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ABSTRACT
This work computationally explores the two-phase flow of nanofluids and their thermal energy
transport coefficients in 3D diamond-shaped cavities with square-shaped barriers having reducing
dimensions. Materials with two emissivity values, ε = 0.3 and 0.9, have been considered to investi-
gate the effect of the radiation thermal energy transport coefficient while the hot side is maintained
at 400 or 500 K. Two values of the Rayleigh number, Ra = 106 and 108, are used for the study. Cu
nanoparticles (NPs) with an average size of 25 nm have been used at a concentration of 0.01–0.05%
in the base fluid. The temperature gradients and thermal energy transport coefficient characteristics
are enhanced by raising the volume concentration of nanoparticles, but the streamlines do not alter
substantially. By increasing Ra, the thermal energy transport coefficient rate is further augmented.
It is also found that increasing the Ra and volume concentration of NPs results in enhanced heat
transfer inside a cavity, while a change in the emissivity coefficient has no significant impact on the
thermal and flow characteristics of the nanofluid. For each case, there is an optimum NP volume
fraction for each model that leads to the highest Nusselt number.
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1. Introduction

Developing energy concerns have encouraged the expan-
sion of novel models for the utilization of high-
performance heat exchangers (HEs). Nowadays, elec-
tronic cooling heat exchangers (ECHEs) that are used
in fast all-electric systems and computing applications,
and using nanofluids (NFs) to achieve a higher heat
transfer (HT) coefficient, have been investigated by sev-
eral authors for increased thermal performance. Fur-
thermore, nanofluids have recently been at the center
of attention because of their accurate thermophysical
properties.

Khodabandeh et al. (2020) studied numerically the
thermohydraulic characteristics of H2O–silver NF in a
spiral HE. The objective of this work is to improve the
HT performance of an HE using two-phase NFs. The
results show that, with an increase in the volume frac-
tion of nanoparticles (NPs), the HT increases but at the
same time the pressure drop (PD) penalty increases with
the increase of spiral rotation and velocity of the working
fluid.
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He et al. (2020) investigated computationally the influ-
ence of a swirl generator on the thermohydraulic charac-
teristics of a H2O–CuO NF inside a tube. The objective
of the work was to explore a swirl generator effect on the
performance ofHTbyusingNFs.An interesting outcome
reported by the investigators was that, by using a helical
swirl generator and theNFs studied, the thermohydraulic
performance was enhanced by 18.2%.

Computational studies were performed by Barnoon
et al. (2019) on different NFs (H2O–Al2O3, H2O–SiO2,
H2O–ZnO and H2O–TiO2) to investigate entropy gen-
eration in the presence of a magnetic field. The results
showed that increasing the diameter of the NPs increased
the wall temperature and produced entropy. Also, by
increasing the Hartmann number, the entropy produced
increased.

Mashayekhi et al. (2017) studied computationally the
influence of a conical strip on the thermohydraulic
characteristics of a H2O–silver NF in a tube. The out-
come illustrated that, by using conical strip spiral tur-
bulators, the average Nusselt number (Nu) and friction
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factor ( f ) increased significantly compared to the base
case.

Siavashi et al. (2017) studied computationally the
influence of a porous type swirl generator on the ther-
mohydraulic characteristics of an H2O–Al2O3 NF in a
two-phase channel. The outcomes demonstrated that the
tooth height and porous setting had a significant influ-
ence on the HT performance.

Alsarraf et al. (2019) studied computationally the
influence of alumina NPs on HT and PD in a two-phase
HE. The results showed that the shapes of spherical and
platelet nanoparticles had the highest and lowest HT
performance in the HE, respectively.

Varzaneh et al. (2020) studied computationally the
influence of a ribbed micro-tube on the thermohydraulic
characteristics of an alumina NF. The effects demon-
strated that, by using rib roughness, the thermohydraulic
performance rose by about 19%.

