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Abstract: Knowing the characteristics of the feed ore size is an important consideration
for operations and control of a run-of-mine ore milling circuit. Large feed ore variations are
important to detect as they require intervention, whether it be manual by the operator or by
an automatic controller. A deep convolutional neural network is used in this work to classify
the feed ore images into one of four classes. A VGG16 architecture is used and the classifier is
trained making use of transfer learning.

Keywords: Deep learning, convolutional neural network, transfer learning, milling, run-of-mine
ore.

1. INTRODUCTION

Variations in run-of-mine ore properties such as size,
composition, and grindability strongly a↵ect autogenous
grinding (AG) and semi-autogenous grinding (SAG) mill
performance (Tessier et al., 2007). When employing a
control strategy that aims to suppress external distur-
bances, the size of the disturbance entering the system is
valuable information (Coetzee et al., 2010; Olivier et al.,
2012a). This work focuses on characterizing the feed ore
size distribution.

The WipFrag system (Maerz et al., 1996) is a commercially
available tool for characterizing the mill feed based on
images of the feed ore. Palangio and Maerz (1999) shows
some case studies of successful system implementations.
The WipFrag system makes use of traditional computer
vision algorithms and a calculation known as the Rosin-
Rammler equation to calculate the cumulative percentage
of particles passing a specific size (Ko and Shang, 2011).

Feed characterization using image analysis in conjunction
with a neural network was proposed by Hamzeloo et al.
(2014). In that work traditional computer vision tech-
niques are used for feature extraction, but a neural network
is used to estimate the particle size distribution. This is to
overcome the potential inaccuracies that may arise with
using a calculation like the Rosin-Rammler equation, as
calibration of the equation parameters is important for its
e↵ective use.

A similar approach was proposed by Ko and Shang (2011).
Both Hamzeloo et al. (2014) and Ko and Shang (2011)
used traditional “shallow” networks with only fully con-
nected layers.

? This work is based on research supported in part by the National
Research Foundation of South Africa (Grant number 111741).

To overcome the need for feature extraction deep convolu-
tional neural networks (CNN) have recently been employed
(Schmidhuber, 2015). These networks are very efficient at
extracting features for classification and regression tasks,
to the point where they can achieve superior performance
to the combination of traditional feature extraction in
combination with fully connected neural networks.

Deep CNNs have only recently been applied in the process
industries. Fu and Aldrich (2019) shows how deep CNNs
can be used to characterize flotation froth, and Wang
and Liu (2018) shows how a stacked auto-encoder deep
neural network is used for soft sensing of air pre-heater
rotor deformation. In this work, a deep CNN is used to
characterize the feed size distribution from feed ore images.

The importance and context of feed ore size character-
ization is described in Section 2. An overview of CNNs
and the method of training used in this work is given in
Section 3. Section 4 shows the data preparation, training,
and results. Section 5 concludes the work.

2. MILL FEED SIZE CHARACTERIZATION

Run-of-mine (ROM) ore milling circuits deal with a wide
possible range of feed sizes and distributions. By definition
the ROM ore is not pre-processed before entering the
milling circuit. This means that operations need to be
robust enough to deal with large feed disturbances while
producing an output of consistent quality.

When flotation is the next step in the metallurgical ex-
traction process, there is usually a specific output particle
size at which the flotation circuit performs optimally (Wei
and Craig, 2009).

Having information about the feed size and distribution
is therefore important for consistent production. It is in
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some cases possible to get a sense of the feed size from the
operational data through parameter estimation (Olivier
et al., 2012b), but a more direct approach is to monitor
a video stream of the feed and inferring the size and
distribution using computer vision techniques.

Having information available regarding the feed size, or
when the feed size changes significantly, the appropriate
adjustments can be made in the process. These adjust-
ments are either made by the operator or an appropriate
automatic controller.

Le Roux et al. (2013) developed a validated model that
has been shown to be appropriate for model-based control.
In that work it is remarked that for control purposes,
the important feed size distribution parameters are the
fraction of fines in the feed ore and the fraction of rocks
in the feed ore.

In this context the term “rocks” has the specific meaning
as set out by Le Roux et al. (2013), which describes
ore that cannot exit the mill through the end discharge
screen. “Fines” describes ore that is smaller than the
product specification size, and are essentially inseparable
from water in the milling circuit.

In this work the input image of the feed ore is classified
into one of four categories, namely:

I Ore containing very little to no large rocks,
II Ore containing some rocks,
III Ore containing quite a few large rocks, and
IV Ore containing mostly large rocks.

