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In probabilistic seismic hazard analysis, assessment of the three recurrence parameters, namely the mean activity 

rate 𝜆, Gutenberg–Richter 𝑏-value, and maximum possible seismic event magnitude 𝑚𝑚𝑎𝑥, is paramount. Over 

the years, several assessment procedures have been developed, each with its advantages and disadvantages. 

Typically, estimation techniques for the mean activity rate 𝜆 and the Gutenberg–Richter 𝑏-value are discussed 

and evaluated separately from those designed for the maximum possible event magnitude 𝑚𝑚𝑎𝑥. Yet, the three 

parameters are typically defined in terms of joint distributions for 𝜆, 𝑏, and 𝑚𝑚𝑎𝑥. In this study, we focused on 

systematically constructing joint distributions for the three recurrence parameters for considering complete and 

incomplete seismic event catalogues. The Bayesian formalism is introduced to constrain the parameter estimates 

with independent a priori information. Further, we discuss an iterative technique to solve the systems of equations 

sequentially. The procedures are compared and illustrated using Monte Carlo simulation and a seismic event 

catalogue for Cape Town, South Africa. 
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1. Introduction 

 

In 1966, Allin Cornell, a Stanford University PhD graduate and already professor at the Massachusetts Institute 

of Technology (MIT), participated in a consulting project to assess an appropriate earthquake design ground 

motion for the Alibey Dam, north of Istanbul, Turkey. It was anticipated that the future dam would be affected by 

strong seismic activity caused by the nearby Anatolian fault.  
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Not surprisingly, to solve the expected problems, Cornell chose probabilistic techniques. Such techniques were 

close to his heart, as his PhD dissertation was based on probabilistic concepts of distributions of elements that 

affect engineering decisions. Moreover, quite recently, he had returned from Mexico, where he had met Dr Luis 

Esteva at the National Autonomous University of Mexico. Esteva was another enthusiast of applying probabilistic 

techniques in earthquake seismology. Esteva and his research group were studying probabilistic aspects of 

earthquake-generated ground motions, their dependence on magnitude and distance (currently called ground 

motion models), and the relationships between the frequency of earthquake occurrence and the frequency of 

occurrence of specified ground motion at a site. Esteva had published the first seismogenic-zone-based 

probabilistic seismic hazard maps of Mexico, which were expressed in terms of the modified Mercalli intensity 

(MMI), associated peak ground acceleration (PGA), and mean return periods. These maps were based on quite 

simple probabilistic notions of earthquake occurrence and are the first such maps ever computed.  

 

In 1968, Cornell published one of his best-known works on the principles of probabilistic seismic hazard analysis 

(PSHA) (Cornell 1968). In this approach, he considered two types of ground motion, namely the descriptive MM 

intensity I and that recorded instrumentally, as, e.g. PGA. In addition, he made two fundamental assumptions, 

namely, first, about the nature of attenuation of seismic waves and second, about the earthquake magnitude 

distribution and the distribution of seismic events in time. He assumed that earthquake magnitudes are distributed 

according to the frequency-magnitude Gutenberg–Richter relation (Gutenberg and Richter 1942; 1956), and that 

the number of seismic events in time follow the Poisson distribution.  

 

However, his approach excluded considering the variability of the predicted ground motion. Already in 1964, it 

was known (Rosenblueth 1964) that, based on the functional form of GMM, predicting the exact value of ground 

motion at a site is virtually impossible. The expected value of the ground motion could probably be predicted, but 

the ground motion at the site, at best, could be described by its distribution. Esteva (1969, 1970) incorporated the 

variability of ground motion into Cornell’s seismic hazard formalism. Esteva proposed integration across the 

ground motion scatter, where the variability of ground motion is described by Gaussian distribution. In this 

manner, Esteva could quantify the ground motion uncertainty, and he was probably the first to call it ''aleatory 

uncertainty''. Integration across the ground motion scatter from the lognormally distributed residuals in the 

attenuation equation is standard today.  

 

Unfortunately, none of these mentioned publications is as well known as the original work by Cornell (1968). 

However, Allen Cornell and Luis Esteva should be credited for the PSHA formalism known today (Alamilla et 

al., 2020).  

 

In addition, the widespread use of PSHA, as formulated by Esteva and Cornell, is also owed to Dr Robin McGuire, 

who, in 1976, developed the freely available computer code EQRISK (McGuire, 1976). Before the introduction 

of OpenQuake (Pagani 2014), McGuire's computer code was probably the most frequently used software for 

PSHA. Accordingly, seismic hazard formalism, as developed by Esteva and Cornell, should be called the Esteva–

Cornell, Cornell–McGuire (Atkinson 2004; Bommer and Abrahamson 2006; McGuire 2008), or the Esteva–

Cornell–McGuire procedure.   
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The Esteva–Cornell–McGuire formalism is most often used in PSHA, our brief review of probabilistic hazard 

assessment is focused entirely on the approach of these pioneering authors. 

  

It is important to note that none of the authors of the Esteva–Cornell–McGuire PSHA procedure discussed the 

assessment of the seismic hazard recurrence parameters required by their formalism. These parameters are the 

mean activity rate 𝜆, the 𝑏-value of the frequency-magnitude Gutenberg–Richter relation, and the area-

characteristic maximum possible seismic event magnitude 𝑚𝑚𝑎𝑥. The Esteva–Cornell–McGuire PSHA technique 

cannot be applied when these parameters are not known. Assessing these key parameters is particularly important 

when seismic event catalogues are incomplete and uncertain.  

 

Over the years, several researchers have focused on assessing the recurrence parameters for both complete and 

incomplete seismic event catalogues. Amongst others, these researchers are Aki (1965), Utsu (1965), Molchan et 

al. (1970), Weichert (1980), Kijko and Sellevoll (1989, 1992), Rosenblueth (1986), Rosenblueth and Ordaz 

(1987), Marzocchi and Sandri (2003), Kijko and Smit (2012), Kijko et al. (2016), Ordaz and Giraldo (2018), and 

Vermeulen and Kijko (2019). The focus of these studies was the assessment of the mean activity rate 𝜆 and the 

Gutenberg–Richter 𝑏-value.   

 

The assessment of 𝑚𝑚𝑎𝑥 is often addressed separately, using techniques differing from those for assessing 𝜆 and 

the 𝑏-value, owing to the complex nature of the area-characteristic maximum possible seismic event magnitude. 

Several studies have been published on this topic, including those of Cooke (1979), Pisarenko (1991), Pisarenko 

et al. (1996) and references therein, Kijko (2004), Wheeler (2009), Kijko and Singh (2011), Pisarenko et al. (2014) 

and references therein, Vermeulen and Kijko (2017), Pisarenko and Rodkin (2017), and Beirlant et al. (2019). 

