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Abstract: Track-to-track association (T2TA) is a challenging task in situational awareness in intelligent
vehicles and surveillance systems. In this paper, the problem of track-to-track association with sensor
bias (T2TASB) is considered. Traditional T2TASB algorithms only consider a statistical distance
cost between local tracks from different sensors, without exploiting the geometric relationship
between one track and its neighboring ones from each sensor. However, the relative geometry among
neighboring local tracks is usually stable, at least for a while, and thus helpful in improving the
T2TASB. In this paper, we propose a probabilistic method, called the local track geometry preservation
(LTGP) algorithm, which takes advantage of the geometry of tracks. Assuming that the local tracks
of one sensor are represented by Gaussian mixture model (GMM) centroids, the corresponding
local tracks of the other sensor are fitted to those of the first sensor. In this regard, a geometrical
descriptor connectivity matrix is constructed to exploit the relative geometry of these tracks. The track
association problem is formulated as a maximum likelihood estimation problem with a local track
geometry constraint, and an expectation–maximization (EM) algorithm is developed to find the
solution. Simulation results demonstrate that the proposed methods offer better performance than
the state-of-the-art methods.

Keywords: Gaussian mixture model; local track geometry; maximum likelihood estimation; sensor
bias; track association

1. Introduction

Reliable situational awareness plays an essential role in intelligent vehicles and surveillance
systems [1–6]. Typical intelligent vehicles employ various types of sensors, such as radio detection
and ranging (radar), light detection and ranging (lidar), and video. The radar sensor determines the
relative location and the radial velocity of objects by emitting radio signals. Radar measurements often
consist of false alarm detections in addition to detections from real objects or targets while missing
some target-originated detections. The lidar sensor uses laser light to detect objects. Compared to
radar, it provides more detailed measurements at an increased cost. Video sensors are feature-rich with
a wide field-of-view, but they are more sensitive to different illumination and weather conditions [1].
Since these sensors have different sensing capabilities, features, and accuracies, the use of multiple
heterogeneous sensors can result in more reliable and multi-modal environment perception systems.
Therefore, pedestrians, vehicles, and obstacles are typically detected and tracked using a multi-sensor
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system in intelligent vehicles [7–9]. A multi-sensor multi-target tracking module jointly estimates
the states and the number of targets from sensor measurements in intelligent vehicles, and it can be
broadly categorized as centralized or distributed. The advantage of the distributed tracking systems is
that they can provide a degree of scalability and robustness not achievable by traditional centralized
tracking systems [1].

Track-to-track association (T2TA) is a crucial task in distributed tracking to find the
correspondence between local tracks from different sensors. It is commonly applied to combine
the local tracks of a sensor with those of another sensor to form the global tracklist. For automotive
applications, radar, lidar, and video sensors in environmental perception systems for intelligent
vehicles use different coordinate systems and sampling frequencies. Therefore, a spatio-temporal
calibration should be performed to align the detections from different sensors [1]. In practice, detection
from radar, lidar, and video sensors cannot always be calibrated or aligned accurately [10]. Each sensor
may cover a different part of the surveillance region with a detection probability of less than one. As
a result, some local tracks from a sensor may not correspond to those of other sensors. The range,
azimuth, and elevation biases of a radar sensor may lead to errors in the local tracks from that sensor.
The relationship between radar sensor bias and local tracks is presented in Figure 1, where two radar
sensors, A and B, and one target, T, are shown. The radar sensor bias leads to the reporting of
the target T as tracks TA and TB by radar A and B, respectively. Note that if the biases in A and B
radars are significant, the distance between TA and TB is correspondingly high. In this case, TA and
TB is considered as originating from two different targets by the T2TA module. Therefore, T2TA in
intelligent vehicles or surveillance systems suffers from many challenges, including missing detection
and measurement bias. In this paper, the focus is on the problem of independent T2TA for each frame
in the presence of missed detections and sensor bias.

Radar B

Target T

rA
rB

TA

TB

ΔθB  
ΔθA 

θB
θA

Radar A

Figure 1. Relationship between sensor bias and local tracks.

