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Summary

Sparse estimation methods are aimed at using or obtaining parsimonious representa-

tions of data or models. Optimization is �nding the best solution to the function that

you want to optimize or seeking values of a variable that leads to an optimal value of

the function that is to be optimized. Many real life problems involves solving systems

of equations (data set with high dimension) by optimization i.e. by putting certain

constraints on the variable of interest or the function of the variable of interest. For

instance, multiple linear regression deals with solving the system of equations Y = Xβ

for β by minimizing the sum of squared errors i.e. by minimizing ‖β‖2
2. In this mini-

dissertation we discuss the algorithms used in sparse convex optimization. Consider

the following system of equations,

b = Ax

where A is an m× n matrix with more columns than rows (m < n), b and x are m× 1

and n × 1 vectors respectively. To solve for x in this system, will result in in�nitely

many solutions since the system has more columns than rows and is hence under-

determined. If one has prior knowledge that x is sparse, the problem can be turned

into an optimization problem. This results in solving the above system by minimizing

the number of non-zero elements in x. The problem can be expressed as follows,

min
Ax=b
‖x‖0 .

This is a non-convex problem and it is known that non-convex problems are hard to

solve. One way to approximate the above problem in a convex manner is to use a

method called basis pursuit. Basis pursuit minimizes the sum of the absolute value of

the elements in x i.e.‖x‖1 instead of ‖x‖0. The problem can be expressed as follows,

min
Ax=b
‖x‖1 .

This becomes a sparse convex optimization problem and it has been proven that it

provides a good approximation to the original solution. Basis pursuit is not the only

method to be considered here. We will compare di�erent type of methods for solving

sparse optimization problems to see which of the methods gives the best results i.e.
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approximates the `0-minimization best. These methods include orthogonal matching

pursuit, convex relaxation, iterative hard threshold and iterative soft threshold. The

sparse estimation method can also be used for variable selection or for reducing the

dimension of the data. In the context of regression, sparse methods are used to �nd

the simplest representation of the model at hand, and to make the prediction more

interpretable and easy to compute.

We look at a sudoku problem transformed into a system of linear equations in the

following manner:

Ax =


Arow

Acol

Abox

Acell

Aclue

x =



1

1

1
...

1


= b

where A is the matrix containing clues, x is the solution vector of the sudoku problem

and b is the indicator vector of ones, where 1 represents that the constraints are true.

We applied the algorithms to 100 unique sudoku problems with 17 clues. The times

taken to solve the 100 sudoku puzzles were recorded, analyzed and compared, for all

algorithms.
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Chapter 1

Introduction

1.1 Why sparse convex optimization?

Convex optimization techniques are mostly preferred over non-convex optimization.

This is due to the fact that convex optimization always results in a global optimum

solution [4], that is if there are many local optima, all of these local optima will give

the same minimum or maximum value. When optimizing a non-convex function with

many local optima, it is di�cult and time consuming to �nd out which of the local

optima is a global optimum [4]. For the above reason, optimizing a convex function is

faster as compared to optimizing a non-convex function.

Suppose we have a system of linear equations where there are more unknowns than

the equations. This type of system leads to in�nitely many solutions. If one has prior

knowledge that the solution is sparse this problem can be treated as an optimization

problem with a unique solution. Next, the mathematics of the elements of optimization,

convexity, and sparsity, are discussed, in that order.

1.2 Optimization

De�nition 1. Optimization [10] aims to �nd the best solution to the function that is

to be optimized or seeking values of a variable that leads to an optimal value of the

function that is to be optimized. A solution for an optimization problem is optimal if

it minimizes or maximizes the function in study.

Optimization techniques are applied in many areas for example economics, and strate-

gic planning [4]. In economics optimization can be used for maximizing the pro�t or

for minimizing the costs. In a simple form optimization can be used for �nding the

minimum or maximum value of a parabola in its domain. As an example, suppose we

have a parabola of the form f(x) = x2 + 1 in the domain [−2, 2] and we want to �nd

10
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an x value that minimizes the function. The following table represents the values of f

for x in the domain.

x -2 -1 0 1 2

f(x) 5 2 1 2 5

The function is minimum at x = 0, with a minimum value of f(0) = 1. This means

that f(x) is greater than or equal to 1 for all x in the domain [−2, 2].

Figure 1.1: Plot of f(x).

Figure 1.1 represents the plot f(x) = x2 + 1. The reference line represented by r is

at f(0) = 1. This line shows that f(x) is on or above 1 and that the minimum value

for f is 1.

Another example of optimization is �nding the minimum or maximum value of a func-

tion under some certain constraints. For example, regression and linear programming.

The �rst step in optimization problems is identifying the constraints and the objects

that need to be optimized. We should note that the solution to an optimization problem

should always satisfy the objective of optimization and the constraints, if the solution

does not satisfy the constraints we say the solution is not feasible.

De�nition 2. A mathematical optimization problem or simply an optimization prob-

lem is formulated as follows,

min

fi(x) ≤ bi
f0(x), i = 1, ...,m (1.1)

where the function f0 : Rn → R is the objective function, the functions fi : Rn → R
for i = 1, . . . ,m are the constraints functions, x = (x1, . . . , xn)

T is the optimization

variable and b1, . . . , bm are the limits or bounds of the constraints [4].
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In problem (1.1) we want to minimize f0(x) subject to the constraints f(xi) ≤ bi.

A vector x∗ is called optimal, or a solution of problem (1.1), if it has the smallest

objective value among all vectors that satisfy the constraints [4]. A point x is feasible

if it satis�es the the constraints f(xi) ≤ bi for i = 1, . . . ,m [4], and a set of all feasible

solutions is called the feasible region. A simple example of mathematical optimization

is linear programming, that is, the case of linear objective and constraint functions.

