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When one wishes to perform a statistical-hypothesis test, the first 
important step is to select the correct, most appropriate, test to 
perform. This article does not attempt to explain the underlying 
theory of the statistical tests it describes. Readers are urged to 
acquaint themselves with the theory by reading, or dipping into, 
a good textbook on the subject. There are many good textbooks 
available, but the one we recommend is by Pagano and Gauvreau.[1] 

Their explanations are clear, up to date and easy to understand. 
Furthermore, the focus in this article is on the various two-

sample t-tests and how to perform them using Stata (StataCorp, 
USA). Therefore, manual calculations will not be described. In 
addition, details about how to perform single-sample tests, 
analysis of variance (ANOVA) (for when one wishes to compare 
more than two independent-sample means) and non-parametric 
tests, as important as these topics are, will not be covered here. 
The authors have assumed a prior basic understanding of the 
principles of hypothesis testing, including the following concepts: 
the difference between population parameters and sample 
statistics; sampling error; the null hypothesis and the null value; 
alpha and the p-value; beta and and the power of a test; the 95% 
confidence interval (CI) for the difference between two means; 
type I and type II errors; and single-tailed v. two-tailed tests.

Selecting the appropriate test
Parametric or non-parametric tests?
Hypothesis tests of the difference between two population means 
are performed using data from two samples that are assumed 
to have been selected in a random or probabilistic way. The null 
hypothesis is of the form:

H0: µ1 - µ2 = 0
Two population means may be compared using either parametric 

or non-parametric (‘distribution-free’) hypothesis tests. Parametric 
tests are performed when one knows the sampling probability 
distribution for the difference between the two means, and the 
assumptions for the parametric tests have been met. Non-parametric 
tests are used when the nature of this sampling distribution is not 
known and cannot be surmised, or when the assumptions for a valid 
performance of the parametric test have not all been met. Although 
non-parametric tests have fewer restrictions than parametric tests, 
one should be aware that they also have conditions for their 
appropriate performance and these should always be checked for 
before embarking on a non-parametric test. 

Whereas parametric tests will result in a p-value, as well as a 95% 
CI, for the difference between the two means, the non-parametric 
tests will only produce a p-value. The null hypothesis for a non-
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parametric test may not be that the two population means are 
equal. In addition, in general (certainly not invariably, however), 
non-parametric tests are less powerful than parametric tests. This 
is because non-parametric tests generally make use of less of the 
information contained in the sample. 

For all these reasons, when performing a test to establish whether 
there is likely to be a difference between two population means, one 
should usually use a parametric test in preference to a non-parametric 
option, if conditions for the parametric test have been met.

Independent samples or paired samples?
The parametric tests for comparing means from independent samples 
are the t-test and the Welch test. The paired t-test is a suitable parametric 
test for comparing means from paired samples. Measurements are said 
to be paired when they are taken on the same unit of study (e.g. the 
same person or the same facility, depending on the unit of analysis). 
In some cases, where two groups of study participants are very closely 
matched, it may also be acceptable to treat the two groups as ‘paired’. 
When pairing is present, the paired t-test is in general more powerful 
than treating the two sets of readings as independent samples and 
then performing a t-test or Welch test. Therefore, if pairing is present, 
rather perform a paired t-test.

Some examples of paired data sets would include the weights 
of a group of people who were measured before the participants 
started a diet and exercise programme, and then measured 
again after a suitable interval. Another example might be sets of 
anatomical measurements of distances between surface landmarks 
on the left- and right-hand sides of the body. 

Conditions for the t-test and the Welch test
For the independent samples situation, valid use of either of the 
parametric hypothesis tests mentioned (the t-test and the Welch 
test) requires that for both samples being compared, the data are 
drawn at random from a population of data that have a normal, 
or bell-shaped, frequency distribution. If this assumption is not 
satisfied, or if there is uncertainty as to whether or not it is satisfied, 
then distribution-free methods should be considered, unless the 
sample sizes are large. 