Milani Shirvan et al. (2017) investigated computation-
ally the influence of an Al2O3 aluminum water-oxide NF
in a two-tube HE using a two-phase model. The results
showed that, with increasing Reynolds number (Re), the
average Nu increased.

Samadifar and Toghraie (2018) studied computation-
ally the influence of vortex generators on the flow field
and HT in HEs having triangular cross sections. Their
results showed that the use of rectangular vortex genera-
tors increased HT more than other vortex generators.

Xu et al. (2017) studied computationally the influence
of vortex generators on the flow field andHTwithin a cir-
cular tube with constant heat flux. Their results showed
that the maximum HT was achieved with an angle of
attack of 45° when the obstruction ratio was 0.3. Also,
as the instability increased, the HT and the coefficient of
friction increased.

Sheikholeslami et al. (2020) made a numerical study
of turbulator generated entropy on the flow field and HT
of water–copper oxide NFs by considering a two-phase
model in a solar system. Their results show that the great-
est decrease in entropy production with increasing Re
occurred when using a twisted barrier.

Some researchers (Alsabery et al., 2019; Alsabery,
Gedik, et al., 2020; Alsabery, Ismael, et al., 2020; Ayoubi
Ayoubloo et al., 2019; Chamkha et al., 2019; Dogonchi
et al., 2020; Hoseinzadeh et al., 2019; Mehryan, Izadi,
et al., 2019; Mehryan, Izadpanahi, et al., 2019; Selime-
fendigil et al., 2019; Shashikumar et al., 2019; Tayebi et al.,
2019) have studied the thermohydraulic characteristics
numerically through circular and non-circular tubes by
using various single acting NFs and hybrid NFs. Also,
some others researchers (Aghayari et al., 2020; Ahmadi
et al., 2020; Beigzadeh et al., 2020; Ez Abadi et al., 2020;
Gan et al., 2020; Ghahremannezhad et al., 2019; Jilte et al.,

2020; Maddah et al., 2019; Sharma et al., 2020) explored,
both experimentally and computationally, the thermal
performance of NFs in micro, mini and conventional
circular and non-circular channels. Similarly, Mahdavi
et al. (2017), Neyestani et al. (2019) and Sharifpur et al.
(2018) studied, both experimentally and numerically,
natural and forced convection by using newly developed
nanofluids.

After reviewing the available literature based on the
effect of using NFs in electrical heat exchangers, the
present authors found that no study had investigated
NF flow and HT in a 3D diamond-shaped cavity fitted
with a square-shaped barrier having reducing dimen-
sions. Therefore, the chief objective of the present work
is to investigate numerically the influence of the emissiv-
ity of the material, the Rayleigh number (Ra), and the
volume fraction of NPs on the thermal and flow char-
acteristics of a 3D diamond-shaped cavity (DSC) fitted
with a square-shaped barrier having reducing dimen-
sions. ANSYS R©

-Fluent
R©
15.0 was used for the solution

to the boundary-value problem, and the SolidWorks
R©

and ANSYS
R©
-Workbench software packages were used

for the creation of the mesh considered.

2. Methodology

2.1. Model

Figures 1 and 2 illustrate the schematic of a basic 3D
DSCfittedwith a square-shaped obstacle having reducing
dimensions. The diamond height is varied from 173.10 to
283.93mm, and the length of the diamond is 1000mm.
Also, the square height is varied from 46.03 to 70.71
mm (Lsquare = 1000mm). The system is made of stain-
less steel 304 of 2.0mm thickness (ε = 0.3 and ε = 0.9);
Ra = 106 and 108. It is very clear that, in the present
study, Ra is in the turbulent regime (Tinitial = 350K,
Tc = 280K, Th = 400 or 500K). The HT fluid is a
water–Cu NF, which creates a Newtonian NF, with
concentrations(φ) of 0.01–0.05%. Table 1 reports the
important properties of the Newtonian base fluid and
solid particles.

Assumptions: (1) the problem is steady state; (2) the
flow regime is turbulent; (3) the fluid flow is incompress-
ible; (4) the nanofluid has Newtonian behavior; and (5)
the nanofluid is two phase.