1.3 Convexity

1.3.1 Convex sets

De�nition 3. A subset S of some vector space is convex if the line segment joining

any two points p and q in S is contained in the set S, or equivalently, a set is convex if

all the points on the line segment connecting any two points is S are contained in S.

Mathematically, the subset S is convex if

L = αp+ (1− α)q ∈ S (1.2)

where α, β ∈ [0, 1] and α + β = 1 [4].

To explain equation (1.2), suppose that we have a subset S of some vector space

and we choose any two points p and q in S. Suppose any line segment joining p and q

is represented by h. A subset S is convex if all the points lying on h are contained in S.

Any point on a straight line h can be represented by L = αp+ (1−α)q for 0 ≤ α ≤ 1,

such that L = p if α = 1 and L = p if α = 0 otherwise p < L < q. Therefore a subset

S is convex if L = αp+ (1− α)q ∈ S.

(a) (b)

Figure 1.2: Example of (a) convex set and (b) non-convex set

Figure 1.2(a) represents an example of a convex set. Here p and q are any points in

the set in (a). From Figure 1.2(a) we can see that the line segment joining the points

p and q is contained in the set. Therefore by de�nition the set in (a) is convex. Figure

1.2(b) represents an example of a non-convex set. Here p and q are any points in the

set in (b). From Figure 1.2(b) we can see that the line segment joining the points p
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and q is at some point outside the set. This does not satisfy the de�nition of a convex

set. Therefore the set in (b) is not convex.

1.3.2 Convex functions

De�nition 4. If a straight line connecting two points on the function is on or above

that function, we say that the function is convex [4]. Mathematically, the function f

is convex if the following property holds,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), (1.3)

where x and y are in the domain of the function f , α ∈ [0, 1]. A function is concave if

it satis�es the following property,

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y). (1.4)

Multiplying (1.3) by −1 leads to

−f(αx+ (1− α)y) ≥ α [−f(x)] + (1− α) [−f(y)] .

This proves that if f is convex then −f is concave. This relationship allows us to study

either concave functions or convex functions. Here we will only study convex functions

since it does not add value by studying both of them.

Figure 1.3: Example of a convex function

To explain equation (1.3), consider Figure 1.3. Suppose we choose any point z =

αx+(1−α)y that lies on the straight line connecting the points (x, f(x)) and (y, f(y)).

The point is chosen such that if α = 0 then z = y and if α = 1 then z = x, otherwise

x < z < y. Let h(z) be the height of the line segment connecting (x, f(x)) and (y, f(y))
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at the point z = αx+ (1− α)y. Since the line segment is linear, we have

h(z) = h(αx+ (1− α)y)

= αh(x) + (1− α)h(y).

Here h(x) and h(y) are the heights of the line segment at points x and y respectively. In

Figure 1.3 the heights at point x and y are represented by f(x) and f(y) respectively.

This implies that h(x) = f(x) and h(y) = f(y). Therefore h(z) = αf(x)+ (1−α)f(y).
The function f is convex if the height of the line segment joining any two points in the

domain of f is greater or equal to the height of f at the same point. i.e. f is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

In Figure 1.3 the line joining any two points in the domain of f will always be above f ,

therefore the function is convex. Convex functions have an advantage over non-convex

function since any local optimum is also a global optimum [4].

De�nition 5. A function is strictly convex if a straight line connecting two points on

the function is strictly above that function. i.e. if,

f(αx+ (1− α)y) < αf(x) + (1− α)f(y), (1.5)

where x and y are in the domain of the function f , α ∈ [0, 1] [4].

A function that is strictly convex results in the unique global optimum. A non-convex

function has more than one local optimum, and to �nd a global optima on a function

with a high dimension is di�cult. Therefore the use of convex functions for optimization

yields the best solutions [4]. Note that all linear functions are both convex and concave.

Suppose we have a linear function f(z) = mz + c and we choose any two points in the

domain of f(z), say x and y. Any point on the straight line connecting the points

(x, f(x)) and (y, f(y)) is represented by p = αx+ (1− α)y then,

f(αx+ (1− α)y) = m(αx+ (1− α)y) + c

= αmx+ (1− α)my + c

by adding (αc− αc) and [(1− α)c− (1− α)c] on the left hand side we get,

f(αx+ (1− α)y) = αmx+ αc− αc+ (1− α)my + (1− α)c− (1− α)c+ c

= α(mx+ c) + (1− α)(my + c)− αc− c+ αc+ c

= αf(x) + (1− α)f(y)

This satis�es both equations (1.3) and (1.4).
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De�nition 6. A loosely convex function is a convex function that has multiple local

optima which are all global optima [4].

Figure 1.4 represents a function that is loosely convex. The lowest that f can

achieve is at f(z) where z is any x value between a and b. This shows that all x values

between a and b are local minima and since they are minimum at the same f value,

they are all global optima.

Figure 1.4: Example of a loosely convex function

(a) (b)

Figure 1.5: Example of a non-convex function (a) in 2D (b) in 3D [37]

Figure 1.5(a) shows an example of non-convex functions. This function is non-convex

since the line joining any two points (x, f(x)) and (y, f(y)) is, at some point below the

function, speci�cally for x ∈ [−2, 1.8]. Non-convex functions have more than one local

optima and not all of them share the same f value. Therefore not all local optima in a

non-convex function are global. To �nd a global optima, one needs to search through

all the local optima to �nd out which one gives the optimum f value (minimum or

maximum). Figure 1.5(a) has three local minima. To �nd the global minimum, we

need to check which x value give the lowest f value. Since this is a 2D function, it

is easier to see from the plot which x value is a global minimum. When you dealing

with functions of more than one variable as in Figure 1.5(b) it is di�cult to �nd a

global optimum straight from the plot, some functions are even di�cult to plot. To

�nd a global optimum, one needs to test whether all local minima are global. This

process takes time. On the other hand, for a convex function any local optima will
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also be globally optimum [4]. Although when using a computer it is possible to �nd

a solution for a non-convex optimization problem, it will take more time to �nd the

solution as compared to when solving a convex optimization problem. If the function is

strictly convex, then the global optimum will be unique. Even though a loosely convex

function has many local optima, we know that they are all global since they share

the same optimum f value. Therefore the e�ciency in time of a convex optimization

problem is much better than for a non-convex optimization problem.