These size classifications are somewhat subjective, but
consistent labels lead to classes that the CNN must still be
able to discern. These classes do not provide the fraction
of rocks in the feed ore directly, but the classification goes
some distance in proving that a deep CNN can be used
to characterize the feed ore by size. This is an important
stepping stone towards finally obtaining the fraction of
rocks in the feed ore.

3. DEEP CONVOLUTIONAL NEURAL NETWORKS

The first real convolutional network seems to be that
described by Fukushima (1980). The term CNN and the
structures we know today were introduced by Yann LeCun
in the late 1980s and early 1990s (see e.g. LeCun and
Bengio (1995)). CNNs evolved into deep networks over
time; Schmidhuber (2015) provides an overview of the
development of deep learning in neural networks. A good
overview of CNNs specifically, including how they work
and their common layers, is provided by LeCun et al.
(2015).

Fig. 1 shows a simple convolutional neural network layout
to illustrate the common network elements.

As the name implies, convolutional layers apply a con-
volution operation to the input image. This convolution
operation is the core concept that drives the efficacy of
CNNs and overcomes the impracticality of fully connected
feedforward neural networks for image analysis tasks. It
reduces the number of free parameters that need to be
trained, and also maintains some spacial information of
pixels in a region of the image. The output of the convo-

lutional layer is a feature map of numerical values, often
with a di↵erent shape than the input image.

Another type of layer common in CNNs is a pooling layer.
Pooling combines the outputs of a cluster on neurons in
one layer into a single neuron in the next layer. Max
pooling, for example, takes the maximum value from a
cluster of neurons to the next layer.

A feature map can then be flattened, i.e. converting a
higher dimensional array into a 1-D array, such that
the feature values can be passed to a fully connected
layer (or layers). These fully connected layers are the
same in principle to the layers in a traditional multi-layer
perceptron neural network.

Many other layer types exist in CNNs, such as recurrent,
embedding, normalization, and locally connected layers.
The ones shown in Fig. 1 are however arguably the most
common in CNNs, and are the most relevant to the current
work.

Most of the earlier layers in a CNN are devoted to feature
extraction while the latter layers are devoted to decoding
these features into the output space (whether it be for
classification or regression).

3.1 Network layouts

Much research has gone into developing architectures for
functional deep CNNs. Formulating the correct sequence
of layers is not necessarily an easy task, which is why many
implementations use standard CNN architectures (see e.g.
Fu and Aldrich (2019)).

Common architectures include AlexNet, Inception, and
ResNet. The solution presented in this work makes use of
the VGG16 network architecture (Simonyan and Zisser-
man, 2014). The layout used here is similar to Simonyan
and Zisserman (2014) but the input image dimensions
are di↵erent and hence the feature maps have di↵erent
dimensions. The VGG16 layout with the dimensions used
in this work is shown in Fig. 2.

3.2 Transfer learning

In order to accomplish appropriate feature extraction
before the fully connected network layers, CNNs can
become very large in size. Fig. 2 shows the VGG16 network
architecture.

More layers imply more network parameters, and as the
network becomes very deep there can be millions of pa-
rameters that need to defined through training. VGG16,
for example, has in the order of 138 million parameters.
Such a large number of parameters consequently means
that a very large number of training images is required to
train the network from scratch.

Training a network with an architecture like that of
VGG16 from scratch for each classification task would
render the use of deep CNNs impractical. A network that
was trained for a specific classification task can however
be re-purposed for another task through a process called
transfer learning. Pan and Yang (2010) notes that transfer
learning often works across di↵erent domains of interest,
feature spaces, and data distributions.
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Fig. 2. VGG16 architecture.

In deep CNNs the process of transfer learning often in-
volves loading a model pre-trained for one task, and then
re-training the final layers of this network using the train-
ing data available for the task at hand.

In this work, a VGG16 model trained on ImageNet is used,
and only the final fully connected layers are re-trained.
ImageNet (Deng et al., 2009) is a large database of labelled
images that is commonly used for training and testing of
image classification algorithms.

The dimensions shown in Fig. 2 are for the input images
and subsequent network layers used in this work.

4. DEEP CNN MILL FEED SIZE
CHARACTERIZATION

The deep CNN is implemented using Keras (Chollet et al.,
2015) with the Tensorflow (Abadi et al., 2016) back-end.

4.1 Input data

Input data was captured using a model conveyor belt with
a vertically mounted camera capturing images from above,
similar to the representation shown in Fig. 3. All images
were captured under similar lighting conditions. Fig. 4
shows one example image from each class.

