O and K₂O), whereas the Fe₂O₃ content of the clinopyroxene is disguised by the Fe₂O₃ in the magnetite, resulting in a negative correlation between Fe₂O₃ and SiO₂ or CaO.

The positive correlation between Fe_2O_3 and TiO_2 (r = 0.477), in contrast to the observed negative correlation in the magnetite-rich

rock, reflects the presence of ilmenite lamellae in the magnetite. Similar to the magnetite-rich rock there is a positive correlation between Zn and Fe_2O_3 (r = 0.342) and Zn and TiO_2 (r = 0.439), indicating the possible presence of Zn in the magnetite.

Nb shows a positive correlation with Fe_2O_3 (r = 0.475) and a negative correlation with SiO_2 (r = -0.509) and might therefore be concentrated together with the magnetite. Sr, Rb and Ba are positively correlated with each other (r = 0.479 to 0.602) as well as with Al_2O_3 , Na_2O and K_2O (r = 0.348 to 0.631), suggesting their presence in feld-spars.

5.4 Comparison of Waaikraal Rocks with Rocks of the Upper Zone of the Bushveld Complex

In an effort to determine any possible genetic link between the Waaikraal sill and the topmost differentiates of the Bushveld Complex, the major- and trace element contents of the pyroxenite and the magnetite-rich rocks from Waaikraal were compared with the compositions of the nearby exposed magnetite gabbro (Appendix 3 and Table 5.4), and also with samples from the top of the Bierkraal-1 borehole.

Six samples of the Bierkraal borehole (BK-1), between 428.5 and 563.5 metre deep (between 16.5 and 151.5 metre below the roof contact), were selected and the major- and trace element means were calculated from unpublished analytical data of R.K.W. Merkle (Table 5.4). In order to facilitate comparison of the analytical data, these means for the Bierkraal samples were used to normalise the means of the pyroxenite, magnetite-rich rock and magnetite gabbro (Fig. 5.1).

37

Table 5.4 Arithmetic means of major element (in weight per cent) and trace element (in ppm) content of magnetite gabbro (N = 3) and rocks from Bierkraal (N = 6).

Element	Magnetite Gabbro	Bierkraal
SiO	46.39	45.10
TiO	2.91	2.08
Ala	16.40	12.49
FeoOp	18.75	24.49
MnO	0.20	0.41
MgO	3.97	2.31
Ca0	9.05	8.67
Na ₂ 0	3.55	5.05
K2Ó	0.40	0.77
2		
Zn	28	157
Cu	18	42
Ni	47	29
Со	25	63
Mo	3	7
NЪ	30	13
Zr	6	127
Y	343	42
Sr	5	325
RЪ	0	30
V	62	5

.

Figure 5.1

Arithmetic means of major- (a) and trace elements (b) of Waaikraal pyroxenite, Waaikraal magnetite-rich rock and magnetite gabbro normalised to topmost differentiates of the upper zone intersected by the Bierkraal borehole by division.

Significant differences can be detected between the different rock types. The higher MgO and V content and the lower Fe_2O_3 and TiO_2 content of the magnetite gabbro, in comparison with the samples from Bierkraal, indicate that the magnetite gabbros belong to a stratigraphically lower part of the upper zone than the samples from the Bierkraal borehole.

The magnetite-rich rocks are, compared to those from Bierkraal, depleted in most elements, except for Fe, V, Cr, Ni and to a lesser extent for Ca, Mn, Nb and Y, which reflect the much larger amounts of magnetite in the former. Interesting to note, however, is the low TiO_2 content, in spite of the large amount of magnetite and the similarity in trace element pattern between the magnetite-rich rock and the magnetite gabbro.

The resemblance between the rocks from Bierkraal and the pyroxenite is closer for the oxides Al_2O_3 , MgO, P_2O_5 , Fe_2O_3 and MnO and the elements Sr, Nb, Y, Rb, Ni, Zn, Zr and Co, than between the latter and the magnetite gabbros. The SiO₂ and CaO content in the pyroxenite is equally close to the Bierkraal samples and to the magnetite gabbro, whereas the Na₂O, TiO₂, K₂O, Cu and V content of the pyroxenite is closer to the magnetite gabbro. Na₂O, TiO₂ and K₂O occur in relatively low quantities, so that small differences in element content can result in large differences when normalised. Therefore it is assumed that the pyroxenite resembles the samples from Bierkraal closer than the magnetite gabbro, although the Al_2O_3 , Na₂O, K₂O, Rb and Sr contents are lower and the CaO and Fe₂O₃ contents are higher in the pyroxenite than in the samples from Bierkraal. This is probably caused by the presence of less clinopyroxene and more feldspar than in the rocks from Bierkraal.

The plot MgO /(MgO + Fe₂O₃) versus Rb /(K₂O + Na₂O) (Fig. 5.2) indicates that the pyroxenites from Waaikraal are more differentiated rocks than the topmost differentiates of the upper zone intersected by the Bierkraal borehole. However, a comparison is difficult as the samples from Bierkraal represent a cumulate and the Waaikraal pyroxenite most likely represents a melt. In addition, the upper zone of the western Bushveld Complex does not necessarily represent products of uninterrupted differentiation of a homogeneous melt. Several cycles are reflected in the whole rock geochemistry and also in the concentration of normally incompatible elements like Nb, Y and Zr (Merkle

and Von Gruenewaldt, 1986). Therefore, the incompatible element content of the pyroxenite, when compared with upper zone rocks, are not necessary an unambiguous indication of the degree of differentiation.

-

Figure 5.2 Plot of MgO $/(MgO + Fe_2O_3)$ versus Rb $/(K_2O + Na_2O)$ of Waaikraal pyroxenite and topmost differentiates of the upper zone intersected by the Bierkraal borehole, with an indication of the differentiation trend.

6. MINERAL CHEMISTRY

6.1 Pyroxene

The composition of the clinopyroxene in the ore body (20 thin sections), the magnetite gabbro (3 thin sections), the hornfels overlying the ore body and of ferrodiorite and ferrogabbro in the Bierkraal core was determined by electron microprobe. The analytical data is presented in Appendix 5.1. Each analysis represents the average of between 4 and 18 spot analyses with totals between 98.5 and 101.5 weight per cent.

Figure 6.1 Composition of clinopyroxenes of Waaikraal pyroxenite (*) and magnetite-rich rock (•)(1), Waaikraal hornfels (2), magnetite gabbro (3) and topmost differentiates from the upper zone intersected by the Bierkraal borehole (4) plotted as molecular proportion FeSiO₃:CaSiO₃:MgSiO₃. Compositional trends of Ca-rich pyroxenes from the eastern Bushveld (solid line) and from the western Bushveld (dashed line) are after Atkins, 1969 and Markraaff, 1976 respectively. Clinopyroxene classification according to Morimoto (1988). The compositions of the clinopyroxenes from the pyroxenite and from the magnetite-rich rock at Waaikraal overlap and plot on the boundary of the hedenbergite and the augite fields in the pyroxene quadrilateral (Field 1, Fig. 6.1).

Figure 6.1 illustrates that there is a considerable difference in Fe/Mg ratio between the clinopyroxene of the ore body (pyroxenite as well as magnetite-rich rock) and the magnetite gabbro. The clinopyroxene clearly suggests that the magnetite gabbro belong to a stratigraphically lower horizon of the Bushveld Complex than the rocks used from the Bierkraal borehole. It is interesting to note the similarity in composition of the clinopyroxenes of the latter locality and those from Waaikraal, although the Waaikraal pyroxenes are richer in Fe and Ca and plot above the crystallisation trend for clinopyroxenes from the eastern Bushveld Complex (Atkins, 1969).

6.2 Plagioclase

Plagioclase was analysed in 13 thin sections of the ore body (pyroxenite and magnetite-rich rock) and 3 thin sections of the nearby magnetite gabbro. Because no significant difference in composition within a grain was detected, only two points were analysed for most plagioclase grains, one at the edge and one in the middle of the grain, in order to account for compositional inhomogeneities.

The chemical composition of the plagioclase, together with the number of ions on the basis of 32 oxygen atoms and the molecular percentages of anorthite, albite and orthoclase are presented in Appendix 5.2.

The molecular percentages of anorthite, albite and orthoclase of plagioclases in the pyroxenite, the magnetite-rich rock, the magnetite gabbros and of plagioclase from the top of the upper zone in the Bierkraal borehole (Geraghty, unpublished results) are plotted in Fig. 6.2. Analyses were not averaged, as was done with the clinopyroxene data, due to the compositional variation within one thin section.

. .

(d) Bierkraal borehole

Figure 6.2 Composition of plagioclase of pyroxenite (a), magnetiterich rock (b), magnetite gabbro (c) and rocks from Bierkraal (d) plotted as molecular percentages anorthite, albite and orthoclase.

A s

	Rock-	<- % Anorthite ,							
Sample	type	0-10	10-30	30-50	50-70	70-90	90-100		
WK 3.2	P	· -	-	9	-	-	-		
WK 5.2	Р	1	-	6	-	-	– .		
WK 6.3	Р	-	-	5	-	-	-		
WK 12.2	P	1	- '	-	3	4	-		
WK 12.4	Р	-	-	2	-	_ 1	-		
WK 13.2	Р	-	· _	1	.	_	-		
WK 28.4	Р	-	-	10	-	-	-		
WK 14.4	Р	-	-	2	2	-	-		
WK 16.2	P	3	-	-	-	-	-		
WK 4.1	М	-	-	1	5	1			
WK 12.1	М	-	-	5	2	-	<u> </u>		
WK 28.3	М	-	-	-	-	1	-		
WK 14.1	М	-	-	-	-	2	-		
MG 1\2\3	MG	-	-	23	3	-	-		

Table 6.1 Frequencies of different plagioclase compositions of pyroxenite, magnetite-rich rock and magnetite gabbro.

P = pyroxenite, M = magnetite-rich rock, MG = magnetite gabbro

The composition of plagioclase of the pyroxenite as well as the magnetite-rich rock varies considerably from grain to grain within one thin section with the majority of compositions around An_{30-50} (Table 6.1). In comparison, plagioclase of the magnetite gabbro was found to be very uniform in composition (An_{40-52}) and to be more anorthite-rich than the plagioclase at the top of the upper zone in the Bierkraal borehole. This again indicates that the magnetite gabbro belongs to a stratigraphically lower horizon of the Bushveld Complex than the rocks used from Bierkraal.

It is evident from Figure 6.2 and Table 6.1 that the different rock types can not be distinguished on the basis of the composition of the plagioclase. The composition of the plagioclase can, however, vary much more widely on thin section scale in the Waaikraal sill than in the other rock types, which could possibly the effect of hydrothermal activity, as will be discussed in more detail in a later section (chapter 9.1).

6.3 Amphibole

Amphibole analyses were obtained from 14 thin sections of pyroxenite. No amphiboles were detected in the magnetite-rich rock. The computer program by Spear and Kimball (1984) was used to calculate the number of ions on a basis of 24 oxygen atoms and to obtain four estimates for the Fe³⁺ content, viz., no Fe³⁺, low Fe³⁺, high Fe³⁺ and an average between the last two. In this study the average Fe³⁺ content was used.

The program calculates the numbers of ions in the amphibole formula on the basis of 24 (0,0H,F,Cl), and indicates the distribution of the elements between the different sites in the crystal structure. The general form of the standard amphibole formula is:

T represents the tetrahedral sites, C represents the M1+M2+M3 sites, B the M4 sites and A the A sites (Deer et al., 1977).

The analyses, as well as the calculated numbers of ions in the amphibole formula, are presented in Appendix 5.3.

According to the classification of Leake (1978), all the amphiboles from the Waaikraal sill fall into the calcic amphibole group, with $(Ca + Na)_B > 1.34$ and $Na_B < 0.67$ (B: M₄ sites as shown above). Within the calcic amphibole group, most of the analyses can be classified as hastingsite and hastingsitic hornblende, although a few analyses fall into the compositional fields for ferro-edenite, ferro-edenitic hornblende, ferro-actinolite and ferro hornblende (Fig.6.3).

Figure 6.3 Plot of Mg /(Mg + Fe²⁺) versus Si showing the compositional variation of amphiboles from the Waaikraal pyroxenite in terms of the nomenclature of Leake (1978). A for amphiboles with (Na + K)_A < 0.50 and Ti < 0.50 and B for amphiboles with (Na + K)_A > 0.50, Ti < 0.50 and Fe³⁺ > A1^{VI}.

Amphiboles of similar composition are described by Gulyaeva et al (1986) from Novogorbushinskoe in the far eastern USSR. Here amphiboles replace clinopyroxene in a hedenbergite-magnetite skarns with superimposed ore-mineralisation.

6.4 Olivine

Olivine was only encountered in one sample of magnetite-rich rock (WK 14.1) from which five grains were analysed by microprobe. The numbers of ions in the olivine formula on the basis of 4 oxygen atoms and the atomic ratios of Mg : Fe : Mn are presented in Appendix 5.4. The average of the five analyses is plotted in a compositional variation diagram together with compositions of olivines reported by Reynolds (1985) from the Bierkraal 1 borecore (Fig.6.4).

Figure 6.4 Composition of olivines from Waaikraal and Bierkraal plotted as ion proportion Fe:Mg:Mn (total Fe as Fe²⁺).

From this plot, it can be seen that the olivine in the Waaikraal is chemically very similar to the olivines of the topmost differentiates of the upper zone intersected by the Bierkraal borehole.

6.5 Magnetite and Ilmenite

Analyses of magnetite grains and their ilmenite exsolution lamellae were obtained from three polished sections of pyroxenite and three polished sections of the magnetite gabbro. The magnetites from the magnetite-rich rock, which do not contain exsolution lamellae of ilmenite, were analysed in two polished sections. The microprobe analyses obtained were recalculated to determine the Fe^{3+} content assuming stoichiometry (Appendix 5.5).

The composition of the magnetite component of the ttanomagnetite grains in the two rock types from the ore body is very similar and contain small ulvospinel exsolutions. The titanomagnetite of the pyroxenite, however, contains 10-30 volume per cent ilmenite exsolution lamellae, indicating an overall much higher Ti-content of the titanomagnetite grains as a whole. The TiO_2 content of the magnetite in the magnetite-rich rock ranges from only 0.2 to 2.8 weight per cent with a mean around 0.45 weight per cent (Fig. 6.5).

Figure 6.5 Distribution of TiO₂ in the magnetite of Waaikraal pyroxenite (a) and magnetite-rich rock (b) (in weight per cent).

49

The compositions of Waaikraal magnetites and ilmenites are compared with magnetites and ilmenites from the magnetite gabbros and from the Bierkraal borehole in Figure 6.6.

-

Figure 6.6 Composition of magnetite and ilmenite of the pyroxenite, magnetite-rich rock, magnetite gabbro and samples from Bierkraal (51 observations hidden). Numbers indicate drilling depth in metres below the roof contact in the Bierkraal borehole (226a = a late stage transgressive magnetite veinlet).

From Figure 6.6 it can be observed that the ilmenite analyses of the different rock types all plot in the same area, because of the very restricted solid solution field of ilmenite. The ilmenite of the Waaikraal pyroxenite, however, contains about 2 weight per cent MnO, whereas the ilmenite from the Bierkraal borehole contains only up to 0.67 weight per cent MnO. The MgO content of the ilmenite from Waaikraal pyroxenite is generally below the detection limit, whereas the ilmenite from Bierkraal contains up to 3 weight per cent MgO.

The composition of the magnetite on the other hand varies considerably, evidently in response to the amount of ulvospinel in either solid solution or as tiny exsolutions in the magnetite. Waaikraal magnetite of both the pyroxenite and the magnetite-rich rock corresponds best with the magnetites of the topmost rocks of the upper zone and with a late stage transgressive magnetite veinlet of the Bierkraal borehole (Reynolds, 1985).

7. GOLD AND ORE MINERALOGY OF THE ORE BODY

The variety of different ore minerals present can be devided into the following groups: Gold and gold compounds, bismuth minerals, diarsenides, sulfarsenides, iron sulfides, copper bearing sulfides and sphalerite. Each group will be delt with seperately with a description of the textural relations and of the associations at the end of this chapter.

7.1 Gold and Gold Compounds

Gold occurs in three different phases viz., as native gold, a goldbismuth- and a gold-copper compound.

Compositions of the three phases were obtained by microprobe analyses. Although all minerals were analysed for Au, Ag, Hg, Pd, Fe, Cu, Rh and Bi; Pd, Rh and Hg were never found to be present in quantities above the detection limit (Appendix 6.1).

7.1.1 Gold

The native gold is very pure and contains only traces of Fe and Cu. The highest silver content found was 1.26 weight per cent which results in the grains being of a deep yellow colour under reflected light.

The highest concentrations of gold occur in the pyroxenite, but gold can occasionally also be present in high concentrations in the magnetite-rich rock. Figure 2.3 indicates the distribution of gold in the different rock types throughout the mine. The distribution is very irregular and follows no recognizable pattern. In both rock types the gold occurs either as small individual anhedral grains in close proximity of other ore minerals such as bismuth bearing minerals, arsenides, diarsenides and chalcopyrite (see chapters 7.3 to 7.5 and 7.7)(Fig. 7.1), or in composite grains together with these ore minerals. In the latter case the gold occurs either as grains, up to 300 μ m in diameter, or as veins within these minerals (Figures 7.2 and 7.3).

In the magnetite-rich rock the gold is often situated at 120° junctions between magnetite grains and also occurs together with other ore minerals in fractures of the magnetite, a feature also observed in the pyroxenite. This indicates that the gold was introduced after the formation of the host rocks.

In the pyroxenite, where the gold can also be present in clinopyroxene, it is often surrounded by amphibole and was probably introduced along cleavage planes of the pyroxene.

Generally, the grain size of the gold particles is smaller in the magnetite-rich rock than in the pyroxenite.

Figure 7.1 Individual gold grains (Au) together with joseite (jo) and safflorite (sa) in pyroxenite (WK 5.2). Photomicrograph: Reflected light (RL), plane polarized light (PPL).

5%

Ł

Figure 7.3 Gold (Au) with chalcopyrite (cp), cobaltite (co), arsenopyrite (as) and bismuthinite (bi) in pyroxenite (WK 5.2). a: Secondary electron image. b: X-ray distribution pattern of Au.

7.1.2 Maldonite

Maldonite (Au₂Bi) is a very rare mineral, because its formation is limited to closely defined conditions at high temperatures (Ramdohr, 1980) and because it decomposes readily to Au and Bi. It was observed in only one sample (WK 52.3), but because it closely resembles joseite, its presence in other samples can not be excluded with certainty.

It was observed as droplets in massive safflorite (Fig. 7.4), and also together with joseite in safflorite, in silicates and interstitial to magnetite grains (Fig. 7.5). The droplets form chains and are considered to follow cracks which have subsequently healed, rather than original grain boundaries in the massive safflorite.

Microprobe analyses (see Appendix 6.1) established the presence of traces of silver and iron, apart from gold and bismuth.

Heating tests on mixtures of Au and Bi by Böhmke and Varndell (1986), revealed that a temperature of 500°C the two metals combined to form maldonite.

7.1.3 CuAu₃

Only one grain of a Au-Cu alloy, 60 μ m in length and 20 μ m in width, was encountered. It occurs attached to safflorite and has a golden colour with a slight greenish tint under reflected light (Fig. 7.6).

A microprobe analysis indicates a composition of 90.37 weight percent Au and 9.66 weight percent Cu, with traces of S and Ag (see Appendix 6.1). This corresponds to an Au-Cu alloy with the formula CuAu₃.

According to Hansen and Anderko (1958), there is a complete solid solution in the system Au-Cu below the solidification range of 1083° - 889° C. Below 410° C, solid state reactions occur and cause miscibility gaps between phases centered around the compositions Cu₃Au and CuAu (below 285° C) and CuAu and CuAu₃ (below 255° C). An ordered phase with

composition close to CuAu₃ is therefore stable below 255°C.

A natural compound with similar composition has been described by Oen and Kieft (1974) from Beni-Bousera, Morocco. Here the alloy contains 88.35 weight percent Au and 11.0 weight percent Cu, which corresponds to the formula $CuAu_{2.6}$.

Figure 7.4 Droplets of maldonite (ma) in safflorite (sa) in magnetite-rich rock (WK 52.3). Photomicrograph: RL, PPL.

Figure 7.6 CuAu₃ attached to safflorite (sa) in magnetite-rich rock (WK 52.3). Photomicrograph: RL, PPL. 100 µm

7.2 Bismuth Minerals

Three different bismuth-containing minerals (apart from maldonite) are present,viz. joseite, bismuthinite and native bismuth. All three minerals occur in both the pyroxenite and the magnetite-rich rock, but are more abundant in the pyroxenite.

The most frequent bismuth bearing mineral at Waaikraal is joseite. Of the two known modifications of joseite, only one out of 35 analysed grains turned out to be joseite-A (Bi_4TeS_2), the remaining grains being joseite-B (Bi_4Te_2S).

The analyses are presented in Appendix 6.2, from which it can be seen that joseite contains traces of Sb and As, apart from Bi, Te and S as major components.

Joseite occurs either interstitially between silicates or enclosed in them, and is generally surrounded by amphibole. It is mostly associated with bismuthinite, di- and sulfarsenides (see chapter 7.4 and 7.5) and gold (Fig. 7.7).

Yusa et al. (1979) described incongruent melting of joseite-B to joseite-A, tetradymite and liquid above $478^{\circ}C_{\circ}$

Bismuthinite (Bi_2S_3) occurs as anhedral grains, often surrounding native bismuth (Fig. 7.8), but also together with joseite, gold and di- and sulfarsenides (see chapter 7.4 and 7.5). It contains, apart from Bi and S, also traces of Sb (Appendix 6.2).

The native bismuth contains up to 99.67 weight per cent bismuth and traces of Co, Ni and As (Appendix 6.2). It displays the very typical twinning (Ramdohr, 1980) which can be clearly observed under crossed nicols in reflected light (Fig. 7.9).

59

Figure 7.7 Joseite (jo), safflorite (sa) and bismuthinite (bi) in magnetite-rich rock (WK 52.3). Photomicrograph: RL, PPL. 100 µm

Figure 7.8 Native bismuth (nat bi) surrounded by bismuthinite (bi) in pyroxenite (WK 12.4). Photomicrograph: RL, PPL. 100 µm

nat.bi bi

Figure 7.9 Native bismuth (nat bi) with typical twinning surrounding bismuthinite (bi) in pyroxenite (WK 12.4). Photomicrograph: RL, cross polarized light (CPL).

-----i 100 µm

7.3 Diarsenides

Of the loellingite - safflorite - rammelsbergite (FeAs₂ - CoAs₂ - NiAs₂) group only members of the loellingite - safflorite solid solution series (FeAs₂ - CoAs₂) are encountered at Waaikraal.

The safflorite occurs as small individual idiomorphic grains interstitially to or within silicates (mainly clinopyroxene) of both rock types. Subhedral grains associated with, or even attached to, other ore minerals such as joseite, bismuthinite, minerals of the arsenopyrite group (see chapter 7.5) and gold are often observed.

In one sample (WK 52.3) safflorite occurs as large aggregates together with magnetite.

Different proposals for the terminology of the minerals in the loellingite - safflorite solid solution series exsist. Holmes (1947) has, for example, distinguished between safflorite and loellingite at 70 mole per cent FeAs₂, whereas Radcliffe and Berry (1968), who have worked on synthetic and natural specimens, recommend that loellingite be used only for material with less then 3 mole per cent $CoAs_2$.

Berry and Thompson (1962) classified safflorite into five types on the basis of different X-ray diffraction patterns, whilst Radcliffe and Berry (1968) gave compositional ranges for each type (Figure 7.10).

Results of microprobe analyses of minerals of the diarsenide group at Waaikraal (Appendix 6.3) were recalculated to mole per cent $FeAs_2:CoAs_2:NiAs_2$ and plotted on a ternary diagram (Figure 7.10). The solid solution series is clearly visible here and all the minerals are safflorite, according to the terminology of Radcliffe and Berry (1968). The most iron-rich mineral contains 4 mole per cent $CoAs_2$ and falls therefore just into the safflorite field. The highest $CoAs_2$ content encountered is 75 mole per cent.

Most analyses fall into fields I, III and IV of Berry and Thompson (1962). Two analyses fall outside any of the indicated fields and suggest that Fe-rich safflorite can contain higher Ni contents than originally suggested by Radcliffe and Berry (1968).

The analytical data clearly suggests that the small idiomorphic grains (analyses 1 to 5, 7 and 9) display a considerable variation in composition, compared to the Fe-rich safflorites (analyses 6, 13 and 14), which are associated with gold and other ore minerals. Analyses 10 to 12 are of large aggregates of safflorite in sample WK 52.3, whereas analysis 16 is of a safflorite with a rim of cobaltite.

Safflorite usually belongs to the orthorhombic class (Roseboom, 1963; Radcliffe & Berry, 1968), but material with 80 - 100 mole per cent $CoAs_2$ is monoclinic (Radcliffe & Berry, 1971) and termed clino-safflorite. Radcliffe and Berry (1971), however, demonstrated that safflorite from the Cobalt area, Canada, with just below 75 mole per cent $CoAs_2$ can also be monoclinic. It is therefore possible that the rare mineral clinosafflorite also occurs at Waaikraal. Unfortunately only one safflorite grain analysed contains such a high cobalt content, and it was not possible to obtain X-ray data to support this

assumption.

The highest NiAs₂ content encountered in safflorite was 8 mole per cent (analysis 14) . The safflorites also contain traces of S and Bi.

7.4 Sulfarsenides

Sulfarsenides include those minerals which belong to the arsenopyrite - cobaltite - gersdorffite (FeAsS - CoAsS - NiAsS) group. The molar proportions of sulfaresenides at Waaikraal, determined by microprobe analyses (Appendix 6.4) are plotted in a ternary diagram (Fig. 7.11). Only cobaltite and arsenopyrite were found to occur in this deposit.

Cobaltite at Waaikraaal occurs as individual euhedral and as anhedral grains together with gold, joseite, bismuthinite, safflorite and arsenopyrite (Fig. 7.2). It can also completely enclose safflorite (Figures 7.12 and 7.13).

Cobaltites vary in composition from 79 - 94 mole per cent CoAsS, 5 - 16 mole per cent FeAsS and 0 - 8 mole per cent NiAsS. The ratio of (Co,Fe,Ni) : S : As is very close to 1 : 1 : 1.

Cobaltite occurs in two structural forms, isometric and orthorhombic.(Giese & Kerr, 1965). At Waaikraal both structural types seem to be present as both isotropic and anisotropic grains were observed.

Arsenopyrites were found to occur either as euhedral or anhedral grains alone (Fig. 7.14) or occasionally together with gold, safflorite, bismuthinite, joseite, chalcopyrite and cobaltite (Fig. 7.2). Occasionally arsenopyrite surrounds cobaltite completely.

Arsenopyrites from Waaikraal vary in composition from pure FeAsS to (Fe,Co,Ni)AsS with up to 13 mole per cent NiAsS (4.73 weight per cent Ni) and up to 21 mole per cent CoAsS (7.09 weight per cent Co).

A plot of the arsenopyrites on a (Fe,Co,Ni) - As - S ternary diagram (Fig. 7.15) indicates that the pure arsenopyrites have a surplus of S and a deficiency of As, whereas the arsenopyrites containing Co and Ni have a deficiency of S and surplus of As.

Figure 7.12 Cobaltite (co) enclosing safflorite (sa) in pyroxenite (WK 5.2). Photomicrograph: RL, PPL.

co

Figure 7.13 Cobaltite (co) enclosing safflorite (sa) in pyroxenite (WK 5.2). Photomicrograph: RL, CPL. ——— 50µm -

7.5 Iron Sulfides

Both pyrrhotite and pyrite were only observed in large quantities in a few samples and tend to occur isolated from the other ore minerals such as the Bi-minerals, sulpharsenides, diarsenides and gold. They are often associated with chalcopyrite (Fig. 7.16) and occasionally with sphalerite (Fig. 7.17).

Members of the pyrrhotite group $(Fe_{1-x}S)$ can be divided into two distinct compositional groups (Carpenter and Desborough, 1964). One group corresponds to stoichiometric FeS (troilite) and the other is an iron-deficient group with 47.8 - 46.5 atomic per cent iron (pyrrhotite). Only pyrrhotite, which contains a few exsolutions of pentlandite, was observed at Waaikraal.

At room temperature, the pyrrhotites can be divided into two groups, viz. monoclinic pyrrhotite (Fe_7S_8) with up to 46.67 atomic per cent Fe and hexagonal or intermediate pyrrhotite $(Fe_9S_{10} - Fe_{11}S_{12})$ with between 47.2 and 47.8 atomic per cent Fe (Morimoto et al, 1975). This variation of the pyrrhotites, together with the analytical uncertainty which is caused by the reproducibility of the analyses (see Appendix 2.2.3 and chapter 4.4), is illustrated in Figure 7.18.

The compositional variation of pyrrhotites at Waaikraal shown in Figures 7.18 and 7.19 indicates that the intermediate phase is dominant at Waaikraal.

Figure 7.16 Pyrrhotite (po) and chalcopyrite (cp) in magnetite grains of magnetite-rich rock (WK 1). Photomicrograph: RL, PPL.

Figure 7.17 Sphalerite (sp) with chalcopyrite disease (cp) and pyrrhotite (po) in pyroxenite (WK 21.5). Photomicrograph: RL, PPL.

Figure 7.18 Compositional variation of pyrrhotite group minerals (black) and analytical uncertaity for 3 sigma (shaded) for this investigation (mpo = monoclinic pyrrhotite, ipo = intermediate pyrrhotite).

Figure 7.19 Compositional variation of pyrrhotites from Waaikraal (N = 110).

70

The presence of the two types of pyrrhotite is often clearly visible. Monoclinic pyrrhotite is concentrated as flamelike exsolution bodies in the intermediate pyrrhotite and has a higher reflectivity than the intermediate pyrrhotite. The exsolutions are concentrated at the edges and cracks of pyrrhotite grains.

Pyrite at Waaikraal can often be observed together with pyrrhotite or alone, is usually anhedral and occurs as large grains.

Together with the pyrite, an intermediate product ("Zwischenprodukt" (Ramdohr,1980)) can be observed (Fig. 7.20). This intermediate product consists of a very fine grained aggregate of, most probably, marcasite and pyrite and often forms concentric bodies. It shows distinct reflection pleochroism in white to light grey-green and weak anisotropy under crossed nicols of grey to green colours. According to Ramdohr (1980) the intensity of the anisotropy effects is dependant on the crystallographic orientation of the grain. The presence of the intermediate product suggests the beginning of supergene alteration (Ramdohr, 1980).

7.6 Copper - Bearing Sulfides

Chalcopyrite is the main copper sulfide at Waaikraal and occurs together with almost all the other ore minerals of the deposit, but is more abundant in the pyroxenite than in the magnetite-rich rock.

Chalcopyrite is present as anhedral grains within and between silicates and also as small droplets in sphalerite (Fig. 7.17). It is often associated with gold, which is either attached to or surrounded by it.

A few grains of chalcopyrite analysed by microprobe showed very little chemical variation. Traces of Ni are present. The analyses are presented in Appendix 6.6.

Covellite replaces chalcopyrite as a result of the beginning of supergene alteration and is therefore always associated with it.

7.7. Sphalerite

Sphalerite is present as anhedral grains. It is associated with pyrite and pyrrhotite. "Chalcopyrite disease" (Barton and Bethke, 1987), is common.

Figure 7.20 Intermediate product ("Zwischenprodukt") (ip) and pyrrhotite (po) in magnetite-rich rock (WK 1). Photomicrograph: RL, PPL.

7.9 Summary of textural Relations of the Ore Minerals and Approximate Paragenetic Sequence

In the pyroxenite and the magnetite-rich rock from Waaikraal, two assemblages can be distinguished, viz. (i) safflorite, cobaltite, arsenopyrite, joseite, bismuthinite, native bismuth, chalcopyrite and gold and (ii) pyrrhotite, pyrite, chalcopyrite and sphalerite. Generally there is a greater abundancy of ore minerals in the pyroxenite than in the magnetite-rich rock.