1.4 Sparsity

Sparsity refers to extent to which a measure (such as a matrix or a vector) contains a

null, where a null value can be a missing value or a zero value. A dataset with many

null values is called sparse. The concept of sparsity is used in many �elds of study for

example face recognition [41], and image processing [16]. In machine learning, sparsity

has played an important role in developing algorithms such as matrix factorization [20],

and support vector machines [24]. A vector or a matrix is said to be sparse if most

of its elements are zeros, where most is measured by the `0-norm. There are di�erent

types of sparse matrix representation such as, compressed sparse row and compressed

sparse column representation [5]. We provide a formal de�nition.

De�nition 7. A vector x of dimension n × 1 is k-sparse if at most k of its elements

are non-zero for 1 ≤ k ≤ n [7]. In terms of norms, x is k-sparse if
f
x

f
0 ≤ k [7].

The `0-norm is the theoretical measure for how sparse a vector is. For example,

if x and y are two n × 1 vectors then x is called more sparse than y if ‖x‖0 < ‖y‖0.

There are various reasons for using sparse vectors. For example, sparse solutions are

easy to interpret and they have an advantage in terms of computational purposes. In

regression, the sparse representation is used to represent complex models with fewer

information than we originally have i.e. with fewer regression parameters [22]. In

compressed sensing if we know that the signal has sparse representation, the signal

can be recovered from a small number of non-adaptive measurements [15]. One of the

objectives in multivariate analysis is to estimate the covariance matrix. When there

are more variables than observations it is di�cult to estimate the covariance matrix,

but if one imposes sparsity on the covariance matrix it can be estimated uniquely [23].

Suppose that we want to solve a system of equations Ax = b where matrix A is an

m× n matrix with more columns than rows i.e. the system has more unknowns than

equations. Solving this system of equations will result in in�nitely many solutions, but

if one considers only sparse solutions, we can �nd a unique solution [7].
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1.5 Conclusion

This chapter has introduced brie�y the concepts of optimization, convexity and spar-

sity. In what follows, the following aims of this mini-dissertation will be expanded

on:

• Present algorithms for sparse convex optimization.

• Present two algorithms for non-convex sparse optimization.

• Discuss the advantages and disadvantages of each algorithm presented.

• Implement the algorithms to solve sudoku problem.

• Finally, compare the performance of sparse convex optimization to sparse non-

convex optimization on the application at hand.

In the next chapter we will discuss the mathematical concepts that will be needed for

discussing the algorithms presented in Chapter 3.



Chapter 2

De�nitions and notation

In this chapter we provide the mathematics necessary for the optimization algorithms

presented in Chapter 3.

2.1 The `p-norm of a vector

De�nition 8. A norm of a vector is the magnitude or length of that vector. Suppose

x = (x1, x2 . . . , xn) is a vector in some vector space V then we symbolize its norm by

‖x‖. The following are the properties that de�ne a norm of a vector in a vector space

V [19],

i) ‖x‖ ≥ 0 ∀x ∈ V and ‖x‖ = 0 i� x = 0

ii)
f
αx

f
= |α|.‖x‖ ∀α ∈ R, x ∈ V (absolute homogeneity) and

iii) ‖x+ x‖ ≤ ‖x‖+ ‖x‖ ∀x, y ∈ V (triangle inequality)

An `p-norm of a vector x is de�ned by the following formula.

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, (2.1)

where n is the number elements in x [19].

Theorem 9. ‖x‖p for p ≥ 1 are norms.

Proof. Suppose we have x, y ∈ V with α ∈ R. Then,

• since |x| ≥ 0 then ‖x‖p ≥ 0

18
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•

‖αx‖p =

(
n∑
i=1

|αxi|p
)1/p

=

(
n∑
i=1

|α|p | xi|p
)1/p

= |α| ‖ x ‖p

•

‖x+ y‖p =

(
n∑
i=1

|xi + yi|p
)1/p

≤

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

Minkowski inequality

≤ ‖x‖p + ‖y‖p

For 0 < p < 1 equation (2.1) no longer satis�es the triangle inequality since Minkowski's

inequality only holds for p ≥ 1 [29].

Theorem 10. All norms are convex functions.

Proof. Suppose f(z) = ‖z‖ is a norm in some vector space V . This implies that for

x, y ∈ V , k ∈ R and 0 ≤ α ≤ 1 we have ‖kz‖ = |k|‖z‖ (homogeneity property) and

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).
If we choose a point αx+(1−α)y that lies on a straight line connecting x and y, then

f(αx+ (1− α)y) = ‖αx+ (1− α)y‖

≤ ‖αx‖+ ‖(1− α)y‖ triangle inequality

= |α|‖x‖+ |1− α|‖y‖ homogeneity property

= αf(x) + (1− α)f(y) since α ≥0,

showing that f(x) is convex.

De�nition 11. The `0-norm is de�ned to be the number of non-zero elements in a

vector. Mathematically it is de�ned as follows,

‖x‖0 = #{xi | xi 6= 0} (2.2)

where x is some vector and xi are the elements of x.

Theorem 12. The `0-norm is however not a norm despite its name.
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Proof. To prove that a function is not a norm, it is su�cient to prove that the properties

of norms are false. We show that `0 does not satisfy the homogeneity property of a

norm. If we multiply a vector with a non-zero constant, the zero elements of that

vector will remain zero since any number multiplied by zero is zero. This means that

the number of non-zero elements will stay the same, so that we have

‖αx‖0 6= α‖x‖0. (2.3)

This proves that `0 does not satisfy the homogeneity property and hence it is not a

norm.