In practice, if the frequency distributions of the two samples 
appear approximately bell-shaped (unimodal and not too skewed) 
then it is safe to consider using these two parametric tests. If 
sample sizes are small, however, say <30, then one may wish to 
perform, first, a hypothesis test, such as a Shapiro-Wilk test, to assess 
whether each sample is likely to have been drawn at random from 
a normally distributed population of data. 

For large samples (>30) it is unecessary to perform tests of 
normality, as the t-test and the Welch test are robust against 
departures from normality when samples are large. As a result, with 
large samples, there is also usually no need to first transform the data 
(for example, using log transformations with positively skewed data).

One has to be clear, however, that for skewed data, even if the 
samples are large, the mean may not be an appropriate measure of 
central tendency, so one must first satisfy oneself that comparison 
of the differences between two means is a useful exercise. 

Should one use the t-test or the Welch test?
These two tests are used to compare means from two independent 
samples, as in the situation where, for example, the mean birth 
weight of babies born to smoking mothers is compared to the mean 
birth weight of babies born to non-smoking mothers. However, 
there is a specific independent-samples t-test assumption that must 
be met for the t-test, in that the variances of the two samples to 
be compared must be equal. A Welch test should be used if the 
variances are not equal. 

With the Welch test, the variance of the difference between 
the two means, as well as the degrees of freedom, are calculated 
differently from in the t-test calculations. As a result, the 95% CI for 
the difference between the two means, as well as the p-value, will 
be different from those obtained using a t-test. 

When the variances are unequal, then the (inappropriate) t-test 
and the (appropriate) Welch test will often give quite different 
results. The differences in the results become smaller, however, 
as the differences between the variances become smaller, if the 
sample sizes are equal and if the sample sizes become larger. The 
extent of this similarity (between the two test results), however, 
varies depending on the size of the differences in the sample 
variances. 

Performance of the Welch test does not require that the 
population variances should be unequal. The Welch test may be 
performed whether or not the population variances are equal.

The t-test, however, requires that the two population variances 
may be assumed to be equal. How do we decide whether the 
variances are ‘equal’ or not? Many older statistical textbooks suggest 
that the F-test be conducted to assess the equality of variances. 
However, more modern text books, such as Pagano and Gauvreau,[1] 
discourage the use of the F-test to assess whether or not the two 
population variances may be considered to be equal. The F-test 
may lack sufficient power to correctly point the analyst away from 
an inappropriate t-test in many cases.[1,2] This is a particular risk when 
sample sizes are on the small side (say <20). We encourage our 
students to use visual inspection of the sample variances, and, if in 
doubt, to perform the Welch test rather than the t-test.

If the sample sizes of the two samples being compared are 
equal, then the Welch and t-tests give almost identical results. When 
these two sample sizes are both large and equal (say >30), the 
degrees of freedom (DF) are somewhat different (Welch v. t-test), 
but are so large as to not make any difference in practice. 

When the sample sizes are equal but small (say <30), the DF are 
almost the same, so that once again, it makes no difference which 
of the two tests is used. 
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Some authors go so far as to suggest that the Welch test be used, 
rather than the t-test, in all situations.[3] 

We recommend the following approach (also illustrated in Fig. 1):
•	 If sample variances are the same or vary by a very small degree 

only, use the t-test
•	 In all other cases, or if in doubt, use the Welch test. 

Conditions for the paired t-test
For the paired t-test, the only assumption that must be met is that a 
single data set made up of the differences between each of the two 
paired readings should have a bell-shaped frequency distribution 
(‘unimodal and not too skewed’). This assumption becomes less 
important for larger sample sizes owing to the robust nature of the 
t-test. 

Hence one should first calculate the differences between the two 
readings for each study participant, and then examine the frequency 
distribution of this newly calculated set of differences. This may be 
done by inspection of a frequency histogram, or, especially for small 
samples (<20), by performing a Shapiro-Wilk test.

This is especially important for small (say <20 pairs) studies. If 
the frequency distribution is clearly skewed, or not unimodal, then 
one should rather consider performing a non-parametric test, or 
perhaps transforming the differences to a form that has a bell-
shaped curve (if this is a meaningful thing to do; it may not be).