Some degree of debate remains amongst authors, e.g. Holshneider et al. (2011), who consider the parameter ill-

defined, whereas others (e.g. Kagan, 2002a, b and references therein; Raschke, 2015) propose specific 

modifications to magnitude distribution, with one of the distribution parameters being called the "soft" maximum 

earthquake magnitude. Beyond the value of such 𝑚𝑚𝑎𝑥, the distribution decays much faster than that indicated by 

the classical Gutenberg–Richter relation. However, this implies that a ''soft''’ cut-off allows earthquake 

magnitudes larger than those defined by 𝑚𝑚𝑎𝑥 . To avoid confusion, in the current study, the maximum earthquake 

magnitude 𝑚𝑚𝑎𝑥 is defined as the upper limit of magnitude for a given seismogenic zone or entire region. This 

terminology assumes a sharp cut-off magnitude at the maximum magnitude, implying, by definition, that no 

earthquakes are possible with a magnitude exceeding 𝑚𝑚𝑎𝑥.  

 

The reason for assessing 𝑚𝑚𝑎𝑥 separately is that the range of observations used by the sample likelihood function 

(earthquake magnitudes) depends on the unknown parameter 𝑚max. This dependence violates the regularity 

conditions of the likelihood function (Cheng and Taylor 1995; LeCam 1970; Eadie et al. 1971; Davison 2003). 

The estimation process will, therefore, reach a maximum at the maximum observed event magnitude 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  , and 

not the required maximum possible event magnitude 𝑚𝑚𝑎𝑥. Consequently, other estimation techniques have been 

applied (Cooke 1979; Pisarenko 1991; Pisarenko et al. 1996; Kijko 2004; Kijko and Singh 2011). These methods 

allow assessment for 𝑚𝑚𝑎𝑥 when a significant amount of data is available. However, such an amount of data is 

not obtainable when the available catalogue is small or the area under investigation is not prone to significant 

seismic activity (e.g. Chinnery 1979; Bender 1988). The estimation of 𝑚𝑚𝑎𝑥 could be improved by including 

prehistoric (paleo) and historical earthquakes (e.g. Kijko et al. 2016). Additional, independent information from 

tectonic, geological, and geophysical considerations could also be included using the Bayesian formalism 

(Coppersmith 1994; Cornell 1994; Kijko 2012; Johnston 1994). Although Bayesian formalism is a powerful tool, 

careful consideration of the applied technique, quality of the a priori information, and the seismic event catalogue 

is required to avoid biased estimates.  

 

This study aims to provide a uniform, stepwise approach for the assessment of the three seismic hazard recurrence 

parameters, namely 𝜆, 𝑏, and 𝑚𝑚𝑎𝑥 that is applicable to complete and incomplete seismic event catalogues, and 

could utilise a priori information through Bayesian formalism.   
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In Section 2.1, we review assessment methodologies for the three recurrence parameters in the case of a complete 

seismic event catalogue. The case of an incomplete seismic event catalogues is discussed in Section 2.2. The 

Bayesian formalism, allowing for the incorporation of prior information, is presented in Section 2.3. Application 

examples are provided in Section 3, and the conclusions in Section 4. 

 

 

2. Methodology 

 

2.1. Complete seismic event catalogues 

This section focuses on assessing the seismic hazard recurrence parameters for a single, complete seismic event 

catalogue. First, we assumed that the catalogue spans t years and contains magnitudes of seismic events that are 

each equal to or exceeding the known level of completeness 𝑚𝐶. According to the Gutenberg–Richter frequency-

magnitude relation (Gutenberg and Richter 1942, 1956), the number of seismic events 𝑛, that have a magnitude 

equal to or larger than 𝑚, can be expressed by the equation 

 

log (𝑛) = 𝑎 − 𝑏𝑚, (1) 

  

where parameter 𝑎 is a measure of the seismicity level, and parameter 𝑏 describes the ratio between the number 

of small and large events. Parameter 𝑏 is known as the b-value of the Gutenberg–Richter relation.  

 

Equation (1) was first established empirically by Ishimoto and Iida (1939) and promoted by Gutenberg and Richter 

(1942, 1956). The equation plays a central role in seismic studies. It is used to describe both tectonic and 

anthropogenic seismicity, can be applied in different time scales, and holds over a considerable range of seismic 

event magnitudes. Cornell (1968), citing Isacks and Oliver (1964), noted that the b-value for tectonic-origin 

seismicity typically varies between 0.65 and 1.0. Previously, it was generally accepted that 𝑏 ≌ 1 for areas of 

tectonic seismicity (Cornell 1968). 

 

Second, we assumed that the magnitudes of seismic events are independent and identically distributed random 

variables, continuous in the interval [𝑚𝑐 , 𝑚𝑚𝑎𝑥], with 𝑚𝑐 representing the level of completeness of the seismic 

event catalogue.  

 

For the frequency-magnitude Gutenberg–Richter relation (1), the probability distribution function (PDF) and 

cumulative distribution function (CDF) of earthquake magnitude are exponential, shifted-truncated, and equal to  

 

 

𝑓𝑀(𝑚) = {

𝛽exp[−𝛽(𝑚 −𝑚𝐶)]

1 − exp[−𝛽(𝑚max −𝑚𝐶)]
   for 𝑚𝐶 ≤ 𝑚 ≤ 𝑚max

               0                          for 𝑚 > 𝑚max

 (2) 

 

and 

 

𝐹𝑀(𝑚) =

{
 

 
1 − exp[−𝛽(𝑚 −𝑚𝐶)]

1 − exp[−𝛽(𝑚max −𝑚𝐶)]
,   for 𝑚𝐶 ≤ 𝑚 ≤ 𝑚max

              1                              for 𝑚 > 𝑚max.  

 (3) 

 

(Page 1968; Cosentino et al. 1977), where 𝛽 = 𝑏ln(10), and 𝑏 is the parameter of the frequency-magnitude 

Gutenberg–Richter relation.  

 

Following Aki (1965), knowledge of earthquake magnitude distribution (2) enables estimation of the β-value by 

the maximum likelihood (ML) method. The ML estimate of parameter 𝛽, 𝛽̂, is defined as the value of 𝛽 that, for 

specified n,  𝑚𝐶 , and 𝑚max, maximises the sample likelihood function 

 



5 

 

𝐿(𝐦 | 𝛽) = ∏ 𝑓𝑀(𝑚𝑖)
𝑛
𝑖=1 , (4a) 

 

or equivalently  

 

𝐿(𝐦 | 𝛽) = ∏ [
𝛽exp[−𝛽(𝑚𝑖−𝑚𝐶)]

1−exp[−𝛽(𝑚max−𝑚𝐶)]
]𝑛

𝑖=1 , (4b) 

 

where 𝐦 = (𝑚1, 𝑚2, … ,𝑚𝑛) denotes magnitudes of n seismic events, each equal to or exceeding the level of 

completeness 𝑚𝐶. The maximisation of Eq. 4b, with respect to 𝛽, leads to equation (Hamilton 1967; Page 1968)  

 

1

𝛽
= 𝑚̅ − 𝑚𝐶 +

(𝑚𝑚𝑎𝑥 −𝑚𝑐) exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]

1 − exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
, (5) 

 

where 𝑚̅ is the sample mean of earthquake magnitudes 𝐦. As the 𝛽 parameter appears on both sides of Eq. 5, the 

ML estimate 𝛽̂ is obtained from an iterative solution of the equation.  