Here is an example. Suppose we have a vector x =
(

1 2 4 3 0 0
)T

. Then

‖x‖0 = 4 (the number of non zero elements in x). Suppose we multiply x with some

scalar α 6= 0 in R, then we will have αx =
(
α1 α2 α4 α3 0 0

)
so that ‖αx‖0 =

4. Therefore ‖αx‖0 = ‖x‖0, hence `0 is not a norm. In general, we have for α 6= 0,

‖αx‖0 = ‖x‖0. (2.4)

Theorem 13. The `0-norm is not a convex function.

Proof. Suppose we have two vectors x : n×1 with ‖x‖0 = m and y : n×1 with ‖y‖0 = z.

since x has m non-zero elements and y has z non-zero elements, the maximum number

of non-zero that x + y can have is m + z. This is because the number of non-zero

elements of x+ y is bounded by the number of non-zero element of x plus the number

of non zero element of y. Therefore we have,

‖x+ y‖0 ≤ ‖x‖0 + ‖y‖0.

This means that `0 satis�es the triangle inequality. Let f(z) = ‖z‖0. Let x, y ∈ V

and 0 ≤ α ≤ 1 an element of real numbers. If we choose a point αx+ (1− α)y on the

straight line connecting x and y then,

f(αx+ (1− α)y) = ‖αx+ (1− α)y‖0

≤ ‖αx‖0 + ‖(1− α)y‖0 (Triangle inequality)

= ‖x‖0 + ‖y‖0 by equation (2.4)

= f(x) + f(y).

Thus `0 does not satisfy the de�nition of convex function.

The `1-norm (p = 1), de�ned to be the sum of the absolute value of the elements in a

vector i.e.

‖x‖1 =
n∑
i=1

|xi| (2.5)
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where x is some vector and xi are the elements of x, is however a convex function.

Theorem 14. The `1-norm is a convex function

Proof. Let f(z) = ‖z‖1 be a norm of vector z. Since f(z) is a norm, the following

applies,

• ‖αz‖1 = |α|‖z‖ (homogeneity property)

• ‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1 (triangle inequality)

Suppose that x, y ∈ V . If we choose a point αx + (1 − α)y on the straight line

connecting the points x and y then,

f(αx+ (1− α)y) =‖ αx+ (1− α)y ‖1

≤‖ αx ‖1 + ‖ (1− α)y ‖1 (triangle inequality)

= |α| ‖ x ‖1 +|1− α| ‖ y ‖1 (homogeneity property)

= αf(x) + (1− α)f(y) forα ≥0

Therefore the `1 -norm is convex. Note that in fact we already proved that all `p for

p ≥ 1 are norms and we proved that all norms are convex, therefore `1 -norm is convex.

We focus only on the `0-norm and `1-norm as they are the role players in sparse

convex optimization. Figure 2.1 shows the graphical representations of the `p norm

as p increases from zero to in�nity. Figure 2.1 indicate that the `0 is the limit of the

function (2.1) as p goes to zero, i.e.

‖x‖0 = lim
p→0
‖x‖pp

= lim
p→0

n∑
i=1

|xi|p.

Figure 2.1: Geometric representation of `p in 2D for (a) p = 0 (b) 0 < p < 1 (c) p = 1
(d) p = 2 [43]
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In Figure 2.1 we can see that the unit ball of `p expands away from the axis as p

goes to in�nity, and gets closer to the axis as p gets closer to zero and lies on the axis

when p equals zero. For `p with p ≤ 1 (Figure 2.1 (a), (b), and (c)) we can see that

the only time an objective line touches `p once is at the axis, and we know that when

a point is on one axis the value for the other axis is zero. This shows that `p with

p ≤ 1 promotes sparsity. This will be explained further in chapter 3. This is one of the

reasons, if not the only, why the `1-norm is chosen over the norms with p > 1 when we

want to approximate the `0-minimization problem in sparse optimization. This will be

explained further in Chapter 3 when we compare `0 and `1.

2.2 Properties of `p-norms

Consider an `p-norm of some vector x in 1D, and suppose fp(x) is the function of the

`p-norm i.e.

fp(x) = ‖x‖pp = |xi|p.

Figure 2.2: Geometric representation of `p 1D for (a) p = 0 (b) 0 < p < 1 (c) p = 1
(d) p = 2 [43]

From Figure 2.2 we note the following.

1. The `0 function f0

• is non-convex, since a line connecting two points, say (−x, 1) and (x, 1) for some

positive x, will contain a point (0, 1) where `0 is not de�ned at 0,

• has a discontinuity at 0

• is not a globally di�erentiable function since it is not di�erentiable at 0. The

tangent line at the point (0, 0) has an unde�ned gradient.
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2. The `p (0 < p < 1) function fp

• is nonconvex, since a line joining points (1, 1) and (0, 0) is below the function.

• is not a globally di�erentiable function since it is not di�erentiable at 0, The

tangent line at the point (0, 0) has an unde�ned gradient.

3. The `1 function f1

• is convex, since a line connecting any two points in the domain of `1 will always

be on `1

• is continuous

• is not a global di�erentiable function since it is not di�erentiable at 0.

4. The `2 function f2

• is convex since a line connecting any two points in the domain of `1 will always

be on or above `1,

• is continuous

• is a globally di�erentiable function.

We discuss the geometrical representation of the norm. We have noticed that all norms

with p ≥ 1 are convex and thus satisfy the uniqueness property needed for the sparse

optimization techniques. We note that the `1-norm is the �rst convex norm closest

to the `0-norm. The `1 ball is close to the axes, therefore it has a higher chance of

returning a sparse solution than norms with p larger than 1 since sparsity is obtained

on the axes. This is one of the why reasons `1-norm is used to approximate `0-norm.