Non-parametric analogues of the parametric tests
The usual non-parametric equivalent of the t-test is the Mann-
Whitney-Wilcoxon (MWW) rank sums test. The usual non-parametric 

equivalent of the paired t-test is the Wilcoxon signed-ranks test. Both 
these tests can be easily performed in Stata. The null hypotheses 
may differ from those for the parametric tests, however, so they 
may not be truly ‘analogous’. In addition, be sure to check that the 
assumptions for the non-parametric tests have been met before 
performing these tests. Just because these tests are ‘distribution free’ 
does not mean that they are assumption free. 

Single sample t-tests
As illustrated in Fig. 1, one can also perform single-sample hypothesis 
tests where one compares the population mean to a fixed known 
value such as a gold standard, benchmark or target. For example, 
the mean normal birth weight of a sample of babies may be 
compared to an expected standard as defined by the World Health 
Organization. In this case a single sample t-test could be used. The 
null hypothesis for such a test is of the form:

�H0: µ = standard (where ‘standard’ = the gold standard, 
benchmark or target).
Once again, if the sample is small (say <30) the data should 

be unimodal and not too skewed. If this is not the case (for small 
samples), then a non-parametric test such as a single-sample sign 
test should rather be considered. As the sign test is less powerful 
(and actually assumes that the standard measure is a median rather 
than a mean), you should try to rather ensure that you have a large 
enough sample size (>30, say) so that you may use the t-test.

A brief note on the z-test (also sometimes referred to as a 
‘normal test’)
The z-test is rarely used nowadays. It is performed in the same 
way that one performs the t-test, except that it makes use of the 
population variance rather than the sample variance in calculating 
the CI and the p-value. This would seem desirable. 

However, it is very rare that one knows the population variance 
(and does not know the population mean). The t-test procedure 
overcomes this problem (that we do not know the population 
variance) by substituting the sample variances for the population 
variances. As the sample variances are likely to be inaccurate 
estimates of the population variance (since they are subject to 
sampling error), this may sometimes result in unduly low estimates 
of the sample variances, resulting in type I errors. 

With the t-test or Welch test this risk is mitigated by calculating 
wider CIs from the sample variances, and higher p-values, than 
would have been the case for a z-test. Of course, if the sample sizes 
are large then the z-test and t-test results will be similar even if one 
performs the z-test by using the sample variances substituted for 
the unknown population variances. For this reason, in some older 
textbooks, it was sometimes stated that one might perform a z-test 
if the samples were both, say, >30. 

This option was considered desirable since the z-test does not 
require the normality assumption of the t-test if sample sizes are 
>30. However, simulation studies have shown that, for sample sizes 

Fig. 1. A flow chart to assist with the selection of an appropriate parametric 

hypothesis test of population means.

Single sample Two samples n samples (n>2)

Single-sample t-test Two-sample t-test ANOVA

Independent 
samples - 

unpaired t-tests

Paired samples - 
paired t-test

Variances equal: 
t-test

Variances unequal: 
Welch test
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>30, the t-test is sufficiently robust to give valid answers even if the 
samples are not drawn from normally distributed populations. 

It is, therefore, acceptable to perform the t-test when the 
population variances are not known, as is usually the case for large 
sample sizes, even though the normality assumption is violated. It is 
perhaps for these reasons (the relative obsolescence of the z test) that 
Stata does not offer a z-test option as part of its standard package. 

Performing the analyses using 
Stata statistical software
One-tailed or two-tailed tests?
Having decided which hypothesis test to use, the next consideration 
is to decide whether one wishes to perform a one-tailed or a two-
tailed test. This decision does not affect the Stata command that you 
will use. Stata will present all the results for single upper tail, single 
lower tail and two-tailed tests. 

One perfoms two-tailed tests if one is testing the null 
hypothesis that there is no difference between the population 
means. Since one does not wish to prejudge the outcome of the 
analysis, one is usually expected to perform a two-tailed test. 

One encounters single-tailed tests, for example, in quality-
control studies. Let us assume that a provincial health department 
set a performance standard of at least 90% immunisation coverage 
for the measles vaccine in children aged 1 year for 2016.