To formulate the T2TA as an optimization problem, different statistical distances or metrics are
proposed in literature [11–24]. In [11], a weighted statistical distance is proposed for T2TA with the
assumption that the local estimation error of one sensor is independent of those of other sensors for the
same target. In [13], the independence assumption is relaxed, and a modified statistical distance with
dependent errors is developed for T2TA. In [19], three algorithms based on the squared Mahalanobis
distance are investigated, and the nearest neighbor (NN) and global nearest neighbor (GNN) algorithms
are applied to compute the distance between two tracks for T2TA. In [20], a likelihood function for
T2TA from multiple sensors is derived, and the multidimensional assignment algorithm is employed
to solve the optimal matching problem. State augmentation data, which combines the kinematic state
information and the additional feature state information, is proposed to perform T2TA in [21]. In [25],
a track association algorithm is proposed based on the permutation matrix to support the track-to-track
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multi-sensor data fusion for multiple targets in an autonomous driving system. It is worth noting that
most T2TA algorithms in intelligent vehicles employ the conventional GNN algorithm [25–28].

Nevertheless, most of the above methods do not consider the presence of sensor bias. In reality,
T2TA performance significantly degrades with sensor bias [29]. Literature addressing this problem can
be roughly divided into batch and online approaches. The batch approach is an offline implementation
that estimates the track association and sensor bias using all local tracks [30–32]. A joint sensor
registration and track-to-track fusion method is derived using an equivalent measurement method in [30],
while a pseudo-measurement approach is adopted to handle registration and track fusion simultaneously
in [31]. In [32], a joint registration, data association, and fusion method in a distributed sensor network
is formulated as a maximum likelihood (ML) optimization problem. An expectation-maximization
(EM) algorithm is then proposed to perform the ML optimization, joint association, and bias removal
through following an iterative strategy. However, these methods are susceptible to being trapped in
local minima and have high computational costs. The online approach is a real-time implementation
to perform track association with sensor bias. In [33], relative position information among neighboring
tracks is analyzed, and a reference topology feature is derived for the absolute position information.
An optimal sub-pattern assignment (OSPA) metric is also proposed to construct the association cost
for T2TASB. In [34], the OSPA metric is modified by compensating for the relative azimuth bias.
In [35], the T2TASB is formulated as a point set registration problem, and a coherent point drift
(CPD) algorithm is proposed to perform T2TASB. In the CPD algorithm, local tracks of one sensor are
represented by Gaussian mixture model (GMM) centroids [4,36], where local tracks of all sensors are
fitted to those of a reference sensor. Still, the CPD algorithm only exploits the relationship among local
tracks from different sensors, i.e., it does not utilize the relative geometric relationship between a local
track and its neighbors from each sensor. The geometry among neighboring local tracks is usually
stable at least for a while and thus helpful in improving the T2TASB. Here, the geometry is inspired by
the idea that the relationship between a local track and its neighbors from different sensors could be
preserved after the transformation. Hence, the geometry among neighboring local tracks is usually
stable at least for a while and thus helpful in improving the T2TASB.

In this paper, the problem of independent T2TA for each frame in the presence of missed detections
and sensor bias is considered. A probabilistic method, called the local track geometry preservation
(LTGP) algorithm, is proposed to handle T2TASB. In the proposed method, the local tracks of one
sensor are represented by GMM centroids, and the local tracks of the other sensor are fitted to those
of the first using a nonlinear transformation function. The local track geometry with k-connected
neighborhood is developed, and the T2TASB is formulated as an ML optimization problem with an
EM algorithm being proposed to address it.

Different from other literature, the main contributions of this paper are as follows:

1. The mathematical formulation for T2TASB is presented. Moreover, the local track geometry
with k-connected neighborhood is derived to improve the robustness and accuracy of T2TASB.
The proposed method extends the CPD method by considering the geometric relationship between
neighboring tracks.

2. An EM algorithm is proposed for T2TASB. The optimal T2TASB correspondence matrix and
transformation function between local tracks are estimated simultaneously.

3. The performance of the proposed method is validated by the experiments and computer
simulations using the KITTI dataset.

This paper is organized as follows. The formulation of T2TASB is presented in Section 2.
In Section 3, the EM algorithm is used to estimate the parameters in the proposed method.
The performance of the proposed approach is evaluated using computer simulations and experiments
on the KITTI dataset in Sections 4 and 5, respectively. Finally, conclusions and future work are
discussed in Section 6.
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2. A New Method for T2TASB

In this section, the T2TASB problem is formulated and a new solution is proposed. Let Xs
k denote

the local tracks from sensor s at time k, where Xs
k =

[
xs

1,k
T , xs

2,k
T . . . , xs

Ns
k ,k

T]T
. The xs

i,k denotes the i-th
track state estimate and the corresponding covariance from sensor s at time k, where k = 1, 2, ...K,
i = 1, 2 . . . , Ns

k with K and Ns
k being the total number of discrete time steps and the number of tracks

at time k by sensor s, respectively. Here, two sensors are applied to find the global track states, i.e.,
s = 1, 2. The objective of the T2TASB algorithm is to find the correspondence between X1

k and X2
k .