 

When the magnitude range [𝑚𝑐, 𝑚𝑚𝑎𝑥] is large (in practice, this must be only a few units of magnitude), 𝑚𝑚𝑎𝑥 

could be assumed to be at infinity, and Eq. 5 takes the well-known form of the ML estimator of 𝛽 (Aki 1965; Utsu 

1965) 

 

𝛽̂𝐴𝑈 =
1

𝑚̅ −𝑚𝑐

. (6) 

 

Utsu (1965) was the first to derive Eq. 6 by utilising the method of moments, i.e. comparing the first population 

moment with an equivalent sample moment.  In the same year, Aki (1965) derived the same equation by applying 

the ML procedure. Further on in this paper, Eq. 6 is referred to as the Aki–Utsu estimator of the 𝛽-value, and is 

denoted as 𝛽̂𝐴𝑈.  

  

The ML estimator for the mean activity rate 𝜆𝐶 , for a single, complete catalogue that spans a time interval 𝑡, and 

contains 𝑛 events equal to or exceeding 𝑚𝐶, has the form (e.g. Benjamin and Cornell 2014) 

 

𝜆̂𝐶 =
𝑛

𝑡
. (7) 

 

By introducing the upper limit of the distribution 𝑚𝑚𝑎𝑥, the activity rate for any given magnitude m, within 

interval [𝑚𝐶 , 𝑚𝑚𝑎𝑥], becomes 

 

𝜆̂𝑚 ≡ 𝜆(𝑚) = 𝜆𝐶 𝑃[𝑀 ≥ 𝑚] = 𝜆𝐶 [1 − 𝐹𝑀(𝑚)]. (8) 

 

Following the approach applied in the assessment of the 𝛽-value and λ, the natural choice would be to determine 

the maximum possible event magnitude 𝑚max using the ML method, i.e. by maximisation of the sample likelihood 

function   

 

𝐿(𝐦|𝑚max) =∏𝑓𝑀(𝑚i)

𝑛

𝑖=1

, (9) 

 

where 𝑓𝑀(𝑚) denotes the PDF of the earthquake magnitude in Eq. 2. Unfortunately, the sample likelihood 

function for 𝑚𝑚𝑎𝑥 in Eq. 9 is defined such that its range depends on the unknown 𝑚𝑚𝑎𝑥, thereby violating the 

regularity condition of likelihood functions (Cheng and Traylor 1995; LeCam 1970). The ML estimate of Eq. 9  

reaches its maximum at the maximum observed earthquake magnitude 𝑚max
𝑜𝑏𝑠 ,  and not at the required maximum 

possible magnitude 𝑚max (Pisarenko 1991; Cornell 1994). Consequently, an unbiased estimate of 𝑚̂𝑚𝑎𝑥 cannot 
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be obtained by maximisation of the likelihood function (9). This fact illustrates Figure 1, where values of 𝑚̂max  

smaller than 𝑚max
𝑜𝑏𝑠  are not allowed; however, values larger than 𝑚max

𝑜𝑏𝑠  would produce a smaller likelihood.  

 

  

 
Fig. 1. Illustration of the sample likelihood function 𝐿(𝐦|𝑚max).  As the range of observed magnitudes depends 

on the unknown 𝑚̂max, the function reaches its maximum at the maximum observed magnitude 𝑚max
𝑜𝑏𝑠 , and not, as 

expected, at the maximum possible 𝑚max. (After Kijko 2012). 

 

This obstacle could be overcome by introducing a condition (Cooke 1979; Pisarenko 1991; Pisarenko et al. 1996), 

i.e. that the largest observed earthquake magnitude 𝑚max
𝑜𝑏𝑠 , within the time span 𝑡∗, during which the largest event 

occurred, is equal to the largest expected earthquake magnitude 𝑬[𝑚max
𝑜𝑏𝑠 ; 𝑡∗]. It must be noted that time interval 𝑡∗ , 

during which the largest event of 𝑚max
𝑜𝑏𝑠  took place, is not necessarily equal to the duration of the seismic event 

catalogue t. It could occur, and often does, that 𝑚max
𝑜𝑏𝑠  does not form part of the complete seismic event catalogue 

used in the estimation process but occurred before the start of the catalogue. In such situations 𝑡∗ ≥ 𝑡. It is essential 

to include such an event in the estimation process to prevent underestimation of the maximum possible magnitude 

𝑚𝑚𝑎𝑥. In turn, not remembering the difference between 𝑡∗and 𝑡 leads to an overestimation of 𝑚𝑚𝑎𝑥. 

 

Replacing the expected value of the largest observed magnitude 𝑬[𝑚max
𝑜𝑏𝑠 ; 𝑡∗] by the largest observed magnitude 

𝑚max
𝑜𝑏𝑠  leads to an equation of the form  

 

𝑚̂max = 𝑚max
𝑜𝑏𝑠 + ∆, (10) 

 

where ∆ is a correction factor. Following a mathematical formalism derived by Tate (1959) and, when applied to 

estimating the upper limit of the seismic event magnitude, ∆ takes the form (Pisarenko 1991; Pisarenko et al. 

1996)   

 

Δ =
1

𝑛𝑓𝑀(𝑚max
𝑜𝑏𝑠 )

, (11) 

 

or alternatively, for the PDF in Eq. 2 as 
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Δ =
1 − exp[−𝛽(𝑚max

𝑜𝑏𝑠 −𝑚𝐶)]

𝑛 exp[−β(𝑚max
𝑜𝑏𝑠 −𝑚𝐶)]

. (12) 

 

The second formula describing Δ is of the form (Cooke 1979) 

 

Δ = ∫ [𝐹𝑀(𝑚)]
𝑛𝑑𝑚

𝑚max

𝑚𝐶

, (13) 

 

where 𝐹𝑀(𝑚) denotes a CDF. If applied to the CDF of Eq. 3, it takes the form (Kijko 2004)   

 

Δ =
𝐸1(𝑛2) − 𝐸1(𝑛1)

𝛽exp(−𝑛2)
, (14) 

 

where 𝑛1 = 𝜆𝐶𝑡
∗ {1 − exp[−𝛽(𝑚max −𝑚𝐶)]}⁄ , 𝑛2 = 𝑛1exp[−𝛽(𝑚max −𝑚𝐶)], and 𝐸1(∙) denotes an 

exponential integral function.  

 

Both procedures attempt to correct the bias of the classical ML estimator 𝑚̂𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 . The first procedure 

(Eqs 11–12) is quite straightforward, and can be derived purely intuitively by employing the well-known 

properties of the uniform distribution (Kijko and Graham 1989). The procedure was probably first derived by Tate 

(1959). It was used by Pisarenko et al. (1996), who quoted it without deriving it, after Kendall and Stuart (1967), 

and applied for estimating maximum regional magnitude 𝑚max. The original derivation by Tate is very complex, 

and understanding it requires an advanced background in theoretical statistics. The advantage of the formula is 

that it does not require extensive calculations.  

 

The second procedure (Eq. 14) can be derived by integrating parts of the CDF of the largest expected magnitude 

and replacing of it by the largest observed magnitude 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  (Cooke 1979). This procedure is numerically more 

demanding than the first one; however, based on simulation analysis, it provides an estimate that is more accurate 

with a small number of observations and has a lower mean squared error (Kijko and Graham 1989). It is important 

to note that for large 𝑛, the two formulas are asymptotically equivalent (Vermeulen and Kijko 2017).  