In the pyroxenite joseite, together with bismuthinite and native bismuth frequently occurs as fillings of fractures in magnetite or silicate grains, interstitially between magnetite and silicates and also within clinopyroxene. When present within clinopyroxene they are often surrounded by amphibole and might have intruded along cleavage planes.

Safflorite, arsenopyrite and cobaltite are present as small grains interstitially to the silicates and oxides or occur in contact with the joseite, bismuthinite, native bismuth, chalcopyrite and gold.

Joseite was found surrounded by safflorite and vice versa. Native bismuth is frequently enclosed by bismuthinite (Figures 7.8 and 7.9) and cobaltite was found to enclose safflorite (Figures 7.12 and 7.13), both relations indicating a possible increase in sulfur activity during the ore forming processes. A rim of arsenopyrite around cobaltite (Fig.7.2) might be the result of an increase in iron. The large compositional variation of safflorites could indicate that safflorites have formed over a long period of time and/or from a wide variety of fluids during the evolution of the ore body.

Pyrrhotite, pentlandite, pyrite, chalcopyrite and sphalerite rarely occur in the pyroxenite and are generally not in contact with any of the other ore minerals mentioned above. This is probably a high temperature assemblage similar to that described by von Gruenewaldt (1976) and Merkle and von Gruenewaldt (1986) from the upper zone of the Bushveld Complex. Only in one instance was pyrite found to almost enclose an aggregate of arsenopyrite and safflorite, showing that this pyrite represents a later generation than the other ore mineral assemblages.

1

In the magnetite-rich rock safflorite, arsenopyrite and cobaltite grains are frequently encountered at contacts between magnetite and silicates, at triple junctions between magnetite grains, interstitially to silicates and in fractures of magnetite grains. Joseite, bismuthinite and gold occasionally occur in a similar way. Pyrite, pyrrhotite and chalcopyrite are found as large aggregates, often in contact with magnetite grains and as fillings of fractures. Occasionally chalcopyrite and pyrrhotite occurs as drop-like inclusions in magnetite (Fig. 7.16), which indicates that some of the magnetite must have crystallized after formation of the sulphide droplets.

Massive safflorite was observed in one sample of magnetite-rich rock (WK 52.3). Here maldonite forms droplets in safflorite and $CuAu_3$ is found in contact with the safflorite. Joseite, bismuthinite and gold are encountered within the safflorite, but safflorite also occurs surrounded by joseite and bismuthinite or intergrown with joseite.

From the above described textural relations the following approximate paragenetic sequence is suggested.

Table 7.1 Mineral assemblage and approximate paragenetic sequence at Waaikraal gold deposit.

	Mineralization I	Mineralization II alteration
Cold	<u> </u>	
Gold		
Maldonice		
CuAu ₃		
Sattlorite		
Joseite		
Bismuthinite		
native Bismuth	h	
Cobaltite		
Arsenopyrite		
Chalcopyrite		
Pyrrhotite		
Pentlandite		
Pyrite		
Sphalerite		
Covellite		
Zwischenproduk	c†	
oeprouu		

Supergene

8. CONDITIONS OF ORE FORMATION

The close association of gold with a variety of different disulfides, sulfarsenides, alloys and sulfides allows an attempt to estimate the conditions of ore formation.

The **arsenopyrite** geothermometers and geobarometers described in the literature make use of assemblages containing arsenopyrite together with pyrite, pyrrhotite and loellingite (Clark, 1960, Barton, 1969, Kretschmar and Scott, 1976). At Waaikraal arsenopyrite was not encountered in association with any of these phases and therefore these arsenopyrite geothermometers could not be applied.

An indication of the temperature of formation of the arsenopyrite can, however, be obtained from the temperature stability of solid solutions in the FeAsS - CoAsS - NiAsS ternary diagram as determined at atmospheric pressures by Klemm (1965) (Fig. 8.1).

Analyses of arsenopyrites from Waaikraal plot in areas which indicate temperatures of $< 500^{\circ}$ C. Cobaltites plot in the area of $< 400^{\circ}$ C.

Figure 8.1 The solid solution fields in the ternary diagram FeAsS-CoAsS-NiAsS (after Klemm, 1965), black area : Waaikraal cobaltites and arsenopyrites.

Ripley (1972) could show that **safflorite** of composition $CoAs_2$ was stable from room temperature up to $900^{\circ}C$, $(Co_{0.5}, Fe_{0.5})As_2$ was stable from room temperature to $800^{\circ}C$ and $FeAs_2$ from room temperature to $700^{\circ}C$. This indicates that an increase in Fe-content results in a lower thermal stability. Waaikraal safflorites vary in composition from $(Co_{0.75}Fe_{0.25})As_2$ to $(Co_{0.04}Fe_{0.96})As_2$, indicating maximum temperature of formation for the Co-rich members of about $850^{\circ}C$ and $700^{\circ}C$ for the iron-rich members.

Bismuthinite and **native bismuth** often occur together with the gold. These two phases are stable together at a maximum temperature of approximately 880^OC (Hansen and Anderko, 1958).

Differential thermal analysis of synthetic **joseite-B** by Yusa et al. (1979) showed an endothermic reaction at 478° C, at which joseite-B melts incongruently to joseite-A, tetradymite and liquid. Joseite-B alone is therefore only stable at temperatures below 478° C.

Maldonite forms at temperatures above 500°C (Böhmke and Varndell, 1986).

Thermal stabilities of **chalcopyrite** were extensively investigated (e.g. Yund and Kullerud, 1966, Barton, 1973 and Cabri, 1973).

The solid solution field of chalcopyrite decreases with decreasing temperature (Yund and Kullerud, 1966), but in the case of hydrothermal deposition of chalcopyrite, there could have been a rapid decrease in temperature as hot solutions entered cooler rocks and a high temperature composition of the chalcopyrite could have been frozen in. Where chalcopyrite occurs with the gold at Waaikraal no other sulfides of the system Cu-Fe-S are present. The composition of the chalcopyrite is very close to CuFeS₂. Therefore, the composition of the chalcopyrite from Waaikraal does not give an indication of formation temperature of the chalcopyrite.

Stabilities are summerised in Table 8.1 below.

Ore Minerals	Stability Temperature	Source
Cobaltite	< 400°C	Klemm (1965)
Joseite-B	< 478°C	Yusa et al. (1979)
Arsenopyrite	< 500°C	Klemm (1965)
Safflorite (FeAsS)	< 700°C	Ripley (1972)
Safflorite ((Co _{0.5} ,Fe _{0.5})As ₂)	< 800°C	Ripley (1972)
Bismuthinite & native Bismuth	< 880°C	Hansen & Anderko(1958)
Safflorite (CoAsS)	< 900°C	Ripley (1972)

Table 8.1 Thermal stabilities of ore minerals occuring with gold at Waaikraal

The stability data of the ore minerals with which the gold at Waaikraal is associated indicates, that the gold mineralisation for cobaltite bearing assemblages took place at a maximum temperature $(400^{\circ}C)$.

From the observed mineral associations it is also possible to estimate temperature and sulfur activity conditions, which must have prevailed during deposition of these minerals, with the aid of a sulfur activity versus temperature diagram for joseite-B bearing (joseite-B is present in most gold bearing assemblages at Waaikraal) sulfidation reactions (Fig. 8.2).

77

Figure 8.2 Activity of S₂ versus temperature diagram for selected sulfidation reactions (after Barton and Skinner, 1979). Shaded area: principal regime for joseite bearing assemblages from Waaikraal.

The absence of the assemblage loellingite + pyrhotite and the presence of arsenopyrite in the ore mineral association places the general minimum sulfur activity at which the ore minerals crystallised above the buffer reaction loellingite + pyrhotite = arsenopyrite in Figure 8.2. But, seeing that chalcopyrite is present without bornite + pyrite in this assemblage, sulfur activities must have been below that of the buffer reaction chalcopyrite = bornite + pyrite. The presence of joseite-B in the association places the maximum temperature of ore formation at 478°C. However, the coexistance of native bismuth and bismuthinite suggests the conditions of formation to have been close to or on the buffer reaction 2 Bi + 1.5 S₂ = Bi₂S₃.

78

9. POSSIBLE TRANSPORT AND ORIGIN OF THE GOLD

9.1 Hydrothermal Transport of the Gold

The temperature range of formation of the ore minerals associated with the gold (chapter 8) and the mode of occurrence of the gold as small grains and in veinlets suggest a hydrothermal origin of the gold.

Gold is transported by hydrothermal fluids over a wide temperature range, but the temperatures obtained for the mineralizing fluids of most gold deposits are in the range from 175° C to 450° C (Seward, 1984). This agrees well with the maximum temperature of deposition of gold associated with the joseite-B at Waaikraal of 478° C (chapter 8).

Generally, in aqueous systems gold occurs in two oxidation states, Au⁺ and Au³⁺, but the activity of Au³⁺ is negligible in comparison to that of Au⁺ at 250°C to 400°C and a pH of four (Seward, 1984). It is therefore necessary to decide which of the Au⁺ complexes are of most importance in hydrothermal solutions.

Chloride- and sulfide complexes seem to dominate in hydrothermal solutions, although associated minerals indicate that other complexes are locally also important (Barnes, 1979). Tellurium, bismuth and/or arsenic complexes could indeed have been significant in the case of Waaikraal, if the minerals associated with the gold (e.g. bismuthinite, joseite, arsenopyrite etc.) are taken into consideration. Seward (1973) considers that complexes of the type $Au(Te)_3^{3-}$, $Au_2(Te)^0$ and $Au(Te_2)_2^{3-}$ are likely to occur in nature, but he also suggests that arsenothio complexes (e.g. $Au(AsS_2)^0$, $Au(AsS_3)^{2-}$) may be of importance, although no experimental data on their stability relations is available.

Chloride- and sulfide complexes of gold have been investigated by, among others, Helgeson and Garrels (1968), Henley (1973) and Seward (1973, 1984).

According to experiments at 25° C reported by Seward (1984) the most stable Au⁺ complexes are Au(HS)₂⁻ and Au(CN)₂⁻, whereas AuCl₂⁻ is less

stable. $Au(HS)_2^{-}$ is considered by him to be responsible for gold transport in many hydrothermal ore-forming environments, whereas $AuCl_2^{-}$ will only be dominant in fluids containing high chloride and abnormally low reduced sulfur concentrations, or in fluids with elevated oxidation potential.

Seward (1973), conducted a study of solubility of gold at elevated temperatures and found that considerable quantities of gold may be transported in hydrothermal solutions as thio complexes, particularly in the near neutral pH region, where the $Au(HS)_2^{-}$ complex predominates at temperatures below 300° C. A decrease in temperature of an ascending ore solution and/or a change in pH would lead to deposition of gold and associated sulfides.

Henley (1973) has studied the solubility of gold in alkali chloride solutions at temperatures above 300° C. He noted that gold is readily soluble in these hydrothermal solutions although its solubility could decrease if other metals (which include most of the ore-metals) are present. Transport of these metals also involve solvation by chloride ligands.

Seeing that the gold at Waaikraal is associated with sulfides and sulfarsenides such as arsenopyrite, cobaltite and chalcopyrite, there is a strong possibility that the gold was transported as sulfide complexes. There are also indications that the fluid became progressively sulfidising during the evolution of the ore body, as is indicated by textural relations, e.g. native bismuth frequently surrounded by bismuthinite (Bi_2S_3) and safflorite ($CoAs_2$) enclosed by cobaltite (CoAsS). A study of the solubility of chalcopyrite in hydrothermal solutions at 200-350°C was conducted by Crerar and Barnes (1976) who concluded that CuCl predominates at 250-350°C, but that bisulfide complexing becomes more important below 250°C in weakly acidic solutions.

Transport of gold as complexes of tellurium, arsenic or bismuth is, because of the association of the gold with joseite, safflorite, cobaltite, arsenopyrite, bismuthinite and native bismuth, also likely, but the lack of experimental data on these complexes inhibits an evaluation of this possibility. There are hardly any hydrothermal solubility data available for arsenides and tellurides (Barnes, 1979). It is therefore not possible to draw any conclusions on the composition of fluids in which these elements were transported and from which the ore minerals were deposited.

Cole and Drummond (1986) studied the effect of hydrothermal transport and boiling on Ag/Au ratios in solutions. Their transport calculations indicate that low Ag/Au ratios (< 1 as in the case of Waaikraal) result from conditions dominated by low temperature (< 250° C), low Cl⁻ and moderate to high pH (> 5). Such solutions are dominated by Au(HS)₂⁻ rather than AuCl₂⁻. In approximately 90 per cent of cases where Ag/Au < 1, temperatures of 150 - 200° C prevail. Ag/Au ratios > 1 indicate dominance of AuCl₂⁻ complexes. Shikazono and Shimizu (1987), on the other hand found the opposite relationship between Ag/Au ratios and sulfide- and chloride complexing.

In order to apply the findings of Cole and Drummond and to ascertain whether the Waaikraal ores were deposited under boiling hydrothermal conditions, fluid inclusion studies are required but were unfortunately not possible in the framework of this investigation.

From the available data and the literature it can be concluded that the most likely form of gold transport at Waaikraal was as sulfide complexes in hydrothermal solutions and that the gold, where associated with joseite, was deposited at temperatures below 478°C.

9.2 Platinum-Group Element Content of Selected Waaikraal Rocks and Possible Origin of the Gold

If the gold at Waaikraal is related to the Bushveld Complex, platinum-group elements may have been transported and concentrated together with the gold. Two samples of Waaikraal pyroxenite were therefore submitted for analyses of the platinum-group elements and gold to Sheen Analytical Services Ltd., Perth, Western Australia (Table 9.1).

Platinum group lement concentrations (in ppb) in Waaikraal pyroxenite (WK 5.2 and WK 6.3, average of two determinations), UG-2 (averages after von Gruenewaldt et al., 1986) and Merensky Reef (MR) (after Barnes et al., 1985), marginal rocks (basaltic and tholeitic suites) (after Davies and Tredoux, 1985) and C-1 chondrites (after Naldrett and Duke, 1980).

	0 s	Ir	Ru	Rh	Pt	Pd	Au	PGE/Au
WK 5.2 WK 6.3	2 5	4.75 7.5	 5.5 8.75	1.0 2.0	24 57 . 5	3.5 6.25	17050 32000	0.002 0.003
UG-2 MR	111 63	157 74	946 430	507 240	2950 3740	1920 1530	56 310	117.70 19.60
basaltic tholeitic	-	0.35 0.09	3.0 1.5	1•4 0•4	17.0 11.0	12.0 6.0	3.05 2.44	11.07 7.78
C-1	514	540	690	200	1020	545	152	23.09

The PGE concentrations of the Waaikraal pyroxenite normalised to C-1 chondrite values (Naldrett and Duke, 1980) display a very flat pattern, except for a positive anomaly for Pt (Fig. 9.1). Upper zone rocks from the eastern Bushveld (Harney et al., manuscript in preparation) show a very similar pattern with the exception of Pt, which shows a negative anomaly.

Table 9.1

Figure 9.1 Chondrite - normalised PGE and Au concentrations of Waaikraal pyroxenite (WK 5.2 and WK 6.3), UG-2, Merensky Reef and marginal rocks of the Bushveld Complex (basaltic and tholeitic suites) (for sources see Table 9.1).

The gold contents of the UG-2 and, to a lesser degree, the Merensky Reef are depleted relative to the PGE if compared with marginal rocks of the Bushveld Complex (Davies and Tredoux, 1985), which are believed to represent parental magmas of the Complex. It is unlikely that this "depletion" is a function of differences in the respective distribution coefficients.

Naldrett and Duke (1980) give distribution coefficients (D) between coexisting sulfide and silicate liquids of 1000 for Pt and 1500 for Pd. Campbell and Barnes (1984), however, suggest that the distribution coefficients are as high as 10^5 . Finstadt and Heier (1972) estimate D for Ir to be >1000 and for Au to be >500, whereas Brett (1971) estimates D_{Au} to be 130. Distribution coefficients of this magnitude (500) are unlikely to cause noticable fractionation of PGE and gold in a magma chamber, because most of the gold, as well as the PGE will be concentrated in the sulfide liquid. Therefore, the depletion of Au relative to the PGE in the UG-2 and the Merensky Reef compared with their suggested parental magma can not be attributed to differences in the distribution coefficient.

Von Gruenewaldt (1976) could demonstrate on the basis of a detailed mineralogical investigation of the upper zone in the eastern Bushveld that the upper 1000 metres of olivine gabbro crystallised from a sulfur oversaturated magma. The numerous immiscible sulfide droplets in these rocks evidently extracted any PGE and Au in the magma, so that it can be assumed that there was no progressive enrichment of gold towards the top of the upper zone. This is also substantiated by the absence of any significant known gold deposits in the roof of the Bushveld Complex. It is therefore assumed that the gold, together with some PGE, rather occurs disseminated throughout the upper zone and was mobilised at the postmagmatic stage by hydrothermal fluids to cause localised enrichments in the roof of the Complex.

Not much data is available on the mobility of the PGE in hydrothermal fluids. Barnes et al. (1985) interpret positive correlations between Au and Pt anomalies in rocks which were subjected to mild talc-carbonate alteration by concomitant mobility of Au and Pt. Schiffries (1982) assumes that a chloride complex can, at least at low temperatures, discriminate between the PGE, leading to a PGE distribution pattern which is highly skewed towards Pt.

As discussed in Chapter 9.1, the gold at Waaikraal was most likely

transported as sulfur complexes. According to Mountain and Wood (1988), Pt and Pd are more likely to be transported as sulfur complexes than as chloride complexes and, if conditions are favourable, Au and Pt could possibly be deposited together from bisulfide solutions. The solubility of Au as a bisulfide complex appears to be many orders of magnitude higher than that of Pt (Mountain and Wood,1988), which is also shown by the small Pt/Au ratio at Waaikraal. No thermodynamic data on bisulfide complexing of the other PGE is available, but, if transport through bisulfide complexing is assumed, their solubilities seem fairly uniform and lower than that for Pt. The positive Pt anomaly of the Waaikraal pyroxenite compared with the negative anomaly of the upper zone rocks from the eastern Bushveld could possibly be explained by the selective transport of some PGE together with the gold in the hydrothermal fluids. 10. THE ORIGIN OF THE GOLD-BEARING PYROXENITE AND MAGNETITE-RICH ROCKS FROM WAAIKRAAL

10.1 Introduction

Comparison of the whole rock composition and trace element content of the pyroxenite and the magnetite-rich rock from Waaikraal with rocks from the upper zone of the Bushveld Complex show that the pyroxenite might have crystallised from a highly differentiated upper zone type liquid (chapter 5.4). This assumption is supported by the compositional similarities of clinopyroxenes, plagioclase and magnetite of Waaikraal pyroxenite and rocks from the topmost part of the upper zone intersected by the Bierkraal borehole (see chapters 6.1, 6.2 and 6.5 respectively).

Seeing that the magnetite grains in the pyroxenite contain exsolution lamellae of ilmenite, whereas the magnetite grains of the magnetite-rich rock do neither contain ilmenite lamellae nor high concentrations of titanium (chapters 3.1.3 and 6.5) different origins for the two rock types at Waaikraal are proposed, although the compositions of the silicates are very similar (chapters 6.1, 6.2 and 6.4).

10.2 Other Ti-Poor Magnetite-Rich Rocks in the Bushveld

Van Biljon (1949) considers certain garnet-magnetite rocks from Zeekoegat, to be the products of hydrothermal solutions which followed and replaced calcareous parts of sediments. The sediments, mainly quartzite and limestone, belong to the same stratigraphic unit as the sediments at Waaikraal (Geological Survey, 1981). The garnet-magnetite is also marked by a very low titanium content (0.40 weight per cent) and except for the Fe-content (which is higher in the magnetite-rich rocks from Waaikraal) and the Ca-content (which is lower than in the garnet-magnetite rock), the whole rock compositions of both rock types are very similar (Table 10.1). The differences can be ascribed to different modal proportions, where the magnetite-rich rock from Waaikraal contains less silicates (clinopyroxene) compared to the garnetmagnetite rock from Zeekoegat.

Magnetite-rich rock with a low titanium content also occurs in the Dwars River Fragment, a sequence of quartzite, hornfels and metamorphosed dolomitic limestone of the Pretoria Group in the vicinity of Kennedy's Vale, District Lydenburg. The origin of the magnetite-rich rock is not quite clear, but the low titanium content (Table 10.1) points to a sedimentary origin, whereas the presence of garnet suggests a skarn (Van Rensburg, 1962).

	garnet-magnetite rock	magnetite rock	Waaikraal magnetite- rich rock
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO	29.18 0.40 4.48 32.74 5.75 0.33 0.89	4.82 0.20 4.89 54.52 21.34 1.02 9.09	26.12 0.62 4.77 60.87
$\begin{array}{c} Ca0\\ Na_{2}0\\ K_{2}0\\ P_{2}0_{5}\\ Cr_{2}0_{3}\\ V_{2}0_{5}\\ H_{2}0^{-}\\ H_{2}0^{-}\\ H_{2}0^{-}\end{array}$	25.51 - - 0.09 trace - 0.28 0.10 99.75	0.27 - - 0.09 - - 0.74 3.00 0.15 	$ \begin{array}{r} 10.07 \\ 0.33 \\ 0.19 \\ 0.04 \\ 0.09 \\ - \\ 104.15 \end{array} $

Table 10.1 Whole rock composition of a garnet-magnetite rock from Zeekoegat (van Biljon, 1949), magnetite rock from the Dwars River Fragment (van Rensburg, 1962), and the means of Waaikraal magnetite-rich rock for comparison (all iron as Fe_2O_3).

87 .

10.3 Sedimentary Origin of the Magnetite-Rich Rocks

The two most important varieties of iron-rich sediments are banded iron formations and oolitic ironstones (Maynard, 1983). Amongst the banded iron formations, two types are dominant: Algoma- and Lake Superior type deposits (Gross, 1980). The presence of clinopyroxenes in metamorphic iron formations has been described by Kranck (1961) and Immega' and Klein (1976), but clinopyroxene generally occurs together with Fe-rich orthopyroxene in these rocks.

The means of major- and trace elements of the magnetite-rich rocks from Waaikraal (Tables 5.1 and 5.2) are compared with these two types of iron formations Figure 10.1.

Typical goethitic, hematitic, chamositic and sideritic ironstones were normalised to Waaikraal magnetite-rich rock and plotted in Figure 10.2. Unfortunately, only major element data could be obtained for the different oolitic ironstones.

tion of Algoma- and Lake Superior type iron formation (after Gross, 1980) normalised to Waaikraal magnetite-rich rock.

Figure 10.2 Average major element concentration of typical goethitic, hematitic, chamositic and sideritic ironstones (after Maynard, 1983) normalised to Waaikraal magnetiterich rock.

Figures 10.1 and 10.2 show that there are significant compositional differences between the magnetite-rich rock from Waaikraal and typical ironstones as well as between Waaikraal magnetite-rich rock and iron formations. It is therefore unlikely that the magnetite-rich rock at Waaikraal can be considered as an original iron-rich sediment.

10.4 Skarn Origin of the Magnetite-Rich Rock

According to Verkaeren and Bartholomé (1979) it is well known that iron oxide deposits may form in the vicinity of an intrusive as a result of iron being introduced into a limestone by metasomatic fluids. The magnetite-rich rock from Waaikraal might therefore represent a skarn, which could have evolved along the common pattern of a skarn (Einaudi et al., 1981); viz:

- isochemical contact metamorphism accompanying emplacement of the magma;
- (2) metasomatism (skarn formation) accompanying crystallisation of the magma and evolution of the ore fluid;
- (3) retrograde alteration and ore deposition accompanying final cooling of the system;

A skarn origin of the magnetite-rich rock from Waaikraal is supported by the presence of typical skarn minerals such as hedenbergite (see capter 6.1), magnetite and ilvaite (see chapter 3.1.3) and the metal association of Co, Cu, As and Au with Fe. The magnetite-rich rock could be classified as a calcic iron-skarn as described by Zharikov (1970) and Einaudi and Burt (1982), derived from sediments through metasomatism by iron-rich fluids.

In order to determine whether the magnetite-rich rock does indeed represent metasomatised sediments, it has to be established whether any evidence for the "original sediment", that is the sediment before introduction of iron-rich fluids, can be found.

Calc-silicates and quartzite occur in the vicinity of Waaikraal gold mine and shale has been described by van Biljon (1949) and Visser (1969) to be present in the Rayton Formation. These three sediment types and a combination of shale with calc-silicate were selected as potential "original sediments". Average whole rock compositions of the calc-silicates and quartzites from Waaikraal as well as the composition of a shale from Zeekoegat (van Biljon, 1949) are presented in Table 10.2. In order to deduce an "original sediment" composition from the magnetite-rich rocks, the iron content of the average whole rock composition of the Waaikraal magnetite-rich rock is made equal to the respective iron content of the sediments. The concentration of the remaining elements in the magnetite-rich rocks were than increased proportionally to yield the recalculated analyses of the Waaikraal magnetite-rich rock in Table 10.2. The compositions of the calc-silicate, quartzite, shale and mixture of shale and calc-silicate are then normalised to the respective adjusted compositions of the magnetite-rich rock and plotted in Figure 10.3.

Table 10.2 Average whole rock composition of Waaikraal calc-silicate (N = 4) (WK-CS), Waaikraal quartzite (N = 9) (WK-QZ), shale from Zeekoegat (van Biljon ,1949) and a combination (1 : 1) of calcsilicate and shale; together with their respective recalculated (as described in chapter 10.4) magnetite-rich rock from Waaikraal.

	WK-CS	WK-QZ	Shale	WK-CS + Shale
Si0,	51.10	84.41	57.8	54.45
T105	0.10	0.13	0.8	0.45
A1,0,	1.33	4.06	19.3	10.32
Feboo	2.16	4.41	8.5	5.33
MnŐ	0.28	0.10	0.07	0.18
MgO	0.51	0.88	1.2	0.86
CaO	43.89	3.57	0.3	22.10
Na ₂ 0	<1.1.d.	1.01	1.0	0.50
κ ₂ δ	0.06	1.50	5.1	2.58
P205	0.15	0.14	0.02	0.09
$Cr_{2}O_{2}$	0.08	0.10	-	0.04
2 3				
recald	culated Waa	ikraal mag	netite-rid	ch rock
St 0.	59 05	57.69		57 13
5102 T10	1 40	1 37	1 31	1 36
1102	10 79	10.54	10.09	10 /3
A1203	10.70	10.54	10.00	5 22
re203	2.10	4.41	0.5	1 22
MnO	1.20	1.24	1.10	1.22
MgU		1.08	1.04	1.07
Cau	22.76	22.24	21.29	22.03
Na ₂ 0	0.75	0./3	0./0	0./2
к ₂ 0	0.43	0.42	0.40	0.42
P205	0.09	0.09	0.08	0.09
Cr203	0.20	0.20	0.19	0.20

Figure 10.3 Average major element concentration of Waaikraal calc-silicate, Waaikraal quartzite, shale from Zeekoegat (van Biljon, 1949) and a combination of shale and calcsilicate (1 : 1) normalised to their respective recalculated (as described in chapter 10.3) Waaikraal magnetite-rich rock.

Figure 10.3 shows that the "original sediment", from which the magnetite-rich rock might have formed is most likely a combination of equal parts of shale and calc-silicate. Ca0, P_2O_5 , SiO₂, MgO, Al₂O₃ and Na₂O contents compare very well. K₂O is enriched in the sediment compared with the recalculated magnetité-rich rocks, possibly reflecting a smaller than average proportion of clay minerals in the unmeta-somatised sediment or a potassium loss during metamorphism and hydrothermal activity. MnO was most likely transported together with the iron, but was not recalculated in the same way, causing the larger amount of MnO present in the recalculated magnetite-rich rocks. Cr₂O₃ is present in concentrations close to the detection limit, where small errors can cause large differences in comparative studies of this nature. TiO₂ is twice as high in the recalculated magnetite-rich rocks compared with the sediment, but the actual difference is only 0.91 weight per cent.

10.5 Conclusion

In conclusion it is favoured that the pyroxenite is related to the upper zone of the Bushveld Complex and that it crystallised from a highly differentiated upper zone type liquid, which was injected into the host rocks during the final stages of consolidation of the upper zone. The host rock probably consisted of a marl, with a composition equivalent to equal parts of shale and limestone. The latter recrystallised to calc-silicate rock during the emplacement of the Bushveld Complex. Introduction of the highly fractionated iron-rich liquids into the host rock gave rise to the pyroxenite and to conditions favourable for reconstructing the marl into the magnetite-rich rock.

11. SUMMARY AND CONCLUSION

The gold at Waaikraal occurs in a sill-like body of alternating layers and lenses of pyroxenite and magnetite-rich rock, hosted in sediments belonging to the Rayton Formation of the Transvaal Sequence. The sediments are situated between the magnetite gabbros of the upper zone of the Bushveld Complex and the granites of the Lebowa Granite Suite.

Clinopyroxene (hedenbergite and augite) with inclusions of amphibole (mainly hastingsite and hastingsitic hornblende) is the major constituent of the pyroxenite. Plagioclase (mainly andesine) and quartz occur interstitially. Magnetite with abundant exsolution lamellae of ilmenite, but frequently also spinel occurs as discrete grains. Accessory minerals are calcite, apatite and occasionally prehnite. The magnetite-rich rock consists mainly of magnetite and clinopyroxene (hedenbergite and augite). The magnetite does not contain any ilmenite exsolution lamellae, although spinel exsolutions occur throughout many of the grains. The clinopyroxene does not contain any inclusions of amphibole. Small clinopyroxene grains can be found within magnetite grains and vice versa. Plagioclase (mainly andesine) occurs interstitially. Abundant olivine (fayalite) was found in one sample and ilvaite was encountered in several samples of magnetite-rich rock. It is present together with primary and secondary magnetite and sometimes chlorite. An accessory mineral is apatite.

The sediments, which host the ore body are mainly quartzite and pyroxene hornfels. Calc-silicate hornfels (mainly wollastonite and garnet) occurs in places. The most abundant constituent of the magnetite gabbro exposed close to the deposit is plagioclase. Clinopyroxene, orthopyroxene, orthoclase and magnetite occur interstitially. Due to the lack of exposure of the topmost differentiates of the Bushveld Complex, rocks (ferrodiorite and ferrogabbro) from the top of the Bierkraal 1 borehole were used for comparison.

The mineralogical differences of the pyroxenite and the magnetiterich rock are reflected in Spearman correlation matrices, which were obtained of whole rock- and trace element composition for each rock type separately. The modified Tukey test (Neave, 1979) also established, that there are significant differences between the two rock types, which can readily be explained by the different mineralogy.

Comparison of the compositions of Waaikraal pyroxenite, magnetiterich rock, magnetite gabbro and the topmost differentiates from the Bushveld Complex, revealed that the magnetite gabbro, exposed close to the deposit, belongs to stratigraphically lower part of the upper zone than the samples taken from the Bierkraal borehole. This is supported by the compositions of the clinopyroxene and the plagioclase. The magnetite-rich rocks are, compared to those from Bierkraal, depleted in most elements except for Fe, V, Cr, Ni, and to a lesser extend Ca, Mn, Nb and Y, which reflect the much larger amount of magnetite in the former. Interesting to note, however, is the low TiO₂ content, in spite of the large amounts of magnetite in the magnetite-rich rock. The resemblance between the rocks from Bierkraal and the pyroxenite is generally closer than between the latter and the magnetite gabbro. The plot $Mg0/(Mg0+Fe_2O_3)$ versus $Rb/(K_2O+Na_2O)$ (Fig.5.2) indicates that the pyroxenites from Waaikraal are more differentiated rocks than the topmost differentiates of the upper zone intersected by the Bierkraal borehole.