In [35], T2TASB is considered as a probability density estimation problem. In this paper, the
relative geometry among neighboring local tracks from each sensor is proposed to formulate a
maximum likelihood estimation problem with a local track geometrical constraint. Assuming that the
local tracks of one sensor are represented by GMM centroids, the corresponding local tracks of the
other sensor are fitted to those of the first sensor. Let x1

t,k be the t-th data and x2
l,k be the centroid of the

l-th component. That is,

p(x1
t,k) =

N2
k

∑
l=1

πk
t,lN (x1

t,k

∣∣∣ f (x2
l,k), σ2

k ID

)
, (1)

where N denotes the Gaussian distribution; σ2
k denotes the equal isotropic covariance at time k; f

denotes the nonrigid transformation; I is the identity matrix; D is the size of a local track vector, and
πk

t,l is the mixing coefficient at time k with ∑l πk
t,l = 1. We introduce an indicator Zk = [zk

1, zk
2, . . . zk

N1
k
],

where zk
t is a 1× N1

k binary vector with elements zk
t,l for l = 1, 2, . . . N2

k . The zk
t,l satisfy zk

t,l ∈ {0, 1} and

∑l zk
t,l = 1 conditions. That is, only one element in vector zk

t is 1 while all other elements are 0. We have

p(zk
t

∣∣∣πk ) =
N2

k

∏
l=1

πk
t,l

zk
t,l , (2)

p(x1
t,k

∣∣∣x2
l,k, σ2, zk

t ) =
N2

k

∏
l=1
N (x1

t,k

∣∣∣ f (x2
l,k), σ2

k ID )
zk

t,l , (3)

where πk = {πk
t,l}

l=1,2,...N2
k

t=1,2,...N1
k
. Here, a distribution 1

N1
k

with weight w is employed to represents the

component of a target detected by sensor 1, but not detected by sensor 2. The relationship between the
local track lists x1

t,kand x2
l,k can be given by

p(x1
t,k) = w

1
N1

k
+ (1− w)

N2
k

∑
l=1

πk
t,lN (x1

t,k

∣∣∣ f (x2
l,k), σ2

k ID

)
. (4)

The nonrigid transformation f aligns the local tracks, while some nonlinear functions might be
employed to approximate it as well. More detail of the nonrigid transformation is given in Appendix A.
Here, the displacement function is adopted as [35]

f (X2
k) = X2

k + GkWk, (5)

where Wk is an N2
k × D dimensional weight matrix of the Gaussian kernel; Gk denotes an N2

k × N2
k

Gaussian kernel matrix with elements gij = e−
1

2β (x
2
i,k−x2

j,k)
T
(x2

i,k−x2
j,k); and, β denotes the width parameter

in the smoothing Gaussian filter. To enforce the smoothness of transformation f , the constraint on the
weight matrix Wk can be given by [35,37]:

E(Wk) = Tr(WT
k GkWk), (6)
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where Tr(.) denotes the trace of a matrix and superscript T denotes transposition. By ignoring the
constants independent of {σ2

k } and {Wk}, the objective function of T2TASB can be written as

Q = D
2

N1
k

∑
t=1

N2
k

∑
l=1

q(zk
t,l) log σ2

k + 1
2σ2

k

N1
k

∑
t=1

N2
k

∑
l=1

q(zk
t,l)×

[(
x1

t,k − f (x2
l,k)
)T (

x1
t,k − f (x2

l,k)
)]

+ αTr(Wk
TGkWk), (7)

where α controls the trade-off parameter and q(zk
t,l) is used to denote p(zk

t,l = 1
∣∣X1

k , X2
k ).

Consider the membership probability πk
t,l in (2), which is assumed to be the same for all

components [35]. Here, πk
t,l is initialized using the traditional nearest neighbor (NN) method [38] as

follows:
(1) If track t from sensor 1 is associated with track l from sensor 2 at time k using NN assignment,

we have

πk
t,i=

{
τ if i = l

1−τ
N2

k−1
if i 6= l , (8)

where 0 ≤ τ ≤ 1 is the confidence in association with the NN method.
(2) If track t from sensor 1 is not associated with any track from sensor 2 at time k using NN

assignment, then the uniform membership probability is applied:

πk
t,l=

1
N2

k
l ∈ (1, 2 . . . N2

k ). (9)

The transformation f uses the relationship between local tracks from different sensors, but does
not consider the relative geometry between one track and its neighbors from each sensor. The geometry
is inspired by the idea that the relationship between a local track and its neighbors from different
sensors could be preserved after the transformation, as depicted in Figure 2. To ensure an accurate
T2TA, a geometrical constraint on the local tracks is proposed in this paper. A schematic illustration of
the geometrical constraint is given in Figure 2.