 

After replacing, in Eq. 5, 𝑚̅ − 𝑚𝐶 by 1 𝛽̂𝐴𝑈⁄ , the solution of the system of two equations 

 

{
 

 
1

𝛽
=

1

𝛽̂𝐴𝑈
+
(𝑚𝑚𝑎𝑥 −𝑚𝑐) exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]

1 − exp[−𝛽(𝑚𝑚𝑎𝑥 −𝑚𝑐)]

𝑚max = 𝑚max
𝑜𝑏𝑠 + Δ

 (15) 

 

provides estimates for the required 𝛽̂ and 𝑚̂𝑚𝑎𝑥. The ML estimate of the mean activity rate 𝜆 is defined by Eq. 7.  

 

From a numerical point of view, the simultaneous assessment of 𝛽̂ and 𝑚̂max could be challenging. Following the 

approach applied to solve a similar problem (Kijko and Sellevoll 1992; Kijko et al. 2016), the system of Eq. 15 

could be split into two equations and solved sequentially by iteration. Based on the 𝛽̂-estimate, the new 𝑚̂𝑚𝑎𝑥 is 

obtained from the solution of the second equation (Eq. 15). This procedure is repeated until the corrections to 𝛽̂ 

and 𝑚̂𝑚𝑎𝑥 are negligibly small. Application of this strategy to various data sets has shown that the procedure is 

efficient and fast. In most cases, the estimates of 𝛽̂ and 𝑚̂𝑚𝑎𝑥 are obtained within three interactions (Kijko and 

Sellevoll 1989).  

 

The application of any iterative scheme requires determining starting points for the unknown parameters. The 

Aki–Utsu estimate (Eq. 6) could be used as the starting point for parameter 𝛽, whereas 𝑚𝑚𝑎𝑥 = 𝑚max
𝑜𝑏𝑠 + 0.5 could 
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be used for the starting point of 𝑚𝑚𝑎𝑥. Such choice for a starting point for 𝑚𝑚𝑎𝑥  is often used in engineering 

applications (e.g. Wheeler 2009).  

 

An alternative, approximate solution for the first equation in the system of equations (Eq. 15) is the non-iterative 

estimate of 𝛽̂, which takes the form (Gibowicz and Kijko 1994)  

 

 

𝛽̂ =  𝛽̂𝐴𝑈(1 − 𝐶̂𝑓), (16) 

 

where the correction for the finite value of the upper limit 𝑚𝑚𝑎𝑥 is 

 

𝐶̂𝑓 =
(𝑚𝑚𝑎𝑥 −𝑚𝑐) exp[−𝛽̂𝐴𝑈(𝑚𝑚𝑎𝑥 −𝑚𝑐)]

1 − exp[−𝛽̂𝐴𝑈(𝑚𝑚𝑎𝑥 −𝑚𝑐)]
. (17) 

 

 

 

2.2 Incomplete seismic event catalogues  

Assessment of the three seismic hazard recurrence parameters 𝜆, 𝛽, and 𝑚𝑚𝑎𝑥 becomes more complex when 

seismic event catalogues are incomplete. Here, an incomplete catalogue is defined as a seismic event database 

that is divided into several complete sub-catalogues, each complete but starting from a different magnitude level 

𝑚𝐶 (Fig. 2). 

 

The first attempts to estimate the recurrence parameters 𝜆 and 𝛽 in the case of incomplete catalogues were 

probably made by Molchan et al. (1970) and Stepp (1972). In addition to estimates for 𝜆 and 𝛽, Stepp's technique 

describes the assessment of the level of completeness 𝑚𝐶. The use of incomplete catalogues has also been 

discussed by Rosenblueth (1986) and Rosenblueth and Ordaz (1987); however, the most elegant, straightforward, 

and best-known is the procedure derived by Weichert (1980). The latest attempt to solve the problem was made 

by Kijko and Smit (2012). Their approach provides two simple equations for the assessment of 𝜆 and 𝛽. However, 

it does not allow the evaluation of 𝑚𝑚𝑎𝑥. In this section of the current paper, we outline the approach when, in 

addition to 𝜆 and 𝛽, the area-characteristic maximum possible seismic event magnitude 𝑚𝑚𝑎𝑥 is estimated. 

 

Assume that the seismic event catalogue is divided into 𝑠 sub-catalogues, each with known, but different levels 

of completeness 𝑚𝐶
(1)
, 𝑚𝐶

(2)
, … ,𝑚𝐶

(𝑠)
. Each of these sub-catalogues spans 𝑡𝑗 years, and contains a record of 𝑛𝑗 

(𝑗 = 1,2, … , 𝑠) events with known magnitudes, as shown in Fig. 2.  
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Fig. 2. Schematic illustration of a typical incomplete seismic event catalogue with different levels of completeness 

𝑚𝑐
(𝑗)

 for 𝑗 = 1, . . , 𝑠, with 𝑠 the total number of complete subsets of the catalogue. (After Kijko and Smit 2012). 

 

For a specified value of 𝑚𝑚𝑎𝑥, overall, the ML estimate of the 𝛽-value could be obtained by applying the 

multiplicative property of likelihood functions (Rao 1973). If applied to our problem, the joint sample likelihood 

function, which utilises information on the magnitudes of all seismic events that occurred within the entire time 

span of the catalogue, takes the form 

 

𝐿(𝐦 | 𝛽) =  ∏ 𝐿(𝐦𝑗| 𝛽)𝑠
𝑗=1 , (19) 

 

where 𝐿(𝐦𝑗| 𝛽) represents the sample likelihood function for sub-catalogue 𝑗, based on magnitudes 𝐦𝑗 observed 

within 𝑗𝑡ℎ sub-catalogue, 𝐦 = (𝐦1,𝐦2, … ,𝐦s) and 𝑗 = 1,2, … , 𝑠. 

 

Following the same principles as discussed in Section 2.1, the ML estimates 𝛽̂ and 𝑚̂𝑚𝑎𝑥 are derived under the 

condition that the largest observed earthquake magnitude 𝑚max
𝑜𝑏𝑠 , within time period 𝑡∗, is equal to the largest expected 

earthquake magnitude 𝑬[𝑚max
𝑜𝑏𝑠 ; 𝑡∗]. Utilising the same approach as applied by Kijko and Smit (2012), and under the 

assumption of a specified value for 𝑚max, the maximisation of the sample likelihood function (Eq. 19), with respect 

to 𝛽, leads to  

 

1

𝛽
=∑𝑟𝑗

𝑠

𝑗=1

[
1

𝛽̂𝐴𝑈
𝑗
+
(𝑚max −𝑚𝐶

𝑗
) 𝑒𝑥𝑝[−𝛽(𝑚max −𝑚𝐶

𝑗
)]

1 − 𝑒𝑥𝑝[−𝛽(𝑚max −𝑚𝐶
𝑗
)]

], (20) 

 

or equivalently  

 