2.3 Restricted isometry property

If we choose to replace (relax) the `0-norm by the `1-norm, we we are not guaranteed

a unique or best solution. The matrix of constraints needs to follow certain rules so

that the solution to the `1-norm minimization problem can be the best and unique

approximation to the solution of the `0-norm minimization problem. One of the prop-

erties is the restricted isometry property, and it is said that if the matrix of constraints

follow the restricted isometry property then the solution to the `1-norm minimization

problem is the best approximation to the solution of the `0-norm minimization problem

[8]. Details of this theory will be discussed further in Chapter 3.
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De�nition 15. For each integers k = 1, 2, 3.... we de�ne the k-restricted isometry

constant δk of a matrix A as the smallest quantity such that

(1− δk) ‖c‖2
2 ≤ ‖Ac‖2

2 ≤ (1 + δk) ‖c‖2
2

holds for all k-sparse vectors c [8]. This property essentially requires that every set

of columns with the number of non-zero elements that are less than k approximately

behaves like an orthonormal system [8]. So basically if x is k-sparse the k-restricted

isometry constant δk of A [8] is the smallest constant such that

(1− δk) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk) ‖x‖2
2.

2.4 Coherence of a matrix

In Chapter 3 we discuss greedy algorithms. Greedy algorithms solve an optimization

problem by selecting rows in the matrix of constraints in order to reach an optimal

solution. The method selects rows that are furthest to the residual of the previous

iteration. This means we select the row that has the largest distance away from the

residual in the previous iteration. We call this maximum distance the coherence.

De�nition 16. Suppose we are given two orthonormal bases1 A1 and A2 and A =

[A1, A2]. The coherence [9] of a matrix A, is the maximum absolute value of the dot

product of any two di�erent columns ai and aj of the matrices A1 and A2, it is denoted

by µ and it is de�ned mathematically as follows [9],

µ = max |〈ai, aj〉| with i 6= j. (2.6)

In simple terms, the coherence measures the largest correlation between any two ele-

ments of A1 and A2 [9].

2.5 Sparse convex optimization in statistics

Regression problems with many explanatory variables occur in a wide variety of scien-

ti�c �elds. This problem can be dealt with by performing a statistical model selection

to �nd an optimum solution that is simple and also provide a good predictive perfor-

mance. In such problems penalized regression can be used. In penalized regression

all the explanatory variables are kept in the model but the regression coe�cients are

1A basis with unit vectors that are orthogonal to each other.
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constrained by shrinking them towards zero. In regression terms, penalized regression

estimates a regression model by minimizing the sum of squared errors subject to the

penalty on the coe�cients. The LASSO is one of the examples of penalized regression.

The LASSO is formulated as follows,

min
1

2
‖Ax− b‖2

2 + λ ‖x‖1

where λ > 0 is called the Lagrange multiplier and it controls the level of shrinkage. The

vector of coe�cients will be sparse since some coe�cients shrink towards zero. The

expression ‖Ax− b‖2
2 + λ ‖x‖1 is convex since the `1-norm and the `1-norm are both

convex. Methods for sparse convex optimization can be used to solve such problems.

2.6 Sparse convex optimization problem

For an algorithm to be a convex optimization technique it needs to solve the `1 mini-

mization problem instead of the `0 minimization problem and both the constraints and

the objective function should be convex [10]. An algorithm is a sparse optimization

algorithm if it returns a sparse solution [1].

2.7 Conclusion

We have now discussed the theory needed for the purpose of sparse convex optimization

techniques. In the next chapter we discuss the theory of sparse convex optimization as

well as provide algorithms currently used to solve the optimization problem.



Chapter 3

Sparse convex optimization

This chapter discusses the concept of sparse convex optimization together with the

algorithms. We �rst discuss the concept of the `0 minimization problem and explain

why the `1 minimization problem is used to approximate the `0 minimization problem.

We then discuss the algorithms for solving the `1 minimization and two algorithms for

solving the `0 minimization so that in Section 4 we can compare the results for sparse

convex optimization algorithms with sparse non-convex optimization algorithms. For

an algorithm to be a convex optimization technique it needs to solve the `1 minimization

problem instead of the `0 minimization problem and both the constraints and the

objective function should be convex. An algorithm is a sparse optimization algorithm

if it returns a sparse solution.

3.1 The `0 minimization problems

Suppose we have an optimization problem as follows

min

fi(x) ≤ bi
f0(x), i = 1, ...,m. (3.1)

A convex optimization problem [10] is a mathematical optimization problem for which

the objective and the constrained function are convex, that is, if fi(x) for i = 0, ...,m

satisfy equation

fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi(y).

A powerful property of convex optimization is that any local optimal solution is also a

global solution as explained in Chapter 1 [4].

Consider a system of linear equations given by,

Ax = b, (3.2)

26
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where A is a m × n matrix with m < n and x and b are n × 1 and m × 1 vectors

respectively. This type of system of equations is called underdetermined since it has

more unknowns than the equations (m < n). Using Gaussian elimination to solve this

system of equations will result in in�nitely many solutions. The most common way to

solve this system is to use a least squares approach as follows,

min ‖b− Ax‖2
2 , (3.3)

which results in x being obtained as,

x =
(
ATA

)−1
AT b. (3.4)

However, when the matrix A is underdetermined the inverse
(
ATA

)−1
does not exist,

hence the solution does not exist. If we have prior knowledge that x is sparse, then

the problem in equation (3.2) is considered as a sparse optimization problem and in

this case the `0 minimization problem can be used since the `0 minimization problem

always results in a unique sparse solution (more in Section 3.2).