Local tracks from sensor 1

Local tracks from sensor 2

Local tracks from sensor 1

Local tracks from sensor 2

2

i
x

(a)

ilL ijL

...

2

jx

2

ix

2

lx

(b)

ilL ijL

2( )if x

2( )jf x2( )lf x

(c)

Local tracks from sensor 1

Transformed local tracks from sensor 2

(d)

Figure 2. Schematic illustration of the geometrical constraint. (a) with local tracks from sensor 1 and 2,
assign neighbors to each local track from its sensor, e.g., the four local tracks around xi

2 (b) compute the
weights L (c) perform the transformation f with the constraint that each local track xi

2 be reconstructed
by its neighbors with weights L after the transformation (d) align the Local tracks from sensor 1 and 2
after transformation f by maximizing the objective function.

We desire to preserve the geometry of tracks X2
k after the nonrigid transformation f . Based on the

Euclidean distance between each local track and its neighbors in X2
k , the M nearest neighbors of each
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local track in X2
k are obtained. Then, each point in X2

k is represented as a weighted linear combination

of its M nearest neighbors. Let L = {Ll j}
j=1:N2

k
l=1:N2

k
be an N2

k × N2
k weighted matrix. If track state x2

j,k does

not belong to the M nearest neighbors of track state x2
l,k, then Ll j is set to 0. Here, matrix L is obtained

by minimizing the following cost function:

e(L) =
N2

k

∑
l=1

∥∥∥∥∥∥x2
l,k −

N2
k

∑
j=1

Ll jx
2
j,k

∥∥∥∥∥∥, (10)

where the sum of each row of L is equal to 1. After the nonrigid transformation, the local track
geometry can be preserved by minimizing the transformed cost function:

E(L) =
N2

k

∑
l=1

q(zk
t,l)

∥∥∥∥∥∥ f (x2
l,k)−

N2
k

∑
j=1

Ll j f (x2
j,k)

∥∥∥∥∥∥
2

=
N2

k

∑
l=1

q(zk
t,l)

∥∥∥∥∥∥x2
l,k + Gk(l, .)W−

N2
k

∑
j=1

Lij(x
2
j,k + Gk(j, .)W)

∥∥∥∥∥∥
2

,

(11)

where Gk(i, .) is the i-th row of Gk. The objective function of T2TA with sensor bias in (7) is given by

Q1 = Q + rE(L)

=
D
2

N1
k

∑
t=1

N2
k

∑
l=1

q(zk
t,l) log σ2

k +
1

2σ2
k

N1
k

∑
t=1

N2
k

∑
l=1

q(zk
t,l)×[(

x1
t,k − f (x2

l,k)
)T (

x1
t,k − f (x2

l,k)
)]

+ αTr(Wk
TGkWk)

+ γ
N2

k

∑
l=1

q(zk
t,l)

∥∥∥∥∥∥x2
l,k + Gk(l, .)W−

N2
k

∑
j=1

Lij(x
2
j,k + Gk(j, .)W)

∥∥∥∥∥∥
2

,

(12)

where γ controls the trade-off between Q and E(L).

3. EM Solution for the Proposed Method

Let Θ=
{
{Zk}, {σ2

k }, {Wk}
}

be the unknown parameters. To obtain an ML estimate of Θ, the EM
algorithm is applied here. There are two steps in the EM algorithm:

1). E-step: EL(Θ, Θ(m)) = Q1

2). M-step: Θ(m+1) = max EL(Θ, Θ(m)),

where m is the iteration number of the algorithm. The E-step calculates the conditional expectation
using the current estimate Θ(m), whereas the M-step provides an updated estimation, Θ(m+1).
The estimate of Θ is updated by iterating through these two steps while the complete data likelihood
function is maximized.