1

𝛽
=

1

𝛽̂𝐴𝑈𝐸
+∑𝑟𝑗

𝑠

𝑗=1

 𝐶𝑓
𝑗
, (21) 

 

where the correction factors for the specified, finite value of 𝑚𝑚𝑎𝑥 are of the form   

 

 𝐶𝑓
𝑗
=
(𝑚max −𝑚𝐶

𝑗
) 𝑒𝑥𝑝[−𝛽(𝑚max −𝑚𝐶

𝑗
)]

1 − 𝑒𝑥𝑝[−𝛽(𝑚max −𝑚𝐶
𝑗
)]

, (22) 

 

and 𝛽̂𝐴𝑈𝐸  is the Aki–Utsu extended (AUE) estimator of the 𝛽 value (Kijko and Smit 2012)  

 

𝛽̂𝐴𝑈𝐸 = (
𝑟1

𝛽̂𝐴𝑈
1 +

𝑟2

𝛽̂𝐴𝑈
2 +⋯+

𝑟𝑠

𝛽̂𝐴𝑈
𝑠 )

−1

. (23) 

 

In Eq. 23, 𝑟𝑗 = 𝑛𝑗 𝑛⁄ , 𝑛𝑗 is the number of seismic events in the 𝑗𝑡ℎ sub-catalogue and 𝑛 = ∑ 𝑛𝑗
𝑠
𝑗=1  is the total 

number of events with magnitudes equal to or exceeding the level of completeness 𝑚𝐶
𝑗
. The 𝛽̂𝐴𝑈

𝑗
 estimate is a 

classical Aki–Utsu estimator (Eq. 6), calculated for each of the sub-catalogues 𝑗, (𝑗 =  1, . . . , 𝑠). 

 

Similar to the case of a single seismic event catalogue, estimates of 𝛽 and 𝑚max from a catalogue with different 

levels of completeness is obtained from sequentially solving system 24 

 

{
 
 

 
 1

𝛽
=

1

𝛽̂𝐴𝑈𝐸
+∑𝑟𝑗

𝑠

𝑗=1

 𝐶𝑓
𝑗

𝑚max = 𝑚max
𝑜𝑏𝑠 + Δ

, (24) 
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by iteration, in the same manner as system 15. Following Kijko and Smit (2012), the mean activity rate 𝜆𝐶 , takes 

the form  

 

𝜆̂𝐶 = 
𝑛

∑ 𝑡𝑗
exp[−𝛽̂(𝑚𝐶

𝑗
−𝑚𝐶)]

1 − exp[−𝛽̂(𝑚𝑚𝑎𝑥 −𝑚𝐶)]
𝑠
𝑗=1

. 
(25) 

 

Estimate 𝜆̂𝐶 denotes the mean seismic activity rate for events with magnitudes equal to or exceeding any arbitrarily 

selected earthquake magnitude 𝑚𝐶, where 𝑚𝐶 ≤ 𝑚𝐶
𝑗
 (𝑗 = 1,… 𝑠). As expected, for 𝑠 = 1;  𝑚𝐶

1 = 𝑚𝐶
2 = ⋯ =

𝑚𝐶
𝑠 = 𝑚𝐶; 𝑡 = 𝑡1; 𝑡2 = 𝑡3 = ⋯ = 0 and 𝑛 = 𝑛1 with 𝑛2 = 𝑛3 = ⋯ = 0, the system of equations, Eq. 24, takes 

the form of Eq. 15, i.e. analogical equations derived for a single, complete catalogue. In addition, for 𝑚𝑚𝑎𝑥 →

+∞, Eq. 24 reduces to the classical Aki–Utsu estimator (Eq. 6), and 𝜆C  takes the standard form 𝜆 = 𝑛 𝑡⁄  in Eq. 7.  

 

Tests on synthetic and real data have shown that the iterative, sequential solutions for the parameters in the system 

of equations (Eqs 15 and 24) are obtained after not more than five iterations. 

 

 

2.3 Account of a priori information 

 

In most cases, the area-characteristic maximum possible seismic event magnitude 𝑚𝑚𝑎𝑥 is the most challenging 

parameter to estimate. Its assessment could be improved by including additional, independent information. 

Fortunately, for several areas under investigation, the information available on the expected value of 𝑚𝑚𝑎𝑥 was 

obtained independently from the seismic event catalogue. This section shows how the additional information could 

be incorporated into the estimation schemes of 𝜆, β, and 𝑚𝑚𝑎𝑥 defined in Sections 2.1 and 2.2.  

 

The estimators for 𝑚̂𝑚𝑎𝑥 (Cooke 1979; Pisarenko 1991), as introduced in Section 2.1, have several attractive 

properties and are applicable to a broad range of magnitude distributions. They can also be used when the number 

of earthquakes 𝑛 is not known. In such instance, the number of earthquakes could be replaced by 𝑡. This 

replacement is equivalent to the assumption that the number of earthquakes occurring in unit time conforms to a 

Poisson distribution with parameter , where 𝑡 is the time span during which the largest observed event 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 , 

was recorded. Furthermore, both estimators provide a value of 𝑚̂𝑚𝑎𝑥 that is never less than the largest observed 

magnitude 𝑚𝑚𝑎𝑥
𝑜𝑏𝑠 .  

 

Although procedures based on the formalisms developed by Cooke (1979) and Pisarenko (1991) provide powerful 

tools for the evaluation of 𝑚𝑚𝑎𝑥, they have a significant weak point, namely most of the catalogues of tectonic-

origin seismicity are too short and provide insufficient information for reliable estimation of 𝑚𝑚𝑎𝑥. In these cases, 

additional information, such as local geological conditions, similarity of tectonic environments, regime of stresses, 

worldwide database for maximum recorded events, geophysical data, and historical and pre-historical (paleo) 

seismicity could serve as supplementary data to help constrain 𝑚𝑚𝑎𝑥 estimates. Bayesian formalism is the natural 

choice for including a priori data and improving the assessment of this parameter. 

 

Cornell (1994) pointed out that the blind employment of the Bayesian formalism provides a flawed answer that 

disqualifies the procedure. In the following part of this section, we briefly recall the main points of Bayesian 

formalism, as Cornell formulated and examined the source of the problem. Subsequently, we show that a correct 

estimate of 𝑚max could be obtained if the Cornell Bayesian formulation were modified.  

 

The Bayesian formalism combines the prior distribution of 𝑚max, 𝜋(𝑚max), and the sample likelihood function 

𝐿(𝐦|𝑚max) (Eq. 9) of seismic event magnitudes 𝐦 = (𝑚1, 𝑚2, … ,𝑚𝑛). The resulting distribution, which 

summarises both the a priori knowledge of 𝑚max, and the information coming from the recorded event 

magnitudes 𝐦, is known as the posterior distribution of 𝑚max and is of the form 
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𝑝𝑚max
(𝑚max|𝐦) =

𝜋(𝑚max)𝐿(𝐦|𝑚max)

∫ 𝜋(𝑚max)𝐿(𝐦|𝑚max)d𝑚max

. (26) 

 

The posterior distribution, Eq. 26, replaces the sample likelihood function 𝐿(𝐦|𝑚max) as the expression that 

incorporates all the available information on 𝑚max. At least three Bayesian estimators are discussed in the 

literature, namely the maximum a posterior, the posterior mean, and the posterior median (Mood et al. 1974). 