Table 1. Thermophysical properties (Aladdin et al., 2020).

Fluid k (W/m·K) cp (J/kg·K) ρ (kg/m3)

Cu 400 385 8933
H2O 0.613 4179 997.1
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Figure 1. Schematic diagrams of the basic geometry in the present paper.

Figure 2. Schematic diagrams of the geometry studied in the present work and boundary conditions.

The effective density ρnf and specific heat cP,nf of
the NF at each section-temperature (Tm) are calculated
using the equations of Kim et al. (2009). Also, the ther-
mal conductivity (k) can be calculated using the equa-
tions in Table 2. By considering the Brownian motion
of nanoparticles and employing the equations of Cor-
cione (2011) in a 3D cavity, the NF thermal conductiv-
ity can be obtained, where Renp is the Re of the NPs,
the Prandtl number (Pr) is that of the base liquid, T
is the temperature of the nanofluid, Tfr is the base liq-
uid freezing point, knp is the thermal/heat conductivity
of NPs, and φ is the suspended nanoparticle volume
fraction. The Re of the NPs is calculated from Table 2
(Corcione, 2011), where ρbf and μbf are the base fluid

density and the dynamic viscosity, and dnp and uB are the
nanoparticle size and average Brownian velocity, respec-
tively. Considering no agglomeration, the NPs’ Brownian
velocity uB can attain as dnp and τD ratio obligatory to
shelter such distance (Corcione, 2011), where D is the
self-diffusion coefficient and kb is Boltzmann’s constant
(Corcione, 2011). Note that in the earlier equations all
the physical properties were calculated at the NF temper-
ature T. Also, the dynamic viscosity was calculated from
Table 2 (Corcione, 2011), where M is the molar weight
of the base fluid, N is Avogadro’s number, and ρf 0 is the
density of the base fluid calculated at T0 = 293K, where
dbf is the equivalent diameter of a base fluid molecule
(Corcione, 2011).
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Table 2. Equations used in this study (Aladdin et al., 2020; Cor-
cione, 2011).

Density ρnf = φnpρnp + (1 − φnp)ρbf
Specific heat cp,nf = φnpcp,np + (1 − φnp)cp,bf

Thermal conductivity keff
kbf

= 1 + 4.4Renp0.4Pr0.66bf φ0.66
(

T
Tfr

)10( knp
kbf

)0.03

Renp = ρbf uBdnp
μbf

τD = dnp2

6D = πμbf dnp
3

2kbT

uB = 2kbT
πμf dnp

2

Renp = 2ρbf kbT
πμbf

2dnp
Dynamic viscosity μeff

μbf
= 1

1−34.87
(
dnp
dbf

)−0.3
φ1.03

dbf = 0.1
(

6M
Nπρf0

)1/3

The symmetry conditions

• fluxes across the symmetry = 0
• normal components of all variables = 0

can be applied to both planar or non-planar faces/sur
faces on the domain boundaries.

To compute the NF flow through a cylinder, the two-
phase flow method is engaged and presented in Table 3.
The equations of continuity, energy and momentum
are also presented in Table 3 (Al-Ansary & Zeitoun,
2011; Arani et al., 2017; Heris et al., 2012; Kim et al.,
2009; Patankar, 1980; Sadripour, 2019; Sadripour &
Chamkha, 2019; Salari et al., 2020). The volume frac-
tion/concentration equation for a two-phasemixture and
the slip velocity are also in Table 3 (Al-Ansary & Zeitoun,
2011; Aladdin et al., 2020; Arani et al., 2017; Corcione,
2011; Heris et al., 2012; Karami et al., 2020; Karimi et al.,

2019; Kim et al., 2009; Patankar, 1980; Sadripour, 2019;
Sadripour&Chamkha, 2019; Salari et al., 2020). TheNFs’
Re is also calculated using the equations in Table 3, where
dp is the mean particle diameter. The equations that
describe the k–ε model are also reported inTable 3, where
the turbulent dynamic viscosity is μt,m and the produc-
tion rate of k isG (Ahmadi et al., 2019; Karimi et al., 2019;
Vatani & Mohammed, 2013). The standard constants
c1 = 1.44,Cμ = 0.09,σk = 1.00,c2 = 1.92,σt = 0.85and
σε = 1.30 are used, and the Ra and Nu of the nanofluid
are also reported in Table 3 (Karimi et al., 2019).