The researcher would only be concerned whether the coverage 
were to be less than the performance standard set. There may be 
no interest in whether the standard had been exceeded (that would 
be a good outcome). In such a case, a single-tailed test of the null 
hypothesis that the coverage is <90% would often be performed. 

Data layout
Data may be entered into Stata in either the wide or the long format. 
For paired tests, the data need to be in the wide format. For tests with 
independent samples, the data may be in either the long or the wide 
format. Below we give an example of data that are in the long (Table 

1 A) v. wide (Table 1 B) format for independent samples (females and 
males are the two independent groups being compared). 

The code used in Table 1 A for ‘female’ is 1 = female, while 0 = 
male. Note that in this case we do not have a ‘participant_id’ for the 
wide format, as the female with bodymass 65.3 kg cannot be the 
same person as the male with bodymass 60.9 kg.

It is usual in Stata to have data entered in the long format, as we 
would normally like to have participant_id for each entry, with rows of 
data that pertain to a particular participant. If there are variables that 
need to be entered in the wide format (such as repeated measures) 
this may easily be accommodated, so that the resulting dataset may 
contain some variables in the long format and some in the wide format.

Table 3 gives an example of both independent and paired data 
in the same table. Since there are also independent data present 
in the table, with these paired data, there is a participant_id entry 
specific to each participant row.

Pre- and post-treatment systolic blood pressures are measured 
in the same individuals and are thus paired data, which are 
presented alongside each other (in the wide format) in this case.

Selecting a value for alpha
It is usual in biostatistics to use a p-value of 0.05 as a cut point for 
deciding if a result is statistically significant. The p-value that we 
obtain from the hypothesis test that we perform is the probability 
of obtaining the observed results, or more extreme results, by 
chance or sampling error if there really is no difference between the 
population means. Using p=0.05 as our cut point means we would 
reject the null hypothresis if p≤0.05. If this is the case, we might state 
that the test results are ‘statistically significant’. If p>0.05, we would 
fail to reject the null hypothesis, concluding that the results are not 
statistically significant. 

This special value of p, namely 0.05, that is used to decide 
whether or not our results are statistically significant is called α 
(alpha). Note that we should never ‘accept’ a null hypothesis and/or 
conclude that two parameters are equal. 

Table 1. The same data entered in the long format (A), and re-entered in the wide format (B)
A. The long format layout B. The wide format layout 
Participant_id Bodymass Female Female_bodymass Male_bodymass
1 65.3 1 65.3 60.9
2 60.9 0 54.4 67.2
3 54.4 1 59.1
4 59.1 1
5 67.2 0
etc. etc. etc.

Table 2. A hypothetical example of a Likert-type questionnaire item
I am satisfied with the clinic opening times
Strongly disagree 1 2 3 4 5 Strongly agree
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The reason why we failed to reject the null hypothesis might indeed 
be because the null hypothesis is true. However, it may also be due 
to the fact that we have samples that are too small, or that our test 
is underpowered, or that our measurement methods have been 
imprecise, and so on. We are not entitled to assume that the reason 
for statistical non-significance is that the null hypothesis is true.

Now, with a cut point of α=0.05, there is a probability that 5% of 
all null hypotheses that are true will test positive (type I errors) just 
because of sampling error (due to the variable composition of the 
samples that we are using and for no other reason). In other words, 
it is likely that we are wrong 5% of the time when we reject a null 
hypothesis and claim that our results are ‘statistically significant’. 

If we set α=0.05, and then perform 100 pairwise t-tests of 
100 known false hypotheses, using independent samples, the 
type I error would be 0.05 per test performed. The probability of 
committing at least one type I error when performing so many tests 
will exceed our planned level of 0.05. 

When a researcher decides to collect data for a large number of 
variables, and then aimlessly perform pairwise hypothesis tests on all 
of them, in the hopes of finding ‘something significant’, the likelihood 
of finding statistical significance as a result of type I errors is increased. 
Most textbooks are agreed that this is especially problematic when 
the decision to perform these hypothesis tests is made after data 
have been collected, although many do not agree that this is 
problematic if the tests are specified before data are collected. 