The maximum a posterior, known as the MAP estimate, corresponds to the magnitude at which the posterior 

distribution Eq. 26 achieves its maximum. The posterior mean is defined as the mean value of the posterior 

distribution, and the median value of the distribution determines the posterior median.  

 

A properly built sample likelihood function is expected to be such that the probability of observing magnitudes 

𝐦 reaches its maximum at the 'true' 𝑚max (Mood et al. 1974). As shown in Section 2.1, the sample likelihood 

function defined in Eq. 9 does not fulfil this condition, as it reaches its maximum at the maximum observed 

magnitude 𝑚max
𝑜𝑏𝑠 , and not, as required, at the maximum possible magnitude 𝑚max (Fig. 1). 

  

Given that the sample likelihood function (Eq. 9) is part of the posterior distribution (Eq. 26), the MAP estimator 

has the same flaw and its estimate will be underestimated systematically. The degree of underestimation depends 

on the quantity of information provided by each of the two components of the posterior distribution. The 

underestimation of 𝑚̂max is minimal when the a priori function 𝜋(𝑚𝑚𝑎𝑥) is well defined and accurate, and 

𝐿(𝐦|𝑚max) is based on a short catalogue with only a few weak events. In such instance, most information 

informing 𝑚max will derive from 𝜋(𝑚𝑚𝑎𝑥). However, when the sample likelihood function contains a significant 

amount of information (e.g. it is based on a long catalogue containing many events, a long record of historical 

earthquakes, and the like), the posterior distribution would be dominated by the sample likelihood function 

𝐿(𝐦|𝑚max). In this case, the MAP estimate 𝑚̂𝑚𝑎𝑥 would be located somewhere between the maximum observed, 

𝑚𝑚𝑎𝑥
𝑜𝑏𝑠  and the 'true' 𝑚𝑚𝑎𝑥, i.e. 𝑚max

𝑜𝑏𝑠 < 𝑚̂max < 𝑚max. This would lead to a biased and underestimated value of 

𝑚̂max. For this reason, Cornell (1994) 'disqualified' his own suggested procedure.   

 

The above discussion explores only the MAP estimate of 𝑚max. However, conclusions regarding the shortfalls of 

the Cornell (1994) Bayesian formalism are applicable to all Bayesian estimators utilising the sample likelihood 

function Eq. 9. For example, based on simulated data, the posterior mean, in contrast with the MAP, overestimates 

the value of 𝑚max. This overestimation could reach a value of one unit of magnitude (Kijko 2012). 

 

A correction for the bias in the Cornell (1994) Bayesian procedure for 𝑚𝑚𝑎𝑥 could be made in several ways. 

However, here, a simple, palliative solution is presented that is based on knowledge of the bias correction factor 

Δ (Eqs 12 and 14) and the replacement of the sample likelihood function 𝐿(𝐦|𝑚max) by 𝐿(𝐦 + Δ|𝑚max). Such 

transformation assures that the new likelihood function reaches its maximum at the maximum possible magnitude 

𝑚max, and not before at the maximum observed magnitude 𝑚max
𝑜𝑏𝑠 . 

 

The assessment of 𝛽̂ and 𝑚̂𝑚𝑎𝑥  could be done in a way similar to that for several sub-catalogues (Eq. 24) each 

with a different level of completeness. Therefore, the Bayesian MAP estimation of parameters 𝛽 and 𝑚max, in the 

presence of a priori information on 𝑚max, is obtained from the (conditional) maximisation of the posterior 

distribution of 𝑚max  

 

𝑀𝐴𝑋[𝑝𝑚max
(𝑚max|𝐦 +  Δ)], (27) 

 

under the condition 
1

𝛽
=

1

𝛽̂𝐴𝑈𝐸
+ ∑ 𝑟𝑗

𝑠
𝑗=1  𝐶𝑓

𝑗
.  

The numerical maximisation of Eq. 27 is relatively straightforward. If 𝑚max is estimated with the help of the 

Bayesian posterior mean, Eq. 27 is replaced by  

 

𝑚̂𝑚𝑎𝑥 = ∫𝑝𝑚max
(𝜁|𝐦 +  Δ)d𝜁. (28) 
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Finally, the choice of the posterior median estimator of 𝑚max, leads to the replacement of Eq. 27 by  

 

∫ 𝑝𝑚max
(𝜁|𝐦 +  Δ)d𝜁

𝑚̂𝑚𝑎𝑥

𝑚𝐶
 = 1/2. (29) 

 

The formalism described above is not limited to the maximum possible magnitude 𝑚max. The methodology is 

easily adaptable to include a priori information for the two other seismic hazard recurrence parameters 𝜆 and 𝛽. 

To illustrate the application of the Bayesian formalism to the estimation of 𝛽, it is assumed that some independent 

a priori information for this parameter and its standard error are available from previous investigations. These 

two new parameters are denoted 𝛽0 and 𝜎𝛽0. Further, assuming that 𝛽0 follows the Gaussian distribution with 

mean 𝛽0 and standard deviation 𝜎𝛽0 , the prior distribution of 𝛽 takes the form 

  

𝜋(𝛽) =
1

√2𝜋𝜎𝛽0
exp [−

(𝛽 − 𝛽0)
2

𝜎𝛽0
2

]. (30) 

 

The ML assessment of 𝛽 using Eqs 5 and 21 could then be replaced by the Bayesian formalism with the posterior 

distribution  

 

𝑝𝛽(𝛽|𝐦) =
𝜋(𝛽)𝐿(𝐦|𝛽)

∫𝜋(𝛽)𝐿(𝐦|𝛽)d𝛽
, (31) 

 

 

where 𝐿(𝐦 | 𝛽) is defined by equation (19). 

 

In this way, e.g. the MAP estimate of 𝛽̂ and 𝑚̂𝑚𝑎𝑥, in the presence of a priori information for 𝑚max and β is 

obtained from the simultaneous maximisation of the posterior distributions of 𝑚max and 𝛽  

 

{

𝑀𝐴𝑋[𝑝𝑚max
(𝑚max|𝐦 +  Δ)]

𝑀𝐴𝑋[𝑝𝛽(𝛽|𝐦)].                       

 

 

(32) 

or equivalently  

 

𝑀𝐴𝑋[𝑝𝑚max
(𝑚max|𝐦 +  Δ)], 

  

under the condition 
1

𝛽
=

1

𝛽̂𝐴𝑈𝐸
+ ∑ 𝑟𝑗

𝑠
𝑗=1  𝐶𝑓

𝑗
−

𝛽−𝛽0

𝑛 𝜎0
2 . 

 

The posterior distribution for parameter 𝜆 could be built in a manner similar to that for 𝛽. However, it has to be 

noted that although application of the normal distribution as a prior is probably quite common, it is far from 

optimal. It would be significantly better to replace the Gaussian prior by the Gamma prior. Because of the 

conjugtivity property of Gamma distribution (Johnson et al., 1994), the posterior distribution would provide a 

quite elegant, close-form solution derived by Esteva (Newmark and Rosenblueth, 1971) and would be more 

sensible than using Gaussian priors (Iervolino and Giorgio, 2015). The Gaussian distribution does not have correct 

domain, as the likelihood of having negative values of 𝛽 and 𝝀 is not zero.  