2.2. Validation

2.2.1. Mesh independency test
A grid independency study is an important study in
the numerical analysis (Baghban et al., 2019; Fereidoon
et al., 2013; Ghalandari et al., 2019; Heris et al., 2012;
Ramezanizadeh et al., 2019). Figure 3 shows a grid inde-
pendence test (GIT) performed for the studied cavity
filled with NF to explore the influences of grid size on
the results for the grid mesh generated.

2.2.2. Code validation
The other important issue is to validate the employed
computer code using available validated numerical or
experimental papers in the literature. Figure 4 illus-
trates the validation of the current work with the results
obtained by Leong et al. (1998) and Giwa et al. (2020)
in cases where Nu is a function of Ra. Giwa et al. (2020)
studied experimentally the convectionHT characteristics
of a differentially heated square-shaped cavity filled with

Table 3. Governing equations and important parameters (Al-Ansary & Zeitoun, 2011; Arani et al., 2017;
Patankar, 1980; Sadripour, 2019; Sadripour & Chamkha, 2019; Salari et al., 2020).

Continuity equation ∇(ρm�Um) = 0
�Um = ρsφs �Us+ρbfφbf �Ubf

ρm

ρm = ρsφs + ρbfφbf

Momentum equation ρm(�Um∇�Um) = −∇�P + μm(∇�Um + (∇�Um)
T
) + ∇(ρbfφbf �Udr,bf �Udr,bf + ρsφs�Udr,s�Udr,s) + ρm�g

�Udr,bf = �Ubf − �Um�Udr,s = �Us − �Um
Energy equation ∇(ρbfφbf �Ubf hbf + ρsφs�Ushs) = ∇((φbf kbf + φsks)∇�T)

∇(ρsφs�Um) = −∇(ρsφs�Udr,s)�Ubf ,s = �Ubf − �Us�Udr,s = �Us,bf − ρsφs
ρm

�Ubf ,s
�Ubf ,s = d2p

18μbf fd
ρs−ρm

ρs
�α

fd = 1 + 0.15Re0.687s
�α = �g − (�Um∇�Um)

Res = �Umdpρm
μm

Turbulence equations ∇(ρm�Umk) = ∇
[(

μm + μt,m
σk

)
∇k

]
+ Gk,m − ρmε

∇(ρm�Umε) = ∇
[(

μm + μt,m
σε

)
∇ε

]
+ ε

k (c1Gk,m − c2ρmε)

μt,m = Cμρm
k2
ε

Gk,m = μt,m(∇�Um + (∇�Um)
T
)

Parameters of interest Ra = 8gβ(Th−Tc)
ϑbfαbf

Nu = knf
kf

∫
∂T
∂x
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Figure 3. Mesh independency test.

Figure 4. Validation of current studywith the results obtained by
Leong et al. (1998) and Giwa et al. (2020) in the case of Nu versus
different Ra’s.

an Al2O3–MWCNT/water NF. Also, Leong et al. (1998)
conducted an experimental study to investigate the natu-
ral convection HT performance of a cubic-shaped cavity.