Analyses of mineral compositions showed that the composition of the clinopyroxene of the pyroxenite and the magnetite-rich rock overlap and plot on the boundary of the hedenbergite and augite fields of the pyroxene quadrilateral. The composition of the plagioclase of the pyroxenite as well as the magnetite-rich rock varies considerably from grain to grain within one thin section, with the majority of compositions around An_{30-50} . All amphibole in the pyroxenite fall into the calcic amphibole group according to the classification of Leake (1978). Most of the analyses can be termed hastingsite and hastingsitic hornblende, although a few analyses fall into the compositional fields for ferro-edenite, ferro-edenitic hornblende, ferro-actinolite and ferro-hornblende (Fig. 6.3). The ranges of composition of the magnetite itself in the two rock types of the ore body overlap. The magnetite in the pyroxenite, however contains 10-30 volume per cent ilmenite exsolution, indicating an overall much higher Ti-content of the magnetite/ilmenite grains as a whole. The composition of the magnetite varies considerably, evidently in response to the amount of ulvospinel in either solid solution or as tiny exsolutions in the magnetite. The composition of the Waaikraal magnetite of both rock types corresponds best with the magnetites from the topmost rocks of

the upper zone (Fig. 6.6).

In the pyroxenite and magnetite-rich rock from Waaikraal, two assemblages of ore minerals can be distinguished, viz. (i) safflorite, arsenopyrite, cobaltite, joseite, bismuthinite, native bismuth calcopyrite and gold and (ii) pyrrhotite, pyrite, chalcopyrite and sphalerite. The first group represents the later generation. Generally there is a greater abundance of ore minerals in the pyroxenite than in the magnetite-rich rock. Apart from very pure native gold, two gold bearing compounds occur. These are maldonite (Au $_2$ Bi) and CuAu $_3$. The most frequent encounterd bismuth-bearing mineral is joseite-B (Bi_4Te_2S) , but bismuthinite (Bi_2S_3) also occurs, often surrounding native bismuth. The composition of the safflorite varies from loellingite- (FeAs₂) to safflorite (CoAs₂) -rich members with up to 8 mole per cent NiAs₂. Cobaltite (CoAsS) and arsenopyrite (FeAsS) were the only sulfarsenides found to occur in the Waaikraal deposit. Chalcopyrite is the main copper-bearing sulfide and occurs together with almost all of the other ore minerals of the deposit. It is also present as small droplets in sphalerite. Intermediate and monoclinic pyrrhotite (the intermediate phase is dominant) is often found together with pyrite and chalcopyrite.

The close association of gold with a variety of different ore minerals allows to estimate the temperature conditions of ore formation. The available literature indicates the following maximum temperatures of formation: arsenopyrite 500°C, cobaltite 400°C, safflorite 850°C, bismuthinite + native bismuth 880°C and joseite-B 478°C.

The temperature range of formation of the ore minerals associated with the gold and the mode of occurrence of the gold as small grains and in veinlets suggests a hydrothermal origin of the gold. Seeing that the gold at Waaikraal is associated with sulfides and sulfarsenides such as arsenopyrite, cobaltite and chalcopyrite, there is a strong possibility that the gold was transported as sulfide complexes. There are also indications that the fluid became progessively sulfidizing during the evolution of the ore body, as is indicated by textural relations, e.g. native bismuth frequently surrounded by bismuthinite and safflorite enclosed by cobaltite.

Platinum-group element analyses of two samples of pyroxenite from Waaikraal revealed that the C-l chondrite normalized pattern is very flat, except for a positive anomaly for Pt. The concentration of PGE
is very low. It is assumed that the gold, together with some PGE occurs dissiminated throughout the upper zone of the Bushveld Complex and was mobilized at the postmagmatic stage by hydrothermal fluids to cause localized enrichments in the roof of the complex.

Comparison of the whole rock composition and trace element content of the pyroxenite and the magnetite-rich rock with rocks from the upper zone of the Bushveld Complex shows that the pyroxenite might have crystallized from a highly differentiated upper zone type liquid. This assumption is supported by the compositional similarities of clinopyroxene, plagioclase and magnetite of Waaikraal pyroxenite and rocks from the topmost part of the upper zone intersected by the Bierkraal borehole. Seeing that the magnetite grains of the magnetiterich rock do neither contain ilmenite exsolution lamellae, nor high concentrations of titanium, in contrast to the magnetite grains of the pyroxenite, a different, possibly sedimentary origin of the magnetiterich rock is proposed. Comparison of the magnetite-rich rock with the two most important varieties of iron-rich sediments (banded iron formation and oolitic iron stones) revealed that there are significant differences between the composition of the magnetite-rich rock from Waaikraal and those sediments. It is therefore unlikely that the magnetite-rich rock can be considered as an original iron-rich sediment. A skarn origin of the magnetite-rich rock is supported by the presence of typical skarn minerals such as hedenbergite, ilvaite and magnetite and the metal association of Co, Cu, As and Au with Fe. Comparison of the magnetite-rich rock with quartzite, shale, calcsilicate and a combination of shale and calc-silicate, after equating the iron content of the average whole rock composition of the magnetite-rich rock with the iron content of the sediments, showed that the "original sediment" most likely was a marl with a composition equivalent to equal parts of shale and limestone.

REFERENCES

- ATKINS, F.B. (1969) Pyroxenes of the Bushveld Intrusion, South Africa. Journal of Petrology 10, 222-249.
- BARNES, S.-J., NALDRETT, A.J. and M.P. GORTON (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology 53, 303-323.
- BARNES, H.L. (1979) Solubility of ore minerals. In: Barnes, H.L., (Ed.) Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons, 404-460.
- BARTON, P.B., Jr. (1969) Thermochemical study of the system Fe-As-S Geochimica et Cosmochimica Acta 33, 841-857.
- BARTON, P.B., Jr. (1973) Solid solutions in the system Cu-Fe-S. Part I The Cu-S and CuFe-S joins. Economic Geology 68, 455-465.
- BARTON, P.B., Jr. and P.M. BETHKE (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist 72, 451-467.
- BARTON, P.B. Jr. and B.J. SKINNER (1979) Sulfide mineral stabilities. In: Barnes, H.L., (Ed.) Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons, 278-403.
- BERRY, L.G. and R.M. THOMPSON (1962) X-ray powder data for ore minerals. Geological Society of America, Memoir 85.
- BÖHMKE, F.C. and B.J. VARNDELL (1986) Gold in granulites at Renco Mine, Zimbabwe. In: Anhaeuser, C.R. and S. Maske (Eds.), Mineral Deposits of South Africa, Volumes I and II, Geological Survey of South Africa, Johannesburg, 221-230.
- BRETT, R. (1971) The earth's core: speculations on its chemical equilibrium with the mantle. Geochimica et Cosmochimica Acta 35, 203-221.
- BURT, D.M. (1971) Multisystems analyses of the relative stabilities of babingtonite and ilvaite. Carnegie Institution Washington, Yearbook 70, 189-195.
- CABRI, L.J. (1973) New data on phase relations in the Cu-Fe-S system. Economic Geololgy 68, 443-454.
- CAMPBELL, I.H. and S.J. BARNES (1984) A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Canadian Mineralogist 22, 151-160.
- CARPENTER, R.H. and G.A. DESBOROUGH (1964) Range in solid solution and structure of naturally occuring troilite and pyrrhotite. American Mineralogist 49, 1350-1365.

- CLARK, L.A. (1960) The Fe-As-S system: Phase relations and applications. Economic Geology 55, 3345-3381 and 1631-1652.
- COLE, D.R. and S.E. DRUMMOND (1986) The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits. Journal of Geochemical Exploration 25, 45-79.
- CRERAR, D.A. and H.L. BARNES (1976) Ore solution chemistry V. Solubilities of chalcopyrite and chalcosite assemblages in hydrothermal solution at 200° and 350°C. Economic Geology 71, 772-794.
- DAVIES, G. and M. TREDOUX (1985) The platinum-group elements and gold contents of the marginal rocks of the Bushveld Complex. Economic Geology 80, 838-848.
- DEER, W.A., HOWIE, R.A. and J. ZUSSMAN (1977) An Intoduction to Rock Forming Minerals. Longman Group Limited, London, 528 pages.
- EINAUDI, M.T., MEINERT, L.D. and R.J. NEWBERRY (1981) Skarn deposits. Economic Geology 75th Anniversary Volume, 317-391.
- EINAUDI, M.T. and D.M. BURT (1982) Introduction terminology, classification and composition of skarn deposits. Economic Geology 77, 745-754.
- FINSTADT, K.G. and K.S. HEIER (1972) The distribution of some elements between the metal and silicate phases obtaines in a smelting reduction process of dunite from Almklovdalen, West Norway, Earth and Planetary Science Letters 16, 209-212.
- GEOLOGICAL SURVEY (1981) Geological Sheet 2526 (Rustenburg) 1:250 000, Geological Survey of South Africa.
- GIESE, R.F. and P.F. KERR (1965) The crystal structures of ordered and disordered cobaltite. American Mineralogist 50, 1002-1014.
- GROSS, G.A. (1980) A classification of iron formation based on depositional environments. Contributions to Mineralogy and Petrology 18, 215-222.
- GULYAEVA, T.YA., GORELIKOVA, N.V. and A. KARABTSOV (1986) High potassium-chlorine bearing hastingsites in skarn from Primorge, Far East USSR. Mineralogical Magazine 50, 724-728.
- HANSEN, M. and K. ANDERKO (Eds.) (1958) Constitution of Binary Alloys. McGraw-Hill Book Company, Inc., 1305 pages.
- HELGESON, H.C. and R.M. GARRELS (1968) Hydrothermal transport and deposition of gold. Economic Geology 63, 622-635.
- HENLEY, R.W. (1973) Solubility of gold in hydrothermal chloride solutions. Chemical Geology 11, 73-87.
- HOLMES, R.J. (1947) Higher mineral arsenides of cobalt, nickel and iron. Geological Society of America, Bulletin 58, 299-392.

- . .

- KAISER, H. and H. SPECKER (1956) Bewertung und Vergleich von Analysenverfahren. Zeitschrift für Analytische Chemie 149, 46-66.
- KLEMM, D.D. (1965) Synthesen und Analysen in den Dreiecksdiagrammen FeAsS-CoAsS-NiAsS und FeS₂-CoS₂-NiS₂. Neues Jahrbuch für Mineralogie, Abhandlungen 103, 205-255.
- KRANCK, S.H. (1961) A study of phase equilibria in a metamorphic iron formation. Journal of Petrology 2, 137-184.
- KRETSCHMAR, U. and S.D. SCOTT (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Canadian Mineralogist 14, 364-386.
- LEAKE, B.E. (1978) Nomenclature of amphiboles. American Mineralogist 63, 1023-1052.
- MARKGRAAF, J. (1976) Pyroxenes of the Western Bushveld Complex, South Africa, Transactions of the Geological Society of South Africa 79, 217-224.
- MAYNARD, J.B. (1983) Geochemistry of Sedimentary Ore Deposits. Springer Verlag, New York Inc., 305 pages.
- MERKLE, R.K.W. and G. VON GRUENEWALDT (1986) Compositional variation of Co-rich pentlandite: Relation to the evolution of the upper zone of the eastern Bushveld Complex, South Africa. Canadian Mineralogist 24, 529-546.
- MOORHOUSE, W.W. (1959) The Study of Rocks in Thin Section. Harper & Row, Publishers, New York and Evanston, 514 pages.
- MORIMOTO, N., GYOBU, A. MUKAIYAMA, H. and E. ZZAWA (1975) Crystallography and stability of pyrrhotites. Economic Geology 70, 824-833.
- MORIMOTO, N. Chairman Subcomittee on Pyroxenes I.M.A. (1988) Nomenclature of pyroxenes. Mineralogical Magazine 52, 535-550.
- MOUNTAIN, B.W. and S.A. WOOD (1988) Solubility of platinum-group elements in hydrothermal solutions: Thermodynamic and physical chemical constraints. In: H.M. Prichard et al. (Eds.) Geo-Platinum 87, Elsevier Applied Science, London and New York, 57-82.
- NALDRETT, A.J. and J.M. DUKE (1980) Platinum metals in magmatic sulfide ores. Science 208, Number 4451, 1417-1424.
- NEAVE, H.R. (1979) Quick and simple tests based on extreme observations. Journal of Quality Technology 11, 66-79.

- NORRISH, K. and J.T. HUTTON (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta 33, '431-453.
- OEN, I.S. and C. KIEFT (1974) Nickeline with pyrrhotite and cubanite exsolutions, Ni-Co-rich loellingite and an Au-Cu-alloy in Cr-Niores from Beni-Bousera, Morocco. Neues Jahrbuch für Mineralogie, Monatshefte 1, 1-8.
- RADCLIFFE, D. and L.G. BERRY (1968) The safflorite-loellingite solid solution series. American Mineralogist 53, 1856-1881.
- RADCLIFFE, D. and L.G. BERRY (1971) Clinosafflorite: a monoclinic polymorph of safflorite. Canadian Mineralogist 10, 877-881.
- RAMDOHR, P. (1980) The Ore Minerals and their Intergrowths. 2nd ed., Volume 1 and 2. Pergamon Press, 1207 pages.
- REYNOLDS, I.M. (1985) Contrasted mineralogy and textural relationships in the uppermost titaniferrous magnetite layers of the Bushveld Complex in the Bierkraal area north of Rustenburg. Economic Geology 80, 1027-1048.
- RIPLEY, L.G. (1980) Crystal growth part IV: The arsenides and sulpharsenides of cobalt, iron and nickel. Departement of Energy, Mines and Resouces, Mines Branch., Ottawa-Mineral Science Division, Sulphide Research Contribution No.56, Research Report R238. 112 pages.
- ROSEBOOM, E.H. (1963) Co-Ni-Fe diarsenides: compositions and cell dimensions. American Mineralogist 48, 271-299.
- SOUTH AFRICAN COMMITTEE FOR STRATIGRAPHY (SACS) (1980) Stratigraphy of South Africa, Part I (Comp. L.E. Kent) Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophutatswana, Transkei and Venda. South Africa, Geological Survey, Handbook 8, 690 pages.
- SCHIFFRIES, C.M. (1982) The petrogenesis of a platiniferous dunite pipe in the Bushveld Complex: Infiltration metasomatism by a chloride solution. Economic Geology 77, 1439-1453.
- SEWARD, T.M. (1973) Thio complexes of gold in the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta 37, 379-399.
- SEWARD, T.M. (1984) The transport and deposition of gold in hydrothermal systems. In: Forster, R.P. (Ed) Gold '82: The Geology, Geochemistry and Genesis of Gold Deposits. Geological Society of Zimbabwe, special Publication No.l, A.A. Balkema, Rotterdam, 165-181.
- SHIKAZONO, N. and M. SHIMIZU (1987) The Ag/Au ratio of native gold and electrum and the geochemical environment of gold vein deposits in Japan. Mineralium Deposita 22, 309-314.

- SPEAR, F.S. and K.L. KIMBALL (1984) RECAMP a Fortran IV program for estimating Fe³⁺ contents in amphiboles. Computer and Geosciences 10, 317-325.
- SWASH, P.M. (1983) Mineralogical examination of the Moorcroft Reef Waaikraal No. 396JQ. Confidential Communication No. C244M, Council for Mineral Technology, Randburg.
- TOBSCHALL, H.J. (1975) Geochemische Untersuchungen zum stofflichen Bestand und Sedimentationsmilieu paläozoischer mariner Tone: Die Gehalte der Hauptelemente und Spurenelemente Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb und Ba in den Steiger Schiefern (Vogesen). Chemie der Erde 34, 105-167.
- TRÖGER, W.E. (1969) Optische Bestimmung der gesteinsbildenden Minerale, Teil 2. E. Schweizerbart sche Verlagsbuchhandlung. Nägele und Obermiller, Stuttgart, 822 pages.
- VAN BILJON, S. (1949) The transformation of the upper part of the Pretoria Series in the Bushveld Igneous Complex. Transactions and Proceedings of the Geological Society of South Africa 52, 1-197.
- VAN BILJON, S. (1974) Transformation and deformation of the Pretoria Series in the south-western part of the Bushveld Complex. Transactions of the Geological Society of South Africa, 17-29.
- VAN RENSBURG, W.C.J. (1962) The Geology of the Dwars River Fragment and the Ore - Minerals of the Magnetite Deposit on Kennedy's Vale 361KT, Eastern Transvaal. unpublished MSc Thesis, University of Pretoria, South Africa, 94 pages.
- VERKAEREN, J. and P. BARTHOLOME⁻ (1979) Geology of the San Leone magnetite skarn deposit (S.W. Sardinia). Economic Geology 74, 53-66.
- VISSER, J.N.J. (1969) 'n Sedimentologiese Studie van die Serie Pretoria in Transvaal. Unpublished DSc Thesis, University of the Orange Free State, South Africa, 263 pages.
- VON GRUENEWALDT, G. (1976) sulfides in the upper zone of the Bushveld Complex. Economic Geology 71, 1324-1336.
- VON GRUENEWALDT, G., HATTON, C.J., MERKLE, R.K.W. and S.B. GAIN (1986) Platinum-group element - chromitite associations in the Bushveld Complex. Economic Geology 81, 1067-1079.
- WAGNER, P.A. (1926a) A new gold discovery in the Rustenburg district, Transvaal. Transactions of the Geological Society of South Africa 29, 95-108.
- WAGNER, P.A. (1926b) Supplementary note on a new gold discovery in the Rustenburg district, Transvaal. Transactions of the Geological Survey of South Africa 29, 141-143.

- WESTON, S. (1980) Report on gold deposit Waaikraal 396JQ. Bophutatswana Geological Survey Report.
- WESTON, S. (1981) Report on drilling operations at gold deposit Waaikraal 396JQ. Bophutatswana Geological Survey Report.
- YUND, R.A. and G. KULLERUD (1966) Thermal stability of assemblages in the Cu-Fe-S system. Journal of Petrology 2, 381-404.
- YUSA, K., KITAKAZE, A. and A. SUGAKI (1979) Synthesized bismuthtellurium-sulphur system minerals (IX). Science Reports of the Tohoku University, 3rd Series 14(2), 121-133.

ZHARIKOV, V.A. (1970) Skarns. International Geology Reviews 12, 541-559, 619-647 and 760-775.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. G. von Gruenewaldt and Dr. R.K.W. Merkle who both rendered invaluable assistance in the form of guidance, discussions and criticism.

Mr. P. Nel, I owe a special thank you for initiating the project and providing assistance during my field work.

Furthermore I would like to thank Hannele Horsch for assistance with the microprobe analyses and Dr. M.R. Sharpe for the XRF-analyses.

I am also very grateful to $Prof_{\bullet} E_{\bullet}B_{\bullet}$ Förtsch, who gave me the work environment, which made it possible for me to complete this study.

To the staff of the Bushveld Research Institute and the Departement of Geology of the University of Pretoria goes a special thank you for numerous fruitful discussions.

Last, but not least, I would like to thank my husband Steve for his thoughtful assistance and support.

APPENDIX 1

Modal Analyses of Selected Waaikraal Pyroxenite and Magnetite-Rich Rocks

×

a: Pyromenite

.

	_									
l.			ľ				1			
Sample No.		WK 3.2	WK 6.3	WK 12.4	WK 12.3	WK 28.4	WK 21.5	WK 20.5	WK 16.2	WK 14.4
l	_		l			l				
1							1			
Clinopyroxene		67 . 57	64.89	74.30	51.39	63.92	52.73	47.09	91.71	64.64
Plagioclase		8.25	20.08	12.79*	25.58	5.52	19.40*	20.04*	0.34	9.31*
Orthoclase		6.49	3.39	1.46	1.52	-	6.91*	2,80	1.34	6.82
Quartz	-11	8.02	2.91	5.85	18.35	1.18	1.90	8.19	0.45	6.20
Hornblende		5.78	6.11	2.92	0.76	15.18	14.49	10.67	4.26	9.55
Mica/Chlorite	- 11	-	-	0.12	0.63	0.94	1.68	0.32	0.22	-
Opaque		3.42	2.23	1.95	1.52	11.75	0.56	9.16	0.34	2.85
Accessory		0.47	0.39	0.61	0.25	0.71	2.33	1.73	1.34	0.51
l	_11			l					l	l
1			1			1	ł	-		
Sum		100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
l			ļ		l		<u></u>	l	l	
1			t	1	l		1			
Points counted		840	1031	821	790	851	897	928	893	806
	_								l	

b: Magnetite-rich rock

 Sample No.	 wk 28.3 	WK 4.1	WK 6.1	WK 14.1	 WK 15.3	 wk 12.1 	 WK 17.3
1	11	I	į ,		I		1
Clinopyroxene	43.64	57.54	50.18	10.53	51.38	44.59	47.16
Plagioclase	11.73+	10.41+	3.15*	3.27	10.88*	5.91*	16.59
0rthoclase	-	0.40	-	-	-	-	-
Quartz	-	0.13	-	-	-	· -	-
Hornblende	-	-	-	0.12	-	-	-
Mica/Chlorite	-	-	-	5.08	0.13	-	-
Opaque	44.30	30.98	46.30	52.42	37.13	49.39	36.14
Accessory	0.11	0.54	0.37	0.25	0.48	0.11	0.11
Olivine	-	-	-	28.33	-	- 1	-
I			l		l	l	
	11				1	1	
Sum	100.00	100.00	100.00	100.00	100.00	100.00	100.00
l			l	l	l	l	
	11				1	I	
Points counted	912	790	825	826	800	897	844
					l	l	

+ partly altered

* altered

2.1 XRF Analyses

2.1.1 Instrumentation and Operating Conditions for XRF Analyses

Instrumentation: All XRF analyses were done on an ARL 8420 XRF. A Rh end window tube was used at 50 mA and 50 kV.

List	of	analysed	elements	with	the	corresponding	instrumen-
tal	set	up.					

Element K -line	Peak Position 2theta	Analysing Crystal	Detector	
·				•
Si	109.21	PET	FPC-6	
Ti	86.14	LIF200	FPC-6	
A1	145.12	PET	FPC-6	
Fe	57.52	LIF200	FPC-6	
Mn	62.97	LIF200	FPC-6	
Mg	20.13	AX06	FPC-1	
Ca	100.22	LIF200	FPC-6	
Na	24.29	AX06	FPC-1	
ĸ	136.69	LIF200	FPC-6	
P	141.03	GE	FPC-6	
Cr	69.36	LIF200	FPC-6	
Ni	48.67	LIF200	FPC-6	
Zn	41.83	LIF200	FPC-6	
Cu	45.03	LIF200	FPC-6	
Ni	48.67	LIF200	FPC-6	
Со	52.84	LIF200	FPC-6	
Ga	38,95	LIF200	SC	
Mo	28,90	LIF220	sc	
Nb	30.44	LIF220	SC	
Zr	32.10	LIF220	SC	
Y	33.87	LIF220	SC	
Sr	35.85	LIF220	SC	
Rb	37,99	LIF220	SC	
THE STREET	37.30	LIF220	SC	
Th*	39.23	LIF220	SC	
Ph**	28,26	LIF200	SC	AX06 = 56A synthetic multilayer crysta
Cr	107.06	LIF220	FPC-6	FPC-6 = 4µm polypropylene window
v	123.26	LIF220	FPC-6	FPC-1 = 1µm polypropylene window
, Ba*	87.14	LIF200	FPC-6	$\star = L_{d}$ -line
Sc	97.68	LIF200	FPC-6	** = L_{β} -line
'				_

2.1.2 Lower Limits of Detection

.

Element	1.1.d. (weight %)
$\begin{array}{c} {\rm T10}_2 \\ {\rm MnO} \\ {\rm Na}_2 \\ {\rm K}_2 \\ {\rm V}_2 \\ {\rm P}_2 \\ {\rm O}_5 \\ {\rm Cr}_2 \\ {\rm O}_3 \\ {\rm N1O} \end{array}$	0.01 0.01 0.01 0.01 0.02 0.05 0.04
	1.1.d. (ppm)
Zn Cu Ni Co Ga Mo Nb Zr Y Sr Rb U Th Pb	4 4 4 2 3 3 3 3 3 2 5 5 5 5 5 5
Cr V Ba Sc	10 8 15 8

2.1.3 Reproducibility

Reproducibility (in ppm) was calculated for trace elements according to chapter 4.1.4 (N = 20).

Element	ppm
Element	20
Zn	3.20
Cu	7.08
Ni	5.01
Co	2.90
Ga	2.95
Mo	3.23
Nb	3.96
Zr	3.41
Y	4.27
Sr Rb	2.12 1.67 7.28
Th	6.89
Pb	3.11
Cr	421.87
V	115.48
Ba	11.15
30	J •10

-

2.2 Microprobe Analyses

2.2.1 Instrumentation and Operating Conditions

All microprobe analyses were done as spot measures on a JEOL Superprobe 733 with a wave dispersive system. For full ZAF corrections the program FZAFM was used.

a.: Silicates

.

Element	Standard	Counting Time in seconds		
		Peak	Background	
A1	Al_002 (100%)	20	10	
Mg	MgÖ (100%)	20	10	
Ti	T10, (100%)	20	10	
Cr	$Cr_2 \tilde{0}_3$ (100%)	20	10	
Mn	MnŐ (100%)	20	10	
Fe	Hematite	20	10	
Na	Albite	20	10	
Si	Quartz	20	10	
к	Sanidine	20	10	
Ca	Wollastonite	20	10	

Probe current measured on Faraday cage : 0.2×10^{-7} A

b.: Magnetite

Element	Standard	Counting Time		
		Peak	Background	
Mg	Mg 0 (100%)	50	10	
Cr	$Cr_{2}O_{3}$ (100%)	50	10	
v	vo ₂ (100%)	50	10	
A1	$A1_{2}^{2}0_{3}$ (100%)	20	10	
Ti	Tiố, (100%)	20	10	
Mn	Mn0 ^(100%)	20	10	
Fe	Hematite	20	10	
Si	Quartz	20	10	
Ca	Wollastonite	20	10	

Accelerating voltage : 20 kV

Probe current measured on Faraday cage : 0.2×10^{-7} A

c: Cobalt-Sulphides

Accelerating voltage : 15 kV

Element	Standard	Counting Time in seconds		
		Peak	Background	
S	Arsenopyrite	50	20	
Fe	Arsenopyrite	50	20	
As	Arsenopyrite	50	20	
Sb	Sb ₂ S ₂	50	20	
Со	CoŚ	50	20	
Ni	Millerite	50	20	
Bi	Bismuthinite	50	20	
		1		

Accelerating voltage : 15 kV

e: Pyrrhotite and Chalcopyrite

Element	Standard	Count in s Peak	ting Time seconds Background
Fe S As N1 Co Cu	Troilite Troilite Arsenopyrite Millerite CoS ₂ Chalcopyrite	50 50 50 50 50 50 50	20 20 20 20 20 20 20 20 20 20

Accelerating voltage : 15 kV

Probe current measured on Faraday cage : 0.5×10^{-7} A

d: Bismuth-Sulphides

Element	Standard	Counting Time in seconds		
		Peak	Background	
B1	Bismuthinite	50	20	
S	Bismuthinite	50	20	
Co	CoS2	50	20	
Ni	Millerite	50	20	
As	Arsenopyrite	50	20	
Te	Altaite	50	20	
Sb	sb ₂ s ₃	50	20	

Accelerating voltage : 15 kV Probe current measured on Faraday cage : 0.5×10^{-7} A Probe current measured on Faraday cage : 0.5×10^{-7} A

f: Gold and Gold Compounds

Element	Counting Tim Standard in seconds		ting Time seconds
		Peak	Background
Au	100% Au	50	20
Ag	100% Ag	50	20
Cu	100% Cu	50	20
Fe	100% Fe	50	20
Bi	Bismuthinite	50	20
Pd	PdgSbg	50	20
Hg	PdaHgTea	50	20
Rh	100% Rh	50	20

Accelerating voltage : 20 kV Probe current measured on Faraday cage : 0.2×10^{-7} A

2.2.2 Limits of Detection (in weight per cent)

Limits of detection were determined at the 3 sigma level on the background at the peak position.

a: Silica	tes	b: Magnet	ite	c: Bism	uth-Sulphides
- determi cļinopy	ned on roxene	- determi magneti	ned on te	- deter bismut	nined on thinite
Si02	0.03	S10,	0.05	S	0.02
Ca0 ²	0.03	CaO	0.03	Ni	0.03
Na ₂ 0	0.02	TiO ₂	0.02	Co	0.03
к,б	0.03	V203	0.03	Те	0.04
Cr.0.	0.06	Cr_2O_3	0.02	As	0.21
MgŐ	0.05	Mgố	0.02	Sb	0.01
Al 203	0.05	A1203	0.03		
FeÓ	0.04	MnÕ	0.03		
MnO	0.05				
T10 ₂	0.04				

d: Arsenopyrite /Co-Sulphides e: Chalcopyrite / Pyrrhotite f: Gold / Gold Compounds

- deter cobal	mined on tite	- deter pyrrh	mined on otite	 determined on native gold 				
s	0.02	Co	0.02	Ag	- 0.09			
Sb	0.03	Cu	0.03	Cu	0.02			
As	0.13	Ni	0.02	Fe	0.02			
Со	0.02			Bi	0.02			
Fe	0.02							
Ni	0.02							
Bí	0.81							

2.2.3 Reproducibility (in weight per cent; < 1.1.d. = less than lower limit of detection)

a: Clinopy	roxene (N=60)	b: Magnet:	Lte (N=60)	c: Pyrrhotite (N=60)				
Na ₂ 0	0.03	S10,	< 1.1.d.	As	< 1.1.d.			
Sið,	0.23	T105	0.18	S	0.18			
Fe0 ²	0.25	Fe0	0.47	Fe	0.26			
K-0	0.01	MgO	0.01	Ni	0.01			
AÍ 202	0.04	CaO	< 1.1.d.	Cu	< 1.1.d.			
MgŐ	0.04	MnO	0.02	Co	0.01			
MnO	0.04	A1,03	0.09					
Ca0	0.41	Cr 203	0.01					
Cr203	0.01	v ₂ ō ₃ J	. 0.01					
d: Chalcon	vrite (N=24)	e: Joseite	B (N=32)	f: Bismut	thinite (N=12)			

d. onerc	opylice (M=24)	E. UUBLI						
As	< 1.1.d.	S	0.02	S	0.12			
S	0.19	Bi	0.31	Bi	0.70			
Fe	0.22	Te	0.08	Те	< 1.1.d.			
Ni	< 1.1.d.	As	< 1.1.d.	As	< 1.1.d.			
Cu	0.08	Ni	< 1.1.d.	N1	< 1.1.d.			
Co	0.01	Sb	< 1.1.d.	Sb	< 1.1.d.			
		Co	< 1.1.d.	Co	< 1.1.d.			

f:	Arsenopyrite (N=12)
Co	0.02
Ni	< 1.1.d.
Fe	0.08
S	0.11
As	0.47
SЪ	< 1.1.d.
Bi	0.32

APPENDIX 3

-

.