3.1. E-Step

First, q(zk
t,l) can be found using Bayes’ theorem as

q(zk
t,l) =

πk
t,lN (x1

t,k

∣∣∣ f (x2
l,k), σ2

k ID )

∑
l

πk
t,lN (x1

t,k

∣∣∣ f (x2
l,k), σ2

k ID ) + w
1−w ×

N2
k

N1
k

. (13)
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3.2. M-Step

Then, EL(Θ, Θ(m)) is rewritten as

EL(Θ, Θ(m)) =
1

2σ2
k

{
Tr
(
(X1

k)
Tdiag(Rk1)X1

k

)
− 2Tr

((
Rk

TX1
k

)T (
X2

k + GkWk

))
+Tr

((
X2

k + GkWk

)T
diag(Rk

T1)
(

X2
k + GkWk

))}

+
D
2

log(σ2
k )

N1
k

∑
t=1

N2
k

∑
l=1

q(zk
t,l) + αTr(Wk

TGkWk)

+ γTr
(
(X2

k)
T

BkX2
k

)
+ 2γTr

(
(X2

k)
T

BkGkWk

)
+ γTr

(
Wk

TGkBkGkWk

)
,

(14)

where diag(.) indicates diagonal matrix; Rk is an N1
k × N2

k matrix with elements q(zk
t,l) for t =

1, 2, · · ·N1
k , l = 1, 2, · · ·N2

k + 1; Bk = (I− L)Tdiag(Rk
T1) (I− L); 1 represents the all-one column

vector of corresponding length; and, I means the identity matrix.
The estimates of σ2

k and Wk are iteratively updated by solving the corresponding partial derivative
of the expected log likelihood to zero. That is,

∂EL(Θ, Θ(m))

∂σ2
k

= − 1
2σ4

k

{
Tr
(
(X1

k)
Tdiag(Rk1)X1

k

)
− 2Tr

((
Rk

TX1
k

)T (
X2

k + GkWk

))
+Tr

((
X2

k + GkWk

)T
diag(Rk

T1)
(

X2
k + GkWk

))}

+

D
N1

k
∑

t=1

N2
k

∑
l=1

q(zk
t,l)

2σ2
k

= 0.

(15)

This results in

σ2
k =

1

D
N1

k
∑

t=1

N2
k

∑
l=1

q(zk
t,l)

{
Tr
(
(X1

k)
Tdiag(Rk1)X1

k

)

− 2Tr
((

Rk
TX1

k

)T (
X2

k + GkWk

))
+Tr

((
X2

k + GkWk

)T
diag(Rk

T1)
(

X2
k + GkWk

))}
.

(16)

Similarly,

∂EL(Θ, Θ(m))

∂Wk
=

1
2σ2

k

(
−2GkRk

TX1
k + 2Gkdiag(Rk

T1)X2
k

+2Gkdiag(Rk
T1)GkWk

)
+ 2αGkWk + 2γGkBkX2

k + 2γGkBkGkWk = 0.

(17)

Thus, Wk can be obtained by solving(
diag(Rk

T1)Gk + 2ασ2
k I + 2σ2

k γBkGk

)
Wk = Rk

TX1
k − diag(Rk

T1)X2
k − 2σ2

k γBkX2
k . (18)
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Here, Ck is used to denote the cost matrix of T2TASB at time k as an N1
k × (N2

k + 1) matrix with
(t, l) element Ck(t, l) for t = 1, 2, · · ·N1

k , l = 1, 2, · · ·N2
k + 1 given by

Ck(t, l) =


−In

(
(1− w)πk

t,lN (x1
t,k

∣∣∣ f (x2
l,k), σ2

k ID )
)

if l = 1, 2, ..., N2
k

−In
(

w 1
N1

k

)
if l = N2

k + 1
,

where Ck(t, N2
k + 1) represents the cost of not making an assignment. The assignment of track t

from sensor 1 to track l from sensor 2 can occur only if Ck(t, l) < Ck(t, N2
k + 1) for t = 1, 2, · · ·N1

k ,
l = 1, 2, · · ·N2

k with Ck(t, N2
k + 1) being a gate. If that gate is violated, no assignment option is selected.

The solution for the above assignment problem is computed using the Hungarian algorithm [39].
The proposed LTGP method for T2TASB is summarized in Algorithm 1.

Algorithm 1 Proposed LTGP method for T2TASB

Require:

Local tracks X1
k and X2

k , parameters w, α, β, γ, M.
1: Initialize Wk = 0, Rk = IN1

k×N2
k
.

2: Search for the M nearest neighbors for each local track in X2
k .

3: Find L by minimizing (10).
4: while not converged do

5: E-step:
6: 1. Assign membership probability πk

t,l using (8) or (9).
7: 2. Update q(zk

t,l) using (13).
8: M-step:
9: 1. Update σ2

k based on (16).
10: 2. Update Wk by solving the linear system in (18).
11: end while
Ensure:

Transformed local track from sensor 2 is f (X2
k) = X2

k + GkWk.