 

 

3. Applications 

In this section, some of the estimators discussed in Section 2 are compared with those most often referred to in 

literature. The Bayesian MAP estimators for 𝛽 and 𝑚𝑚𝑎𝑥 , defined in the system Eq. 32, are used to estimate the 

seismic hazard recurrence parameters for Cape Town, South Africa. 
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3.1. Comparison of three b-value estimation procedures from catalogues with different levels of 

completeness 

In Section 2, several solutions were provided for effectively solving the same problem. However, the question 

arises which of these is the best. 

 

In this section, we compare the performance of three procedures for estimating 𝛽 based on a theoretical seismic 

event catalogue with different levels of completeness. In this comparison, we selected the three methods most 

often used according to literature, which are those of Weichert (1980), Kijko and Sellevoll (1989), and Kijko and 

Smit (2012). We used the Monte Carlo simulation technique in our comparison process.  

 

The procedure by Weichert (1980) provides a reliable estimation of 𝛽 and 𝜆 by using magnitude–binned data. The 

procedure offers solutions that are computed sequentially and are easy to apply. Ordaz and Giraldo (2018) contend 

that such sequential search for the two parameters is a weak point of the approach. The solution for one of the 

parameters will be optimal only if the answer to the other is already known. However, the problem could be 

resolved by a sequential solution of each equation, repeated until corrections to the unknown parameters are 

negligibly small.  

 

The second procedure is described in Kijko and Sellevoll (1989). The authors discuss the ML estimation of 𝜆, 𝛽, 

and 𝑚𝑚𝑎𝑥 for incomplete catalogues, as well as the inclusion of historical events and their uncertainties. The two 

parameters 𝜆 and 𝛽 are assessed simultaneously. The difference between the procedures of Kijko and Sellevoll 

(1989) and Weichert (1980) is the manner in which the seismic event magnitudes are treated. Kijko and Sellevoll 

(1989) assume a continuous magnitude scale, whereas the Weichert (1980) approach is based on binned magnitude 

classes. However, a significant number of observations have indicated that the two procedures provide the same 

results (Weichert and Kijko 1989).  

 

The third method we applied is the extended ML Aki–Utsu estimator, as defined in Eq. 23. Similar to the Kijko 

and Sellevoll (1989) procedure, the seismic event magnitudes are treated as continuous data. The difference 

between the two estimators is the construction of the sample likelihood function, which results in an estimator, 

and is notably easier to manage. 

 

The Monte Carlo simulation technique was applied to investigate the performance of the three procedures. A 

hypothetical seismic event catalogue, with a low annual activity rate characteristic of areas of low seismicity, was 

divided into four sub-catalogues, each with a time span of 50 years. Each sub-catalogue was assigned a level of 

completeness of 𝑚𝐶
1 = 4.2, 𝑚𝐶

2 = 4.0, 𝑚𝐶
3 = 3.6, and 𝑚𝐶

4 = 3.0, respectively. The seismic event magnitudes were 

generated according to the PDF defined in Eq. 2, with parameters 𝑚max = 7.0, mean activity rate 𝜆3.0 = 10, and 

𝛽 = 2.303, which is equivalent to the Gutenberg–Richter 𝑏-value equal to 1. Each simulation was repeated 10 

000 times. The results of the experiment are shown in Table 1. 

 

Table 1. Results of the Weichert (1980), Kijko and Sellevoll (1989) and updated, and the extended Aki–Utsu (Eq. 

23) estimation procedures for the 𝜷 parameter. The estimates are based on 10 000 simulated catalogues, each 

divided into four 50-year-duration sub-catalogues, and with a level of completeness of 𝒎𝑪
𝟏 = 𝟒. 𝟐, 𝒎𝑪

𝟐 = 𝟒. 𝟎, 

𝒎𝑪
𝟑 = 𝟑. 𝟔, and 𝒎𝑪

𝟒 = 𝟑. 𝟎, respectively. The earthquake magnitudes were generated using the PDF defined in 

Eq. 2, with parameters 𝒎𝐦𝐚𝐱 = 𝟕. 𝟎, mean activity rate 𝝀𝟑.𝟎 = 𝟏𝟎, and 𝜷 = 𝟐. 𝟑𝟎𝟑, (equivalent to the Gutenberg-

–Richter 𝒃-value equal to 1.0). The table is modified after Vermeulen (2020).  

 

𝜷-parameter descriptive 

statistics 

Weichert (1980) Kijko and Sellevoll (1989)  Kijko and Smit (2012) 

Eq. 23 

Mean 2.005 2.182 2.190 

Standard deviation 0.034 0.027 0.026 

Mean square error 0.090 0.015 0.013 

Bias -0.298 -0.121 -0.112 

95% confidence interval [1.950, 2.061] [2.137, 2.226] [2.146, 2.233] 
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The results of the simulations summarised in Table 1 show that the performance of all three estimators is similar 

and they provide a 𝛽-value that is significantly undesimated. The source of this undestimation is the lack in the 

simulated catalogue of events with magnitudes close to the upper limit of magnitude 𝑚𝑚𝑎𝑥 = 7.0. Moreover, 

neither of the two applied procedures (Kijko and Sellevoll 1998; Kijko and Smit 2012) could provide a reasonable 

value of 𝑚𝑚𝑎𝑥 = 7.0. Judging from the estimated mean values, standard deviations, and mean square errors, the 

updated, extended Aki–Utsu estimator (Eq. 23) and the Kijko and Sellevoll procedures appear slightly superior. 

Further, some more-advanced comparisons have indicated that the Weichert (1980) estimator is biased at lower 

activity rates (relating to fewer observations) (Vermeulen 2020). The above example is concerning, as the 

assessment of 𝑚𝑚𝑎𝑥 for areas of weak seismicity based only on the seismic event catalogue provides biased 

(underestimated) b-values that are, therefore, not applicable for the assessment of 𝑚𝑚𝑎𝑥. More-trustworthy 

assessments of these two parameters could be conducted by incorporating additional, independent information 

and applying the Bayesian formalism.  

 

3.2. Seismic hazard recurrence parameters for Cape Town, South Africa 

The Bayesian formalism for 𝛽 and 𝑚𝑚𝑎𝑥, defined in Eq. 32, was applied for the assessment of seismic hazard 

recurrence parameters of Cape Town, South Africa.  

 

The local magnitude 6.3 Ceres–Tulbagh earthquake of 1969 remains the most destructive earthquake in South 

African history. The earthquake occurred on 29 September 1969 in the Ceres–Tulbagh area, ca. 90 km from Cape 

Town. The event was reportedly felt as far as Durban in KwaZulu-Natal, over 1 000 km away. More than 70% of 

the buildings in Tulbagh suffered damage, and over half of the local population was left homeless. Moreover, 

most local roads in the area were badly cracked. Large fires were ignited when electricity lines and boxes were 

damaged. Most of the Tulbagh community was evacuated, and many of the damaged houses were never rebuilt 

(www.stormchasing.co.za). Twelve people were killed and many more injured (Fig. 3). According to an AXCO 

Insurance Market Report, the insured loss of this event was US$7.4 million at that time. The total uninsured loss 

was 3.5 times as high (Davis and Kijko 2003).  