3. Results and discussion

NF flow has a higher thermal conductivity than the base
fluid and can transfermore energy. But the nanofluid also
has more dynamic viscosity than the base fluid, which
increases the PD penalty and f in the system. However,
in the present system a pressure drop does not matter.
Figure 5 illustrates the temperature and velocity contours
for various nanoparticle volume fractions and at various
cross sections of a 3D cavity with ε = 0.3 and Ra = 106

for a case with Th = 400K and an insulator obstacle. As
shown in this figure, on the left-hand side of the cavity,

which has smaller dimensions, the HT characteristics are
stronger. Also, it is seen that, in all cases, a non-clockwise
vortex exists in the cavity because of temperature gradi-
ents. It is also realized that, by raising the NPs’ φ, the
temperature gradients andHTbehavior are better, but the
streamlines do not show any noteworthy change. Figure 6
illustrates the temperature and velocity contours for var-
ious nanoparticle volume fractions and at various cross
sections of a 3D cavity with ε = 0.3 and Ra = 108 for a
case with Th = 400K and an insulator obstacle. Also, by
comparing Figures 5 and 6, it is realized that, at higher
Ra, the HT characteristics are augmented. Figure 7 illus-
trates the temperature and velocity contours for various
nanoparticle volume fractions and at various cross sec-
tions of a 3D cavity with ε = 0.3 and Ra = 106 for a
case with Th = 400K and a heated obstacle. As shown in
this figure, on the left-hand side of the cavity, which has
smaller dimensions, the HT characteristics are stronger.
Additionally, it is seen that, in all cases, a non-clockwise
vortex exists in the cavity because of temperature gradi-
ents. It is also realized that, by raising the NPs’ φ, the
temperature gradients andHTbehavior are better, but the
streamlines do not show any noteworthy change. Figure 8
illustrates the temperature and velocity contours for var-
ious nanoparticle volume fractions and at various cross
sections of a 3D cavity with ε = 0.3 and Ra = 108 for a
case with Th = 400K and a heated obstacle. As shown in
this figure, on the left-hand side of the cavity, which has
smaller dimensions, the HT characteristics are stronger.
Also, it is seen that, in all cases, a non-clockwise vor-
tex exists in the cavity because of temperature gradients.
It is also realized that, by raising the NPs’ φ, the tem-
perature gradients and HT behavior are better, but the
streamlines do not show any noteworthy change. TheHT
rate is always raised by increasing Ra. Higher Rayleigh
numbers lead to more turbulent flow and more vortex
generation in the system, which increase the flow mix-
ing rate in channels. This leads to a higher HT coefficient
and increases the HT rate in the system.

Figure 9 illustrates the temperature and velocity con-
tours for various nanoparticle volume fractions and at
various cross sections of a 3D cavity with ε = 0.3 and
Ra = 106 for a case with Th = 500K and a heated obsta-
cle. As shown in this figure, on the left-hand side of the
cavity, which has smaller dimensions, the HT charac-
teristics are stronger. Also, it is seen that, in all cases, a
clockwise and also a non-clockwise vortex exist in the
cavity because of temperature gradients. It is also realized
that, by raising the NPs’ φ, the temperature gradients and
HT behavior are better.

Figure 10 illustrates the temperature and velocity con-
tours for various nanoparticle volume fractions and at
various cross sections of a 3D cavity with ε = 0.3 and



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1039

Figure 5. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.3 and Ra = 106 for a case with Th = 400 K and an insulator obstacle.
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Figure 6. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.3 and Ra = 108 for a case with Th = 400 K and an insulator obstacle.
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Figure 7. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.3 and Ra = 106 for a case with Th = 400 K and a heated obstacle.
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Figure 8. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.3 and Ra = 108 for a case with Th = 400 K and a heated obstacle.
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Figure 9. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.3 and Ra = 106 for a case with Th = 500 K and a heated obstacle.
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Ra = 108 for a case with Th = 500K and a heated obsta-
cle. As shown in this figure, on the left-hand side of the
cavity, which has smaller dimensions, the HT charac-
teristics are stronger. Also, it is seen that, in all cases, a
clockwise and also a non-clockwise vortex exist in the
cavity because of temperature gradients. It is also realized
that, by raising the number of NPs φ, the temperature
gradients and HT behavior are better, but the streamlines
do not show any noteworthy change. Also, by compar-
ing Figures 9 and 10 it is realized that, at higher Ra, the
HT characteristics are augmented. Therefore, it is real-
ized that, in the case of using amaterial with an emissivity
of 0.3, usage of a cavity with a heated obstacle and a con-
stant hot-side temperature of 500K should be suggested.
Also, higher Ra’s and NPs’ φ lead to more HT inside the
cavity.