3.1 Whole rock composition in weight per cent of Waaikraal pyroxenite, magnetite-rich rock, quartzite, pyroxene hornfels, calc-silicate and magnetite gabbro (all iron as Fe₂O₃, ld = less than lower limit of detection; NiO < lid)</p>

a: Pyroxenite

a: Pyroze	nite					•								
Sample	\$10 ₂	T102	A1203	-Fe ₂ 03	MnO	MgO	C a 0	Na ₂ 0	к ₂ 0	P205	Cr203	LOI	н ₂ о ⁻	TOTAL
WK2.2	40.51	1.69	2.94	39.14	0.62	0.93	14.92	0.48	0.24	<11d	0.09	-1.69	0.20	100.08
WK2.3	29.80	0.79	5.40	53.97	0.44	0.48	10.32	0.58	0.41	0.06	0.08	-1.37	0.18	101.15
WK2.4	41.60	1.46	4.72	36.77	0.61	1.07	14.68	0.67	0.54	<11d	0.09	-0.97	0.24	101.49
WK5.2	50.32	0.42	4.59	26.43	0.57	1.24	16.22	1.21	0.78	0.07	<11d	-0.99	0.22	101.12
WK6.2	30.64	1.14	4.53	54.32	0.44	0.43	9.41	0.70	0.35	0.05	0.10	-1.30	0.20	101.01
WK6.3	50.88	0.36	3.93	27.13	0.60	1.29	14.93	0.91	0.79	0.07	0.08	-0.79	0.29	100.48
WK7.1	48.87	0.29	2.92	28.93	0.66	1.35	18.20	0.67	0.30	0.04	0.09	-1.04	0.21	101.49
WK9.3	30.52	0.49	6.86	48.93	0.46	0.59	12.54	0.17	0.35	0.02	0.06	-1.23	0.13	99.89
WK10.3	29.32	0.51	5.69	52.77	0.44	0.63	12.16	0.35	0.28	0.03	0.09	-1.23	0.17	101.21
WK10.7	48.14	0.51	4.56	30.78	0.54	0.87	14.66	0.95	0.94	0.05	0.09	-0.89	0.18	101.38
WK10.9	50.66	0.31	3.80	26.83	0.63	0.93	17.33	0.69	0.48	0.05	0.09	-0.83	0.25	101.23
WK11.2	46.56	0.21	2.01	30.11	0.77	1.16	21.20	0.41	0.12	<11d	0.08	-1.50	0.24	101.37
WK11.3	49.95	0.43	3.37	27.81	0.66	1.51	16.69	0.85	0.45	0.05	0.09	-0.89	0.16	101.13
WK12.2	48.54	0.73	4.01	30.14	0.59	1.50	15.30	0.86	0.56	<11d	0.09	-1.24	0.23	101.32
WK12.3	53.50	0.46	6.16	23.22	0.50	0.95	12.42	1.50	1.12	0.02	0.08	0.00	0.23	100.16
WK12.5	49.32	0.70	3.79	29.68	0.54	1.22	14.86	0.75	0.50	0.07	0.09	-1.19	0.18	100.52
WK12.2	48.47	0.42	3.73	27.42	0.65	1.59	17.89	0.88	0.57	<11d	0.06	-1.23	0.11	100.57
WK13.4	62.72	0.16	1.67	21.38	0.73	0.22	14.11	0.26	0.13	0.02	0.09	-0.77	0.14	100.87
WR15.4	40.44	0.71	4.62	41.14	0.54	0.98	12.84	0.75	0.42	<11d	0.07	-1.16	0.15	101.50
UN215 A	44.63	0.59	4.76	33.22	0.60	1.19	15.00	0.86	0.48	0.02	0.06	-0.88	0.22	100.76
WR15.4	48.01	0.11	1.89	30.77	0.78	0.69	18.44	0.27	0.12	<11d	0.07	-1.92	0.12	99.35
WK10+2	48.87	0.46	6.16	26.41	0.45	1.43	14.62	0.70	0.70	0.09	0.08	0.22	0.18	100.39
WR17.0	53.04	0.30	5.55	26.37	0.57	1.55	15.01	1.18	0.98	0.06	0.06	-0.77	0.18	104.08
WK10.J	/9 92	0.28	3.67	26.70	0.63	1.67	17.13	0.68	0.53	0.07	0.06	0.73	0.23	101.20
WK17.4	50 20	0.37	3.91	25.75	0.71	1.83	16.76	1.11	0.67	0.06	0.07	-0.31	0.15	101.28
WK20.5	55 17	0.33	5 97	21.85	0.46	1.43	13.47	1.44	1.11	0.08	0.07	-0.43	0.15	101.10
WK20.J	50 88	0.44	4.45	25.76	0.61	2.01	15.73	1.11	0.63	0.04	0.08	-0.74	0.14	101.14
WK21.J	16 02	0.44	3 60	20 18	0 57	1 90	16.58	0.95	0.49	0.04	0.06	-1.26	0.20	100.27
WK21.5	40.92	0.44	6 15	29.10	0.62	2 24	16 60	0.97	0.68	0.13	0.09	-1.12	0.31	101.10
WKZZ+J	51.01	0.74	4.17	24.57	0.62	1 43	15 70	1,11	0.41	<11a	0.07	-0.77	0.16	100.04
WK24.1	44.91	0.70	4.07	20 97	0.00	2 15	16 87	0.86	0.43	0.05	0.07	-0.67	0.19	101.35
WKZD•Z	40.09	1 40	2.21	27.07	0.49	2.13	13 24	0.80	0.54	0.18	0.10	-0.79	0.13	101.42
WK20.4	42.00	1.49	4.20	30.12	0.40	4 07	16 19	0.00	0.52	0.10	<11d	0.23	0.29	101.36
WK2/.2	51.40	0.98	4.00	24.03	0.49	2 55	14 01	1 10	0.62	0.08	0.09	-0.14	0.17	100.50
WK28.4	52.2/	0.52	4.24	23.4/	0.51	2.22	11 24	0 32	0.56	0.02	0.08	-0.87	0.10	100.40
WK36.6	32.3/	0.4/	5.3/	49.12	0.51	1 50	15 22	0.40	0.97	0.02	0.06	1.25	0.17	100.91
WK36.7	41.0/	0.59	2.99	32.47	0.31	1.40	15 07	0.04	0.80	0.12	0.06	4 10	0.23	100.05
WK36.8	44.48	0./3	8.34	23.10	0.31	1.09	10.07	0.74	0.00	0.13	0.00	7017	0.23	1 100+00

h٠	Magne	stite	-Ricl	h Roci
	FM211			

Sample	sio ₂	Ti0 ₂	A12 ⁰ 3	^{Fe} 2 ⁰ 3	MnO	Mg0	Ca0	Na ₂ 0	к ₂ 0	P205	Cr203	LOI	н ₂ 0 ⁻	TOTAL
 WK3.5	32.27	0.39	5,71	55.67	1.00	0.37	7.84	0.17	0.38	<11d	0.08	-3.01	0.06	100.94
WK4.5	27.93	0.38	5.38	56.92	0.83	0.25	10.48	<11d	0.24	<11d	0.07	-2.22	0.17	100.44
WK5.4	22.78	0.20	3.04	72.59	1.24	0.22	3.16	<11d	0.16	<11d	0.07	-3.04	0.17	100.61
WK9.5	20.50	0.28	4.23	67.68	0.40	0.14	8.76	0.04	0.10	<11d	0.10	-2.35	0.34	100.23
WK9.7	27.73	0.41	5.37	57.15	0.47	0.34	10.68	0.12	0.18	<11d	0.07	-1.98	0.44	100.99
WK10.1	22.21	0.47	4.58	63.76	0.48	0.52	9.98	0.06	0.24	<11d	0.10	-2.10	0.27	100.59
WK10.8	27.07	0.49	5.46	57.46	0.45	0.38	10.64	0.18	0.35	<11d	0.07	-1.51	0.11	101.17
WK13.3	30.84	0.57	5.64	50.31	0.55	0.49	11.32	0.39	0.44	<11d	0.09	-1.39	0.20	99.46
WK14.1	13.43	0.23	2.81	82 . 89	0.61	0.15	3.95	0.06	0.04	0.02	0.10	-2.97	0.09	101.42
WK14.5	15.90	0.25	3.55	77.29	0.57	0.27	5.57	0.03	0.01	<11d	0.08	-2.59	0.18	101.12
WK15.5	30.08	0.42	5.84	50.81	0.47	0.39	13.82	0.09	0.19	0.02	0.08	-1.66	0.25	100.81
WK17.5	25.97	0.39	5.19	59.23	0.47	0.26	10.63	0.07	0.17	<11d	0.07	-1.70	0.06	100.82
WK18.1	20.88	0.62	3.37	67.43	0.45	0.36	8.20	0.18	0.07	0.02	0.09	-2.33	0.26	99.61
WK19.3	36.49	1.16	5.91	40 .99	0.60	0.97	14.48	0.63	0.37	0.05	0.10	-1.26	0.32	100.81
wK20.4	23.63	0.62	4.67	61.10	0.42	0.38	9.55	0.16	0.31	0.05	0.08	-2.02	0.30	99.25
wK20.6	31.22	0.47	5.72	49.00	0.57	0.37	14.43	0.18	0.13	<11d	0.10	-1.68	0.28	100.79
WK21.6	38.61	0.43	7.26	37.38	0.56	0.65	16.95	0.13	0.05	0.02	0.10	-1.41	0.37	101.10
WK22.4	21.09	0.33	3.66	72.89	0.94	0.10	4.87	<11d	0.20	0.04	0.08	-3.56	0.22	100.87
WK25.1	46.49	0.42	3.71	31.38	0.58	1.21	16.33	0.90	0.28	<11d	0.07	-0.89	0.21	100.69
WK26.5	27.91	0.95	5.09	56.23	0.56	0.88	9.79	0.67	0.16	<11d	0.08	-2.13	0.21	100.40
WK27.5	30.54	2.01	4.59	51.29	0.48	1.20	10.29	0.60	0.23	0.02	0.09	-1.57	0.06	99.84
WK30.2	14.78	0.21	2.60	78.82	0.44	0.13	6.85	<11d	<11d	0.02	0.10	-2.65	0.15	101.47
JK36.1	16.55	0.26	3.32	80.39	1.14	0.38	2.54	<11d	0.06	<11d	0.12	-3.53	0.25	101.49
JK36.2	15.30	0.37	2.88	82.10	1.03	0.28	1.91	<11d	0.02	<11d	0.09	-3.57	0.11	100.53

.

•

c: Pyroxene Hornfels

Sample	\$10 ₂	Ti0 ₂	A1203	Fe ₂ 03	MnO	MgO	CaO	Na 20	к ² 0	P2 ⁰ 5	Cr203	LOI	^н 20 ⁻	TOTA
HF1	45.16	0.32	7.99	21.43	0.70	1.10	22.43	0.71	0.20	0.08	<11d	-0.08	0.15	100.22
i: Quartz	ite													•
Sample	510 ₂	Ti0 ₂	A1203	Fe203	Mn0	MgO	Ca0	Na ₂ 0	к ₂ 0	P205	Cr203	LOI	н ₂ 0 ⁻	TOTAL
WK9.8	86.46	0.10	3.46	3.95	0.09	0.47	3.02	1.16	1.12	0.42	0.09	0.35	0.17	100.86
WK11.4	74.29	0.12	2.47	11.07	0.28	1.15	8.81	0.74	0.45	0.16	0.09	-0.05	0.14	99.73
WK13.5	90.65	0.08	3.81	0.82	0.01	<11d	0.20	2.07	1.86	<11d	0.12	0.67	0.12	100.42
QZ1	5/.86	0.42	8.68	11.07	0.34	4.5/	14.01	1.14	1.52	0.34	0.07	0.21	0.09	100.93
QZZ	93.30	0.00	4 17	2.04	0.07		1 04	0.43	1 00	0.03	0.11	0.19	0.08	100.78
076	88 94	0.07	3 47	4.02	0.07	0.04	1 50	0.60	1 90	0.11	0.09	0.10	0.08	00.00
075	89.94	0.09	4.32	0.94	0.02	<114	0.83	1.14	2.06	0.07	0.10	0.17	0.14	99.82
~		0.00	2 01	1 07	0.02	0 27	0.67	1 13	1 71	0.02	0 10	0.33	0 12	101 50

e: Calc-Silicate

Sample	\$10 ₂	Ti02	A1203	Fe203	MnO	MgO	CaO	Na ₂ 0	к ₂ 0	P205	Cr203	LOI	н ₂ о-	TOTAL
CS1 CS2 CS3 CS4	50.92 51.27 51.55 50.67	0.07 0.13 0.12 0.07	1.26 1.31 1.50 1.25	1.99 1.97 2.45 2.22	0.28 0.25 0.30 0.29	0.51 0.45 0.54 0.52	43.36 43.70 44.49 43.99	<11d <11d <11d <11d <11d	0.01 0.19 0.02 0.02	0.23 0.02 0.20 0.15	0.07 0.06 0.09 0.09	0.62 1.47 1.03 0.95	0.05 0.09 0.06 0.04	99.37 100.91 102.62 100.26

f: Magnetite-Gabbro

_

Sample	si0 ₂	Ti02	A1203	Fe2 ⁰ 3	MnO	MgO	Ca0	Na ₂ 0	к ₂ 0	P205	Cr203	LOI	н ₂ 0 ⁻	TOTAL
MG1	47.51	3.39	18.42	15.53	0.14	2.58	9.48	3.93	0.54	0.04	0.09	-0.53	0.04	101.16
MG2	45.31	2.78	14.65	21.88	0.24	5.06	8.88	3.42	0.29	0.02	0.09	-1.14	0.00	101.48
MG3	46.35	2.55	16.13	18.84	0.21	4.26	8.78	3.29	0.38	0.06	0.10	-1.03	0.10	100.02

-

3.2 Trace element content in pam of pyroxenite, magnetite-rich rock, pyroxene hornfels, quartzite and magnetitegabbro (Clld = below the lower limit of detection, na = not analysed, for An O indicates quantities of less than 0.5 pp=)

WK2.2 WK2.3 WK2.4 WK3.2 WK3.3 WK5.2 WK6.2 WK6.3 WK7.1 WK8.5 WK8.5	27 187 183 159 159	26 17 17	380- 8	14								_						
WK2.3 WK2.4 WK3.2 WK3.3 WK5.2 WK6.2 WK6.3 WK7.1 WK8.5 WK9.2	187 183 159 159	17 17	8		<11d	4	90		 48	9	7	<11d	<11d	112	54	150	<11d	2
WK2.4 WK3.2 WK5.2 WK6.2 WK6.3 WK7.1 WK8.5 WK9.2	183 159 159	17		399	7	6	9	155	17	66	25	12	8	52	20	254	<11d	C
WK3.2 WK3.3 WK5.2 WK6.2 WK6.3 WK7.1 WK8.5 WK9.2	159 159		16	406	17	<11d	8	127	17	65	27	<11d	6	74	46	351	24	7
WK3.3 WK5.2 WK6.2 WK6.3 WK7.1 WK8.5 WK9.2	159	19	13	305	9	<11d	8	106	21	54	20	<11d	8	28	11	238	<11d	4
JK5.2 JK6.2 JK6.3 JK7.1 JK8.5 JK9.2	144	22	23	407	15	<11d	6	107	18	83	23	<11d	14	66	32	384	<11d	2
₩6.2 ₩6.3 ₩7.1 ₩8.5 ₩8.5	1 1 7 7	29	13	407	9	<11d	11	138	24	74	31	5	12	53	37	382	22	8:
7K6.3 7K7.1 7K8.5 7K9.2	181	30	23	40 9	11	<11d	13	141	12	58	19	24	5	41	32	275	<11d	
WK7.1 WK8.5 WK9.2	154	41	16	478	4	<11d	<11d	120	23	50	31	23	<11d	51	17	346	8	4
WK8.5 WK9.2	155	26	21	300	<11d	<11d	5	123	26	33	33	<11d	<11d	48	27	206	<11d	
rK9.2	165	15	15	358	12	<11d	9	134	18	63	16	- 10	14	43	8	231	10	(
	164	24	16	327	5	3	7	135	27	85	27	5	11	40	46	467	12	
VK9.3	17	24	29	4	5	11	211	21	112	24	<11d	<11d	<11d	92	53	225	<11d	4
JK9.4	175	14	14	376	9	3	7	138	19	66	23	<11d	<11d	53	27	336	<11d	1
√K9.6	. 157	21	18	584	19	<11d	7	145	17	77	26	14	11	53	24	430	11	
rK10.2	184	26	19	270	5	<11d	9	119	19	84	21	<11d	6	53	41	424	<11d	
rK10.3	196	17	8	45	<11d	. 6	16	219	31	106	20	14	9	50	35	215	<11d	
rK10.4	169	21	15	187	5	<11d	5	207	24	108	21	<11d	<11d	45	19	312	<11d	1
rK10.5	155	25	9	296	5	<11d	5	169	24	83	30	<11d	14	44	28	617	9	I
K10.7	162	16	6	438	7	<11d	9	158	20	39	34	16	19	70	25	420	<11d	
rK10 .9	147	59	35	218	6	<11d	<11d	137	28	38	19	7	<11d	56	61	218	<11d	(
rK11.2	160	14	13	248	<11d	<11d	8	84	16	19	15	<11d	12	25	19	96	<11d	i
JK11.3	163	42	26	418	8	<11d	<11d	152	16	50	44	<11d	<11d	104	31	263	18	
WK12.2	167	23	21	375	12	<11d	10	135	19	58	26	<11d	12	57	12	273	13	
JK12.3	163	109	22	296	11	<11d	5	182	13	85	103	103	<11d	69	46	410	<11d	1
JK12.4	157	45	32	426	12	<11d	3	148	20	71	49	<11d	<11d	73	59	323	20	ł
WK12.5	138	18	49	39 0	15	<11d	4	153	21	40	22	<11d	<11d	120	51	261	<11d	
WK13.2	162	20	-23	329	5	<11d	3	142	33	49	24	6	10	54	49	342	25	1
WK13.4	137	<11d	21	28	<11d	<11d	5	80	11	22	8	<11d	6	81	9	47		
rK14.4	215	22	12	328	13	4	11	149	18	59	21	<11d	11	79	31	370	<11d	-
VK15.2	193	27	28	319	16	3	13	149	18	63	20	12	14	83	57	413		
√K15.4	182	17	15	349	11	<11d	4	173	21	58	30	1	12	43	20	410		;
rK16.2	166	14	4	147	6	<11d	<11d	68	18	24	5	19			26	100		
JK16.5	164	13	8	332	5	6	8	206	27	69	21	<11d	<11q	64	35	194	<11d	-
K16.7	177	18	20	394	20	<11d	6	132	22	43	20	<11q	,,,	59	2/	200	<110	
/K17.2	165	21	10	342	10	<11d	4	126	29	50	22	<iid< td=""><td>14</td><td>50 / 1</td><td>29</td><td>107</td><td>لد 11/2</td><td></td></iid<>	14	50 / 1	29	107	لد 11/2	
K17.4	149	11	23	667	11	<11d	6	126	12	31	10	<11d	1/	41	4/	19/		
√K17.6	129	1592	67	169	13	3	6	185	25	64	24	<iid< td=""><td>14</td><td>103</td><td>2/</td><td>101</td><td><117</td><td>4</td></iid<>	14	103	2/	101	<117	4
K18.3	160	13	10	184	10	3	6	138	23	93	16	10	10	49	30	419	1/	
K18.5	161	20	19	292	12		0	157	21	70	31	17	12	20	2/	442	14	
rK19.2	172	20	14	199	6			140	20	/0	10	111	1.9	41	24	186	7 114	
WK19.4	174	17	26	120	10	<itq< td=""><td>4</td><td>114</td><td>19</td><td>43</td><td>15</td><td><117 111</td><td>10</td><td>41</td><td>17</td><td>414</td><td>(114</td><td></td></itq<>	4	114	19	43	15	<117 111	10	41	17	414	(114	
K20.2	159	21	.8	209		<111 1 <111 1		145	30 25	27	22	<114 <114	<114	27	10	273	<11A	
/K20.3	177	20	19	181	6	(110	۲. ۲.10	143	23	101	45	7	17	51	32	581	<114	
/K20.5	141	24	16	131	1 5	5 د 11/	4	135	24	72	27	10	7	38	10	310	30	í
K21.3	178	23	21	220	15	<113	4	104	17	61	27	8	10	50	42	317	36	
WK21.5	181	19	20	232	LL د ۲۱۱	7	152	25	70	26	<11A	20	<11A	106	61	316	24	
*KZZ.J	24	12	209	14	ζ110	114	6	175	28	52	32	<114	13	84	62	290	<11d	ę
NK22./	100	21	15	102	11	<114	6	126	28	64	19		12	52	17	271	48	
#KZJ+1 いだうろ /	175	41	10	64	11	5	š	256	29	78	29	<11d	10	67	39	316	<11d	
wr⊾∡J•4 ⊔rz23 ⊑	2/3	9 17	56	12	<11A	6	181	14	49	14	K11d	12	<11d	74	83	163	<11d	
WK2J+J LDV 3/ 1	100	14	16	202	×110	<11.4	5	142	26	65	20	5	23	44	25	267	<11d	
witiz 4 • 1 いたりん う	147	13	31	149	Q Q	<114	6	154	16	144	39	5	16	61	41	392	9	
₩K24+Z	1 100	11	21	164	9	<114	6	132	29	56	26	<11d	8	45	35	265	44	
WK24.J WK24 5	100	13	11	181	8	<114	Ř	104	23	50	16	12	7	33	49	207	36	
#K24+J UK25 2	2/	25	138	0	<11.4	6	135	31	64	28	<11d	<11d	<11d	97	12	311	- 38	
JV76 7	176	18	19	364	7	<11d	8	127	27	35	11	<11d	6	40	38	140	21	2
JV26 /	21/0	10	12	162	12	3	6	118	34	55	22	<11d	9	34	25	253	53	1
WK32 3	203	21	16	86	ii	<11d	5	143	32	49	21	15	13	39	50	326	63	
WK27 3	177	12	7	157	13	<11d	6	194	29	54	19	6	20	40	34	293	60	
JK78 /	162	15	29	195	14	<114	4	119	31	49	25	12	9	72	51	311	58	1
π⊾∠0•4 ⊔π/201	1/2	11	20	34	18	<114	4	84	22	158	30	10	5	48	33	420	15	
wr.∠7•∠ ⊔r/?0.?	142	16	20	39	11	<114	3	86	27	135	23	8	6	47	46	280	56	
MK27.J	140	20	30	50	15	<114	5	106	31	58	16	9	20	49	34	284	54	
	199	24	19	50	14	<114	ģ	128	26	95	20	<114	<11d	59	43	403	32	
MK3U∎4 (17236-3	100	21	27	264	2 A	<11d	Ś	123	29	59	30	<114	25	46	35	312	30	
WKJ0.J	102	21	27	244	0	<11d	4	136	23	50	28	<114	27	71	41	321	27	
WK30.4	193	20	22 1.0	23 7 /.2	7	4	9	166	27	43	19	<114	11	51	59	207	<11d	
WK30.0	219	11	48	40	14	4 7114	10	163	40	32	20	<114	11	48	82	184	<11d	
	1 100	21	70	50	21	<11a	10	103			<i>2</i> .17							

111

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

b: Magnetite-Rich Rock

Sample	Zn	Cu	Ni	Со	Ga	Мо	NЪ	Zr	Y	Sr	Rb	U	РЪ	Cr	v	Ba	Sc	Au
WK3.1	25	20	110	8	8	6	118	12	42	5	<11d	<11d	<11d	60	57	121	<11d	0
WK3.5	22	18	272	4	<11d	9	102	9	50	20		<114	<114	57	42	95	<11d	0
WK4.5	26	19	<11d		<114	6	240	12	11	20	suid ع	2113		82	54 63	181	<11d	0
WK5.4	30	33	273	4	10	5	159	13	29	6	<11a	<114	<114	68	51	65	<114	10
WK8.6	28	13	<114	4	6	9	180	9	35	6	<114	<114	<114	103	66	234	<114	Õ
WK9.1	28	15	53	12	7	n	140	4	19	8	<11d	<11d	<11d	84	<11d	202	<11d	0
WK9.5	34	13	<11d	<11d	4	9	184	14	46	7	<11d	<11d	<11d	56	46	205	<11d	0
WK9.7	25	11	124	8	7	7	182	15	72	11	<11d	<11d	<11d	69	19	235	<11d	0
WK10.1	26	18	67	7	8	10	221	19	56	12	<114	5		63	45	123	<11d	0
WK10.6	26	15	108	8	5	6	191	14	41	26	<u>ن</u> ا	<114	<114	107	/9	313		0
WK10.8	26	19.	2//	4	2114	5	104	21	58	24	5	<114	<114	83	69	627		ñ
WK13.3	36	13	78	7	8	11	124	4	3	6	6	<11d	<11d	58	43	97	<11d	ŏ
WK14.3	26	13	184	<11d	12	12	214	17	72	13	4	24	<11d	105	45	85	<11d	Ó
WK14.5	31	24	107	6	6	10	166	10	50	10	<11d	<11d	<11d	60	12	68	<11d	0
WK15.1	32.	7	<11d	<11d	12	9	139	18	18	<11d	<11d	<11d	<11d	64	68	56	<11d	0
WK15.3	26	16	161	13	10	15	175	17	38	10	4	11	<11d	55	68	200	<11d	0
WK15.5	23	9	<11d	4	10	14	301	15	89	15	<11d	<114		209	45	202	<11d	0
WK16.3	22	20	134	10	4	11	1/5	10	106	24		6		133	120	231	<11d	1
WK10.0	30	14	63	8	8	9	201	24	67	20		13		74	78	288		1
WK17.3	26	9	121	<11d	8	ú	220	17	63	-8	17	<114	<11d	125	69	256	<11d	0
WK17.5	25	n	<11d	5	7	3	211	13	105	13	3	<11d	<11d	77	34	161	<11d	1
WK18.1	32	48	339	12	7	9	118	15	21	7	<11d	- 16	<11d	99	102	75	<11d	1
WK19.3	21	19	112	9	4	7	141	23	87	21	<11d	<11d	<11d	122	100	373	<11d	0
WK20.4	46	13	142	10	8	11	185	14	96	19	<11d	<114	<11d	73	79	290	<11d	1
WK20.6	21	26	146	8	7	14	232	15	90	12		44		48	49	111	<11d	0
WK21.4	28	30	202	12	12	11	107	9	39	12		58	<114	76	102	242	<114	0
WK21.6	17	42	118	8	8	7	446	25	151	6	7	48	<11d	111	37	76	<11d	ŏ
WK22.1	17	26	210	7	<11d	6	117	21	76	26	4	<11d	<11d	102	70	305	<11d	0
WK22.2	23	8	<11d	7	9	8	259	21	89	13	<11d	16	<11d	109	113	178	<11d	0
WK22.4	26	23	40	<11d	9	13	206	5	42	13	<11d	20	<11d	90	29	118	<11d	0
WK22.6	19	14	<11d	12	5	8	307	20	173	8	<11d	<11d		102	<11d	115	<11d	0
WK23.3	23	22	339	8	9	7	178	13	62	11				100	20	167		0
WK24.4	20	25	152	14	9 6	6	162	14	40	5		8	<114	100	69	96	<114	ő
WK24.0	205	25	7	259	12	<114	9	123	26	44	10	<11d	16	21	34	130	<11d	ŏ
WK25.6	16	15	12	12	<11d	11	269	12	90	19	<11d	<11d	<11d	78	<11d	158	<11d	0
WK26.1	29	17	279	9	11	7	178	9	29	11	<11d	<11d	<11d	66	15	54	<11d	4
WK26.3	33	6	436	15	10	12	162	9	32	13	18	<11d	<11d	107	67	83	<11d	2
WK26.5	30	19	745	16	7	6	123	7	50	7	<11d	57	<11d	99	63	132		6
WK26.7	32	14	211	15	7	7	176	14	32		<11d			84	120	160		0
WK2/.5	22	37	481	1/	2	<114	155	14	19	<114	<114	<114	<114	142	40	41	<114	12
WK20.1	27	10	258	8	14	3	142	5	42	8	<11d	<11d	<11d	113	23	85	<11d	7
WK28.5	28	41	365	15	5	7	141	10	54	20	<11d	<11d	<11d	157	24	166	<11d	1
WK30.2	48	13	211	7	8	19	92	<11d	10	9	<11d	21	<11d	89	30	53	<11d	0
WK30.1	16	12	142	- 7	<11d	5	. 158	19	116	8	7	10	<11d	115	<11d	126	<11d	0
WK36.1	30	11	<11d	7	6	4	119	9	12	<11d	4	<11d	<11d	72	67	57	<11d	1
WK36.2	33	29	<11d	8	7	13	86	8	5	<114	7	<114	<11d	67	40	48		0
WK36.5	31	25	386	23	6	10	110	10	30	 		30		100	65	64	(114	30
WK52.3	1 21	152	4853	ζ11α	/	10	133	12	15	1110	1110	50	1110	00	00	04	110	50
c: Pyroxe	ne Hornf	els																
Sample	Zn	Cu	Ni	Co	Ga	Мо	Nb	Zr	Y	Sr	Rb	U	РЪ	Cr	v	Ba	Sc	Au

HF1	171	7	6	22	14	<11d	5	192	21	65	9	16	9	55	18	88	<11d	na

d: Quartzite

. quartar								•										
Sample	Zn	Cu	N1	Со	Ga	Мо	NЪ	Zr	Y	Sr	Rb	U	РЪ	Cr	v	Ba	Sc	Au
WK9.8	31	<111d	13	18	5			111	19	22	37	5	<11d	244	46	391	<11d	0
WK11.4	53	4	33	37	4	<11d	<11d	98	. 17	23	17	<11d	9	136	43	98	<11d	1
WK13.5	157	20	98	13	16	<11d	8	84	32	107	91	13	10	127	79	756	<11d	0
ozi	11	<11d	<11d	<11d	5	3	4	141	11	18	56	<11d	6	324	33	618	<11d	na
0Z2	13	10	<11d	7	6	- 4	3	89	6	13	25	<11d	5	211	24	230	<11d	na
073	27	6	318	6	6	<11d	4	122	11	19	56	<11d	<11d	199	56	505	<11d	na
074	24	6	15	5	5	<11d	3	102	16	31	56	5	<11d	222	96	968	<11d	na
075	15	Å		<11d	5	4	5	150	11	36	63	6	7	242	34	796	<11d	na
QZ6	8	<11d	7	7	<114	4	3	191	. 10	7	44	<11d	<11d	173	54	348	<11d	na

e: Magnetite-Gabbro

Sample	Zn	Cu.	Ni	Co	Ga	Mo	ŇЪ	Zr	Y	Sr	Rb	U	Pb	Cr	V	Ba	Sc	Au
MG1	25	15	27	28	<11d	8	37	4	377	10	<11d	<11d	<111d	122	80	180	18	na
MG2	40	20	61	23	<11d	<11d	24	7	315	<11d	<11d	<11d	<111d	143	76	90	18	na
MG3	. 18	19	54	24	<11d	<11d	28	7	337	4	<11d	<11d	<111d	96	31	156	10	na