However, just because a person lists every possible hypothesis 
test possible in the protocol, before collecting the data, (‘just in 
case’?) this does not diminish the risk of type I errors. Hence it is our 
view that in all cases where multiple pairwise hypothesis testing 
is carried out (either routinely or without good a priori arguments 
for their salience), a lower value of α should be required in order to 
establish statistical significance. 

The Bonferroni adjusted value of α is a widely used adjustment 
(there are others) and is easily calculated as 0.05/T, where T is the 
proposed number of comparisons to be made. For five pairwise 
comparisons we would therefore use α=0.01 as the value to 
determine statistical significance (rather than 0.05). 

A brief note on the analysis of Likert-style questionnaire 
data sets
Likert-style questionnaires are of the following type where 
respondents are asked to check a single cell that best indicates their 

answer, as illustrated by Table 2.
One may then have two sets of responses, for example, one 

from a group of respondents working in the formal sector, and one 
from those who also work, but in the informal sector, on this issue. 
One wonders if there is a statistically significant difference between 
the responses of these two groups. The values 1 - 5 are somewhat 
arbitrary, and are definitely neither continuous nor quantitative, 
although they are ordinal. Theoretically, one should not perform a 
t-test on these results since the data are qualitative.

The ‘amount’ of satisfaction represented by a move from 2 to 3 
may not be the same as that between, say, 3 and 4 (if a ‘satisfaction’ 
amount could be quantitatively measured, which it cannot). Given 
that the data are ordinal at best, it would also be mathematically 
incorrect to calculate means or to perform addition, subtraction, 
multiplication or division on the data.

In addition, the responses to these Likert-type items are 
frequently skewed and bunched at one or other end. They may 
also be bimodal. Typically, they are not normally distributed. 

Hence it would appear that a t-test or Welch test would be 
inappropriate on a number of counts. However, if one were to 
perform a non-parametric test, one would expect to lose power 
and run an increased risk of a type II error.

Alternatively, one may count the number of responses in each cell 
for each of the two comparison groups and then perform a χ2 test. 
Unfortunately, if this approach is taken, one loses the information 
available from the ordinality of the responses; the χ2 test will treat 
the cells as if they were purely nominal counts, with no ordinal 
information being taken into account. Once again, power will be lost.

De Winter and Dodou[4] have evaluated the use of the t-test and 
also the non-parametric Mann-Whitney-Wilcoxon rank sum test in 
the situation where one has data from a five-option Likert item such 
as the example shown in Table 2. They performed this evaluation 
through empirical study (simulations) rather than theoretical 
argument. They conclude that, as long as one has samples of at least 
10 respondents in each group, either the t-test or the Mann-Whitney-
Wilcoxon test may be used, in spite of the theoretical reservations 
that one might have regarding the use of the t-test in this situation. 
They showed that the two tests had similar power even if the sample 
sizes of the two comparison groups were markedly different. When 
the data frequency distributions were skewed or peaked (as is 
commonly the case), the Mann-Whitney-Wilcoxon test had greater 
power than the t-test. 

Table 3. Data with a mix of long and wide formats, with paired data in the wide format
Participant_id Bodymass Female pretreatmentsystolicbp posttretamentsystolicbp
1 65.3 1 90 88
2 60.9 0 95 85
3 54.4 1 88 80
4 59.1 1 98 100
5 67.2 0 90 90
etc. etc. etc. etc. etc.
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We would, therefore, recommend that the Mann-Whitney-Wilcoxon 
test be used to analyse data from these Likert-style questionnaires 
with five ordinal selection categories. Not only is the use of this test 
theoretically easier to justify, but in most practical cases it would be 
expected to have greater power.