Association matrix for T2TASB is Ck(t, l) as in (3.2).

4. Computer Simulations

In this section, the performance of the proposed methods is evaluated using simulated data. Thirty
targets following a discretized nearly constant velocity motion model [40] are tracked by multiple
radar sensors. The initial target positions are randomly generated in the region [−100 km, 100 km]×
[−100 km, 100 km]. The initial velocities of these targets are chosen as [0.5 km/s, 0.2 km/s].
The covariances of the process and measurement noise components are respectively set to

diag
(

10−4 km2, 10−4 km2/
s2, 10−4 km2, 10−4 km2/

s2
)

, and diag(10−4 km2, 10−5 rad2), where the
cross-covariance terms have been ignored in the former [40]. The clutter is generated uniformly
over the surveillance region using a Poisson random variable with a mean of 30 at each time step.
The sampling period of the measurements is 1s. The number of time steps is 100.

Two radar sensors are considered in the distributed sensor network. The biases in the two sensors
are set to η1 = [1 km,−0.017 rad]T , and η2 = [−2 km, 0.034 rad]T . The detection probabilities Pd of
both radars are chosen as 0.95. Measurement-to-track association is performed at each sensor without
considering the sensor bias. The local tracks from sensor 1 and sensor 2 are illustrated in Figure 3.



Sensors 2020, 20, 1412 9 of 17

(a) (b)

Figure 3. (a) Local tracks from sensor 1 (b) Local tracks from sensor 2.

Parameter τ denotes the confidence in the association by the NN method. Parameter w denotes
the initial assumption on the number of false targets detected by sensor 1, but not detected by sensor 2.
Parameter β represents the width of the smoothing Gaussian filter in the nonlinear transformation
function. Parameter M represents the number of nearest neighbors used in linear reconstruction to
preserve the local track structure, while ρ is the parameter in the cross-covariance fusion. We set
τ = 0.5, w = 0.2, β = 0.1, M = 10, and ρ = 0.4 throughout this paper.

Parameters α and γ represent the trade-off regularization terms. The ranges of these parameters
were determined experimentally. The correct association probability Pc defined as the ratio of the
correctly assigned tracks over the total number of tracks is employed as the primary metric for
performance evaluation. The variation of Pc with regularization parameters α and γ at time step k = 50
is shown in Figure 4. It is observed that the proposed method performs best when α ∈ [5, 7] and
γ ∈ [10, 20]. Here, we set α = 6, and γ = 15.
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Figure 4. Model selection of the regularization parameters α and γ. (a) α ∈ [0.5, 50] and γ ∈ [5, 100],
(b) α ∈ [2, 10] and γ ∈ [5, 50].

The proposed LTGP algorithm is used for T2TASB, and the results at time step k = 50 are given in
Figure 5, which illustrates that the local tracks from the two sensors are associated correctly by the
proposed LTGP method.
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Figure 5. (a) Local tracks at time step k = 50 (b) Local tracks at time step k = 50 after transformation
with proposed method.

The performance of the proposed method is demonstrated next relative to those of GNN without
registration, the reference pattern-based algorithm [33], and the CPD algorithm [35]. All results are
averaged over 50 Monte Carlo runs. The proposed method achieves the best performance, as illustrated
in Figure 6. Compared to the reference pattern-based algorithm, the CPD algorithm improves the Pc by
about 8%. The Pc of the proposed method has improved by 5% as compared with the CPD algorithm.
Furthermore, the results for a scenario with varying detection probabilities and different numbers
of targets are respectively illustrated in Figures 7 and 8. It is observed that the proposed algorithm
outperforms the other three benchmark algorithms. From Figure 7, the performance of GNN without
registration, reference pattern-based algorithm, and CPD algorithm degrade rapidly with a decreased
detection probability. From Figure 8, the performance of the proposed method is almost constant while
increasing the number of targets. Moreover, the average Pc of the proposed method is improved by
approximately 9% as compared with the CPD algorithm.

0 20 40 60 80 100

Time (1s)
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0.7
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0.8
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0.9

0.95

1

P
c

Proposed LTGP method
CPD
Reference pattern-based method
GNN without registration

Figure 6. Correct association probabilities of GNN without registration, reference pattern-based
algorithm, CPD algorithm and the proposed method.