	501S .	1102	92 IV	1120	0	07 11	C.A.	NAPO	420 1	6024	N	48	9	5	D	3	Î	ŧ	ł	£	RB	SC	B S	3	>	۰ ،	Ę	!
¥	0.1170 0.1170 0.1110	07 11190-0 10	0.367% 0.0009 01	15 12210-0 12210-0	07 1740-0 1740-0	07 87.90.0 07	(1, 1984), 0- (1990), 0 (10)	0. 05 /86 0. 6 368 69	0, 3757, 0 9,000 . U 01	15 1501-0 15	-0.00612 0.9599 /0	0.21514 0.011 01	0, 19594 0401-0 04	1.05665 0.6436 64	-0.03665. 0.7667 68	0.04195 0.8055 5.3	40611.0- 2114.0 18	-11, 10865 8, 97, 11 8, 94	-0.11222 0.1522 01	0.24320 0.0822 52	0.11116 0.0062 66	-0. 39901 0 1994 18	6/866.0 8000.0 0/	-0. 12725 0.4804 13	0.5475 0.5475 01	0.10/38 0.1/61 0.1/61	0, 2 8443 0, 0170 07	:
Ę	0, 35212 - 0.0028 0/	52087-0 10000-0 01	61210.0 6009.0 0/	0.11156	0.02348 0.6470	0, 16030 0, 1850 0, 1850	06961 °0- 7860 °0 78	-0. URB24 0. 4/09 69	-0. 14624 0.2270 70	0.05869 6456.0 77	0, 115 344 1 5 63, 0 1 0	-0.10.0- 1919.0 10	19860-0 1987 0 01	-0.33739 0.0053 69	67161.0- 6411.0	0.19986 0.1194 62	-0. 36924 0. 1116 18	0.05622 0.6590 96	-0.27452 0.0215 01	-0.07941 1212.0 52	-0.23933 9520.0 86	0.36373 0.0251 34	0, 16168 0.1812 70	0.00454 0.9800 13	00600.0 11#0.0 01	0.03468	1.00000 0.0000 70	2
*	0.9121	0. 05683 0. 6403 70	0. 16189 0. 1806 76	0.91504 0.9156 37	0, 105/8 - 0, 3835 07	0.0012	0.01627 0.6607 70	0.08002 0.5133 69	0.08849 0.4663 0.4663	U. 14962 0.2666 57	0.06518 0.5919 70	0. 19558 0. 1041 01	0, 56517 0, 000:0 0	0.04819	0.04646 0.6946 68	-0.06322 0.6254 62	0.60924	0.10235 0.4210 64	0.20686 0.0858 10	U.U1511 U.9152 52	-0.1/5/2 0.1/561	0.52731	-0.27429 0.0216 10	-0.20/62 0.2456	0.33768 0.0043 70	1.00000 0.0000 70		
>.	0. 16324 - 0. 1769 70	0.23025	0.24855 0.0380 70	0.02574	0. 10749 - 0.3758 07	0.9216 0.9216 01	0.1/163 0.1549 0/	0.01445 0.9062 69	0.03367 0.7608 07	0.1119 0.1802 51	0.01665 - 0.6912 10	-0.06780 - 0.5771 - 10	-0.23948 - 0.0459 70	0.34906 0.0033	0.03170 0.7602 68	0.14393 0.2644 62	0.26856 0.2612	0. 16089 0. 2041 64	0.48525 0.0001 70	-0.06589 0.6426 52	0.00/11 0.9548 66	0.246/8 0.1560	-0.09005 0.4565 01	-0.09072 0.6156 11	0, 00000 0, 00000 0			
3	. 0.01592 - 0.6746 31	0.00261 0.9865	0.20029 0.2637	0.06417	0.04526 - 0.8025 33	0.201/3 0.1044	0.32833 - 0.0621 33	0.31151 - 0.0826 32	0.56/0	-0.00909 0.9627 29	0. U2768 0.8785 33	-0.06400	0.09456 0.6007	0.25602 0.1573	U. 196/3 0.2756 32	0. 16319 0. 366 9 00	0.84067 0.0178 7	0.29900 0.1085 30	-0.01237 0.9455 33	-0.21368 0.1672 27	0.01016 0.9567 11	U. (14927 U. 8321 21	-0.20100 0.1132 33	1.00000 0.0000 33				
5	U. U5474 0.6526 70	01 12111 1601 .0	0.59195 - 0.0001 01	0.02017 0.9057 11	u. 39899 - U. UUU6 7U	0.07650 0.5290 70	0.09972 - 0.4115 0.4115	- 74062.0 1000.0 69	0.0010 0.0010 01	U.22566 0.0915 57	-0.05/15 0.63 6 4	0.57787 0.0001 70	0. 15351 0. 2045 70	-0. U9769 U. 4236	-0.01/41 0.7619 68	0.05075 0.6953 62	-0.36464 0.1146	-0.23699 0.0594 64	-0.26374 0.0173	-0.05165 .0.7056 52	0.47677 0.0001 66	-0.30132 0.0 033	1. 00000 0. 0000 70					
8	0.11949 0.5009 8	0.49476 0.0029	0.05007 0.7785	0.13216 - 0.6524	0. 30457 - 0.0799 34	0.62152 0.0001 34	0.253/8 - 0.14/5	U. 08529 U. 6315 34	U. 38682 U. 0230 34	0.29569 0.1194 29	0.10652 0.5488	0.0155	-0.48876 0.0034 34	0.5261	-0.23009 1979 11	0.26629 0.1407 32	-0. 10541 0.8946	-0.25123 0.1654	0.16856 0.7001	-0.016/7 0.9325 28	-0.44417 0.0109 32	1. (NOOOO 0. 0000 34						
88	0.41465 0.0005 66	0.26192 0.0116 66	0.34/05 -	0.23293 - 03	0.14123	0.06381	u 02056 - 0 8699 86	0.48102 0.0001 66	U.63084 - U.0001 66	در ، ۱۵ ۵. /64	0.11941 0.3396 66	0.60244	0.28067 0.0224 66	0.28443	0.18/13	-0.12604 0.3254 61	-0.33265-0-0.2452	-0.36709 0.0019 60	0.02007 0.8729 66	0.17096 0.2256 52	1.00000 0.00000							
84	U. 10/88 0.4465 52	0.13045 - 0.3566 52	0.03528	U. 20378 - U. 3160 26	u. 12959 - U. 3599 52	0.00954 0.9465 52	0. 05390 0. //199 52	0.14691 0.2921 52	U.20077 0.1375 52	0.12153 0.4433	-0.116937 0.6251 52	0.17447 0.2161 52	0.05159 0.6851 52	0.11164 0.4307 52	0.10406 0.4721 0.4	-0.10272 0.4625	-0.71250 0.0139 11	-0.21312 0.1332	0.01090 0.93 8 9 52	1. (нижи 0. ники 52								
ž	0. U2 /56 U. 82U8 10	0. 04418 - 0. 7165 07	0.08934 - 0.4620 70	0.20179 -	0.00416 0.9728 01	0, 08570 0.4806 01	01,07445 01 01	0.01522 0.9012 69	0.08178 0.5010 070	0.01658 0.5712	-0.10554 0.3646 07	-0.25100 0.0161 70	-0.29582 0.0129 70	0.4/409 0.0001 69	U. 36433 0.0023 68	U. 35247 0.0050 62	0.06157 0.8462 18	U.U2692 U.8328 64	0, 00000 01000.0 07									
2	0.50050 0.0001 64	0.27460 0.0281 64	0.11213 0.3777	0.47454 0.0061 32	- 0. 04877 - 0. 7020 64	0.317/0 0.0105 64	0.2/122	0.33446 0.0074 63	0.1/156 0.1660 64	-0.07701 0.5674	-0.08460 0.5063	-0.22230 0.0775 64	-0.09784 0.4418	0.18809 0.1366 64	0.13163 0.3078 62	0.7968 0.7968 56	0.71547 0.0000.0	1. (NNNN) 1. (NNNU) 0. (NNU)										
¥	0.41481 - 0.0670 18	0.15954 0.5272 18	0.22518 0.3690 18	0.51191 0.1027 11	0.10267 - 0.6852	0.44952 - 0.0613	- 10421.0 0.5416 81	0.39910 - 0.1125	0.08665	-0.45551 0.0762	-0.27997 0.2605	-0.43658 0.0701	-0.50665 0.0119 11	0.39670 0.1031	-U.04122 0.8710	-0.35954 0.2276 11	000001.00000000000000000000000000000000				ant	ock	ath	L ve L on	I			
5	U. 18441 - 0. 1513 62	0.43152 - 0.0005 62	0. 16900 0. 1412 62	0.01195 0.9491 11	0.0030	0.1/951 - 6.1627 62	0.24456 0.0554	0.03220 - 0.6036	0.02/02 0.6349	0.10505	0.16454	-0.06613 0.5968	-0.01996 0.5367	0.21406 0.0976 61	-U. (16770) U. 6641	1. (10000 0. 0000 62					leme	ch r	rnea	ect:				
8	0.16/94 - 01/1.0 88	0.02315 0.6513 68	0.8558 0.8568 0.8568	u. 26849 u. 1189 35	0. 00074 - 0. 9952	0.00008 1.9672 0.9672	0, 14492 - 0, 2384	0, 10357 0, 4040 67	47.0674 11.2592 68	0.12304 0.3706	0.0/0.0 0.5349 68	U. 1/166 U. 1616 68	0.2368 8952.0 88	0.26/99 0.0283	1. (НКИН) 0. (МХИ) 0.						ط با	e-ri	unde	resp f det				
В.	69/11.0 867.0 69	0.07324 - 0.5498 69	01.201.0 11.01.0 63	u. n5u99 - u. 1611 36	0.05019 0.6821 69	n. 30496 6. 0108 69	- 22103 - 0.0680 0.0	0. ut 108 1194	0.05611 5616.0 69	-0.09445 0.4617 0.4617	-0.0/617 0.5139 66	0.02422 0.6434 69	-0.01951 0.1412 69	0.0000							l tra	etit	ven	tne It of				
8	0.08208 - 0.4994 70	0.13980 0.2484 17	0.29037	0.18540 - 0.2120 17	0.13485 - 0.2657 70	0.27035 - 0.0236 70	0.48493 -	-0.06315 - 0.6062 69	0.01959 0.7449 10	0.1101	0. 35678 0. 0023	0.26072 0.0166 70	1.00000 0.0000 70								and	magn	: (g1	lim				
ă	0.26815 - 0.0248 70	0.03585 0.7683	0.29/79 - 0.0123	0.1111	0, 15643 0, 1959 01	0. 16669 - 0. 1678 70	0.5234	0.61723 - 0.0001 69	0.50889 - 0.001 - 0.001 - 0.001	0.17860 -	0.02845 0.8151 70	1.00000 0.0000 70									ior-	and	ance	wer	ce).			
Ŷ	0.05255 0.6657 70	0.07392	0. 19995 0.0970 10	0.06736 - 0.69736 - 0.6919	0.06511 - 0.5911 - 0/	0.13473 0.2661 70	0.02115 -	0.00266 0.9827 69	0. 02992 0. 0050 70	0.2705 0.2705	1.00000 0.0000 70									X 4	r ma	(a)	1f1c	s parts parts to the local section of the local sec	lcan			
1205	0.24427 0.0718 57	0. 19010 0. 1567 57	0.06641	0.36308 0.0529 29	61111.0 9710.0	0.0001 0.0001 57	0.03604	0.41163 0.0009	0.21644	0.0000										ENDI	x fo	nite	sign	ve th	lgnii			
K20	0.50508 0.00010 70	-0. 16807 0. 1643 70	0.44920 0.0001 70	0.0014 0.0014 11	0.0011	0.34734 0.0032 70	0.00278 0.9818 10	0.56/06 0.0001 69	1 (00000 0.0000 0/											APP	atri	roxe	of	abor	of si			
NA20	0.52231	0.8580	0.37411 0.0015 69	-0.5/461 - 0.0002 37	-0.36906 0.0018 69	0.56156 0.0010 69	0.10045 0.4115 69	1. (KKKK) 0.0000 0.0000	1													1 py	evel	e i i i	vel (
3	0.33611 0.000 07	-0.48955 - 0.0001 - 70	-0.41339 0.0002 70	-0.26900 0.0628	0.36125 0.0021 01	0.29163 0.0143 70	1. 00000 0. 0000 10														lati	kraa	ed l	n cu Vati	e le			
NG0	0.46148 0.0001 70	0.01010	-0.05067 0.6770 01	1100.0	-0.24902 0.0376	1. 0000 0. 0000 70															orre	Waai	put.	bser	ø th			
Ĩ	0.03166 0.79467 07	-0. 39008 0. 0008 70	-0.51222 0.0001 10	-0.1032/ 0142.0	00000.1 00000.0 01																10 CC	of	e col	of o	belo			
f [20]	-0.89176 1000.0 13	0.47655 0.0029 37	0.11155 0.15110 11	1.00000 0.0000 11																	armé	tent	. The	ber	ven			
AI 203	-0.19269 0.1100 70	0. 16/73 0. 1196 70	1. 00000 0.00000 10																		Spe	con	(q) +	unu	(g1			
1102	56523 0.0001 70	0.00001 10000													,													
	ę T	-																										

5102 VIC 0.2001 0.10412 0.14412 VIC 0.2016 0.5312 0.6413 VIC 0.2009 0.1115 0.2415 9 0.0460 0.1111 0.0145
 7
 7
 7
 7
 7

 7
 0.11616
 0.11154
 0.11114

 7
 0.1269
 0.11269
 0.1114

 7
 0.1269
 0.11249
 0.01919

 8
 0.11144
 0.21269
 0.11249

 9
 0.11144
 0.21419
 0.02919

 9
 0.2193
 0.01919
 0.2451

 9
 0.2194
 0.01914
 0.2451

 9
 0.2914
 0.02816
 0.2816

 9
 0.992
 0.9914
 0.1114
 9-0-000151 -0.00547 0.02815 9-0-000151 -0.00547 0.02815 9-0-11438 0.16615 0.001790 11 0.1329 0.2109 0.0799 12 0.1329 0.2109 0.07985 13 0.1329 0.2108 0.0515 14 0.1925 0.1921 0.110000 0.1564 0.0010 0.1564 0.0010 0.1000 0.0010 0.0010 0.0010 0.0010 0.0116 0.01266 0.0116 0.01266 0.0116 0.01266 0.0116 0.01266 0.0116 0.0126 0.0126 0.00 -0. 35545 0.0097 0.57780 0.0001 52 52 0.05557 0.6956 52 0.59595 0.0001 52 -0.22346 0.1113 52 52 0.3410 0.0133 0.35229 0.0104 52 0.29579 0.0435 47 47 47 47 47 47 53588 0.0001 2 -0.69068 0.0004 22 -0.3318/ 0.0318 0,119923 0,12400 0,1260 0,12500 15200 1520 01 15 15 -0.01471 -0.29176 0.0323 -0.07351 0.6157 9#9 0.0111 0.0001 0.0111 0.0171 -0.17335 -0.2100 54 0.05544 -0.48476 0.0002 -0.73875 0.0001 52 1.00000 0.0000 -0.61117 0.0001 54 -0.11190 0.4205 -0.20544 0.07036 0.2761 0.7116 30 30 0.119731 -0.5059 94 1.100000 -1.00000 -0.45515 -0.0006 -0.35801 -0.0858 24 0.49325 -0.0002 0.02299 -0.00053 - 0.9969 0.0001 - 0.9698 0.9698 97 -0.22390 0.1035 14 0.0001 0.0001 94 0.19151 0.19151 0.18115 0.00115 0.00015 -0.63446 0.0009 24 0. 77865 0. 0001 54 0.37683 0.0050 0.02075 - 0.8989 -0.21250 0.44.0 -0.01095 0.9405 0405 0.29537 0.0394 44 0.20202 0.1995 -0.15311 0.11999 9711.0 1102.0 9711.0 15 -0.33609 0.0257 0.02205 0.8831 -0.01044 0.9432 0.06263 0.6899 -0.27509 0.2544 000000 0.21302 0.1417 0.31692 0.0265 -0.09359 0.6357 28 0.19096 0.1936 0.32150 0.1669 0.1669 20 0.27840 0.0527 -0. 18550 0. 3855 -0.06568 0.5574 0.28455 0.0475 0.15697 0.2814 94 0.22135 0.3349 21 0.16816 0.5048 18 0.15561.0 0.5247 0.28352 0.2130 21 0.29432 0.2078 20 0.61721 0.01106 -0.01756 0.9398 21 0.03902 0. 1192 78 0. 69 72 20 1. 00000 0. 0000 21 0.03551 0.6867 21 0.08683 0.7862 0.06762 0.1709 21 -0.36820 -0.26891 0.2385 21 -0.04556 0.8445 21 0.02796 0.9042 21 0.04451 0.8852 -0. 12930 0. 1563 20 -0.29254 0.3321 11 -0.05713 0.5560 84 0.46854-0 0.0000-0 84 -0.02393 0.8/89 -0.015/1 0.9153 0.6303 0.6704 0. 05175 U. 8605 H 0. 29916 0. 1149 29 0.46856 0.0278 22 0.04828 0.1643 0.04701 0.7537 0.13/15 0.3526 0.3526 -0.18101 97.62.0 0. 46960 0. (MNB 48 U. 15062 U. 3068 00000 5 -0. 19528 0.5101 -0.1/848 0.5484 -0.20125 0.4412 16 0.46640 0.0927 0.10521 -0.6982 0.6982 16 -0.07850 0.1726 16 0.53989 0.0568 13 0.36363 0.1576 0.1576 0.00751 0.9760 16 0.9111 00000 0. 15619 0. 5635 0.20455 0.4473 -0.01654 0.9515 16 0.21230 -0.41476 0.3169 -0.16803 0.5319 16 0.07509 0.7822 8 0.31213 0.36656 -0.0144 -0. 30623 0. 0432 00000 -0.14583 0.3449 0.28131 -0.1470 28 -0. 55961 0. 1093 21 0.26274 -0.21307 -0.0549 0.1649 54 44 0.26423 0.1049 0.0 40 0.34651 0.34651 -0, 19446 0.2171 42 -0.35066 0.0196 14 0.21953 0.1522 -0.12546 0.4171 0. 39817 0. 0074 0. 13554 0. 13554 0. 13903 0. 131113 0. 6040 -0.13008 0.4057 64 0.22331 -0.07629 0.6489 38
 0
 1000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0000.0
 0
 0
 0000.0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 0.09778 0.4818 0.4818 0.01234 - 0.6103 -0.22561 0.1006 0.06442 0000 £ -0. 19844 0. 1585 -0.07721 0.5864 52 0.24139 0.1102 00000 ₽ - 0.52912 0.0113 22 - 0.01231 0.1253 -0.28694 0.0505 1.00000 0.0000 0.16465 0.547 0.1477 0.1477 0.1477 0.1477 0.1738 0.1738 0.1737 0.1737 0.19052 -0.112152 0.8700 0.3095 0.119966 0.0205 04211-0-1484-0 -0.15745 3 -0.11282 --0.42100 --54 1.00000 --0.00000 --54 - 5605.0 - 5601.0 - 5601.0 - 5601.0 - 1600.0 - 1700 15690.0-1/19.0 -0.6190.0-5870.0 442 0.76734 5 0.01416 0.9190 95 00000 800,22 800,0 8 0.19416 0.1635 0.19200 4266 0 4266 0 1.19511 0.1666 147 5 0.09326 0.5329 47 -0.06580 0.6603 14 ().2646() 0.2464 21 00000 8 - 0.37057 0.0056 TILM. 0 0.000.0 1.11 0.0247 0.0247 #5 00000.00000.0 ş 0.21109 54 0.21109 0.21109 0.21109 0.21019 0.01019 0.01019 0.01019 0.01019 0.01019 0.01019 0.01019 0.01010 0.0270.0 0.909.0 0.0 11711.0-1020.0 -0.08260 0.7012 24 00000 -0.29452 0.0306 54 -0.17145 0.2151 Ŗ 0.52047 0.0109 23 0.31047 0.1147 0.1147 0.1147 0.1147 0.1043 0.6687 0.0588 0.05987 0.05987 0.1243 0.1243 0.04030 0.8866 0.0000.0 0.37813 0.0685 24 0.22293 0.22593 P205 0. 36513 0.0356 30 0.0001 0.65005 0.0001 51 0.32578 0.32578 1,502,10 1,000,0 1,102,0 1,102,0 1,102,0 1,103,0 1, 00000.0000 K20 0, 11227 0, 000 0, 000 0, 11496 0, 1496 0, 1890 1, 120 1, 0.2512 0.2572 01 00000.0 02VN 0. 60243 10.00.0 10.00.0 1000.0 1000.0 1000.0 20.05364 0. 000 10 0.000 0 0.86583 0.0001 54 0.28202 0.0388 (1000). 0.0000 C NO 0.0001 MG0 0.5234 0.5234 0.5249 0.5249 0.5249 0.10845 0.5490 0.5490 0.5490 0.5490 0.0400 0.22227 0.1062 Ĩ -0.66797 0.0004 24 -0.63565 0.0001 24 24 1.00000 0.10000 FE203 0.97565 0.0001 24 AL203 0.81047 -0.01017 -54 0.0820 0.0820 0.0820 0.0020 0.0000 0.0000 0.54 1102 15991 1000 1000 1000 1000 1000 MA20 1.205 Ali 8 AL 203 5102

Magnetite-Rich Rock þ:

11203 (Q)

9 9 V

3

ą

5024

2 **2**

8 5, 3 3

£

5

ž

APPENDIX 5

5.1 Results of microprobe analyses of clinopyroxenes together with the number of ions on the basis of 6 oxygen atoms (all iron as FeO, <lld = less than the lower limit of detection).

¥ -

a: Pyroxenite

SAMPLE	\$10 ₂ \$1	TIO ₂ TI	A1203 A1	Cr2 ⁰ 3 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL

WK3.2	48.10 1.971	0.14	0 .96 0.046	<111d	27.37 0.938	0.73 0.025	1.93 0.11	20.52 8 0.901	0.17. 0.014	<111d	99.77
WK3.2	47.69	0.11	1.09 0.053	<11d	27 . 94 0 . 961	0.78	1.93 0.11	20.06 8 0.884	0.20	<11d _	99.68
WK3.2	47.66	0.10	0.60	<11d	27.13	0.72	2.06	20.25	0.11	<11d	98.54
WK3.2	47.48	0.09	0.53	<11d	27.40	0.76	2.12	20.53	0.12	<11d	98.95
WK3.2	47.76	0.16	0.98	- <11d	27.97	0.027	2.18	20.16	0.010	- <11d	99.97
WK3.2	1.959 47.81	_ 0.13	0.047 0.97	- <11d	0.959 27.75	0.026 0.77	0.13 2.16	3 0.886 19.96	0.014 0.18	- <11d	99.60
LTR2 2	1.965	-	0.047	-	0.954	0.027	0.13	2 0.879	0.014	-	100.18
WKJ•2	1.985	- -	0.004	- -	0.925	0.027	0.13	6 0.932	0.007	-	
WK3.2	48.46	0.02	0.08 0.004	<11d -	26 . 91 0 . 925	0.78 0.027	2.25 0.13	20.84 8 0.918	0.09 0.007	<11d -	99.40
		0 17	1 13		 27 82	0 70	 2 22	20 71	0 16		101.04
WKJ.Z	1.957	-	0.054	- -	0.942	0.024	0.13	4 0.899	0.012	-	101.04
WK5.2	47.77	0.19	1.21	<11d	28.13	0.61	2.21	20.65	0.18	<11d	100.77
WK5.2	1.945 46.97	- 0.07	0.058 0.60	- <11d	0.958 27.79	0.021	0.13	4 0.901 20.59	0.014	- <11d	98.97
	1.953	-	0.029	-	0.966	0.024	0.13	6 0.917	0.012	-	
WK5.2	46.94	0.09	0.58	0.02	28,17	0.70	2.18	20.51 5 0.913	0.16	<11d -	99.24
WK5.2	46.56	0.24	1.57	0.03	28.35	0.80	2.12	19.20	0.20	<11d	98.79
	1.937	-	0.077	-	0.987	0.028	0.13	1 0.856	0.016	- <114	00.12
WK3.Z	1.936	-	0.079	-	0.987	0.026	0.13	2 0.857	0.016	-	77.12
WK5.2	46.19	0.37	1.24	<11d	30.04	0.63	2.16	18.57	0.17	<11d	99.01
WK5.2	46.19	- 0.39	0.061	- <11d	30.08	0.022	2.20	5 0.832 18.74	0.014	- <11d	99.35
	1.926	-	0.062	-	1.049	0.024	0.13	7 0.837	0.016	-	
WK5.2	47.19 1.947	0.26	1.43 0.069	0.02	28.18 0.972	0.65 0.023	2.07 0.12	19.75 7 0.873	0.20 0.016	<11d -	99.47
WK6.3	47.62	0.08	1.38	0.02	29.14	0.76	1.69	19.50 3 0.857	0.11	0.10	100.30
WK6.3	46.93	0.34	1.92	<11d	28.09	0.67	2.14	19.70	0.25	<11d	99.70
1726 3	1.931	-	0.093	-	0.966	0.023	0.13	1 0.868	0.020	-	100 61
WK0.J	1.962	-	0.036	-	0.966	0.026	0.13	5 0.887	0.014	-	100.01
WK6.3	48.14	0.09	0.77	<11d	27.98	0.71	2.25	20.35	0.20	<11d	100.41
WK6.3	47.73	0.24	1.45	0.01	28.40	0.63	2.13	19.26	0.24	<11d	99.85
UTK 6 3	1.957 47.73	-	0.070	- <114	0.973	0.022	0.130	0.846	0.019	- <114	100.72
WK0.5	1.944	-	0.074	-	0.968	0.024	0.13	1 0.870	0.019	-	1000.72
WK6.3	48.55	0.06	0.40	0.02	28.58	0.79	2.26	19.15	0.10	<11d	99.83
WK6.3	48.46	0.07	0.35	<11d	28.55	0.78	2.28	20.09	0.13	<11d	100.64
WK6.3	1.976 48.59	- 0.08	0.017	-	0.974	0.027	0.139	€ 0.878	0.010	- <11d	100-00
	1.986	-	0.026	-	0.965	0.026	0.144	4 0.848	0.013		100.00
WK6.3	48.46	0.08	0.62	0.03	28.48	0.78	2.34	19.31	0.33	<11d	100.32
	1.7/0										

•

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SAMPLE	^{S10} 2 Si	T10 ₂ T1	A12 ⁰ 3 A1	Cr2 ⁰ 3 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na20 Na	к ₂ 0 К	
 WK11.2	48.17	0.11	1.02	0.03	28.76	0.82	1.30	20.99	0.17	<11d	101.2
WK11.2	47.56	0.09	1.04	0.02	0.978	0.028	0.07	9 0.915 20.77	0.014	- <11d	100.3
WK11.2	47.57	0.06	0.051	0.03	29.63	0.029	0.07	4 0.914 19.78	0.013	- <11d	100.1
WK11.2	47.76	0.10	0.039	0.04	1.022 .29.70	0.027	0.09	0 0.874 20.13	0.010	- <11d	100.7
WK11.2	47.90	0.13	1.07	0.04	29.67	0.83	1.24	19.96	0.18	- <11d	100.8
WK11.2	47.85	0.06	0.97	0.01	30.17	0.85	1.24	19.95	0.16	<11d	101.2
WK11.2	47.69	0.05	0.95	0.04	29.71	0.83	1.18	19.82	0.17	<11d	100.3
WK11.2	47.52	0.07	1.15	0.02	30.16	0.82	1.32	19.62	0.21	<11d	100.8
WK11.2	47.26	0.07	1.14	0.04	29.59	0.028	1.26	1 0.863 19.43	0.16	<11d	99.5
	 /6 86					0.025	2 06	10 83	0.17		
WK12.2	1.936	-	0.059	- 0.01	1.002	0.026	0.12	7 0.878	0.014	-	99.1
WK1202	1.892	- 0.09	0.109	- 0 01	1.025	0.024	0.10	2 0.893	0.016	-	00.8
	1.897 45.70	-	0.106	- -	1.016	0.024	0.104	4 0.894	0.020	-	100.3
WR12.2	, 1.894	-	0.106	<110 - <114	1.048	0.026	0.092	2 0.881	0.015	-	98.8
WN1202	45.10 1.895	- -	0.108	-	1.042	0.026	0.090	0.879	0.018	-	
	1.910	-	0.078	-	1.033	0.027	0.097	7 0.898	0.015	-	
	4J.72 1.905	- 0.04	0.078	-	1.049	0.026	0.10	1 0.890	0.014	-	
	45.10	-	0.134	-	1.032	0.025	0.085	5 0.873	0.017	-	
WK12.2	1.889	-	0.128	-	1.015	0.023	0.086	5 0 .89 7	0.018	- -	
WK12.3	48.85	<11d	0.06	<11d	26.41	0.92	2.57	21.77	0.10	<11d	100.6
WK12.3	48.16	<11d	0.003	<11d	27.05	0.91	2.49	22.00	0.11	<11d	100.7
WK12.3	47.95	0.02	0.35	<11d	27.60	0.032	2.63	20.73	0.16	<11d	100.3
WK12.3	47.33	0.03	0.34	<11d	27.33	0.84	2.60	20.84	0.17	<11d	99.4
WK12.3	47.36	0.06	0.71	<11d	28.13	0.89	2.47	20.44	0.17	<11d	100.1
WK12.3	47.58	0.06	0.72	<11d	28.34	0.82	2.41	20.57	0.15	<11d	100.60
WK12.3	48.17	0.02	0.033	<11d	28.42	0.94	2.41	19.88	0.14	<11d	100.2
WK12.3	47.81	0.01	.0.32	<11d	28.08	0.93	2.40	20.56	0.13	<11d	100.2
WK12.3	47.75	0.04	0.62	<11d	28.48	1.04	2.32	19.49	0.16	<11d	99.8
JK12.3	47.95	0.06	0.57	<11d	28.28	0.93	2.39	19.49	0.15	<11d	99.70

•

SAMPLE	Sio ₂ Si	TiO ₂ Ti	A1203 A1	Cr2 ⁰ 3 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
 WK12.4	47.45	0.24	1.25	<111d	28.78	0.81	2.43	,18.83 9 0.830	0.24	<11d	99.78
JK12.4	47.07	0.21	1.30	0.01	29.31	0.84	2.42	19.56	0.22	<11d	100.73
JK12.4	48.35	0.08	0.003	<11d	28.93	0.88	2.39	8 0.859 18.58	0.12	- <11d	99.78
rK12.4	48.14	0.09	0.026	0.01	28.67	0.030	2.38	6 0.817 19.93	0.010	- <11d	100.74
TK12.4	1.964 47.56	0.14	0.029 1.35	- 0.01	0.978 26.93	0.031 0.77	0.14 2.08	5 0.871 21.20	0.010	- <11d	100.16
rK12.4	1.945 47.42	- 0.17	0.065 1.22	- 0.01	0.921 26.95	0.027 0.79	0.12 2.07	7 0 .929 20.73	0:021 0:24	- <11d	99.43
,к12 . 4	1.952 47.10	- 0.16	0.059 1.27	- 0.06	0.928 30.11	0.028 0.94	0.12 2.33	7 0 . 914 18 . 70	0.019 0.21	- <11d	100.67
JK12.4	1.934 47.35	- 0.19	0.061 1.27	- <11d	1.034 30.09	0.033 0.87	0.14 2.21	3 0.823 18.79	0.017 0.21	- <11d	100.80
/ /K12.4	1.940 47.63	- 0.17	0.061 0.82	- 0.03	1.031 28.79	0.030 0.79	0.13	5 0.825 18.47	0.017	- <11d	98.76
JK12_4	1.977 47.87	-	0.040	- 0-04	0.999	0.028	0.13	1 0.821 20.42	0.011	- <11d	100-11
	1.961	-	0.041	-	0.957	0.026	0.13	2 0.896	0.009	-	
лк13 . 2	47.86	0.11	0.58	0.02	29.78	0.92	2.39	19.24	0.16	<11d	100.94
JK13.2	47.23	- 0.08	0.028	_ 0.04	29.55	0.032	2.32	19.46	0.15	<11d	100.30
rK13.2	1.948 47.68	- 0.08	0.029	- <11d	1.019 27.67	0.035	0.14 2.58	3 0.860 19.94	0.012	- <11d	99.68
лк13 . 2	1.960 48.10	- 0.08	0.037 0.74	- 0.02	0.951 28.02	0.031 0.84	0.15	8 0.878 20.10	0.013 0.18	- <11d	100.63
JK13.2	1.959 46.82	- 0.15	0.036 1.12	- 0.01	0.954 27.04	0.029 0.71	0.16	0.877 21.07	0.014 0.21	- <11d	99.43
лк13 . 2	1.934 46.72	- 0.15	0.055 1.11	- 0.02	0 .93 4 26 . 42	0.025 0.71	0.15 2.48	1 0.932 21.03	0.017 0.21	- <11d	98.69
rK13.2	1.939	0.12	0.054 1.04	- <11d	0 .9 17 27 . 18	0.025	0.15	3 0.935 21.17	0.017	- <11d	100.17
JK13.2	1.937	-	0.050	-	0.931	0.026	0.15	4 0.930	0.019	-	99,93
	1.943	-	0.050	-	0.924	0.026	0.15	2 0.929	0.017	-	100.64
KI3.2	47.92	-	0.032	-	0.951	0.027	0.15	20.00 5 0.904	0.012	-	100.64
rk13₊2 	47.88 1.948	0.13	0.71 0.034	0.01	28.07 0.955	0.91 0.031	2.61 0.15	20.67 B 0.901	0.15	<11d -	101.00
rk13.2	48.81 1.983	0.07	0.39 0.019	<11d -	27.26 0.926	0.94 0.032	2.55 0.15	20.38 5 0.887	0.13 0.010	<11d -	100.46
rK13.2	47.94 1.977	0.08 -	0.35 0.017	<11d -	29.16 1.006	0.89 0.031	2.41 0.14	18.78 3 0.830	0.15 0.012	<11d -	99.68
	47.78	0.08	0.50	<11d	28.85	0.90	2.25	19.81	0.13	<11d	100.23
ТК14-4	1.963	-	0.024	-	0.991	0.031 0.84	0.13	3 0.872 19.40	0.011	- <11d	98.82
	1.966	-	0.024	-	1.000	0.030	0.13	0.866	0.012	-	100.07
	1.953	-	0.038	-	0.985	0.028	0.13	0.886	0.016	-	100.15
K14•4	1.951	-	0.038	-	0.986	0.029	0.13	20.13 L 0.887	0.013	-	100.13
K14•4	4/./4	- 0.07	0.75	<11d -	28.00 0.958	0.85	0.134	20.77	0.21	<11d -	100.51
K14•4	47.65 1.953	0.05 -	0.71 0.034	<11d -	28.22 0.967	0.79 0.028	2.24 0.137	20.61 0.905	0.20 0.016	<11d -	100.42
K14.4	47.03 1.938	0.05 -	0.71 0.035	<11d -	30.54 1.052	1.56 0.054	2.48 0.152	18.28 2 0.807	0.16 0.013	<11d -	100.76
к14.4	47.26 1.955	0.04	0.75 0.037	0.01	30.73 1.063	0.83 0.029	2.15 0.132	18.14 2 0.804	0.18 0.015	<11d -	100.04
к14.4	46.84	0.19	1.32	<11d -	27.66	0.72	1.99	20.77	0.24	<11d	99.55
i	1										