Stata commands (shown here between < and >; when 
typing the command omit < and >)

�1. For H
0
: data were drawn at random from a population with 

normal distribution.
Preferred if a sample size <20. Reject H0 if p≤0.05.
�(The Shapiro-Wilk test) (e.g. weight of females v. weight of males):
<swilk weight if sex==0>
<swilk weight if sex==1>
�2. For H

0
: data were drawn at random from a population with 

normal distribution.
Preferred if a sample size >20. Perform visual inspection.
<histogram weight if sex==0>
<histogram weight if sex==1>
�3. For obtaining the variances to decide by inspection if they are 
equal or not:
�If using Stata 14 or earlier:
�<sum weight if sex==0> Then, in order to obtain the variance (= 
standard deviation (SD)2):
�<di sd^2> (obtain SD from the output of previous command 
and insert).
�<sum weight if sex==1> Then, in order to to obtain the variance 
(=SD2):
�<di sd^2> (obtain SD from the output of previous command 
and insert).
�4. For obtaining the variances to decide by inspection if they are 
equal or not:
�If using Stata 15 or later (more convenient way to obtain the 
variances):
�<ci variances weight if sex==0> This gives the variance directly.
�<ci variances weight if sex==1>  This gives the variance 
directly.
�5. For a t-test: independent samples, data in wide format (less usual): 
�<ttest weight

male
 = weight

female
, unpaired> Must put ‘unpaired’

�6. For a t-test: independent samples, data in long format (more 
usual): 
<ttest weight, by(sex)> No need to put “unpaired”
�7. For a Welch test: independent samples, data in wide format 
(less usual): 
�Stata calls the Welch test a t-test with unequal variances.
�<ttest weight

male
 = weight

female 
, unpaired unequal> Must include 

‘unpaired’.
�8. For a Welch test: independent samples, data in long format 
(more usual): 
�<ttest weight, by(sex) unequal> No need to include ‘unpaired’.
9.  For a paired t-test: 

�Consider a paired t-test for prediet and postdiet weights (‘prewt’ 
and ‘postwt’):
�<gen diff = postwt-prewt> This generates a new variable called 
‘diff ’ that contains all the individual differences between pre- and 
postdiet weights).
�<swilk diff> This is the preferred way to assess if the differences 
are from a normally distributed population when sample size 
<20 pairs of data.
�<histogram diff> For samples >20 pairs a frequency histogram is 
produced and may be inspected.
�<ttest postwt = prewt>	 This will then result in the paired 
t-test being performed. No need to type ‘paired’ in as in this wide 
format the paired test is the default in Stata.
10. For a single sample t-test:
�<ttest variable = GS> ‘Variable’ is the name of the single-sample 
variable. ‘GS’ is the gold standard/benchmark/target. Remember 
that these tests may often be single-tailed tests, especially in the 
context of quality control.
11. For a Mann-Whitney-Wilcoxon test:	
�<ranksum weight, by(sex)> No need to type in either ‘unequal’ 
or ‘unpaired’. Data must be in the long format.
12. For a Wilcoxon signed-rank test:
�<signrank weight

male
 = weight

female 
> Data must be in the wide 

format.

Stata version 15 outputs
Example 1: Output from a t-test (independent samples, popula-
tion variances assumed equal)
The first example, shown in Fig. 2, shows the output from a t-test 
(independent samples, population variances assumed equal).
Note that the two-tailed p-value is given by ‘Pr(|T|) = 0.2400’ 
(not statistically significant since p>0.05). The point difference 
between the two sample means is 1.221124, and the 95% CI for the 
difference between the means is given by –0.8379923 - 3.280239, 
which includes the null value of zero. This is expected since p>0.05 
and the result is not statistically significant.

(The p-values given for Ha: diff <0 and Ha: diff >0 are for single-
tailed tests and need not concern us here).

Example 2: Output from a Welch test
The difference between the variances of the two samples (see Fig. 
3) is very bizarre in this contrived example (6.432 and 0.742 or 41.34 
v. 0.55). The resulting p-value (0.1381) for the two-tailed test is much 
lower than the p-value that would have been obtained had a t-test 
been performed (0.2306). 

In spite of the fact that the degrees of freedom for the Welch 
test are lower than those for the t-test (12 v. 19), this does not mean 
that the Welch test is necessarily less powerful. The way in which the 
variance of the difference between the two means is calculated for 
the Welch test means that sometimes this variance may be smaller for 
the Welch test than it would have been for the t-test. As a result, one 
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cannot generalise about a difference in power (t-tests v. Welch tests), 
but should rather use the more appropriate of the two tests.