 

 

 
 

 

Fig. 3. Damage observed at Tulbagh after the Ceres earthquake. Source: Pule et al. (2015). Adapted from 

Fernandez (1974). 

 

The catalogue used in this study encompasses southern Africa and it is compiled and maintained by the Council 

for Geoscience (CGS) of South Africa. The catalogue incorporates databases provided by neighbouring countries, 

the Sub-Saharan Africa (SSA)-Global Earthquake Model (GEM) earthquake catalogue (Poggi et al. 2017), and 

data from the International Seismological Centre (ISC) in the United Kingdom and the United States Geological 

Survey (USGS). However, the database of seismic events for the investigated area is highly incomplete and 

uncertain, particularly regarding the size and location of the strongest historical events. All seismic event 
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magnitudes were homogenised and expressed in terms of local magnitude 𝑀𝐿, which is quite close to moment 

magnitude 𝑀𝑊 (Heaton et al. 1986; Deichmann 2006; Manzunzu et al. 2021).  

 

The catalogue applied in our study spans ca. 120 years, from 1 January 1900 to 31 December 2019. The catalogue 

contains events located within a radius of 300 km from the epicentre of the Ceres–Tulbagh earthquake. Events 

prior to 1 January 1900 were not used in the calculations, as they are not considered a complete or reliable source 

of information. After a detailed investigation of completeness, the catalogue was divided into four parts, each with 

a different level of completeness (Table 2). 

 

Table 2. Division of the tectonic-origin earthquake catalogue used in the analysis. 

Type of catalogue Time span 𝒎𝑪 SE 

Complete #1 1900/01/01–1964/12/31 4.2 0.3 

Complete #2 1965/01/01–1990/12/31 3.8 0.2 

Complete #3 1991/01/01–1995/12/31 3.1 0.2 

Complete #4 1996/01/01–2019/12/31 3.0 0.1 

 

𝑚𝐶 = level of completeness of the sub-catalogue for the specified time period 

SE = standard error (assumed uncertainty in earthquake magnitude determination) 

 

The estimation process was performed twice to demonstrate the effect of implementing additional information on 

the hazard recurrence parameters β and 𝑚𝑚𝑎𝑥, namely 1) without (Eq. 27) and 2) with an account of a priori 

information (Eq. 32). Following Fenton et al. (2006), we assumed that the a priori information for the β-value for 

the investigated area is equal to 2.12 ± 0.46. This is equivalent to 𝑏 = 0.92 ± 0.20.  

 

The maximum possible seismic event magnitude 𝑚𝑚𝑎𝑥 for different parts of the world has been discussed by 

several authors (Fenton et al. 2006; Calais et al. 2016; Stevens and Avouac 2017). Most of the assessments of 

𝑚𝑚𝑎𝑥 that are characteristic to areas similar to the stable continental region of South Africa oscillate around 

𝑚𝑚𝑎𝑥 = 7.0, with a standard error in the order of 0.5. Accordingly, for this study, an a priori value of 𝑚𝑚𝑎𝑥 =

7.0 ± 0.5 was assumed for the Cape Town area. The results of the estimated recurrence parameters using the 

system of equations, Eq. 27 and Eq. 32, are shown in Table 3. 

 

Table 3. Comparison of seismic recurrence parameters (𝜆̂, 𝑏̂, 𝑚̂max) for the Cape Town area estimated without 

a priori information (Eq. 27) and with account of a priori information (Eq. 32).  

 

Parameters  

Without including a priori 

information  

Eq. 27 

Including a priori 

information  

Eq. 32 

Mean seismic activity rate 𝜆̂ (events/year) 

for 𝑚𝐶 = 3.0 
2.27 ± 0.44 2.41 ± 0.44 

𝛽̂-value 1.84 ± 0.23 2.00 ± 0.16 

Gutenberg–Richter 𝑏̂-value 0.80 ± 0.10 0.87 ± 0.07 

𝑚̂max 6.56 ± 0.36 6.99 ± 0.75 

 

It is important to note that during the calculations we assumed a maximum observed magnitude of 6.3, the 

strongest earthquake that occurred in the area within the time interval 1800–2020.     

 

The results of the two assessments differ notably, particularly for 𝑚𝑚𝑎𝑥. The differences in the assessments of 

𝑚𝑚𝑎𝑥 have a significant effect on the estimated mean return periods. In the absence of any a priori information, 

the mean return period of a seismic event with a magnitude of 6.56 is 285 years. The mean return period for the 

same magnitude, but calculated with an account of a priori information for both the 𝛽 and 𝑚𝑚𝑎𝑥 parameters, is 
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1310 years, i.e. 4.6 times longer. The inclusion of a priori information in the calculation of 𝛽̂ increased the 

estimate from 1.84 to 2.00 and reduced the standard error. The mean activity rate estimate 𝜆̂𝐶 also increased with 

the inclusion of additional information in the estimation of 𝛽 and 𝑚𝑚𝑎𝑥.  

 

 

4. Conclusions 

In this study, we focused on the assessment of three key parameters, namely the mean activity rate 𝜆, the 

Gutenberg–Richter 𝑏-value, and the maximum possible event magnitude 𝑚𝑚𝑎𝑥 that are required by the 

probabilistic seismic hazard formalism of Esteva–Cornell–McGuire. 

 

This study presents a uniform approach to the ML estimate of the recurrence parameters 𝜆 and 𝛽(= 𝑏 ln(10)) in 

the case of a complete seismic event catalogue, with a single level of completeness, and for the more common 

case where the catalogue has multiple levels of completeness. Two systems of equations were derived, which are 

applicable to complete (Eq. 15) and incomplete (Eq. 27) seismic event catalogues.  

 

Although the mathematical formalism leading to the systems of equations (Eq. 15) and (Eq. 27) provide powerful 

tools for evaluating the three recurrence parameters, these systems of equations have a significant weak point, 

namely most of the catalogues of tectonic-origin seismicity are too short and provide insufficient information for 

reliable estimation of 𝑚𝑚𝑎𝑥. When additional and independent geological, geophysical, and seismological data 

are available, the application of Bayesian formalism is the natural choice to improve the assessment of this 

parameter. Therefore, we present the third system of equations (Eq. 32), which allows incorporating additional 

information. Further, we show how each of the three systems of equations could be solved sequentially by an 

iterative scheme.  

 

For illustrative purposes, two applications of the derived formalisms are presented, namely a comparison of the 

estimation of 𝛽 by Weichert (1980), Kijko and Sellevoll (1989), and the extended Aki–Utsu estimator (Eq. 27), 

as well as an assessment of the probabilistic seismic hazard recurrence parameters for the Cape Town region. 

These two examples demonstrate the importance of using an appropriate assessment procedure and the value-

added effect of implementing additional information.  
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