SAMPLE	\$10 ₂ \$1	T102 T1	A1203 A1	Cr203 Cr	FeO Fe	MnO Mn	Mg0 Mg	Ca0 Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
WK16.2	46.53	0.09	1.44	<11d	30.65	0.75	1.00	20.54	0.25	<11d	101.16
WK16.2	46.63	- 0.09	0.070) - <11d	1.056 30.14	0.026	1.04	2 0.907	0.020	- <11d	100.76
JK16.2	1.923 46.92	- 0.11	0.073 1.24	<11d	1.039 29.38	0.024 0.82	0.064 0.97	4 0.904 19.98	0.021 0.21	- <11d	99.51
rK16.2	1.950 46.72	- 0.11	0.061 1.22	- <11d	1.021 29.38	0.029 0.74	0.060 0.91	0.890 20.89	0.017 0.24	- <11d	100.10
JK16.2	1.936 47.09	- 0.01	0.060 0.80) – <11d	1.018 28.57	0.026 0.83	0.056 0.96	5 0 .928 21 .25	0.019 0.16	- <11d	99.68
rK16.2	1.955 46.59	- <114	0.039 0.80	- (- (0 .992	0.029	0.060	0.945 20.98	0.013	- <11d	98.76
V16 2	1.953	-	0.040	-	1.003	0.025	0.058	3 0 . 942	0.010	-	99.06
K10.2	1.966	-	0.00	-	1.028	0.031	0.064	4 0.873	0.017	-	33.00
JK20.5	49.22	<11d	0.19	<11d	26.21	0.80	3.38	21.30	0.10	<11d	101.21
WK20.5	1.978 48.70	- 0.03	0.009 0.19	- <11d	0.881 26.59	0.027 0.88	0.202 3.21	2 0.917 21.01	0.008 0.15	- <11d	100.74
WK20.5	1.972 48.50	- 0.07	0.009 0.42	- <11d	0.901 26.21	0.030 0.77	0.194 3.63	0.912 20.79	0.012 0.16	- <11d	100.48
JK 20 5	1.964	-	0.020	-	0.888	0.026	0.219	0.902	0.012	- <114	98.81
R20.J	1.985	-	0.024	-	0.904	0.028	0.210	0.845	0.015	-	
NK20.5	48.51	0.04 -	0.50	<11d	0.903	0.86	0.206	19 . 98 5 0 . 871	0.17	-	99.93
rK20.5	49.01 1.992	0.02	0.11 0.005	<11d	25.35 0.861	0.84 0.029	3.58 0.217	20.58 0.896	0.12 0.009	<11d -	99.58
rk20.5	48.87	0.03 -	0.10	<11d	25.43 0.863	0.83	3.52 0.213	21.10 3 0.917	0.12	<11d _	99.97
к20 . 5	49.14 1.975	0.04 -	0.29 0.014	0.05	24.50 0.823	0.92	3.57 0.214	22.18 0.955	0.11	<11d -	100.71
WK21.5	49.15	0.03	0.08	0.02	24.65	1.01	2.93	23.47	0.07	<11d	101.36
WK21.5	1.973 48.67	- 0.03	0.004 0.17	- 0.01	0.827 25.67	0.034 0.84	0.176 3.42	5 1.009 21.08	0.006 0.16	- <11d	100.02
JK21.5	1.978 48.73	- 0.05	0.008 0.14	- <11d	0.872	0.029 0.86	0.207 3.58	0.918 0.918	0.013 0.14	- <11d	99.20
גער אוג. גער אוג	1.992	-	0.007	- <11d	0.895	0.030	0.218	0.857	0.011	- <11d	100,90
-K21.J	1.976	-	0.010	-	0.855	0.028	0.209	0.935	0.012	-	00.52
/K21.5	48.68 1.984	<11d -	0.07	<11d -	0.864	0.78	0.210	0.919	0.14	-	99.53
rK21.5	48.74 1.967	0.01	0.08 0.004	<11d -	25.35 0.855	0.81 0.028	3.42 0.206	22 . 36 0 . 967	0.13 0.010	<11d -	100.89
TK21.5	48.64 1.967	0.03	0.10	<11d _	25.34 0.857	0.77 0.026	3.54 0.214	22.15 0.959	0.09 0.007	<11d	100.63
rK21.5	48.69 1.990	0.03	0.10	<11d -	25.22 0.862	0.84	3.53 0.215	20.62	0.11 0.009	<11d -	99.11
тк26.2	48.81	0.13	0.90	0.03	25.29	0.55	4.21	21.12	0.13	<11d	101.01
лк 26 2	1.954	-	0.042	-	0.847	0.019	0.252	20,98	0.010	- <114	99-34
wo(0	1.959		0.039	-	0.835	0.017	0.253	0.914	0.010	-	100.17
NK26.2	48.69 1.963	- -	0.028	U•04 _	0.829	0.017	0.259	0.925	0.004	-	100.17
rK26.2	48.60 1.971	0.10	0.60 0.029	0.04	24.38 0.827	0.55 0.019	4.40 0.266	20.73 0.901	0.07 0.006	<11d -	99.34
r K26.2	47.76 (1.956	0.24	0.79 0.038	0.01	27 . 14 0 . 929	0.71 0.025	2.63 0.160	20.74	0.21 0.016	<11d _	99.97
WK26.2	47.83 (0.24	0.74	0.04	26.69	0.68	2.53	20.08	0.21	<11d	98.76
rK26.2	48.22 (- 0.14	0.036	0.06	26.84	0.69	3.21	19.81	0.18	<11d	99.61
K26.2	1.971 47.87 (- 0.11	0.032 0.64	- 0.03	26.13	0.024	0.195 3.17	0.867 20.54	0.014 0.19	- <11d	99.19
	1.965	-	0.031	-	0.897	0.023	0.194	0.903	0.015	-	[

SAMPLE	sio ₂ Si	T10 ₂ T1	A12 ⁰ 3 A1	Cr2 ⁰ 3 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
WK26.2	48.60	0.06	0.23	0.03	25.70	0.77	3.42	21.52	0.15	<11d	100.39
JK26.2	48.90 1.979	0.02	0.011 0.17 0.908	0.03	25.55 0.864	0.026	3.46 0.209	21.38 0.927	0.012 0.15 0.012	<11d -	100.34
√K28.4	49.70	0.03	0.22	<111d	23.66	0.70	5.39 0.320	20.85	0.17	<11d	100.69
TK28 .4	49.52 1.988	0.03	0.22	<11d -	23.53 0.790	0.73	5.40 0.323	20.07	0.16 0.012	<111d _	99.63
JK28.4	49.49 1.976	0.03	0.22	<111d _	23.58 0.787	0.74 0.025	5.53 0.329	20.72	0.16 0.013	<11d -	100.44
TK28.4	47.87 1.936	0.27	1.54 0.073	<11d	24.86 0.841	0.58 0.020	3.85 0.232	21.13 0.916	0.23 0.018	<11d	100.07
<i>t</i> K28∙4	48.04 1.943	0.26	1.48 0.070	<11d	24.35 0.824	0.61 0.021	3.90 0.235	21.21 0.919	0.24 0.019	<11d -	99.84
WK28.4	48.38 1.955	0.25	1.44 0.068	<11d	24.51 0.828	0.62 0.021	4.75 0.286	19.44 0.841	0.24 0.019	<11d	99.38
WK28.4	48.45 1.940	0.24	1.47 0.069	<11d _	24 .9 4 0 . 835	0.65 0.022	4.76 0.284	20.16	0.23 0.018	<11d -	100.67
√K28 .4	47.91 1.951	0.19	1.50 0.072	<11d	25.25 0.860	0.58 0.020	4.53 0.275	18 . 90 0.825	0.21 0.017	0.06 0.003	98.95

b: Magnetite-Rich Rock

SAMPLE	sio ₂ si	TiO ₂ Ti	A1203 A1	Cr ₂ 03 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
 WK4.1	47.22	0.11	1.72	<11d	29.17	0.75	1.53	20.24	0.18	<11d	100.81
WK4.1	1.932 47.02	- 0.12	0.083 1.80	0.01	0 .998 29.67	0.026 0.72	0.09 1.61	3 0.887 20.28	0.014 0.19	- <11d	101.30
WK4.1	1.920 46.94	- 0.11	0.087 2.11	0.02	1.013 29.34	0.025 0.64	0.09 1.53	8 0.887 19.26	0.015 0.18	- <11d	100.00
WK4.1	1.932 46.94	- 0.10	0.103 2.04	0.02	1.010 29.33	0.022	0.09	4 0.849 20.15	0.014	- <11d	100.94
WK4.1	1.920 46.85	- 0.08	0.098	<11d	1.003 29.09	0.026	0.09	4 0.883 20.15	0.013	- <11d	100.33
WK4.1	1.926 46.84	0.12	0.092	0.02	1.000 29.05	0.022	0.09	2 0.88/ 19.48	0.017	- <11d	99.79
WK4.1	46.86	0.13	1.89	0.03	30.14	0.025	1.24	19.36	0.010	- <11d	100.43
WK4.1	46.64	0.09	1.93	0.02	29.90	0.020	1.29	18.19 0.813	0.20	<11d	98.89
WK4.1	46.61	0.11	2.10	<11d	29.75	0.66	1.40	20.11 6 0.884	0.22	<11d	100.85
WK4.1	46.45	0.08	2.16	<11d	29.33	0.66	1.40	20.22 5 0.892	0.22	<11d	100.44
WK4.1	46.56	0.15	1.49 0.072	0.02	29.98	0.79	1.63	20.02 0.884	0.19	<111d _	100.65
WK4.1	46.67	0.12	1.52	0.01	29.74	0.66	1.56	19.24 7 0.856	0.16	<11d -	99.56
WK4.1	46.33 1.918	0.14	1.78 0.087	<11d -	29.20 1.011	0.71	1.57 0.093	20.14 7 0.893	0.17 0.014	<11d -	99.90
WK4.1	46.36 1.917	0.13	1.73 0.084	0.01	29.37 1.015	0.70 0.024	1.59 0.098	20.18 3 0.894	0.20 0.016	<11d -	100.13
√K4•1	47.05 1.943	0.17	1.90 0.093	<11d -	29.49 1.018	0.75 0.026	1.52 0.094	18 .79 4 0.831	0.16 0.013	<111d -	99.67
JK4.1	47.17 1.938	0.12	1.49 0.072	<11d	29.82 1.025	0.78 0.027	1.58 0.097	19.52 7 0.859	0.17 0.014	<11d -	100.54
√K4•1	47.17 1.927	0.12	1.55 0.074	<11d -	29.85 1.019	0.76 0.026	1.55 0.09	20.26 5 0.887	0.21 0.017	<11d -	101.35
JK4.1	47.50	0.06	1.29	0.01	29.92	0.79	1.66	19.58	0.16	<11d	100.91

	<u>.</u>										
SAMPLE 	510 ₂ 51	T102 T1	A12 ⁰ 3 A1	Cr ₂ 03 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 К	TOTAL
WK4.1	47.59	0.07	1.32	0.01	29.59	0.70	ļ . 72	19.95	0.15	<11d	101.02
	1.943	- 	0.063		1.011	0.024	0.10	5 0.873	0.012	- 	
WK8.3	46.65 1.911	0.04	2.40 ° 2.116	<11d	29.49 1.010	0.65 0.023	1.45 0.08	19 . 98 9 0.877	0.19 0.015	<11d -	100.81
WK8.3	46.46 1.931	0.03	2.15 0.10	0.03	29.41 1.022	0.73	1.49 0.09	18.67 2 0.831	0.21 0.017	<11d -	99.12
WK8.3	46.53	0.01	2.20 0108	0.03	29.22	0.69	1.50	18.83 3 0.837	0.21	<11d -	99.18
WK8.3	46.30	0.02	2.55	<114	29.07	0.68	1.38	20.03	0.21	<11d	100.21
WK8.3	46.56	<11d	2.54	<11d	28.95	0.62	1.36	19.94	0.16	<11d	100.13
WK8.3	46.63	- 0.01	0.123 1.93	<11d	0.996 29.13	0.022	1.53	4 0.879 19.80	0.013	- <11d	99.97
WK8.3	1.925 46.99	- 0.02	0.094 1.88	<11d	1.005 29.11	0.026 0.73	0.09	4 0.876 19.67	0.016 0.17	- <11d	100.17
WK8.3	1.932 47.12	- <11d	0.091	- 0.02	1.001 29.38	0.025 0.75	0.099	9 0.867 19.80	0.014 0.14	- <11d	100.41
WK8.3	1.936 47.13	- 0.03	0.078 1.59	0.02	1.009 29.69	0.026 0.83	0.09	8 0 . 871 19 . 34	0.011 0.20	- <11d	100.41
WK8.3	1.938 47.32	- 0.01	0.077 1.50	/ _ <11d	1.021 29.41	0.029 0.74	0.099	9 0.852 18.62	0.016	- <11d	99.40
WK8.3	1.957	-	0.073	, – , 0, 04	1.017	0.026	0.10	2 0.825	0.013	-	100-65
	1.943	-	0.072	2 -	1.009	0.027	0.09	5 0.868	0.013	-	
WK12.1	45.77	0.04	2.11	<11d	28.23	0.86	1.89	19.70	0.16	<11d	98.73
WK12.1	45.78	0.01	2.45	0.01	27.88	0.89	1.72	20.00	0.19	<11d	98.91
WK12.1	45.81	0.04	2.54	0.02	28.45	0.031	1.60	19.99	0.18	- <11d	99.35
WK12.1	1.902 46.28	- 0.01	0.124 2.17	 <11d	0.988 27.98	0.027	1.85	20.06	0.014	- <11d	99.28
WK12.1	1.917 46.12	- 0.04	0.106 2.22	0.34	0.969 28.10	0.028 0.76	0.114 1.74	4 0.890 19.94	0.012 0.15	- <11d	99.04
	1.916	-	0.109) <u> </u>	0.976	0.027	0.108	B 0.888	0.012		-
WK14.1	47.16 1.942	<11d	1.34 0.065	<11d	27 . 96 0 . 962	0 .95 0 . 033	2.04 0.12	20.19 5 0.891	0.19 0.015	<11d _	99.84
WK14.1	46.85 1.944	<11d _	1.43 0.070	<11d	27.61 0.958	0 . 98 0.034	2.06	19 . 79 7 0 . 880	0.18 0.014	<11d	98.90
WK14.1	47.21	<11d	1.13	<11d	28.33	1.00	2.19	19.05 5 0.846	0.12	<11d	99.05
WK14.1	47.01	<11d	1.23	<11d	27.98	0.91	2.33	19.29	0.16	<11d	98.93
WK14.1	46.57	<11d	1.24	<11d	27.39	0.95	2.30	20.47	0.15	<11d	99.08
WK14.1	46.72	- <11d	1.34	<11d	27.59	0.94	2.20	20.24	0.16	<11d	99.20
WK14.1	46.87	- <11d	1.35	<11d	27.50	0.033	2.25	20.12	0.16	- <11d	99.12
WK14.1	1.941 47.32	- <11d	0.066	<11d	0.952 27.74	0.031	2.48	9 0.892 19.97	0.013	- <11d	99.69
WK14.1	1.948 47.30	- <11d	0.052 1.04	- <11d	0.955 27.81	0.033 0.99	0.152 2.40	2 0.881 20.12	0.011 0.15	<11d	99.82
WK14.1	1.946 47.30	- <11d	0.050 1.07	- <11d	0.957 27.34	0.034 0.90	0.147 2.33	0.887 20.47	0.012 0.15	- <11d	99.56
WK14.1	1.948 47.19	- <11d	0.052 1.03	- <11d	0.942 27.18	0.031 0.92	0.143	0.903 20.38	0.012	- <11d	99.17
	1.951	- 	0.050		0.940	0.032	0.143	0.903	0.013	-	
WK15.3	47.14	<11d	2.10 0.101	<11d	29.36 1.001	0 .97 0.033	1.53	19 . 98	0.13	<11d	101.20
JK15.3	46.22	0.02	2.11	<114	29 04	0.08	1 / 7	20 64	0.14	<11.4	100 50

	510 ₂ 51	T102 T1	A12 ⁰ 3 A1	Cr ₂ 03 Cr	FeO Fe	MnO Mn	MgU Mg	CaU Ca	Na ₂ 0 Na	к ₂ 0 К	
 WK15.3	45.88	0.03	2.56	<11d	28.94	0.98	1.41	20.24	0.17	<11d	100.18
İ	1.895	-	0.125	-	1.000	0.034	0.08	7 0.896	0.014	-	1
WK15.3	46.30	<11d	2.49	<11d	28.67	0.97	1.44	20.87	0.16	<11d	100.91
	1.897	-		-	0.982	0.034	0.08	B 0 .9 16	0.013	-	
WK15.3	46.35	0.04	2.47	<11d	29.23	0.98	1.51	20 .59	0.19	<11d	101.32
	1.894	-	0.119	-	0.999	0.034	0.09	2 0.901	0.015	-	
WK15.3	46.94	0.02	1.81	<11d	28.34	0.95	1.58	20.83	0.12	<11d	100.56
	1.924	-	0.087	-	0.972	0.033	0.09	6 0.915	0.010	-	
WK15.3	46.98	<11d	1.79	<11d	28.43	1.01	1.64	20.63	0.14	<11d	100.63
	1.925	-	0.086	-	0.974	0.035	0.10	0.906	0.011	-	
WK15.3	46.10	0.01	2.53	<11d	29.24	0.79	1.47	20.54	0.17	<11d	100.83
	1.893	-	0.122	-	1.004	0.027	0.09	0.903	0.013	-	
WK15.3	46.08	0.01	2.53	<11d	28,50	0.81	1.41	20.55	0.16	<11d	100.05
	1.901	-	0.123	-	0.983	0.028	0.08	/ 0.909	0.013	-	
WK15.3	47.04	0.02	1.80	<11d	28.8/	0.93	1.63	20.70	0.1/	<114	101.15
	1.920	-	0.087	-	0.986	0.032	0.09	9 0.905	0.014	-	00.70
WK15.3	45.81	<11d	2.05	<11d	28./2	0.96	1.4/	20.56	0.20		99.76
	1.902	-	0.100		0.99/	0.034	0.09	1 0.915	0.016	-	00.01
WK15.3	45.41	<11d	2.00	<114	28./8	0.81	1.52	20.19	0.19	<110	98.91
	1.903	-	0.099	-	1.008	0.029	1 70	0.906	0.015	-	101.05
WK15.3	47.26	<11d	1.22	<114	29.40	1.13	1./2	20.21	0.11	KIIId	101.05
	1.935	-	0.059	-	1.007	0.039	0.10	0.000	0.009	-	1 101 01
WK15.3	4/.54	0.02	0.056	<11d -	29.21	0.040	0.10	1 0.883	0.010	<11d -	
WK28.3	. 46.85	0.03	2.62	0.01	28.77	0.89	1.96	18.42	0.18	<11d	99.70
	1.926	-	0.127	-	0.989	0.031	0.120	0.811	0.015		
WK28.3	46.0 9	0.01	2.68	<11d	28.49	0.93	1.95	18.47	0.18	<11d	98.78
	1.915	-	0.131	-	0.990	0.033	0.12	1 0.822	0.014	-	
WK28.3	45.56	0.02	2.86	0.01	28.42	0.78	1./3	19.24	0.16	<114	98./5
	1.899	-	0.141	-	0.991	0.028	0.10	7 0.859	0.013	-	
WK28.3	46.60	0.02	2.20	<11d	28.41	0.96	2.16	19.02	0.19		99.53
	1.922	-	0.10/	-	0.980	0.033	0.13	3 0.841	0.015	-	00.55
WK28.3	47.32	<11d	0.98		28.44	1.11	2.41	18-19	0.09	<110	98.00
	1.968	-	0.048	-	0.989	0.039	0.15	10 57	0.007	-	00.06
WK28.3	47.42	0.03	1.00	0.01	20.40	1.1/	2.41	10.01	0.007		99.00
	1.963	-	0.049	-	10.903	0.041	2 52	10 14	0.17	- /114	
WK28.3	46.96	0.02	1.34	<11α	20.//	0.90	2.52	10.10	0.01/	(110	70.00
	1.949	-	1 27	-	10 01	0.034	2 / 2	19 20	0 16		
WK28.3	40.91	0.03	1.3/	<110	1 003	0.032	2.42	10.37	0.013	< <u>110</u>	33.00
177200 0	1.940	-	1 50		28 66	1 00	2 41	10 61	0.13		100 58
WK20.3	4/ 19	0.01	0 074	<110	20.00 A 92A	0.035	0.14	7 0.850	0.010		1 100.00
102202	47 41	0.02	1 22	0.01	28.24	1.05	2.51	18.45	0.16	<11.d	99.31
WK20.3	4/.01	-	1.20	-	0 072	0.037	0 15	4 0.814	0.013	-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,722 2	47 42	0.02	1 32	- <114	28.51	1.05	2.58	17.95	0.15	6114	98.99
HK20+J	1.960	-	0.064	-	0.986	0.037	0.15	9 0.795	0.012	-	1

.

c: Pyrozene Hornfels

101.	к ₂ 0 к	Na ₂ 0 Na	Ca0 Ca	MgU Mg	MnO Mn	Fe Fe	Cr ₂ 03 Cr	A1 203 A1	Ti02 Ti	\$10 ₂ \$1	SAMPLE
98	<11d	0.10	22.59	1.95	0.97	25.37	0.02	1.62	0.41	46.24	 HF2
00	-	0.008) I.004	0.120	0.034	0.881	-	0.079	-	1.919	
90	<11a	0.005	22.73	1.9/	0.93	24.92	0.04	1.09	0.49	40.23	HFZ
00	- -	0.00	22 85	1 86	0.05	25 27	- /114	1 44	0 49	1.920	UE2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< <u>-</u>	0.007		0 115	0.034	23.37	<110 -	0.081	0.40	40.20	arz
99	<114	0.07	22.54	1.93	0.94	25.29	<114	1.62	0.41	46.64	HF2
,,,	-	0.006	0.998	0.119	0.033	0.874	-	0.079	-	1.927	ui 2
98	<11d	0.08	22.92	1.90	0.96	25.18	6114	1.59	0.47	46.27	HF2
	-	0.007	1.018	0.117	0.034	0.873	-	0.078	_	1,919	
99	<11d	0.11	22.99	1.95	1.00	25.23	<11d	1.58	0.38	46.85	HF2
	_	0.009	1.012	0,120	0.035	0.866	-	0.076	-	1.924	
99	<11d	0.07	22.75	1.84	0.96	25.21	<11d	1.55	0.42	46.76	HF2
	_	0.006	1.006	0.113	0.033	0.870	-	0.075	_	1.930	
99	<11d	0.10	22.71	1.96	0.97	25.53	<11d	1.69	0.46	46.53	HF2
	-	0.008	1.003	0.121	0.034	0.880	-	0.082	-	1.918	
99	<11d	0.10	22.76	1.83	0.95	25.98	0.01	1.73	0.45	46.47	HF2
	-	0.008	1.004	0.112	0.033	0.894	-	0.084	-	1.913	i
98	<11d	0.07	22.86	1.84	0.93	25.40	<11d	1.79	0.47	46.05	HF2
	-	0.006	1.016	0.114	0.033	0.881	-	0.088	-	1.911	j
99	<11d	0.09	23.08	1.89	1.06	25.19	0.01	1.74	0.51	46.20	HF2
	-	0.007	1.023	0.117	0.037	0.871	-	0.085	-	1.911	İ
99.	<11d	0.09	23.01	1.86	0.93	25.44	<11d	1.56	0.45	46.59	HF2
	-	0.007	1.016	0.114	0.032	0.877	-	0.076	-	1.921	Í
99	<11d	0.08	22.68	1.90	0.94	25.60	<11d	1.60	0.44	46.63	HF2
	-	0.006	1.002	0.117	0.033	0.883	-	0.078	-	1.923	1
99	<11d	0.09	23.01	1.85	0.95	25.17	<11d	1.64	0.41	46.97	HF2
	-	0.008	1.012	0.113	0.033	0.864	-	0.079	-	1.928	1
98	<11d	0.09	22.84	1.87	0.94	25.0 9	<11d	1.55	0.41	46.59	HF2
	-	0.007	1.012	0.115	0.033	0.868	-	0.076	-	1.927	

 $_{
m imes}$ d: Magnetite Gabbro

MPLE	Si0 ₂ Si	Tio ₂ Ti	A1203 A1	Cr2 ⁰ 3 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
				<1114	15 (0		10 52	20.04	0.22		
T (1.953	0.43	0.067		0.503	0.01	10.55	20.94 5 0.866	0.22	-	99.70
1	50.50	0.52	1.54	0.02	15.35	0.32	10.53	21.07	0.22	<11d	99.53
	1.951	-	0.070) –	0.496	0.010	0 0.60	5 0.872	0.017	-	1 · · ·
1	49.84	0.58	1.62	0.04	14.91	0.42	10.80	21.47	0.22	<11d	99.29
	1.933	-	0.074	- •	0.484	0.01	4 0.62	4 0.892	0.017	-	
1	49.77	0.37	1.15	<11d	15.22	0.37	10.74	21.06	0.20	<11d	98.52
	1.947	-	0.053	- 1	0.498	0.01	2 0.62	5 0.883	0.015	-	
1	50.77	0.35	1.17	0.02	14.91	0.37	10.85	21.44	0.17	<11d	99.68
	1.956	-	0.053	- 1	0.480	0.01	2 0.62	3 0.885	0.012	-	
1	50.15	0.35	1.30	0.44	14.87	0.38	10.45	21.74	0.24	<11d	99.14
1	1.948	-	0.059	- 1	0.483	0.01	3 0.60	5 0.905	0.018	-	
1	50.13	0.36	1.30	<11d	14.92	0.30	10.30	21.35	0.23	<11d	98.53
	1.956	-	0.060	-	0.487	0.010	0.59	0.893	0.017	-	
1	50.04	0.47	1.44	<11d	14.54	0.38	10.70	21.38	0.21	<11d	98.69
	1.948	-	0.066	-	0.473	0.013	2 0.62	0.891	0.016	-	1
1	50.04	0.39	1.38	<11d	14.63	0.32	10.78	21.25	0.20	<11d	98.61
	1.949	-	0.064	-	0.477	0.01	1 0.620	0.887	0.015	-	
1	49.70	0.50	1.30	0.03	15.55	0.38	10.73	20.67	0.20	<11d	98.54
	1.944	-	0.060	-	0.509	0.013	3 0.626	0.866	0.015	-	1

SAMPLE	⁵¹⁰ 2 51	Ti0 ₂ Ti	A12 ⁰ 3 A1	Cr203 Cr	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
 MG2	50.09	0.57	1.57	<11d	15.17	0.36	10.55	20.60	0.23	<11d	98.57
MG2	1.952 50.15	- 0.56	0.072 1.53	2 – 0.02	0.494 15.21	0.01 0.38	2 0.611 10.49	3 0.860 20.83	0.01/	- <11d	98.80
MG2	1.951 50.53	- 0.51	0.070 1.54) - <11d	0.495 15.54	0.01 0.33	2 0.609 10.79	0.868 20.52	0.017	- <11d	99.46
MG2	1.952 50.16 1.950	- 0.59 -	0.070 1.42 0.065) – <11d 5 –	0.502 15.26 0.496	0.01 0.35 0.01	1 0.62 10.73 2 0.62	1 0.849 20.74 2 0.864	0.015 0.23 0.017	- 0.04 0.0σ2	98.95
мg3	51.08	0.29	1.10	<11d	15.41	0.38	11.12	19.98	0.18	<11d	99.25
MG3	50.48	0.28	1.14	, - <11d	15.79	0.01	10.79 2 0.62	20.01 5 0.834	0.19	<11d	98.76
MG3	49.36	0.45	1.43	- <11d	16.32 0.531	0.44	10.83	20.94 9 0.874	0.21	<11d -	99.52
MG3	50.91	0.42	1.23 0.056	<11d	15.79	0.38	10.99	20.59 9 0.848	0.18	<11d -	100.07
MG3	50.51	0.45	1.20	<11d	16.23	0.36	10.91 2 0.62	20.43	0.21	<11d -	99.85
MG3	50,52	0.47	1.44	<11d	17.67	0.41	10.83	18.43	0.22	<11d	99.52
MG3	50.01	0.44	1.43	0.02	17.56	0.39	10.88	19.05	0.17	<11d	99.49

•

5.2 Results of microprobe analyses of plagioclase together with the number of ions on the basis of 32 oxygen atoms and mol per cent albite, anorthite and orthoclase (all iron as FeO, d = less than the lower limit of detection).

a: Pyroxenite	
---------------	--

SAMPLE	510 ₂	T102	A1203	FeO	MgO	Ca0	Na ₂ 0	к ₂ 0	TOTAL	
		TĨ	ĨĂĬ	Fe	Mg	Ca	Na	ĸ	Ab An	Or
	<u> </u>	· · · · ·					<u></u>			
			25 20	0 50		0 05	5 60			
WKJ.4	10 601		23.39 5 303	0.097		9.05	1 952	0.124	51 45	4
WK3.2	58.01	<114	26.25	0.54	<114	8.41	6.62	0.51	100.34	-
HKJ .L	10.392	< <u> </u>	5.542	0.081	<11u -	1.614	2.299	0.117	57 40	3
WK3.2	57.77	<11A	26.34	0.55	<114	8.21	6.55	0.51	99.93	5
HKJ • 4	10.384	-	5.580	0.083	-	1.581	2,282	0.117	57 40	3
WK3.2	57.26	6114	26.59	0.60	<11d	9.40	6.47	0.34	100.66	5
	10,260	-	5.615	0.090	-	1.804	2.248	0.078	54 44	2
WK3.2	57-60	<11d	27.10	0.66	<11d	9.31	6.48	0.22	101.37	-
	10,237	-	5.676	0.098	-	1.773	2.233	0.050	55 44	1
WK3.2	57.65	<11d	26.46	0.41	<11d	9.08	6.58	0.31	100.49	
	10.322	-	5.583	0.061	-	1.742	2.284	0.071	56 43	1
WK3.2	57.40	<11d	26.65	0.48	<11d	9.28	6.53	0.24	100.58	
	10.277	-	5.623	0.072	-	1.780	2.267	0.055	55 43	2
WK3.2	56.69	<11d	26.71	0.46	<11d	9.10	6.53	0.31	99.80	
	10.234	-	5.683	0.069	-	1.760	2.285	0.071	56 43	1
WK3.2	57.77	<11d	26.53	0.51	<11d	9.14	6.51	0.22	100.68	
	10.321	-	5.586	0.076	-	1.749	2.255	0.050	56 43	1
WK5.2	57.08	<11d	27.20	0.46	<11d	9.62	6.24	0.31	100.91	
	10.194	-	5.725	0.069	-	1.841	2.160	0.071	53 45	2
WK5.2	56.56	<11d	27.42	0.38	<11d	9.34	6.01	0.22	99.93	
	10.175	-	5.813	0.057	-	1.800	2.096	0.050	53 46	1
WK5.2	56.82	<11d	27.24	0.35	<11d	9.89	6.10	0.29	100.69	
	10.170	-	5.746	0.052	-	1.896	2.117	0.066	52 46	2
WK5.2	57.76	<11d	26.75	0.35	<11d	8.79	6.77	0.40	100.82	
	10.307	-	5.625	0.052	-	1.680	2.342	0.091	57 41	2
WK5.2	57.62	<11d	25.98	0.61	<11d	8.50	6.63	0.32	99.66	
	10.393	-	5.522	0.092	-	1.642	2.318	0.074	57 41	2
WK5.2	57.50	<11d	26.44	0.53	<11d	8.62	6.71	0.24	100.04	
	10.333	-	5.599	0.080	-	1.659	2.338	0.055	58 41	1
WK5.2	64.77	<11d	22.67	0.30	<11d	1.60	9.03	1.47	99.84	
	11.434	-	4.716	0.044	-	0.303	3.090	0.331	83 8	9
	E9 01	<114	26 / 0	0 / 6	<u></u>	9 4 5	7 00	0 20	100 80	
WK0.J		(110	20.47	0.060	(110	1 452	2 / 20	0.06%	59 40	,
11114 2	56 27	<114	27 47	0.53	<114	9.80	5 00	0.44		1
WKUsJ		< <u>-</u>	5 816	0.080	-	1 886	2 086	0 101	51 46	2
WK6 3	10.109 56.83	<114	27.52	0.40	<11d	9.19	6.12	0.35		5
WK0.J	1 10-180	< <u>-</u>	5-810	0.060	-	1.764	2.125	0.080	54 44	2
WK6.3	57.78	<114	26.29	0.47	<11d	7.88	6.97	0.27	99.66	-
HICO.J	10,399	-	5.576	0.071	-	1.519	2.432	0.062	61 38	1
WK6.3	58.17	<11d	26.69	0.46	<11d	8.57	7.00	0.24	101.13	-
	10.340	-	5.591	0.068	-	1.632	2.412	0.054	59 40	1
WK12.2	49.10	<11d	32.59	0.92	<11d	16.06	2.64	0.09	101.40	
	8.907	-	6.967	0.140	-	3.121	0.928	0.021	23 77	0
WK12.2	46.52	<11d	34.50	1.06	<11d	16.60	1.72	0.05	100.45	
	8.536	-	7.460	0.163	-	3.263	0.612	0.012	16 84	0
WK12.2	50.35	<11d	31.32	0.43	<11d	13.79	3.73	0.19	99.81	
	9.210	-	6.752	0.066	-	2.702	1.323	0.044	33 66	1
WK12.2	51.21	<11d	31.00	0.72	<11d	13.91	3.81	0.21	100.86	
	9.282	-	6.622	0.109	-	2.701	1.339	0.049	33 66	1
WK12.2	46.68	<11d	34.33	0.78	<11d	17.36	1.93	0.07	101.15	
	8.525	-	7.389	0.119	-	3.397	0.683	0.016	17 83	0
WK12.2	46.62	<11d	34.52	0.66	<11d	17.23	1.82	0.08	100.93	
	8.520	-	7.435	0.101	-	3.374	0.645	0.019	16 84	0
WK12.2	46.72	<11d	34.20	0.99	<11d	17.39	1.89	0.08	101.27	
	8.531	-	7.360	0.151	-	3.402	0.669	0.019	16 83	1