Figure 11 illustrates the temperature and velocity con-
tours for various nanoparticle volume fractions and at
various cross sections of a 3D cavity with ε = 0.9 and
Ra = 106 for a case with Th = 400K and an insulator
obstacle. As shown in this figure, on the left-hand side of
the cavity, which has smaller dimensions, the HT char-
acteristics are stronger. Furthermore, it is seen that, in all
cases, a non-clockwise vortex exists in the cavity because
of temperature gradients. It is also realized that, by raising
the NPs’ φ, the temperature gradients and HT behav-
ior are better. Figure 12 illustrates the temperature and
velocity contours for various nanoparticle volume frac-
tions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 108 for a case with Th = 400K and
an insulator obstacle. As shown in this figure, on the left-
hand side of the cavity, which has smaller dimensions, the
HT characteristics are stronger. Also, it is seen that, in all
cases, a non-clockwise vortex exists in the cavity because
of temperature gradients. It is also realized that, by raising
the NPs’ φ, the temperature gradients and HT behavior
are better, but the streamlines do not show any notewor-
thy change. Moreover, by comparing Figures 11 and 12,
it is realized that, at higher Ra, the HT characteristics
are augmented. A higher nanoparticle volume fraction
leads to higher thermal conductivity and a higher Nusselt
number.

Figure 13 illustrates the temperature and velocity con-
tours for various nanoparticle volume fractions and at
various cross sections of a 3D cavity with ε = 0.9 and
Ra = 106 for a case with Th = 400K and a heated obsta-
cle. As shown in this figure, on the left-hand side of the
cavity, which has smaller dimensions, the HT charac-
teristics are stronger. Also, it is seen that, in all cases, a
non-clockwise vortex exists in the cavity because of tem-
perature gradients. It is also realized that, by raising the
NPs’ φ, the temperature gradients and HT behavior are
better. Figure 14 illustrates the temperature and velocity

contours for various nanoparticle volume fractions and
at various cross sections of a 3D cavity with ε = 0.9 and
Ra = 108 for a case with Th = 400K and a heated obsta-
cle. As shown in this figure, on the left-hand side of the
cavity, which has smaller dimensions, the HT charac-
teristics are stronger. Also, it is seen that, in all cases, a
non-clockwise vortex exists in the cavity because of tem-
perature gradients. It is also realized that, by raising the
NPs’ φ, the temperature gradients and HT behavior are
better. Also, by comparing Figures 13 and 14, it is realized
that, at higher Ra, the HT characteristics are augmented.

Figure 15 illustrates the temperature and velocity con-
tours for various nanoparticle volume fractions and at
various cross sections of a 3D cavity with ε = 0.9 and
Ra = 106 for a case with Th = 500K and a heated obsta-
cle. As shown in this figure, on the left-hand side of the
cavity, which has smaller dimensions, the HT charac-
teristics are stronger. Also, it is seen that, in all cases, a
clockwise and also a non-clockwise vortex exist in the
cavity because of temperature gradients. It is also real-
ized that, by raising theNPs’φ, the temperature gradients
and theHTbehavior are better, but the streamlines do not
show any noteworthy change.

Figure 16 illustrates the temperature and velocity con-
tours for various nanoparticle volume fractions and at
various cross sections of a 3D cavity with ε = 0.9 and
Ra = 108 for a case with Th = 500K and a heated obsta-
cle. As shown in this figure, on the left-hand side of the
cavity, which has smaller dimensions, the HT charac-
teristics are stronger. Also, it is seen that, in all cases, a
clockwise and also a non-clockwise vortex exist in the
cavity because of temperature gradients. It is also real-
ized that, by raising theNPs’φ, the temperature gradients
and theHTbehavior are better, but the streamlines do not
show any noteworthy change. Also, by comparing Figures
15 and 16, it is realized that, at higher Ra, the HT char-
acteristics are augmented. Therefore, it is realized that,
in the case of using material with an emissivity of 0.9,
usage of the cavity with a heated obstacle and a constant
hot-side temperature of 500K should be suggested. Also,
higher Ra and NPs’ φ lead to more HT inside the cavity.
It is also found that changes in the coefficients of emis-
sivity do not show any noteworthy influence on the HT
characteristics or NF flow in the cavity.