To incorporate sparsity we represent b as a linear combination of fewer columns of A

[18] i.e. to obtain a sparse solution. The solution to this system of equations then yields

the minimum number of coe�cients to represent b. This procedure is known as sparse

approximation. If a sparse vector x is found, it is called the sparse representation of b.

In general sparse representations are not unique, but there are certain conditions that

makes them unique [9], (see Section 3.2).

The `0 minimization problem is represented mathematically as follows,

min
Ax=y

‖x‖0 (3.5)

where ‖x‖0 is the number of non-zero elements in the vector x [38]. We however solve

the system Ax = y such that the zero norm of x is as small as possible. It can be

further speci�ed that we want to solve for x such that the sum of squares of the errors

is small and at the same time x should be sparse, where the sum of squares of the

errors is ‖y − Ax‖2
2. Therefore problem (3.5) can sometimes be written as follows,

min

‖x‖0 ≤ k
‖y − Ax‖2

2 (3.6)

where k is the level of sparsity of x [43]. This is referred to as sparse approximation.

We want a vector x that has the minimum number of non-zero elements and at the

same time satis�es equation (3.2). The `0 minimization problem is convex if both‖x‖0
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and Ax = b are convex1, that is if both ‖x‖0 and Ax = y satis�es equation (1.3).

Ax = b satis�es equation (1.3) but ‖x‖0 does not, since ‖αx‖0 6= α‖x‖0 as discussed

in Chapter 2. Therefore the `0 minimization problem is non-convex. It is known that

non-convex optimization problems are computationally di�cult to solve, one of the

reasons being that the non-convex optimization problem may results in many local

optima and it maybe di�cult and time consuming to determine the global optimum

from this local optima [32]. Equation (3.2) can also be written in Lagrange form i.e.

in terms of minimizing both the sum of squared errors and the number of non-zero

elements in x as follows,

min
1

2
‖Ax− b‖2

2 + λ ‖x‖0 (3.7)

where λ > 0 is called the Lagrange multiplier [43]. This is called the unconstrained

minimization problem [43]. We use equation (3.7) to develop some of the algorithms

needed in this chapter i.e. iterative thresholding. There are many methods that can be

used to solve the above problems, which instead of �nding the k-columns to represent

b at the same time, they �nd the columns one at a time i.e. iteratively. Solving non-

convex functions is computationally hard for reasons explained in Section 1.3, for this

reason we relax the `0-norm by a convex norm that is closest to it i.e. the `1-norm.

This will be explained further in Section 3.4.6.2.

3.2 Uniqueness of the solution

Sparse solutions in general are not unique since di�erent methods have di�erent selec-

tion properties, but there are certain conditions that yield a unique solution of problem

(3.2), namely

• Suppose that any 2k columns of the m × n matrix A are linearly independent

m ≥ 2. Then, any k-sparse vector x can be reconstructed uniquely. It follows

that k-sparse representations are unique if and only if any (2k)-column submatrix

of A are linearly independent [40].

• A sparse representation x of b is unique if ‖x‖0 ≤
spark(A)

2
where spark(A) is the

spark2 of matrix A [14].

• Suppose A has a coherence µ (see De�nition 16). If x is a sparse solution to

problem (3.2) and ‖x‖0 <
1
2
(µ−1 + 1) then x is a unique solution to problem (3.2)

[9]. The smaller the coherence the fewer columns needed from A to represent b

[9].

1A system of linear equation is convex since all linear functions are convex
2Spark of A is the smallest number of columns in A that are linearly dependent



CHAPTER 3. SPARSE CONVEX OPTIMIZATION 29

• A stronger condition is that, if the matrix A follows a restricted isometry prop-

erty (has a small isometric constant δk) (see De�nition 15) then the solution to

problem (3.2) is unique. This means that every subset of k or fewer columns is

approximately an orthonormal system [8]. We will loosely say that a matrix A

obeys the RIP of order k if δk is not too close to one [9].

3.3 From `0 to `1

As stated solving the `0 minimization problem is computationally hard since the prob-

lem is not convex. This is because non-convex functions may have many local optima

and it will take time to determine which of the local optima is a global optimum (this is

explained in detail in Section 1.3). The norms `p for 0 < p < 1 are also non-convex. The

closest norm to `0 that is convex is the `1-norm. Therefore the `1-norm minimization

problem is chosen since it is a good approximation to the `0 minimization problem [32].

The `1 ball is close to the axes, therefore it has a higher chance of returning a sparse

solution than norms with p larger than 1 since sparsity is obtained on the axes. For this

reason, we replace the `0-norm by the `1-norm. The `1-norm minimization problem

is an approximation to the `0-norm minimization problem, which has been proven in

[32]. The new problem is thus to solve for x such that the sum of the absolute value

of the elements of x is as small as possible. Mathematically this is represented as,

min
Ax=y

‖x‖1, (3.8)

where ‖x‖1 is the `1-norm.

Figure 3.1: Visual representation of solutions of `p-norm in 2D for (a) p = 0 (b) p = 1
(c) p = 2 [43]

Consider the Figure 3.1. The black line represents the constraint function Ax = b

and the red ball represents the objective function ‖x‖p i.e. the norm. The optimal

solution x is obtained when the constraint function intercepts the objective function,
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and for x to be sparse they should intercept on one of the axes (for 2D only). Suppose

we have a line y = Ax (which is a hyper-plane in higher dimensions), and all possible

solutions lie on it [43]. If we in�ate the unit ball until it touches the line y = Ax at some

point, this point is the minimization to problem [43]. In Figure 3.1(a) we note that

the objective function lies on the axes and we know that if we have the xy axes, any

point lying on the axes will have x = 0 (the y-axes) or y = 0 (the x-axes). This means

that the constraint function will always intercept the objective function on the one of

the axes and thus lead to a sparse optimum solution. This gives a clear geometrical

representation of why the `0-minimization problem always returns a sparse solution.