					•	•				
SAMPLE	510 ₂ 51	Ti0 ₂ Ti	A12 ⁰ 3 A1	FeO Fe	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL Ab An	0r
WK12.2	50.69 9.187	<11d -	31.44 6.716	0.65 0.099	<11d	14.38 2.792	3.59 1.261	0.26 0.060	101.01 31 68	1
WK12.4	56.32 10.101 55.26 9.894	<11d - <11d -	28.28 5.977 28.72 6.060	0.50 0.075 0.30 0.045	<11d <11d	8.78 1.687 10.52 2.018	5.45 1.895 5.97 2.072	1.08 0.247 0.19 0.043	100.41 49 44 100.96 50 49	7
WK13.2	57.12 10.243	<11d	27.20 5.748	0.64	<11d -	8.36 1.606	6.55 2.277	0.44 0.101	100.31 57 40	
WK14.4	74.41	<11d -	20.08 3.992	0.11 0.016	<11d -	0.13 0.023	5.27 1.723	0.07 0.015	100.07 98 1	1
WK14.4	55.54 9.975	<11d -	28.05 5.937	0.52 0.078	<11d -	10.67 2.053	5.52 1.922	0.45 0.103	100 . 75 47 50	3
WK14.4	55.33 9.997	<11d -	27.74 5.907	0.45 0.068	<111d -	10.65 2.062	5.55 1.944	0.38 0.088	100.10 47 50	3
WK14.4	55.11 10.006	<11d	27.57 5.899	0.30	<11d	10.52 2.046	5.78 2.035	0.25	99.53	2
WK14.4	10.295	<11d -	26.29 5.591	0.47	<11d -	9.05 1.750	2.355	0.22	57 42	1
WK16.2	68.56 12.078	<11d -	18.96 3.936	1.04 0.153	<11d -	<11d -	10.41 3.555	0.07 0.016	99.04 100 0	0
WK16.2	68.88 12.021 69.42	<11d - <11d	19.46 4.002 19.82	<11d - <11d	<11d - <11d	<11d - <11d	3.908 11.72	<11d _ 0.04	100 0 101.00	0
	11.991	- 	4.035	-		-	3.925	0.009	100 0 	0
WK28.4	57.48 10.242	<111d -	27.48 5.770	0.17 0.025	<111d	9.49 1.812	5.75 1.986	0.27	100.64 51 47	2
WK28.4	57.52 10.262	<11d -	2/.3/ 5.754	0.25	<11d -	8.56 1.636 9.50	6.61 2.286	0.25	100.56 57 41	2
WK28.4	10.043	<11d	5.957 26.24	0.043	<11d	1.823 7.07	2.139 7.41	0.057	53 45	2
WK28.4	10.519	<11d	5.495 28.45	0.056	<111d	1.346 9.27	2.553 6.18	0.059	65 34 100.17	1
WK28.4	9.976 54.84	- <11d	6.037 29.20	0.084 0.31	- <11d	1.788 10.01	2.157 5.49	0.053 0.26	54 45 100.11	1
WK28.4	9.872 56.17	- <11d	6.195 27.95 5.928	0.047 0.29	- <11d -	1.930 9.23 1.779	1.916 6.00 2.093	0.060 0.20 0.046	49 49 99.84 53 45	2
WK28.4	55.61 10.009	<11d	28.17	0.34	<11d	9.72	6.10 2.129	0.25	100.19 52 46	2 2
WK28.4	55.31 10.001	<11d	28.23	0.65	<11d -	9.16	6.01 2.107	0.30	99.72 53 45	2
WK28.4	56.15 10.006	<11d -	28.49 5.983	0.34 0.051	<11d -	9.83 1.877	6.02 2.080	0.29	101.18 52 47	1

.

-

126

b: Magnetite-Rich Rock

SAMPLE	SiO ₂ Si	T102 T1	A12 ⁰ 3 A1	- FeO Fe	MgO Mg	CaO Ca	Na ₂ O Na	к ₂ 0 к	TOTAL Ab An	0
 WK4.1	53.37	<111d	29.43	0.74	<11d	12.74	4.49	0.32	101.09	
	9.617	-	6.250	0.111		2.459	1.569	0.074	38 60	
WK4.1	49.24	<11d	32.19	0.87	<11d	15.88	2.61	0.18	100.97	
	8.964	-	6 .9 07	0.132	-	3.097	0.921	0.042	23 76	
WK4.1	51.14	<11d	30.78	0.68	<11d	14.39	3.47	0.27	100.73	
	9.287	-	6.587	0.103	· -	2.800	1.222	0.063	30 69	
WK4.1	54.94	<11d	28.20	0.49	<11d	10.92	5.06	0.46	100.07	
	9.931	-	6.007	0.074	-	2.115	1.773	0.106	44 53	
WK4.1	55.37	<11d	28.29	0.51	<11d	11.12	5.24	0.45	100.98	
	9.929	-	5.978	0.076	-	2.136	1.822	0.103	45 53	
WK4.1	55.72	<11d	27.90	0.47	<11d	10.96	5.46	0.46	100.97	
	9.990	-	5.895	0.070	-	2.105	1.898	0.105	46 51	
WK4.1	56.47	<11d	27.19	0.49	<11d	9.75	6.09	0.39	100.38	
	10.151	-	5.760	0.074	-	1.878	2.122	0.089	52 46	
WK12.1	59.72	<11d	25.81	0.41	<11d	9.32	5.80	0.21	101.27	
	10.550	-	5.373	0.061	-	1.764	1.986	0.047	52 46	
WK12.1	57.31	<11d	25.81	0.40	<11d	8.77	6.81	0.28	99.38	
	10.375	-	5.507	0.061	-	1.701	2.390	0.065	58 41	
WK12.1	54.07	<11d	27.65	0.36	<11d	10.90	5.57	0.11	98.75	
	9.911	-	5.973	0.055	-	2.141	1.979	0.026	48 52	
WK12.1	54.22	<11d	27.26	0.45	<11d	10.77	5.79	0.10	98.59	
	9.959	-	5.901	0 .069	-	2.119	2.062	0.023	49 50	
WK12.1	56.52	<11d	26.59	0.37	<11d	9.50	6.63	0.25	99.86	
	10.212	-	5.662	0.056	-	1.839	2.322	0.058	55 44	
WK12.1	55.86	<11d	26.50	0.47	<11d	9.42	6.47	0.21	98.93	
	10.188	-	5.696	0.072	-	1.841	2.288	0.049	55 44	
WK12.1	55.64	<11d	26.53	1.30	<11d	9.19	6.17	0.36	99.19	
	10.156	-	5.707	0.198	-	1.797	2.183	0.084	54 44	
WK14.1	47.98	<11d	32.87	1.02	<11d	17.14	2.04	0.13	101.18	
	8.756	-	7.070	0.156	-	3.351	0.722	0.030	18 82	(
WK14.1	47.44	<11d	33.56	1.20	<11d	16.91	2.05	0.11	101.27	
	8.656	-	7.216	0.183	-	3.305	0.725	0.026	18 81	
WK28.3	47.32	<11d	32.98	0.79	<11d	17.19	1.98	0.10	100.36	
i	8.703	-	7.148	0.121	-	3.387	0.706	0.023	17 82	

.

•

c: Magnetite-Gabbro

.

SAMPLE	S10 ₂ S1	TiO ₂ Ti	A1203 A1	FeO Fe	MgO Mg	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL Ab An	0 1
 MG1	57.63	<11d	27.27	0.29	<11d	10.22	5.24	0.42	101.13	
	10.241	-	5.711	0.043	-	1.946	1.805	0.095	47 51	2
MG1	55.46	<11d	28.21	0.24	<11d	9.90	5.86	0.40	100.07	
	9.997	_	5,993	0.036	-	1.912	2.048	0.092	51 47	2
MG1	55.72	<11d	28.11	0.24	<11d	10.10	5.78	0.34	100.29	
İ	10.019	-	5.956	0.036	-	1.946	2.015	0.078	50 48 ⁻	2
MG1	56.84	<11d	27.17	0.26	<11d	8.69	6.38	0.39	99.73	
i	10.237	-	5.767	0.039	-	1.677	2.228	0.090	56 42	2
MG1	55.85	<11d	27.59	0.29	<11d	9.88	5.86	0.43	99.96	
i	10.079	-	5.868	0.044	-	1.910	2.050	0.099	51 47	2
MG1	56.27	<11d	28.42	0.27	<11d	10.10	5.89	0.36	101.31	
	10.017	-	5,962	0.040	-	1.926	2.033	0.082	50 48	2
MG1	55.66	<11d	28.13	0.22	<11d	9.72	5.79	0.43	99.95	
j	10.033	-	5.976	0.033	-	1.877	2.023	0.099	51 47	2
MG1	56.51	<11d	27.72	0.29	<11d	9.19	5.99	0.45	100.15	
İ	10.148	-	5.866	0.044	-	1.768	2.085	0.103	53 45	2
MG1	55.58	<11d	27.65	0.22	<11d	10.16	5.83	0.41	99.85	
	10.047	-	5.891	0.033	-	1.968	2.043	0.095	50 48	2
MG1	55.58	<11d	27.62	0.42	0.05	9.65	5.85	0.46	99.69	
	10.061	-	5.892	0.064	0.01	3 1.871	2.053	0.106	51 46	3
MG1	56.13	<11d	27.88	0.29	<11d	9.72	5.97	0.42	100.41	
	10.076	-	5.898	0.044	-	1.869	2.078	0.096	51 46	3
MG2	56.34	<11d	27.16	0.18	<11d	10.27	5.15	0.44	99.54	
	10.179	-	5.783	0.027	-	1.988	1.804	0.101	46 51	3
MG2	55.90	<11d	27.03	0.25	<11d	9.09	6.03	0.44	98.74	
	10.184	-	5.803	0.038	-	1.774	2.130	0.102	53 44	3
MG2	57.67	<11d	27.19	0.18	<11d	9.84	5.36	0.38	100.62	
	10.279	-	5.711	0.027	-	1.879	1.852	0.086	49 49	2
MG2	56.16	<11d	27.58	0.14	<11d	9.63	6.07	0.36	99.94	
	10.118	-	5.856	0.021	-	1.859	2.120	0.083	52 46	2
MG2	56.06	<11d	28.02	0.22	<11d	9.97	5.85	0.47	100.59	
	10.051	-	5,920	0.033	-	1.915	2.033	0.107	50 47	3
MG2	55.80	<11d	27.84	0.20	<11d	10.04	5.75	0.47	100.10	
	10.053	-	5,911	0.030	-	1.938	2.008	0.108	50 48	2
MG2	55.87	<11d	28.14	0.28	<11d	10.24	5.76	0.41	100.70	
	10.014	-	5,944	0.042	-	1.966	2.002	0.094	49 48	3
MG2	55.78	<11d	28.06	0.30	<11d	10.14	5.90	0.44	100.62	
ļ	10.012	-	5.936	0.045	-	1.950	2.053	0.101	50 48	2
MG2	55.92	<11d	28.26	0.32	<11d	10.06	5.82	0.44	100.82	
	10.010	-	5,962	0.048	-	1.929	2.020	0.100	50 48	2
MG2	55.24	<11d	27.93	0.35	<11d	9.85	5.89	0.25	99.51	
	10.011	_	5.965	0.053	-	1.912	2.069	0.058	51 47	2
MG2	55.54	<11d	27.49	0.22	<11d	9.96	5.89	0.38	99.48	
	10.071	-	5.874	0.033	-	1.935	2.070	0.088	51 47	2
 MG3	56.02	<11d	28.23	0.37	<11d	10.03	 5.76	0.47	100.88	
	10.021	-	5.951	0.055	-	1.922	1.998	0.107	50 48	2
MG3	56.25	۲114	28.32	0.24	<11d	9.76	5.86	0.42	100.85	
	10-046	-	5-961	0.036		1.868	2.029	0.096	51 47	2

SAMPLE	sio ₂ Si	A12 ⁰ 3 A1	TiO ₂ Ti	Mg0 Mg	FeO Fe ³⁺	Fe ²⁺	MnO Mnr	CaO Ca	Na 2 ⁰ Na	к ₂ 0 к	TOT#
	38.05	10.12	0.88	0.83	32,91		0.32	11.08	1.34	2.35	97.8
	6.221	1.951	0.108	0.203	0.537	3.962	0.045	1.941	0.426	0.491	
WK3.2	37.09 6.13	9.93 8 1.938	0.93	0.74	33.52 2 0.780	3.858	0.35	10.54 9 1.869	1•41 0•452	2.19 0.463	90•/
WK3.2	37.15	10.16	0.75	0.90	33.70	2 750	0.35	10.76	1.58	1.90	97.2
WK3.2	37.44	9.87	0.092	0.22	33.68	3./20	0.44	10.90	1.25	2.41	97.7
ר באתו	6.13	1 1.905	0.102	0.22	4 0.819	3.794	0.062	2 1 . 913	0.396	0.504	07 3
	6.05	7 2.029	0.145	0.22	0 0.710	3.807	0.053	3 1.953	0.393	0.513	
WK3.2	36.95	9.63	0.84	0.96	32.53	3 832	0.38	10.16	1.37	2.23	95.0
WK3.2	37.41	9.72	1.16	1.00	33.10	3.032	0.38	10.54	1.36	2.18	96.0
	6.16	6 1.889	0.144	0.24	5 0.743	3.819	0.054	4 1.861	0.434	0.458	
WK3.2	37.96 6.17	10.27 5 1.970	0.95	0.93	6 0 . 670	3.838	0.049	10.92 9 1.904	0.428	0.453	90.0
WK5.2	38.32	9.45	0.75	0.89	33.91		0.34	10.49	1.46	2.18	97.7
UTI25.2	6.26	1 1.820 9.73	0.092	0.21	6 0.726	3.908	0.048	3 1.836	0.464	0.454 2.22	 97_3
	6.23	4 1.881	0.132	0.23	6 0.655	3.900	0.045	5 1.819	0.459	0.465	
WK5.2	37.93	10.17	0.95	1.01	33.14	2 026	0.39	10.20	1.50	2.25	97.
WK5.5	37.89	10.42	0.92	0.24	32.66	3.020	0.39	10.96	1.60	2.16	97.
	6.18	8 2.006	0.113	0.24	5 0.524	3.937	0.054	4 1.918	0.505	0.450	07
WK5.2	37.25 6.10	2 2.108	0.47	0.18	1 0.776	3.800	0.045	5 1.844	0.417	0.545	9/•.
WK5.2	37.65	10.20	0.93	0.91	32.93	2 002	0.31	10.92	1.48	2.17	97.
WK5.2	37.71	10.42	0.115	0.22	33.13	3.033	0.40	9.63	1.43	2.25	96.8
	6.18	4 2.014	0.111	0.23	0 0.796	3.747	0.056	5 1.692	0.454	0.471	
WK5.2	38.32	10.47 9 2.024	0.25	1.11	32.52 0 0.724	3.732	0.42	9.93 3 1.744	1•41 0•447	2.19 0.459	96.'
WK5.2	36.30	11.30	0.14	0.93	32.83		0.45	9.64	1.57	2.38	95.
UK5 2	6.034	4 2.214 9.82	0.017	0.23	1 0.997 32.71	3.566	0.064	4 1.716 10.38	0.505	0.505 2.37	96.
WKJ.2	6.17	6 1.928	0.161	0.20	2 0.611	3.945	0.046	5 1.852	0.441	0.504	
 WK6.3	37.77	9.26	0.82	1.03	33.00		0.45	10.91	1.48	2.14	96.8
WK6.3	6.240 37.75	6 1.804 9.09	0.101	0.25	4 0.648 32.59	3,915	0.062	10.70	0.4/4	0.451 1.80	96.0
	6.26	B 1.779	0.135	0.28	1 0.655	3.870	0.054	1.904	0.479	0.382	
WK6.3	37.60	9.53 2 1.859	1.14	0.70	32 . 96	3,990	0.45	11.02 3 1.954	1.46	2.00 0.421	96.8
WK6.3	38.50	10.00	0.52	0.99	32.47	3.770	0.42	11.03	1.42	2.12	97.4
	6.29	7 1.928	0.065	0.24	2 0.527	3.914	0.058	3 1.932 10.73	0.451	0.443 2.42	96.
WK0.3	57.50 6.124	4 2.090	0.019	0.27	1 0.743	3.726	0.059	1.893	0.451	0.509	
WK6.3	37.84	9.84	1.33	0.98	32.13	3 070	0.31	11.18	1.36	2.14	97.
WK6.3	6.228 38.64	5 1.910 9.28	0.164 1.06	1.01	33.29	J•7/2	0.40	11.15	1.43	1.90	98.
	6.28	5 1.780	0.130	0.24	5 0.602	3.927	0.055	5 1.943	0.451	0.395	07
WK6.3	38.63 6.30	9.37 1 1.802	1.55	1.07	32.46 1 0.429	3.999	0.40	10.84 5 1.895	1.50 0.475	1.99 0.414	9/•{
JK6.3	37.02	10.99	0.11	1.03	32.27		0.44	10.97	1.35	2.60	96.
i	6.109	9 2.137	0.014	0.25	4 0.703	3.750	0.061	1.940	0.431	0.584	

5.3 Results of microprobe analyses of amphibole in pyroxenite (all iron as FeO) together with the number of ions calculated according to Spear and Kimball (1984) (average Fe³⁺ content).

SAMPLE	510 ₂ 51	A1203 A1	TiO2 Ti	MgO Mg	FeO Fe ³⁺	Fe ²⁺	MnO Mn	CaO Ca	Na ₂ 0 Na	к к
WK11.2	37.46	9,96	0.45	0.73	34.11	3 9/0	0.34	11.09	1.29	2.41
WK11.2	36.71	10.58	0.85	0.52	34.36	J.047	0.30	9.96	1.04	3.10
רו צוו	6.04	5 2.054	0.105	0.12	35 10	3.819	0.042	1.757	0.334	0.652
WK11.2	41•51 6•76	8 1.246	0.75	0.96	4 0.482	4.304	0.072	10.11	0.319	0.274
WK11.2	38.09	10.38	0.75	0.67	33.78	3 716	0.41	10.18	1.72	1.13
WK11.2	36.58	11.14	0.51	0.47	33.86	5./10	0.37	10.71	1.74	1.60
כ נוצחו	6.01	0 2.157	0.063	0.11	5 0.925	3.728	0.051	1.885	0.554	0.336
WK11.2	39.89 6.41	9.82 0 1.860	0.19	0.04	34.00 3 0.584	3.985	0.38	10.69	0.329	2.56 0.526
WK11.2	37.58	10.19	0.59	0.74	33.11	2 0 2 5	0.35	10.83	1.29	2.52
WK11.2	37.20	10.36	0.52	0.18	33.74	3.925	0.048	10.48	1.28	2.25
	6.14	1 2.016	0.065	0.136	5 0.842	3.817	0.048	1.854	0.410	0.474
WKII.Z	35.86 5.90	6 2.231	0.11	0.58	2 1.035	3.638	0.30	11.23	0.369	2.59
WK11.2	36.76	10.94	0.05	0.55	33.71		0.27	10.57	1.11	2.73
WK11.2	6.08 36.29	1 2.133 10.15	0.007	0.130	33.58	3.//0	0.038	1.8/4 10.93	0.355 1.28	2.38
	6.04	1 1.993	0.114	0.147	0.832	3.843	0.052	1.950	0.412	0.505
 WK12.3	38.65	 9 . 17	1.24	1.14	34.12		0.38	10.81	1.48	1 . 91
	6.25	8 1.751	0.151	0.276	0.606	4.014	0.052	1.875	0.464	0.394
WK12.3	37.59 6.19	9.91 8 1.926	0.74	1.04 0.257	32.91 0.703	3.836	0.41	10.49	0.534	0.415
WK12.3	37.17	10.57	1.48	0.93	33.00		0.38	11.04	1.51	1.97
WK12.3	6.05 37.17	2 2.029 10.12	1.27	0.226	33.61	3./95	0.053	1.92/	0.467 1.67	2.07
	6.07	8 1.951	0.156	0.198	0.690	3.906	0.051	1.933	0.530	0.432
WK12.3	37.09 6.06	7 2.030	0.162	0.261	0.632	3.826	0.40	1.928	0.479	2.30 0.479
WK12.3	36.73	11.00	0.12	0.88	34.07	2 (02	0.43	11.29	1.44	2.69
WK12.3	36.98	10.67	1.10	0.212	33.35	3.092	0.44	11.02	1.73	1.93
17210 0	6.01	9 2.047	0.134	0.237	0.782	3.757	0.060	1.921	0.547	0.401
WK12.J	50.02 6.06	0 1.962	0.00	0.214	0.808	3.825	0.058	1.923	0.447	0.527
		10 33	0 17	1 12			0 36	11 10	1 30	 2 57
WK12.4	6.12	5 2.000	0.021	0.274	0.761	3.784	0.050	1.968	0.444	0.537
WK12.4	36.30	11.69 0 2.248	0.33	0.92	33.28	3.606	0.44	11.04	1.31	2.67
WK12.4	38.17	9.63	0.38	1.12	33.80	3.000	0.40	10.68	1.33	2.15
LTI2 /	6.22 36.62	6 1.851 10.53	0.046	0.273	32-65	3.732	0.055	1.866	0.422	0.447
K12.4	6.06	1 2.055	0.136	0.220	0.711	3.809	0.043	1.926	0.410	0.510
WK12.4	36.63	10.43 3 2.015	0.80	0.187	34.34	3.727	0.33	10.86	1.43	1.97
WK12.4	37.96	10.04	0.13	1.37	33.51	5.727	0.47	10.28	1.74	2.31
	6.17 37.40	9 1.927	0.015	0.331	0.910	3.652	0.065	1.792	0.549	0.481
•K12•4	6.06	8 2.039	0.114	0.266	0.734	3.769	0.048	1.916	0.487	0.467
WK12.4	37.46	9.64 5.1.883	1.07	0.95	32.57	3.952	0.32	11.09	1.41	2.17
WK13.2	37.00	10.29	1.27 0.158	1.12 0.275	33.04 0.911	3.639	0.41	9.70 1.712	1.41 0.451	2.13
WK13.2	36.69	9.96	1.30	1.10	33.18	3.037	0.47	10.30	1.52	1.79
ארו א. 2	6.07 36.69	8 1 . 946	0.162	0.273	0.796 33.67	3.801	0.066	1.828 9.50	0.487	0.378
	6.07	7 1.991	0.141	0.260	0.911	3.753	0.051	1.686	0.532	0.378
TV 13 2	36.95	0 04	1 63	1.16	33 12		0 43	10.05	1 51	1 79

SAMPLE	SiO ₂ Al ₂ O ₃ TiO ₂ MgO FeO MnO CaO M Si Al Ti Mg Fe ³⁺ Fe ²⁺ Mn Ca	Na Na	к ₂ 0 к	TOTAL
	37.07 9.96 1.29 0.99 32.46 0.49 10.22	.42	2.24	96.15
WK13.2	6.151 1.948 0.161 0.246 0.688 3.817 0.069 1.818 36.56 10.60 1.12 1.19 32.90 0.46 10.86 1 5.994 2.048 0.138 0.200 0.900 3.610 0.064 1.907	0.456	0.475	97.34
WK13.2	37.16 9.99 1.29 1.16 33.58 0.41 10.85 1 6.075 1.926 0.159 0.283 0.723 3.869 0.057 1.901	0.384 0.423	2.21 0.461	98.01
WK14.4		•48 0-476	2.21	96.20
JK14.4	37.37 9.85 0.94 0.88 33.39 0.41 10.14 1 6.172 1.918 0.117 0.218 0.826 3.785 0.057 1.794	•46 0•468	2.03	96.48
WK14.4	36.75 10.80 0.16 0.92 33.38 0.37 10.92 1 6.047 2.095 0.020 0.226 0.901 3.693 0.052 1.925	•37 0•438	2.43 0.511	97.11
rk14.4	36.63 10.62 0.74 0.83 33.09 0.34 10.35 1 6.067 2.074 0.092 0.205 0.830 3.754 0.048 1.837	•51 0•485	2.18 0.461	96.30
JK14.4	36.09 10.61 0.70 0.74 33.56 0.39 10.52 1 5.994 2.077 0.087 0.184 0.915 3.747 0.055 1.873	•37 0•441	2.56 0.542	96.55
JK14.4	36.38 9.95 0.66 0.77 33.87 0.35 10.82 1 6.056 1.954 0.082 0.191 0.832 3.884 1.931 1.931	•38 0•444	2.48 0.526	96.65
JK14.4	36.82 10.23 0.62 0.89 32.57 0.46 10.46 1 6.142 2.011 0.078 0.221 0.750 3.793 0.065 1.870	•36 0•441	2.34 0.497	95.76
WK14.4	36.86 10.29 I.02 0.93 33.08 0.33 10.04 1 6.107 2.009 0.128 0.229 0.851 3.732 0.046 1.782	•69 0•544	1.71 0.362	95.94
JK14.4	37.09 10.19 0.48 0.91 32.48 0.48 10.42 1 6.181 2.003 0.060 0.226 0.717 3.810 0.068 1.862	•34 0•435	2.41 0.513	95.80
WK14.4	37.49 9.85 0.93 0.99 32.98 0.39 10.45 1 6.187 1.917 0.115 0.244 0.748 3.804 0.054 1.848	•40 0•449	2.11 0.444	96.59
wK16.2	39.78 11.70 0.39 0.70 32.93 0.48 11.18 1	•71	0.01	98.87
₩K16.2	36.94 11.06 0.47 0.52 33.80 0.34 10.82 1 6.94 1.35 0.58 0.128 0.94 3.668 0.048 189	•16 0 369	2.05	97.19
JK16∙2	38.14 10.77 0.556 0.68 33.94 0.41 10.98 1 6.042 2.2046 0.68 0.44 10.98 1	•02 0 319	1.89	98.40
√ K16 . 2	36.52 9.47 0.17 0.20 34.87 0.35 10.72 1 6.138 1.876 0.022 0.051 0.975 3.927 0.050 1.931	•63 0•530	1.61 0.346	95.56
 /K20.5		•51	 2.27	98.54
rK20.5	6.177 1.867 0.123 0.412 0.757 3.688 0.054 1.842 39.94 8.70 0.76 2.17 32.06 0.49 11.12 1	0.473 .42	0.468 1.86	98.52
JK20.5	6.411 1.646 0.092 0.520 0.619 3.686 0.067 1.913 36.90 10.28 1.05 1.47 32.72 0.47 10.19 1	0.442 .46	0.381 2.17	96.72
rK20.5	6.062 1.992 0.130 0.361 0.908 3.587 0.066 1.793 37.53 9.66 1.47 1.67 32.32 0.36 10.15 1	0.464 .55	0.454 1.89	96.62
₩20.5	6.170 1.873 0.182 0.410 0.694 3.751 0.051 1.789 37.07 10.61 0.83 1.41 32.43 0.42 11.07 1	•51	0.396 2.26	97.62
rk20.5	6.054 2.043 0.102 0.343 0.764 3.665 0.059 1.936 37.21 10.19 0.55 1.32 32.98 0.39 10.26 1	•47 •47	0.472	96.60
rk20.5	6.124 1.977 0.069 0.324 0.905 3.633 0.054 1.809 37.56 9.89 0.81 1.39 33.09 0.41 10.04 1	•470 •57	0.465 2.09	96.85
rk20.5	6.160 1.913 0.100 0.340 0.881 3.657 0.057 1.764 36.58 10.53 0.92 1.39 32.72 0.39 9.93 1	•55 •55	0.437	96.03
rk20.5	6.035 2.049 0.114 0.343 0.990 3.525 0.055 1.756 37.17 9.79 1.09 1.65 32.25 0.42 10.21 1	•52	0.426	96.37
rK20.5	6.140 1.906 0.135 0.407 0.747 3.709 0.058 1.808 36.62 10.50 1.52 1.41 31.98 0.42 10.27 1 6.039 2.041 0.188 0.347 0.821 3.589 0.058 1.816	0.487 .46 0.466	0.478 1.96 0.413	96.13
 rK21.5	37.64 10.06 0.96 1.44 32.67 0.45 11.04 1	•42	2.40	98.08
rK21.5	6.127 1.931 0.118 0.349 0.712 3.736 0.062 1.925 37.44 10.31 0.73 1.45 32.49 0.44 11.09 1	0.449 .38	0.499 2.48	97.81
rK21.5	6.1061.9830.0900.3530.7373.6940.0611.93836.609.971.291.3531.800.4210.991	0.435 .49	0.515 2.25	96.16
rK21.5	6.083 1.953 0.162 0.333 0.635 3.786 0.059 1.958 37.07 10.64 1.02 1.47 32.20 0.45 10.61 1	0.481 .37	0.478 2.64	97.48
	6.060 2.051 0.125 0.359 0.739 3.664 0.062 1.858	0.436	0.551	Ì

SAMPLE	510 ₂ 51	A12 ⁰ 3 A1	тіо ₂ ті	MgO Mg	FeO Fe ³⁺	Fe ²⁺	MnO Mn	CaO Ca	Na ₂ 0 Na	к ₂ 0 к	TOTAL
 WK21.5	36.84	10.24	0.94	1.40	32.10		0.38	10.92	1.54	2.27	96.64
WK21.5	6.08 37.01	2 1.994 10.71	0.117 1.28	0.34 1.49	5 0.702 32.62	3.731	0.054 0.40	1.932 10.66	0.492 1.36	0.479 2.53	98.06
WK21.5	6.01 38.72	2 2.050 9.50	0.156	0.36	2 0.814 32.19	3.618	0.054	1.856 9.97	0.428	0.525	96.28
WK21.5	37.08	10.63	1.29	0.45	8 0.855 31.79	3.550	0.064	1.74/	0.470	0.398	97.72
WK21.5	44.98 7.18	4.41 1 0.829	0.159 0.18 0.021	3.12 0.74	31.48 3 0.439	3.748	0.059	11.986	0.468	0.474 0.51 0.105	97.33
 WK26.2	38.32	9.59	1.04	1.62	31.58		0.34	10.55	1.88	1.52	96.45
WK26.2	6.29 37.61	6 1.857 10.05	0.129 1.31	0.393	7 0.530 32.03	3.810	0.048 0.36	1.857 10.70	0.598 1.85	0.320 1.58	97.14
JK26.2	6.13 37.44	9 1.935 10.26	0.161	0.402 2.16	1 0.687 31.14	3.686	0.049	1.872 10.82	0.584	0.329 0.97	96.43
rk26.2	37.57	6 1.969 9.45	1.46	0.52	3 0.818 32.54	3.422	0.046	1.888	0.584	0.201	97.19
WK26.2	37.70	10.38	1.24	1.63	31.75 31.75	3.660	0.035	1.785	1.66	1.91	96.80
JK26.2	40.55	8.85 5 1.669	1.44	2.42	30.94 3 0.485	3.654	0.33	10.56	1.61	1.15	97.86
JK26.2	38.72 6.32	8.78 7 1.691	1.21 0.149	1.95 0.476	31.88 5 0.651	3.705	0.31 0.043	10 .99 1 . 925	1.46 0.464	1.48 0.310	96.81
 wK28.4	41.29	7.92	1.31	3.50	30.77		0.44	10.79	1.83	0.94	98.81
WK28.4	40.24 6.37	8 1.4/9 8.82 8 1.649	1.67	3.56	30.44	3.029	0.060	1.830	1.69	1.43	98.82
WK28.4	39.24	9.39 7 1.768	1.54	3.21	30.39	0.490	0.32	10.77	1.70	1.75	98.32
rK28.4	39.50 6.25	9.66 6 1.804	1.77 0.211	3.24	29.95 5 0.530	3.437	0.35	11.11	1.74	1.57 0.318	98.90
√K28.4	39.80 6.29	9.58 0 1.784	1.66 0.197	3.35 0.790	30.08 0.611	3.365	0.39	10.67 1.807	1.71 0.525	1.55 0.314	98.80
√K28.4	39.13 6.24	9.78 8 1.841	1.64 0.197	3.05 0.726	30.45 5 0.711	3.356	0.40 0.054	9 . 94 1.702	1.70 0.526	1.70 0.346	97.78
7 K28.4	39.93 6.30	9.59 5 1.785	1.67 0.198	3.31 0.778	30.30 30.632	3.369	0.41 0.055	10.26 1.736	1.66 0.509	1.74 0.350	98.87
JK28.4	39.79 6.32	9.02 6 1.690	1.52 0.182	3.43 0.812	30.43 2.0.544	3.502	0.38 0.051	10.89 1.855	1.63 0.503	1.48 0.301	98.57
√K28.4	38.82 6.14	10.12 2 1.888	1.75 0.209	3.43 0.808	30.28 0.597	3.409	0 . 33 0 . 044	10 .9 0 1.848	1.75 0.538	1 .92 0.387	99.31
JK36.8	39.77	9.42	0.58	1.65	31.45	3 761	0.45	11.50	1.34	1.51	97.66
JK36.8	39.40 6.45	9.65 8 1.864	0.66	1.77	30.48	3.697	0.41	1.838	1.44	1.38	95.65
K36.8	39.58 6.43	9.73 6 1.865	0.42	1.76	30.72	3.694	0.42	1.952	1.40	1.34	96.57
7 К36.8	48.98	1.16 2 0.217	0.17	4.20	30.14	3.961	0.56	1.862	0.32	0.22	96.68
TK36.8	48.95	1.25	0.18	4.16	30.00	2 050	0.67	11.26	0.34	0.24	97.06

.
5.4 Results of microprobe analyses of olivine in magnetite-rich rocks together with the number of ions on the basis of 4 oxygen atoms (<11d = less than the lower limit of detection).