The computational complexities of the proposed LTGP algorithm are analyzed next. For simplicity,
the same number of local tracks N for each sensor every time is considered. At each time step in the
LTGP algorithm, the computational complexity to search the M nearest neighbors for each local track
in X2

k is O((M + N) log N), using the k-d tree [41]; the computational complexity to obtain matrix L is
O(M3N); and, the complexity of the EM algorithm is almost O(N3) [42]. The computational complexity
at each time step in the LTGP algorithm is O(N3). Therefore, the total computational complexity of the
proposed LTGP algorithm is O(N3K), where K is the total number of measurement samples.
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Figure 7. Correct association probabilities of GNN without registration, reference pattern-based
algorithm, CPD algorithm and the proposed method for different detection probabilities.
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Figure 8. Correct association probabilities of GNN without registration, reference pattern-based
algorithm, correlation-based algorithm and the proposed method for a detection probabilities of
Pd = 0.9 when target cardinality changes within a fixed surveillance region.

5. Experiments on KITTI Dataset

In this section, we evaluate the proposed algorithm using the KITTI dataset. Here, the KITTI
multi-object tracking dataset [43] is applied to evaluate the proposed data association method.
The vehicle tracking test sequences 01 and 20, and pedestrian tracking test sequences 16 and 17
are used. Each sequence consists of 30 frames. Figure 9 depicts the starting frames of left and right
cameras for each sequence along with the results of object detection. For the left camera, the detection
results of vehicle or pedestrian are provided by the ground truth. Meanwhile, the deformable part
model detector method [44] is proposed to detect vehicle or pedestrian for images of rthe ight camera.

The ground truth matching between the left and right images in each frame is confirmed by
manual annotation. The GNN without registration, the reference pattern-based algorithm, the CPD
algorithm, and the proposed method are employed to associate the local tracks. The average T2TA
matching accuracy performances of different T2TA methods are depicted in Figure 10. It is confirmed
that the performance of the proposed method is substantially better than those of GNN without
registration, the reference pattern-based algorithm, and the CPD algorithm. Compared with the CPD
algorithm, the average performance of the proposed method is improved by about 7.8%. In addition,
since the KITTI sequence 17 contains large pedestrian occlusion while the motion is more than the other
sequences, the performance gap between this and other sequences is more evident. The proposed LTGP
method has better performance compared to three benchmark algorithms in the KITTI sequence 17.
It is because the proposed method preserves the geometry of local tracks in the data association.
The average run-times of these algorithms are given in Table 1, which reveals that the proposed LTGP
method has higher computational complexity compared to the GNN without registration, reference
pattern-based, and CPD methods.
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(a) KITTI_01 34th frame

(b) KITTI_20 31st frame

(c) KITTI_16 63rd frame

(d) KITTI_17 23rd frame

Figure 9. Typical frames of the KITTI dataset [43]. (a) Sequence 01 starting frame #34. (b) Sequence 20
starting frame #31. (c) Sequence 16 starting frame #63. (d) Sequence 17 starting frame #23.
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Figure 10. Track-to-track association matching accuracy of the GNN without registration, reference
pattern-based algorithm, CPD algorithm and proposed LTGP method under different sequences of
KITTI dataset.

Table 1. The average run-times of these algorithms in four KITTI sequences

Sequence
Method GNN without Registration (s) Reference Pattern-Based (s) CPD(s) LTGP(s)

KITTI_01 0.0004 0.0008 0.0094 0.0159
KITTI_20 0.0004 0.0013 0.0102 0.0169
KITTI_16 0.0008 0.0015 0.0111 0.0176
KITTI_17 0.0004 0.0009 0.0104 0.0163

6. Conclusions

A probabilistic method for the track-to-track association, namely, LTGP, was proposed in this
paper. In the LTGP method, one local track was transformed into another local track using a nonlinear
function. We utilized k-connected neighbors to preserve the relative local track geometry. The T2TASB
problem was formulated as a probability density estimation problem. The EM algorithm was used
to fuse biased tracks from two sensors. To illustrate the advantages of the proposed method, some
experiments of computer simulation and KITTI dataset were performed and the result is compared
with GNN without registration, reference pattern-based algorithm, and CPD algorithm. Experiments
on computer simulation involve varying detection probabilities and different numbers of targets, the
proposed method has better performance than other algorithms for all detection probabilities and
numbers of targets, but it has higher computational complexity. In the KITTI dataset, the proposed
LTGP method has better performance than other methods. The T2TA matching accuracy of the
proposed LTGP method was improved by about 7.8% as compared with the CPD method. From the
experimental results of computer simulation and KITTI dataset, it can be concluded that the proposed
LTGP method outperforms the GNN without registration algorithm, the reference pattern-based
algorithm, and the CPD algorithm, but it has a higher computational load.