In Figure 3.1(b) the objective function has the shape of a cube with the corners on

the axes. This means that we will get a sparse solution when the constraint function

intercepts the objective function on the corners i.e. on the axes. Due to the shape of

the `1 ball the probability of the constraint function intercepting the objective function

is high. This promotes sparsity because the only time the constrained function will

intercept the objective function is at the corners. This means that the `1-minimization

problem has a high chance of returning a sparse optimum solution. Figure 3.1(c) shows

that for norms with p > 1 the probability of obtaining a sparse solution is low compared

to norms with p ≤ 1 since the constraint function can touch the objective function at

anywhere besides on the axes. Even though they do not return sparse solutions, they

still return an optimal solution.

3.4 Obtaining convexity

There are various classes of techniques for solving sparse convex optimization problems,

most of which give good results, but are di�cult to compute and also take time. Here

we will focus on the class of techniques that are relatively easy to implement, give good

results and are commonly used [31]. This class of techniques are convex relaxation,

greedy algorithms, iterative thresholding and combinatorial algorithms. The following

are the methods that we will discuss brie�y.

1. Convex relaxation - Convex relaxation solves the `0-minimization problem

by relaxing the use of `0 to the convex `1 instead (the basis pursuit or `1-norm

minimization problem) and solve the convex program with algorithms that exploit

the problem structure e.g. linear programming [11]. The most common linear

programming algorithms that are used to solve the `1-norm minimization problem

are the simplex method and the interior-point method.

2. Greedy algorithms - Greedy algorithms operate by the choice that seems to be

the best at that moment and continue doing so until an optimal solution is found.

Assume that you have an objective function that needs to be optimized (either
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maximized or minimized) at a given point. At each step a greedy algorithm

chooses a solution that seems the best at that moment and it continues doing so

in each step until it �nds the the optimal global solution of the function. This

means that it makes a locally-optimal choice in the hope that this choice will

lead to a globally-optimal solution. The general framework in greedy techniques

is 1) to select an element and 2) to update the coe�cients. The greedy strategy

actually cannot directly solve the optimization problem and it only seeks an

approximate solution [43].

3. Iterative thresholding - Given that x is sparse, iterative thresholding itera-

tively calculates x, and in each iteration it sets some elements of x to zero using

what is called a threshold function. The iteration stops when there is conver-

gence [31]. This will be explained in detail in the Section 3.7. The thresholding

function depends upon the number of iterations and problem setup at hand [31].

4. Combinatorial algorithms - This class of algorithms recovers a sparse x

through a two step process. It selects the necessary columns of the matrix of

the constraints matrix (for sparsity purpose) then estimates the solution using

selected columns. Note that the columns here are selected as a group instead

of one at a time as in greedy algorithms. Even though they are extremely fast

and e�cient, as compared to convex relaxation or greedy algorithms, they re-

quire speci�c pattern in the measurements matrix, namely sparsity [31], which is

why it is not commonly used. In this mini-dissertation we will not consider this

algorithm.

We now look at each of these methods in detail.

3.5 Convex relaxation

Convex relaxation solves equation (3.2) by relaxing the use of `0 to the convex `1 instead

and solves the convex program with algorithms that exploit the problem structure [11].

Even though the solution of the `0 minimization problem is unique, the solution of

the `1 minimization problem is not since various methods selects the sparse solution

di�erently. Since the solution to the `1 minimization problem approximates the solution

to the `0 minimization problem, we are interested in the solution with the smallest

norm. First we cover linear programming since to solve an `1-minimization problem

we �rst need to convert it into a linear program.
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3.5.1 Linear programming

3.5.1.1 Introduction

A linear program is a constrained optimization problem in which the objective function

and each of the constraints are linear [11]. A linear program problem can be written in

the following form. Let c = (c1, c2, ..., cn)
T , s = (s1, s2, ..., sm)

T and α = (α1, α2, ..., αn)
T

be real valued vectors and Φ = [φij] an m× n matrix. Then the problem

min
α

c1α1 + c2α2 + c3α3 + ...+ cnαn

subject to

φi1α1 + φi2α2 + ...+ φinαn ≤ si , 1 ≤ i ≤ m1

α1 ≥ 0, α2 ≥ 0, ..., αn ≥ 0

φj1α1 + φj2α2 + ...+ φjnαn = sj , m1 < j ≤ m2

is called a linear program, where m1 +m2 = m [33].

3.5.1.2 The standard form

The best way to work with a linear program is to put it in its standard form. The

following is the standard form of a linear program.

min
Φα=s

cTα, α ≥ 0, (3.9)

where cTα is the objective function, Φα = s is a collection of equality constraints

and α ≥ 0 is a set of bounds [33]. All variables are constrained to be non-negative.

Then α is considered a feasible solution to problem (3.9) if cTα is minimized and both

conditions Φα = s and α ≥ 0 are satis�ed. A collection of feasible solutions is called

the feasible set.

3.5.1.3 Writing a linear program in standard form

Any linear program can be written in the standard form. It is best to know how to

change a linear program to a standard form since this is the �rst step of the simplex

method which is a primary method for solving linear programs. The following are the

rules for changing any linear program to a standard one.

• Change inequalities to equalities �The inequality of the form

a1x1 + a2x2 + ...+ anxn ≤ b (3.10)

can be changed to an equality by adding a slack variable u. A slack variable is

the di�erence between the right hand side and the left hand side of the inequality.
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so we have a1x1 + a2x2 + ...+ anxn + u = b. If we have an inequality of the form

a1x1 + a2x2 + ... + anxn ≥ b, we can simply multiply the left hand side and the

right hand side of this inequality by −1 to have it in the form of inequality (3.10),

then we proceed as we did above [33].