SAMPLE	^{S10} 2 S1	T102 T1	A12 ⁰ 3 A1	FeO Fe	MnO Mn	MgO Mg	CaO Ca	Na20 Na	к ₂ 0 к	TOTAL
 WK14.1	29.79	<11d	<u>دا17</u>	66.52	2.79	1.67	0.07	<11d	<11d	100.8
WK14.1	0.990 29.80	- <11d	- 0.05	1.850 66.34	2.74	1.67	- 0.08	<11d	<11d	100.6
WK14.1	0.990 29.66	- <11d	- <11d	1.850 66.74	0.080 2.82	1.70	0.11	<11d	<11d	101.0
WK14.1	0.990	- <11d	- <11d	1.860 66.08	0.080 2.74	0.080 1.66	0.13	- <11d	- <11d	100.1
W1214.1	0.990	- <11d	- <11d	1.850 66.29	0.080 2.79	0.080 1.64	- 0.11	- <11d	<11d	100.4
*****	0.990	-	-	1.860	0.080	0.080	-	-	-	

5.5 Results of microprobe analyses of magnetite (mt) and ilmenite (il) in pyroxenite, magnetite-rich rock and magnetite gabbro; recalculated to determine the Fe³⁺ content assuming stoichiometry (<lid = less than lower limit of detection).

a: Pyroxenite

AMPLE	OXIDE	510 ₂	Ti02	A12 ⁰ 3	Cr203	Fe203	FeO	MnO	Mg0	Ca0	v ₂ 0 ₃	TOTAL
			3.07	0.24	0.12	62,10	33,40	0.22	0.03	<11d	<11d	99.18
JK5.2	mt	<114	1.11	0.26	0.11	66.70	32.07	0.11	0.04	<11d	<11d	100.40
JK5.2	mt	<11d	0.63	0.20	0.10	67.42	31.49	0.05	0.07	<111d	<11d	99.96
TK5.2	mt	<11d	2.57	0.22	0.17	63.96	33.49	0.16	<11d	<11d	0.06	100.63
TK5.2	mt	<11d	2.76	0.11	0.19	63.73	33.67	0.18	<11d	<11d	0.06	100.70
TK5.2	mt	<11d	4.57	0.16	0.20	59.91	35.09	0.29	<11d	<11d	0.06	100.28
	 mt	0.09	4.75	0.47	0.08	59.22	35.44	0.33	<11d	<11d	0.04	100.42
JK6.3	mt	0.09	4.42	0.52	0.04	59.90	35.16	0.31	0.03	<11d	0.05	100.52
JK6.3	mt	<11d	2.21	0.75	0.06	64.15	33.32	0.10	<11d	<11d	0.06	100.65
JK6.3	i 1	<11d	51.42	<11d	<11d	3.77	44.20	2.01	<11d	<11d	<11d	101.40
JK6.3	11	<11d	51.36	<11d	<11d	3.89	44.16	2.00	<11d	<11d	0.04	101.45
√K6.3	i1	<11d	51.02	<11d	<11d	4.22	43.84	2.01	<11d	<11d	<11d	101.09
JK12.4	mt	<11d	1.65	0.13	0.20	66.15	32.81	0.13	<11d	<11d	0.06	101.13
JK12.4	mt	0.10	2.37	0.23	0.24	64.35	33.53	0.20	<11d	<11d	0.06	101.08
JK12.4	mt	<11d	1.74	0.18	0.18	65.75	32.80	0.16	<11d	<11d	0.08	100.89
JK12.4	mt	<11d	1.76	0.20	0.23	65.92	32.92	0.17	<11d	<11d	0.04	101.24
JK12.4	mt	<11d	2.42	0.21	0.21	64.21	33.36	0.17	<11d	<11d	0.09	100.67
JK12.4	mt	<11d	1.29	0.19	0.22	66.94	32.44	0.09	0.03	<11d	0.06	101.26
TK12.4	mt	<11d	1.57	0.15	0.19	65.83	32.50	0.14	<11d	<11d	0.05	100.43
JK12.4	mt	<11d	1.34	0.11	0.21	66.66	32.50	0.10	<11d	<11d	0.05	100.97
JK12.4	mt	<11d	1.37	0.16	<11d	66.34	32.43	0.12	<11d	<11d	0.05	100.4/
JK12.4	mt	<11d	1.49	0.34	0.21	66.37	32.80	0.09	<11d	<11d	0.06	101.36
JK12.4	mt	<11d	0.74	0.22	0.18	67.95	32.14	<11d	<11d	<11d	0.05	101.28
JK12.4	mt	0.17	9.38	0.41	0.29	49.84	39.44	0.46	0.11	<11d	0.06	100.16
JK12.4	mt	<11d	20.30	0.13	0.13	28.76	48.63	0.97	<11d	<11d	0.03	98.95
JK12.4	mt	0.17	2.01	0.83	0.40	63.76	33.10	0.15	0.13	<11d	0.03	100.58
JK12.4	mt	0.18	1.73	0.71	0.39	64.03	32.58	0.11	0.19	·<114	0.04	99.96
JK12.4	mt	0.19	4.34	0.78	0 .39	58.68	34.90	0.24	0.14	<11d	0.03	99.69
JK12.4	mt	0.22	4.39	0.75	0.38	58.04	34.71	0.21	0.18	<11d	0.04	98.92
JK12.4	mt	0.18	1.98	0.92	0.39	63.53	32.84	0.24	0.19	<11d	0.04	100.31
JK12.4	mt	0.18	1.98	0.88	0.40	63.64	33.08	0.20	0.10	<11d	0.03	100.49
TK12.4	i1	<11d	51.20	<11d	<11d	4.03	43.69	2.32	<11d	<11d		101.24
JK12.4	11	<11d	51.09	<11d	<11d	3.74	43.60	2.32	<114	<11d	<111d	100./5
JK12.4	11	<11d	51.29	<11d	0.14	2.95	43.89	2.18	0.02	<11d	<11d	100.4/
JK12.4	i 1	<11d	51.19	<11d	<11d	3.80	43.75	2.25	<11d	<114	<11d	100.99
JK12.4	i 1	<11d	51.99	<11d	<11d	2.01	44.67	2.06	<11d	<11d	<11d	1 100.73
JK12.4	i 1	<11d	52.06	<11d	<11d	2.21	44.71	2.08	<11d	<11d	0.04	101.10
JK12.4	i 1	<11d	51.66	<11d	0.11	2.11	44.21	2.13	0.04	<11d	<11d	100.26
JK12.4	i 1	<114	51.62	<11d	0.11	2.48	44.27	2.10	<11d	<11d	<11d	1 100.58
JK12.4	11	<114	51.30	<11d	0.13	2.89	43.85	2.21	0.02	<11d	<11d	100.40
JK12.4	11	<114	51.68	<11d	<11d	3.31	44.41	2.02	<11d	<11d	<119	101.42

•

b: Magnetite-Rich Rock

~

SAMPLE	OXIDE	\$10 ₂	T102	A12 ⁰ 3	Cr ₂ 03	Fe ₂ 03	Fe0	Mn0	Mg0	Ca0	v ₂ 0 ₃	TOTAL
WK8.3	mt	0.06	1.02	0.79	0.05	65.91	32.00	0.19	<11d	<11d	<11d	100.02
WK8.3	mt	<11d	0.92	1.11	0.06	66.32	31.92	0.22	0.09	<11d	<11d	100.64
WK8.3	mt	<11d	0.93	1.42	0.06	66.03	31.98	0.22	0.10	<11d	<11d	100.74
WK8.3	mt	<11d	0.96	1.40	0.06	66.11	32.28	0.17	0.02	<11d	<11d	101.00
WK8.3	mt	<11d	1.46	1.97	0.04	64.57	32.75	0.30	0.02	<11d	<11d	101.11
WK8.3	mt	<11d	0.95	1.60	0.34	65.72	32.21	0.20	<11d	<111d	<11d	101.02
WK8.3	mt	<11d	0.94	0.63		66.14	31.76	0.13	<11d	<11d	<11d	99.60
WK8.3	mt	<11d	0.93	0.98	<11d	65.94	31.85	0.19	<11d	<11d	<11d	-99.89
WK8.3	mt	<11d	1.03	1.21	0.02	66.00	32.21	0.20	<11d	<11d	<11d	100.67
WK8.3	mt	0.15	0.94	0.95	<11d	66.34	32.36	0.17	0.02	<11d	<11d	100.93
WK8.3	mt	<11d	0.99	2.21	0.13	65.25	32.48	0.23	<11d	<11d	<11d	101.29
WK8.3	mt	<11d	0.94	0.97	0.02	66.71	32.20	0.18	<11d	<11d	<11d	101.02
WK8.3	mt	< 11d	0.99	1.34	0.04	65.96	32.20	0.22	<11d	<11d	<11d	100.75
WK12.1	mt	<11d	0.69	0.82	0.04	67.05	31.79	0.15	0.06	<11d	<11d	100.60
WK12.1	mt	<11d	0.62	1.73	0.04	66.33	31.96	0.20	0.06	<11d	<11d	100.94
WK12.1	mt	<11d	0.62	1.26	0.04	65.97	31.51	0.20	<11d	<11d	<11d	99.60
WK12.1	mt	0.26	0.55	0.54	0.03	66.64	31.82	0.10	<11d	<11d	<11d	99.94
WK12.1	mt	<11d	2.34	1.74	0.05	62.31	33.22	0.29	<11d	<11d	0.03	99.98
WK12.1	nt	<11d	2.45	1.94	0.05	62.41	33.57	0.30	<11d	<11d	0.04	100.76
WK12.1	mt	<11d	2.28	1.81	0.06	61.65	32.93	0.28	<11d	<11d	0.03	99.04
WK12.1	mt	<11d	1.88	1.33	0.02	63.12	32.49	0.23	<11d	<11d	<111d	99.07
WK12.1	mt	<11d	2.11	1.14	0.03	62.82	32.99	0.32	0.02	<11d	0.03	99.46
WK12.1	. mt	<11d	1.92	1.73	0.03	63.32	32.90	0.24	0.02	<11d	<11d	100.16

c: Magnetite-Gabbro

SAMPLE	OXIDE	510 ₂	Ti02	A1203	Cr ₂ 03	Fe2 ⁰ 3	Fe0	MnO	MgO	Ca0	v ₂ 0 ₃	TOTAL
 MG1	 mt	0.20	15.89	0.80	0.04	36.55	45.78	0.29	0.02	<11d	0.04	99.61
MG1	mt	0.20	13.80	0.83	0.04	40.86	44.00	0.26	0.03	<11d	0.06	100.08
MG1	mt	0.13	11.58	1.16	0.04	44.80	41.95	0.20	<11d	<11d	0.09	99.95
MG1	mt	0.17	11.40	1.16	0.06	45.79	42.13	0.19	0.03	<11d	0.04	100.97
MG1	11	<11 d	51.91	<11d	<11d	1.81	45.73	0.97	<11d	<11d	<11d	100.42
MG1	11	<11d	51.80	<11d	<11d	2.51	45.49	0.98	<11d	<11d	<11d	100.78
MG1	11	<11d	52.00	<11d	<11d	2.56	45.79	0.65	0.18	<11d	<11d	101.18
MG 1	i1	<11d	51.80	<11d	<11d	2.49	45.56	0.72	0.16	<11d	<11d	100.73
 MG2	mt	0.13	12.03	0.97	0.04	43.94	42.11	0.29	0.02	<11d	0.05	99.58
MG2	mt	0.12	12.22	0.97	0.04	44.19	42.53	0.29	0.02	<11d	0.06	100.44
MG2	mt	0.27	10.33	0.66	0.04	48.08	41.04	0.24	0.03	<11d	0.04	100.73
MG2	mt	0.28	9.88	0.65	0.03	48.26	40.27	0.24	0.04	<11d	0.05	99.70
MG2	mt	0.14	14.03	0.68	0.04	39.93	43.66	0.36	0.03	<11d	0.07	98.94
MG2	mt	0.11	14.61	0.70	0.03	39.12	44.24	0.39	0.02	<11d	0.06	99.28
MG2	11	<11d	51.63	0.04	<11d	3.64	44.86	0.52	0.61	<11d	<11d	101.30
MG2	11	<11d	51.65	0.04	<11d	3.80	44.60	0.59	0.72	<11d	<11d	101.40
MG2	i1	<11d	51.02	0.04	<11d	4.02	44.05	0.58	0.72	<11d	<11d	100.43
 MG3	11	<11d	51.86	<11d	<11d	2.16	44.90	0.57	0.65	<11d	<11d	100.14

5.6 Results of microprobe analyses of clinozoisite in magnetite-rich rock (<lld = less than lower limit of detection , all iron as FeO).

SAMPLE	\$10 ₂	A1203	T102	MgO	Fe0	MnO	CaO	Na ₂ 0	к ₂ 0	TOTAL
						0.15				
WK8.3 WK8.3	39.19	29.35	<11d	<11d	4.75 6.19	0.15	23.60	0.05		96.80
WK8.3	41.44	29,10	<11d	<11d	3.39	0.06	22.51	0.61	0.60	97.71

APPENDIX 6

Results of microprobe analyses of Waaikraal ore minerals (rock type: px = pyroxenite, mt = magnetite-rich rock).

Sample	Rock Type	Au	Âg	Bi -	Cu	Fe	Total	Mineral
WK 5.2	px	99.87	0.50	<11d	0.11	0.02	100.50	gold
WK 5.2	px	100.24	0.30	<11d	0.10	<11d	100.64	gold
WK 5.2	px	100.75	0.40	<11d	0.07	<11d	101.22	gold
WK 5.2	px	100.50	0.34	<11d	0.05	0.04	100.93	gold
WK 5.2	px	99.86	0.72	<11d	0.09	0.06	100.73	gold
WK 5.2	px	100.42	0.50	<11d	0.04	0.03	100.99	gold
WK 5.2	px	99.51	0.29	<11d	0.07	<11d	99.89	gold
WK 6.3	px	99.89	1.26	<11d	0.06	0.03	101.24	gold
WK 6.3	p x	97.99	1.07	<11d	0.24	0.12	99.42	gold
WK 6.3	px	99.36	1.03	<11d	0.05	0.04	100.48	gold
WK 28.4	рх	100.58	0.18	<11d	0.18	0.03	100.97	gold
WK 28.4	p x	99.55	<11d	<11d	0.20	0.04	99.79	gold
WK 28.4	px	101.14	<11d	<11d	0.09	0.15	101.38	gold
WK 52.3	mt	90.37	0.17	<11d	9.66	0.33	100.53	CuAu ₃
WK 52.3	mt	66.77	<11d	34.44	<11d	0.05	101.26	maldonite
WK 52.3	mt	66.22	<11d	34.42	<11d	0.16	100.80	maldonite
WK 52.3	mt	65.83	0.13	33.86	<11d	0.18	100.00	maldonite
WK 52.3	mt	65.87	<11d	33.78	<11d	0.12	99.77	maldonite
WK 52.3	mt	65.60	0.10	33.46	<11d	0.13	99.29	maldonite

6.1 Gold and Gold Compounds (Pd, Rh and Hg below the lower limit of detection)

6.2 Bismuth Minerals

Sample	Rock Type	S	Bi	Te	Co	Ni	SP	As	Total	Mineral
		10 05	80.51		<11d	<114	0.02	<114	99.46	bismuthinite
WK 3.2	PX .	10.99	00.32				0.03	<11d	99.15	bismuthinite
WK 5.2	рх		00.32				0.00	0.78	101 48	ioseite=B
WK 5.2	px	2.85	/5./4	21.80	0.04		0.20	211a		joseite B
WK 5.2	рх	2.69	75.55	21.43			0.10		99.77	Joseffe-B
WK 5.2	рх	2.69	75.56	21.51	<11d	<11d	0.10		99.00	joseite-b
WK 5.2	px	2.93	73.74	21.83	<11d	<114	0.04	0.30	98.84	joseite-B
WK 5.2	рх	2.93	73.85	21.76	<11d	<11d	0.05	<11d	98.59	joseite-B
WK 5.2	рх	2.94	74.31	22.05	<11d	<11d	0.05	0.27	99.62	joseite-B
WK 5.2	px	2.97	74.11	21.78	<11d	<11d	0.04	<11d	98.90	joseite-B
WK 5.2		2.92	75.80	21.70	<11d	<11d	0.05	<11d	100.47	joseite-B
WK 5.2	nx	2.93	75.38	21.79	<11d	<11d	0.03	0.26	100.39	joseite-B
WIC 302										
LTV 6 3		18.65	80.51		<11d	6114	0.01	<11d	99.17	bismuthinite
		18 92	80.61			<11d	0.02	<11a	99.55	bismuthinite
		6 / 9	74 74			0.04	0.13	0.60	99.85	ioseite-B
WK 0.3	px	2.00	75 61				0.16	0.83	101.49	joseite-B
WK 6.3	px	2.90		1 21.0	0.03		0.10		00 /3	joseite=B
WK 6.3	p x	2.68	1 75.32	5 21.3			0.00		100 21	JUSEILE-D
WK 6.3	рх	2.6/	/6.18	8 21.2	<114	<11a	0.08		100.21	Joseite-b
WK 12.4	px	<11d	99.03	<11d	0.11	0.15	0.11	1.55	100.96	nat. bismuth
WK 12.4	px	<11d	99.04	<11d	0.08	0.06	<11d	0.79	99.97	nat. bismuth
WK 12.4	рх	<11d	99.67	<11d	0.07	0.07	<11d	0.84	100.65	nat. bismuth
WK 12.4	px	<11d	99.14	<11d	0.07	0.08	<11d	0.73	100.03	nat. bismuth
WK 12.4	px	<11d	99.38	<11d	0.07	0.06	<11d	0.76	100.27	nat. bismuth
WK 12.4	рх	18.29	81.67	<11d	<114	<11d	<11d	<114	99.96	bismuthinite
WK 12.4	DX I	18.15	81.50	<114	0.04	<114	<11d	<11d	99.69	bismuthinite
WIK 12.4		6.66	74.85	17.51	<114	0.05	0.12	0.64	99.83	ioseite-B
WK 12.4	Pv	1 0.00	14.05	1 1	1 110	1 0.03	1		1 1100	11 3000100 5

٠

Sample	Rock Type	S	Bi	Te	Co	Ni	Sb	As	Total	Mineral
WK 12.4	рж	2.66	76.03	21.47			0.09			joseite-B
WK 12.4	px	2.66	75.18	21.43			0.08		99.35	joseite-B
WK 12.4	рж	6.14	79.59	12.39			0.15	0.53	98.80	joseite-A
WK 12.4	p x	3.18	77.03	18,58	<11d		0.09		98.88	joseite-B
WK 12.4	р х	2.79	75.30	20.83	<11d -		0.03		98.95	joseite-B
WK 12.4	рж	2.94	75.44	21.38	<11d		0.06		99.82	joseite-B
WK 12.4	рх	2.92	75.59	21.37	<11d		0.06		99.94	joseite-B
WK 12.4	рх	2.89	74.72	21.59	<11d		0.06		99.26	joseite-B
WK 12.4	р х	2.99	75.20	21.70	<11d		0.05		99.94	joseite-B
WK 12.4	рж	2.98	75.54	21.54	<11d	<11d	0.05		100.11	joseite-B
WK 12.4	px	2.93	75.51	21.70	<11d	<114	0.04	<11d	100.18	joseite-B
WK 12.4	рх	2.89	75.23	21.72	<11d	<11d	0.05	<11d	99.89	joseite-B
WK 12.4	px	2.91	75.26	21.74	<11d	<11d	0.06	<114	99.97	joseite-B
WK 12.4	px	2.89	75.43	21.62	<11d	<11d	0.07	<11d	100.01	joseite-B
WK 12.4	рх	2.92	75.78	21.73	<11d	<11d	0.04	<11d	100.47	joseite-B
WK 12.4	px	2.97	75.31	21.59	<11d	<11d	0.05	<11d	99.92	joseite-B
WK 12.4	рж	2.88	73.19	22.52	<11d	<11d	0.07	<11d	98.66	joseite-B
WK 12.4	рж	2.91	73.44	22.52	<11d	<11d	0.09	<11d	98.90	joseite-B
WK 12.4	px	2.97	75.77	21.78	<11d	<11d	0.07	<11d	100.59	joseite-B
WK 12.4	рх	2.97	75.47	21.76	<11d	<11d	0.07	<11d	100.27	joseite-B
WK 12.4	рж	2.81	75.11	21.23	<11d	<11d	0.04	<11d	99.20	joseite-B
WK 12.4	рж	2.90	74.53	21.36	<11d	<11d	0.05	<11d	98.84	joseite-B

6.3 Diarsenides (Sb below the lower limit of detection)

•

Sample	Rock Type	No.	S	Co	N1	Fe	As	Bí	Total	Mineral
WK 3.2 WK 3.2 WK 3.2	рх рх рх	 7 8 9	0.75 0.98 0.61	9.86 7.93 17.03	0.61 0.43 1.16	17.23 19.67 10.22	72.65 69.78 71.36	<11d <11d <11d <11d	101.10 98.79 100.38	safflorite safflorite safflorite
WK 5.2 WK 5.2 WK 5.2	рх рх рх	13 14 16	0.89 0.65 0.64	2.96 3.70 17.79	2.41 2.53 1.24	22.11 20.38 9.02	72.47 72.42 70.25	<11d <11d 0.92	100.84 99.68 99.86	safflorite safflorite safflorite
WK 12.3 WK 12.3 WK 12.3	рх рх рх	3 4 5	0.35 0.34 0.70	21.28 21.34 15.82	1.23 1.32 1.04	5.40 5.39 11.16	71.18 70.84 70.89	1.72 1.38 1.05	101.16 100.61 100.66	safflorite safflorite safflorite
WK 14.4 WK 14.4	рх рх рх	1 2 	0.60	12.49 12.56	0.72 0.73	14.31 14.44	71.39 71.50	0.82 <11d	100.33 99.83	safflorite
WK 28.4	рх 	6	0.72	0.89	0.17	26.09	73.54	<11d	101.43 	safflorite
WK 52.3 WK 52.3 WK 52.3	nt nt nt	10 11 12	0.21 0.22 0.19	11.07 10.85 10.92	0.57 0.57 0.57	15.84 16.00 15.83	71.88 72.67 73.22	<11d <11d <11d	99.57 100.31 100.73	safflorite safflorite safflorite

136

.

6.4 Sulpharsenides (as-py= arsenopyrite)

	Rock			6.	Nd		Ac. 1	6 h	l B4	Total	Minoral
Sample	Туре	NO.	<u> </u>	<u> </u>	N1	re	A5		BI		minerai
			17.96	0.17	1.84	31.82		<111d	0.87	99.62	88-DV -
WK 5.2	рх	14	18.47	0.13	4.73	29.01	46.83	<11d	<11d	99.16	as-py
WK 6.3	р х	1	19.40	0.06	<11d	34.64	44.59	<11d	<11d	98.69	as-py
WK 6.3	рж	2	19.72	0.05	<11d	34.67	44.45	<11d	<11d	98.89	as-py
WK 6.3	рж	3	_ 19.83	0.04	<11d	34.87	43.76	<11d	<11d	98.50	as-py
WK 6.3	px	4	21.42	0.05	<11d	35.44	42.82	<11d	<11d	99.73	as-py
WK 6.3	рж	5	21.28	0.05	<11d	35.35	42.24	<11d	<11d	98.92	as-py
WK 6.3	DX	i 6 i	19.51	0.03	<11d	34.32	44.21	<11d	1.19	99.26	as-py
WK 6.3	DX.	1 7 1	19.44	0.04	<11d	34.35	44.47	<11d	0.93	99.23	as-py
WK 6.3	DX	1 11 1	17.55	3.60	3.38	25.44	44.00	<11d	4.73	98.70	as-py
WK 6.3	рж	12	17.72	7.09	3.56	22.15	43.78	<11d	4.28	98,58	as-py
WK 12.3	 DX	16	20.27	28.11	1.54	5.78	42.70	0.10	<11d	98.50	cobaltit
WK 12.3	DX	1 17	17.74	29.90	2.71	2.42	46.69	<11d	<11d	99.46	cobaltite
WK 12.3	рж	18	17.84	30.16	2.60	2.42	47.40	<11d	<11d	100.42	cobaltite
WK 12.4			18.47	2.15	2.22	29.77	47.35	<11d	1.30	101.26	as-py
WK 14.4	DX	8	20.36	0.07	<11d	34.09	44.05	0.04	1.03	99.64	as-py
WK 14.4	DX	9	21.58	0.02	<11d	34.71	42.65	<11d	<11d	98.96	as-py
WK 14.4	рж	10	21.55	0.04	<11d	34.48	41.85	<11d	0.81	98.73	as-py
WK 21.5	рж	19	18.46	31.84	1.54	1.64	46.78	<11d	<11d	100.26	cobaltit
WK 28.4	р х	12	20.58	34.34	<11d	2.10	42.14	<11d	<11d	99.16	cobaltit

6.5 Pyrrhotite (selected analyses, ipo = intermediate pyrrhotite, mpo = monoclinic pyrrhotite, As below the lower limit of detection)

	Rock							ator	nic X	
Sample	Туре	s	Fe	Cu	Ni	Co	Total	S	Fe	Mineral
WK 1	mt	39.14	60.06	<11d	<11d	0.21	99.41	53.08	46.76	шро
WK 1	mt	39.51	59.51	<11d	0.03	0.28	99.33	53.50	46.27	mpo
WK 1	mt	· 39.73	59.62	<11d	0.03	0.14	99.52	53.66	46.23	mpo
WK 1	mt	39.25	60.94	0.08	0.06	0.23	100.56	52.74	47.51	ipo
WK 1	mt	38,50	61.50	<11d	0.05	0.20	100.25	52.07	47.75	ipo
WK 1	mt	39.01	61.28	<11d	<11d	0.14	100.43	52.52	47.38	ipo
WK 1	mt	38.46	61.10	<11d	0.03	0.14	99.73	52.23	47.64	l ipo
WK 1	mt	38.93	60.88	<11d	<11d	0.23	100.04	52.60	47.23	ipo
WK 1	mt	38.81	60.99	<11d	0.04	0.21	100.05	52.48	47.34	ipo
WK 1	mt	37.59	61.73	<11d	0.04	0.08	99.41	51.44	48.49	ipo
WK 1	mt	38.80	61.66	<11d	0.05	0.06	100.57	52.25	47.67	ipo
WKI	mt	38.80	61.84	<11d	0.06	0.06	100.76	52.17	47.74	ipo
WK 1	mt	38.54	61.59	<11d	0.06	0.06	100.25	52.10	47.81	ipo
WK 1	nt	38.37	60.89	<11d	0.04	0.27	99.57	52.20	47.57	ipo
WK 1	mt	38.25	60.48	<11d	0.03	0.25	99.01	52.31	47.48	ipo

6.6 Chalcopyrite

.

Sample	Rock Type	s	Fe	Cu	Ni	 Co	Total
WK 1	mt	34.91	30.77	35.21	<11d	0.03	100.92
WK 1	nat	34.56	31.37	34.93	<11d	0.03	100.89
WK 1	nat	34.75	31.43	34.77	<11d	0.03	100.97
WK 1	mt	35.21	28.98	35.23	<11d	0.04	99.46
WK 1	mt	35.22	30.20	34.89	<11d	0.03	100.34
WK 1	nt	35.27	30.25	34.76	<11d	0.05	100.33
WK 5.2	px	34.39	30.48	34.42	<11d	0.02	99.31
WK 5.2	рж	33.39	30.58	34.82	<11d	0.03	98.82
WK 6.3	 рж	34.52	30.75	35.21	<11d	<11d	100.48
WK 6.3	p x	34.11	30.96	34.99	<11d	0.03	100.09
WK 6.3	p x	34.22	30.75	35.15	<11d	0.04	100.16
WK 6.3	px	34.47	30.22	34.36	<11d	<11d	99.05
WK 6.3	px	34.72	30.27	34.98	<11d	0.03	100.00
WK 6.3	px	34.38	30.29	34.83	<11d	<11d	99.50
WK 6.3	px	34.19	30.10	34.53	<11d	0.03	98.85

138

-