Images were captured for batches of ore conforming to
each of the four defined classes, and labelled according to
the class in question. In total 223 images were captured.
Table 1 shows the number of images per category.

Images are normalized such that all pixel values lie in the
range [0, 1].

Fig. 3. Experimental setup.

Class I Class II

Class III Class IV

Fig. 4. One example image from each class.
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Fig. 5. Example of creating four augmented images from
one input image.

4.2 Data augmentation

Data augmentation is a process by which training data
can be up-sampled to improve network accuracy. Data
augmentation helps with increasing the number of training
samples, but more importantly it helps with the general-
ization of image features to help prevent over-fitting. In
the present example, it is not desirable for the network
to be sensitive to a large rock in a specific region of the
image, as the network output should be a↵ected by a large
rock anywhere in the image.

Image augmentation could involve rotation, translation,
flipping an image horizontally or vertically, brightness
adjustments, and rescaling of input images. In the present
example the first three options are applicable. Because the
objective of this work is to characterize inputs based on
size, rescaling images would defeat the purpose.

Fig. 5 shows how a single input image has been augmented
to produce four images that may now be used for training.
These variations are created from the same input image,
which is even somewhat difficult to confirm with the
naked eye. The image augmentation parameters are set
up such that the input image may be flipped horizontally,
rotated by as much as 90 degrees, translated horizontally
or vertically by up to half of the width or height of the
image, or any combination of these operations. When the
image is translated, the empty space is filled by wrapping
the image around the frame.

4.3 Separating training and validation data

It is important to split the input sample images into a
training and validation set. The training set is used for
training and the validation set is used for the subsequent
testing. This ensures that the model is validated on images
it has not seen during training, which provides a much
better indication of the performance one may obtain when
the model is in operation. The validation images are also

Table 1. Number of images per category

Category Number of images

I 70
II 51
III 51
IV 51

used to calculate the validation loss during training. Even
though this value is not used during training, it is an
important metric which shows if the network is being over-
trained.

It is important to stress that the validation data is not used
in any way to train the CNN, it is merely used to track
the model accuracy on unseen data as training progresses.
Tracking the accuracy on validation data during training
is also important for verification that the network is not
over-fitting on the training data. If the validation accuracy
is significantly lower than the training accuracy, it is a clear
sign of over-fitting. The validation data is not further split
into a distinct test set as would be required for hyper-
parameter tuning (which does not form part of this work).

When separating the data, 20 % is held out for validation.
The selection is done in a stratified manner based on the
class. This means that 20 % of the images in each class
will be held out for validation, such that the fraction of
images in the validation set per category will be the same.

4.4 Training

The loss function in use is the categorical cross-entropy. It
is also sometimes called a softmax loss, as it uses a softmax
activation and a cross-entropy loss.

The CNN provides a set of probabilities S 2 [0, 1]1⇥N =
[s1, · · · , sN ] for the input to belong to each class, where
N classes exist. The softmax activation function is then
given by:

f (s)i =
esi

PN
j esj

, (1)

and the cross-entropy loss is defined as:

CE = −
NX

i

ti log (f (s)i) (2)

where ti is the ground-truth value for class i. In the multi-
label classification problem addressed here, the ground-
truth vector contains only zeros expect for the entry
corresponding to the correct class, which is 1. This means
that

ti =

⇢
0, 8 i 6= p
1, 8 i = p

(3)

where p is the positive class. The categorical cross-entropy
can then be simplified to be:

CE = − log

 
esp

PN
j esj

!
. (4)

Training is run for 50 epochs, with 32 batches per epoch,
and 32 samples per batch (using augmented images). This
means that 32 ⇥ 32 = 1024 samples are used per epoch.
The accuracy obtained at the end of each epoch is shown
in Fig. 6 and the categorical cross-entropy loss at the end
of each epoch is shown in Fig. 7.

It is visible from Fig. 6 and Fig. 7 that the classifier train-
ing progresses well, with the training accuracy increasing
into the high nineties, and the validation accuracy remain-
ing close to 100 % from about 20 epochs. The training loss
decreases well and seems to start flattening out after the 50
epochs. The validation loss is also continually decreasing,
which indicates that the network is not over-fitting.
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4.5 Classifier performance

To validate the classifier performance, the 45 validation
images (which are images the classifier was not trained
on) are classified and the predictions are compared to the
ground-truth labels. The confusion matrix, which plots the
actual label against the predicted label is shown in Fig. 8.
The figure shows how many images from each class are
contained in the validation set. It is visible from Fig. 8
that all 45 images are correctly classified.