Figure 17 illustrates the predicted total averageNu ver-
sus different NP volume fractions φ for different base
fluids for a 3D cavity with ε = 0.3 and Ra = 106 and 108

for cases with Th = 400 and 500K and a heated obsta-
cle. As shown in Figure 17(a), for the case with Ra = 106

and Th = 400, the predicted average Nu is always raised
by increasing the number of nanoparticles, and conse-
quently, at an NP volume fraction of 0.05, the highest Nu
is achieved. Also, it is realized that, for a casewithwater as
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Figure 10. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.3 and Ra = 108 for a case with Th = 500 K and a heated obstacle.
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Figure 11. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 106 for a case with Th = 400 K and an insulator obstacle.
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Figure 12. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 108 for a case with Th = 400 K and an insulator obstacle.
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Figure 13. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 106 for a case with Th = 400 K and a heated obstacle.
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Figure 14. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 108 for a case with Th = 400 K and a heated obstacle.
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Figure 15. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 106 for a case with Th = 500 K and a heated obstacle.
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Figure 16. Temperature and velocity contours for various nanoparticle volume fractions and at various cross sections of a 3D cavity with
ε = 0.9 and Ra = 108 for a case with Th = 500 K and a heated obstacle.
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Figure 17. Predicted total Nu versus different NF volume fractions for different base fluids for a 3D cavity with ε = 0.3 and Ra = 106

and 108 for cases with Th = 400 and 500 K and a heated obstacle.

the base fluid, the predicted mean Nu is more than for all
other models in all ranges of nanoparticle concentrations
studied when the base fluids are ethylene-glycol/water
or ethylene-glycol, respectively. As seen in Figure 17(b)
for the case with Ra = 108 and Th = 400, the predicted
averageNu is always raised by increasing the volume con-
centration of nanoparticles φ until a nanoparticle volume
fraction of 0.01 (for ethylene-glycol), 0.02 (for ethylene-
glycol/water) and 0.03 (for water) is reached, and then the
Nusselt number values reduce. Consequently, there is an
optimum nanoparticle volume fraction/concentration φ

for each model that leads to the highest Nusselt number.
As shown in Figure 17(c) for the case with Ra = 106

and Th = 500, the predicted average Nusselt number is
always increased by increasing the number of nanopar-
ticles until a nanoparticle volume fraction of 0.02 (for
water and ethylene-glycol/water) and 0.01 (for ethylene-
glycol) is reached, and then the Nusselt number values

reduce. Consequently, there is an optimum nanoparticle
volume fraction φ for each model that leads to the high-
est Nu. As shown in Figure 17(d) for the case with
Ra = 108 and Th = 500, the predicted average Nu is
always raised by increasing the number of nanoparti-
cles until a nanoparticle volume fraction of 0.03 (for
ethylene-glycol/water) is reached, and then the Nus-
selt number values reduce. Also, for the ethylene-glycol
model and the water cases, the average Nu is always
increased by increasing the nanoparticle volume fraction.
Consequently, there is an optimum nanoparticle volume
fractionφ for eachmodel that leads to the highest Nusselt
number.