In the future, the proposed method is not restricted to the considered application but can be
extended to other tasks, such as multi-sensor T2TASB for the connected vehicle. For the multi-sensor
T2TASB scenario, the LTGP method can be extended using sequential processing.
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Appendix A. The Relationship of Two Local Tracks

Assume that a target is detected by two sensors and that the two sensors are located at the
coordinate origins. Due to the sensor bias, the target (x, y) is reported as x1

t,k = [x1
t,k, y1

t,k] and x2
j,k =

[x2
j,k, y2

j,k] by the two sensors, respectively. By ignoring the random noises, we have [35]

x1
t,k = (Υ1

t,k + ∆Υ1) cos(θ1
t,k + ∆θ1), (A1)

y1
t,k = (Υ1

t,k + ∆Υ1) sin(θ1
t,k + ∆θ1), (A2)

x2
j,k = (Υ2

j,k + ∆Υ2) cos(θ2
j,k + ∆θ2), (A3)

y2
j,k = (Υ2

j,k + ∆Υ2) sin(θ2
j,k + ∆θ2), (A4)

where Υs
i,k and θs

i,k denote the real range and angle measurement of target i for sensor s, respectively.
The ∆Υs and ∆θs represent the range bias and angle bias, respectively. Therefore,

x1
t,k ×

Υ1
t,k

Υ1
t,k + ∆Υ1

= x cos ∆θ1 − y sin ∆θ1, (A5)

y1
t,k ×

Υ1
t,k

Υ1
t,k + ∆Υ1

= x sin ∆θ1 + y cos ∆θ1, (A6)

x2
j,k ×

Υ2
j,k

Υ2
j,k + ∆Υ2

= x cos ∆θ2 − y sin ∆θ2, (A7)

y2
j,k ×

Υ2
j,k

Υ2
j,k + ∆Υ2

= x sin ∆θ2 + y cos ∆θ2. (A8)

From (A5)–(A8), we get[
x2

j,k
y2

j,k

]
=

Υ1
t,k(Υ

2
j,k+∆Υ2)

Υ2
j,k(Υ

1
t,k+∆Υ1)

[
cos θ12 sin θ12
− sin θ12 cos θ12

] [
x1

t,k
y1

t,k

]
, (A9)

where θ12 = ∆θ1 − ∆θ2. Equation (A9) gives the relationship between the local tracks x1
t,k and x2

j,k.
In this paper, a non-rigid transformation as (5) is proposed to approximate the relationship from one
local tracks to other local tracks.
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Abbreviations
T2TA Track-to-track association
T2TASB Track-to-track association with sensor bias
LTGP Local track geometry preservation
GMM Gaussian mixture model
EM Expectation-maximization
NN Nearest neighbor
GNN Global nearest neighbor
ML Maximum likelihood
OSPA Optimal sub-pattern assignment
CPD Coherent point drift
Xs

k Local tracks from sensor s at time k
K Total number of discrete time steps
Ns

k Number of tracks at time k by sensor s
x1

t,k t-th data from sensor 1 at time k
x2

l,k Centroid of the l-th component from sensor 2 at time k
N Gaussian distribution
σ2

k Equal isotropic covariance at time k
f Nonrigid transformation
I Identity matrix
D Size of a local track vector
πk

t,l Membership probability of t-th row and l-th column element in πk at time k
πk Membership probability matrix at time k
Zk Indicator matrix
zk

t a 1× N1
k binary vector for l = 1, 2, . . . N2

k at time k
zk

t,l t-th row and l-th column element in zk
t at time k

Wk an N2
k × D dimensional weight matrix of the Gaussian kernel

Gk an N2
k × N2

k Gaussian kernel matrix
gij an i-th row and j-th column element in Gk
β the width parameter in the smoothing Gaussian filter
Tr(.) Trace of a matrix
L N2

k × N2
k weighted matrix

Ll j a l-th row and j-th column element in L
Gk(i, .) i-th row of Gk
γ Trade-off parameter controlling between Q and E(L)
Rk an N1

k × N2
k matrix

Ck Cost matrix of T2TASB at time k as an N1
k × (N2

k + 1) matrix
[x1

t,k, y1
t,k] x-axis and y-axis positions of target x1

t,k
[x1

j,k, y2
j,k] x-axis and y-axis positions of target x2

j,k
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