Note that the two-tailed p-value is given by ‘Pr(|T|) = 0.1381’ (not 
statistically significant). The point difference between the two sample 
means is 2.855769, and the 95% CI for the difference between the 
means is given by –1.0546 - 6.766139, which includes the null value of 
zero. This inclusion of the null value is expected since p>0.05.

In addition, note the variances SD2 are very different and the 
sample sizes are both different and small (13 males and 8 females). 
The (inappropriate in this case) t-test would have yielded a p-value 
of 0.2306.

(The p-values given for Ha: diff <0 and Ha: diff >0 are for single tail 
tests and need not concern us here).

Example 3: Output from a paired t-test
In the example presented in Fig. 4, the difference between two 
weights measured in gold miners, 1 year apart, was generated. 
There were 510 participants (hence two samples of 510 readings, 
and a single sample of 510 differences). The Shapiro-Wilk test 
yielded a p-value of <0.001, indicating that the data were not 
drawn at random from a normal distribution. However, the 
frequency histogram yielded a unimodal graph that was not skew, 
nor particularly kurtotic (peaked). 

This shows the importance of using the histogram, rather than 
the very sensitive Shapiro-Wilk test, to decide whether or not to 
proceed with the parametric t-test. In any event, with such a large 
sample size, the argument is academic; The t-test would have been 
an appropriate test to use in any case.

Note that the two-tailed p-value is given by ‘Pr(|T|) = 0.0441’. This 
result is, of course, statistically significant (p<0.05). The difference 
between the two sample means is 0.65, and the 95% CI for the 
difference between the means is 0.018888 - 1.281112 (which 
excludes the null value of zero). This is expected for a statistically 
significant result.

(The p-values given for Ha: mean (diff ) <0 and Ha: mean (diff ) 
>0 are for single-tailed tests).

Presenting and interpreting the results
As a default, one might consider presenting one’s results 
correct to two decimal places, with p-values correct to three 
decimal places. Stata p-values of, say, p=0.0000 should rather 
be presented as p<0.001, since, theoretically, p cannot be zero. 
The minimum information that should be presented includes 
the name of the test performed and the point estimate for the 
difference between the means, along with the p-value and the 
95% CI for the difference between the two means. In the case of 
multiple tests having been performed, if a Bonferroni adjusted 
p-value is presented then this should be stated. Alternatively, if 
the p-value is unadjusted then the Bonferroni-adjusted α value 
should be stated alongside the results.

1.	 Pagano M, Gauvreau K. Principles of Biostatistics, 2nd ed. Pacific Grove: Duxbury, 2000.
2.	 Moser BK, Stevens GR. Homogeneity of variance in the two-sample means test. Am Stat 

1992;46(1):19-21. 
3.	 Delacre M, Lakens D, Leys C. Why psychologists should by default use Welch’s t-test instead of 

Student’s t-tests. Rev Int Psychol Soc 2017;30(1):92-101.
4.	 De Winter JCF, Dodou D. Five-Point Likert Items: t test versus Mann-Whitney-Wilcoxon. Practic Assess 

Res Eval 2012;15(11):1-16. http://pareonline.net/getvn.asp?v=15&n=11 (accessed 20 August 2017).

Accepted 31 August 2017.

Fig. 2. Results of a t-test with independent samples (Stata output). Mean 

Body Mass Index for males (Group 0) v. females (Group 1).

 

Fig. 3. Results of a Welch test (Stata output). Mean age for males (Group 0) v. 

females (Group 1) if BMI >25.

 

Fig. 4. Results of a paired t-test (Stata output). Haemoglobin levels in 

20 athletes before and after taking a naturopathic product for 4 weeks 

(fictitious data).

  Pr(T < t) = 0.9779         Pr(|T| > |t|) = 0.0441          Pr(T > t) = 0.0221
 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0

 Ho: mean(diff) = 0                              degrees of freedom =       19
     mean(diff) = mean(hb2 - hb1)                                 t =   2.1557
                                                                              
    diff        20         .65    .3015312    1.348488     .018888    1.281112
                                                                              
     hb1        20       14.35    .3101358    1.386969    13.70088    14.99912
     hb2        20          15    .3769685    1.685854      14.211      15.789
                                                                              
Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
                                                                              
Paired t test
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