4. Conclusion

The chief objective of the current study was to inves-
tigate numerically the effects of the emissivity of the
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material, the Rayleigh number, and the volume fraction
of nanoparticles (NPs) on the thermal and flow char-
acteristics of a three-dimensional diamond-shaped cav-
ity fitted with a square-shaped barrier having reducing
dimensions:

• two-phase NF flow and heat transfer were modeled
numerically;

• a 3D diamond-shaped cavity was simulated using
symmetric boundary conditions;

• the effects of using a square-shaped obstacle having
decreasing dimensions were analyzed;

• copper nanoparticles were added to the base fluid for
making the nanofluid;

• the influences of different emissivity values, Rayleigh
numbers and nanoparticle volume fractions were
investigated.

The important findings of the investigation are sum-
marized as follows.

• On the left-hand sides of cavities, which have smaller
dimensions, the rate of HT is stronger. Also, it is
seen that, in all cases, a clockwise and also a counter-
clockwise vortex exist in the cavities because of tem-
perature gradients.

• Increasing the volume concentration φ of NFs in
the base fluid results in enhanced heat transfer
(HT) without showing any significant change in the
streamlines.

• Enhanced HT is also noticed at higher values
of Ra.

• In the case of using material with an emissivity of 0.3,
usage of the cavity with a heated obstacle and a con-
stant hot-side temperature of 400 or 500K should be
suggested.

• At higher φ and Ra, augmentation in HT is reported.
• The emissivity coefficient does not influence the ther-

mal or flow characteristics of nanofluids.
• For the case with Ra = 106 and Th = 400 K, the pre-

dicted Nu is always raised by increasing the nanopar-
ticle volume concentration φ, and consequently, at
a nanoparticle volume fraction of 0.05, the highest
Nusselt number is achieved.

• It is realized that, for water as the base fluid, the pre-
dictedmeanNu ismore than for all othermodels in all
ranges of nanoparticle concentrations studied when
the base fluids are ethylene-glycol/water or ethylene-
glycol, respectively.

• For the case with Ra = 108 and Th = 400 K, the pre-
dicted Nu is always raised by increasing the num-
ber of nanoparticles φ until a nanoparticle vol-
ume fraction of 0.01 (for ethylene-glycol), 0.02 (for

ethylene-glycol/water) and 0.03 (for water) is reached,
and then the Nusselt number values reduce.

• There is an optimumnanoparticle volume fraction for
each model that leads to the highest Nu.

• For the case with Ra = 106 and Th = 500 K, the pre-
dicted average Nusselt number is always increased
by increasing the nanoparticle concentration φ until
a nanoparticle volume fraction of 0.02 (for water
and ethylene-glycol/water) and 0.01 (for ethylene-
glycol) is reached, and then the Nusselt number values
reduce.

• For the case with Ra = 108 and Th = 500 K, the pre-
dicted average Nusselt number is always increased by
increasing the nanoparticle concentration φ until a
nanoparticle volume fraction of 0.03 (for ethylene-
glycol/water) is reached, and then the Nusselt num-
ber values reduce. Also, for the ethylene-glycol model
and water case, the average Nusselt number is always
increased by increasing the nanoparticle volume
fraction.

• This paper offers an appropriate simulation method
for the investigation of 3D symmetrical geometries
that are filled with two-phase nanofluids, when both
radiation and convection equations are solved.

Nomenclature

cp Specific heat (J/kg·K)
Cu Copper
dnp Nanoparticle size (nm)
�g Gravity (m/s2)
k Thermal conductivity (W/m·K)
Ra Rayleigh number (–)
M Molecular weight of the base fluid (kg/kmol)
N Avogadro’s number (–)
Nu Nusselt number (–)
�P Pressure (Pa)
Tc Cold side temperature (K)
Tfr Liquid freezing point of base fluid (K)
Th Hot-side temperature (K)
Tinitial Initial nanofluid temperature (K)
Tm Each section-temperature (K)
�Udr,bf Nanoparticle drift velocity (m/s)
�Udr,s Fluid drift velocity (m/s)
uB Average Brownian velocity (m/s)

Greek symbols

�α Acceleration (m/s2)
ρ Density (kg/m3)
ε Emissivity (–)
φ volume concentration of nanoparticles (%)
μ Dynamic viscosity (Pa·s)
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