This is a commendable result, but there are not that
many samples and the test is not as stringent. It would
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Fig. 9. Confusion matrix for augmented validation images.

be desirable to have the model work on a wide variety of
images, and in this work the performance is subsequently
tested using augmented validation images.

The 45 validation images are augmented using the process
described in Section 4.2 to create 1,000 samples from the
original 45 on which the model was not trained. This is a
much more stringent test and should go further in proving
the classifier’s worth.

Various metrics determine the classification performance
of a multi-class classifier. The overall accuracy of the
classifier, which is the total percentage of samples classified
correctly, is 96.4 %. The precision, recall, F1-score, and
number of images per class (support) is shown in Table 2.

Table 2. Classification metrics

Category Precision Recall F1-score Support

I 0.97 0.95 0.96 310
II 0.94 0.95 0.94 224
III 0.96 1.00 0.98 245
IV 1.00 0.96 0.98 221

Avg 0.97 0.97 0.97 1000

If TP , FP , and FN are respectively the number of true
positives, false positives, and false negatives, then the
classifier precision is given as:

Precision =
TP

TP + FP
. (5)

The recall is given as:

Recall =
TP

TP + FN
, (6)

and the F1-score is the harmonic mean of the precision
and recall, given by:

F1 = 2 · Precision⇥Recall

Precision+Recall
. (7)

Fig. 9 shows the confusion matrix when testing with
the augmented validation images and Fig. 10 shows the
receiver operating characteristic (ROC) curve. This curve
shows how the true positive rate increases with the false
positive rate. For a binary classifier, when merely guessing,
one expects the TP rate and FP rate to increase evenly.
This is the reference line shown from the point (0,0) to
(1,1). The closer the ROC curve is to the point (0,1) the
better the classification.
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4.5 Classifier performance

To validate the classifier performance, the 45 validation
images (which are images the classifier was not trained
on) are classified and the predictions are compared to the
ground-truth labels. The confusion matrix, which plots the
actual label against the predicted label is shown in Fig. 8.
The figure shows how many images from each class are
contained in the validation set. It is visible from Fig. 8
that all 45 images are correctly classified.

This is a commendable result, but there are not that
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be desirable to have the model work on a wide variety of
images, and in this work the performance is subsequently
tested using augmented validation images.

The 45 validation images are augmented using the process
described in Section 4.2 to create 1,000 samples from the
original 45 on which the model was not trained. This is a
much more stringent test and should go further in proving
the classifier’s worth.

Various metrics determine the classification performance
of a multi-class classifier. The overall accuracy of the
classifier, which is the total percentage of samples classified
correctly, is 96.4 %. The precision, recall, F1-score, and
number of images per class (support) is shown in Table 2.

Table 2. Classification metrics

Category Precision Recall F1-score Support

I 0.97 0.95 0.96 310
II 0.94 0.95 0.94 224
III 0.96 1.00 0.98 245
IV 1.00 0.96 0.98 221

Avg 0.97 0.97 0.97 1000

If TP , FP , and FN are respectively the number of true
positives, false positives, and false negatives, then the
classifier precision is given as:

Precision =
TP

TP + FP
. (5)

The recall is given as:

Recall =
TP

TP + FN
, (6)

and the F1-score is the harmonic mean of the precision
and recall, given by:

F1 = 2 · Precision⇥Recall

Precision+Recall
. (7)

Fig. 9 shows the confusion matrix when testing with
the augmented validation images and Fig. 10 shows the
receiver operating characteristic (ROC) curve. This curve
shows how the true positive rate increases with the false
positive rate. For a binary classifier, when merely guessing,
one expects the TP rate and FP rate to increase evenly.
This is the reference line shown from the point (0,0) to
(1,1). The closer the ROC curve is to the point (0,1) the
better the classification.
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5. CONCLUSION

Images of the feed ore captured from a model conveyor
belt, as it is fed into a run-of-mine ore milling circuit, were
used to characterize the feed ore size. A deep convolutional
neural network based on the VGG16 architecture was
used, and it was trained using transfer learning. Transfer
learning reduces the number of input images required
to successfully train the network. Image augmentation
was also used, partly to increase the e↵ective number of
samples available, but also to make the network more
robust.

The accuracy achieved shows how successfully a CNN can
be employed to characterize the feed size, a result which
may be difficult to obtain using only traditional computer
vision techniques. The ore category information is an early
indicator of changes that are required in the milling circuit
to produce a consistent output within specification.

This deployment, and the success of the CNN, is an
important step towards demonstrating that CNNs might
be able to outperform traditional methods when it comes
to fully extracting the feed size distribution from images
obtained from an industrial feed ore conveyor.
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