• Non-negative variables � Some variables in the linear program are not con-

strained to be non-negative. In this case the unconstrained variable can be re-

placed by the di�erence of two non-negative variables,

xj = x+
j − x−j

where x+
j ≥ 0 and x−j ≥ 0, then from this we can adjust our objective and

constrained functions [33].

• Negative variables � Some variables are constrained to be negative i.e. xj ≤ 0

in inequality (8). In this case we change xj ≤ 0 to −xj ≥ 0 and let yj =

−xj therefore yj ≥ 0. From here we substitute xj by yj in the objective and

constrained functions.

3.5.2 Duality

De�nition 17. The dual of a linear program is the transpose of that linear program

with the constrained signs inverted [33].

Any given linear program has a related linear program called the dual. Duality is

important since we can convert a maximization problem into a minimization problem

and then use the simplex method to �nd the solution. The original linear program is

called the primal. For every linear program of the form [33]

min
Φα≥s

cTα, α ≥ 0

called the primal, and there exists a dual linear program of the form

max
yTΦ≤c

yT s.

Consider the standard form of a linear program in equation (3.9). To change Equa-

tion (3.9) into its dual form, we know that Φα = s is the same as Φα ≤ s and Φα ≥ s.

Therefore Equation (3.9) can be written as,

min
Φα ≥ s

−Φα ≥ −s

cTα α ≥ 0.
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Using the above de�nition of a dual, we can write the dual of equation (3.9) as

max
ΦT (u−v)≤c

uT s− vT s u ≥ 0, v ≥ 0

where u and v are the dual variables associated with the two constraints (see Table

3.1). Let y = u− v then,
max
ΦT y≤c

yT s. (3.11)

We can convert program (3.11) to a standard form by adding a slack variable, say g,

to the set of constraints, resulting in the following program

max
ΦT y+Ig=α

yT s, g ≥ 0. (3.12)

We should note that it is always best to transform a primal into its dual by �rst

making sure that the primal is in its standard form. The following is a standard form

of a minimization problem

min
x

z = c1x1 + c2x2 + c3x3 + · · ·+ cnxn

subject to

φ11α1 + φ12α2 + · · ·+ φ1nαn ≥ b1

φ21α1 + φ22α2 + · · ·+ φ2nαn ≥ b2

...

φm1α1 + φm2α2 + · · ·+ φmnαn ≥ bm,

(3.13)

and for a maximization problem, this is the standard form

min
x

z = c1x1 + c2x2 + c3x3 + · · ·+ cnxn

subject to

φ11α1 + φ12α2 + · · ·+ φ1nαn ≤ b1

φ21α1 + φ22α2 + · · ·+ φ2nαn ≤ b2

...

φm1α1 + φm2α2 + · · ·+ φmnαn ≤ bm.

(3.14)

Note that for a minimization problem the constraint are either ≥ and for a maxi-

mization problem we either have ≤. In Table 3.1, the �rst column represents the new

variables to be considered and the �rst row represents the variables from our original

problem. The last row and column represent the sign and the right hand side of the

new and old constraints consecutively. The new variables have the same sign as the

original variables. The generalization of the primal dual relationship is summarized in

Table 3.1.
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α1 α1 · · · α1

y1 φ11 φ12 · · · φ1n ≤ s1

y1 φ21 φ22 · · · φ2n ≤ s2
...

...
...

. . .
...

...
y1 φm1 φm2 · · · φmn ≤ sm

≥ c1 ≥ c1 · · · ≥ c1

Table 3.1: Primal-dual relationship

As an example consider the following linear program,

min
α

2α1 + 2α2

subject to

4α1 + 2α2 ≥ 3

4α + 3α ≥ 5

4α1 + 3α2 ≥ 8

and we want to �nd the dual. First we can create a table similar to Table 3.1,

α1 α2

y1 4 2 ≥ 3

y2 1 3 ≥ 5

y3 4 3 ≥ 8

≤ 2 ≤ 2

Therefore the dual form will be

min
y

3y1 + 5y2 + 8y3

subject to

4y1 + y2 + 4y3 ≤ 2

2y1 + 3y2 + 43y ≤ 2.

In the next section methods for solving a linear program will be discussed. There

are many methods for solving linear programs, such interior point method [33] and

graphical method [13], but here we will only discuss the simplex since it the most

commonly used method.

3.5.3 The simplex method

3.5.3.1 Maximization problem

The simplex method is an iterative procedure for solving a linear program. Most

commonly, the simplex method is used to solve maximization problems in linear pro-
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gramming. In this section we will explain how to solve and use a maximization problem

to solve a minimization problem. Consider the following linear programming problem

max
x

z = c1x1 + c2x2 + c3x3 + · · ·+ cnxn

subject to

φ11α1 + φ12α2 + · · ·+ φ1nαn ≤ b1

φ21α1 + φ22α2 + · · ·+ φ2nαn ≤ b2

...

φm1α1 + φm2α2 + · · ·+ φmnαn ≤ bm

(3.15)

αi ≥ 0 ∀i's. The �rst step in using the simplex method is to change the inequality

constrained to equality constraint by adding a slack, a surplus or an arti�cial variable.

Table 3.2 shows the rules for converting inequality constraints to equality constraints.

Inequality (≤) Add a slack variable (s1)
Inequality (≥) Add a slack variable (s2) and an arti�cial variable (M1)
Equality (=) Add an arti�cial variable (M2)

Table 3.2: Methods for changing inequality constraints to equality constraints

A slack variable represents unused resources in the inequality and a surplus variable

is the opposite/negative of the slack variable. Since both the slack and the surplus

variables do not contribute to the objective function we do not include them in the

objective function. An arti�cial variable does not have a true meaning, it is simply

used to set up a basic feasible solution when we start the simplex method. An arti�cial

variable should not appear in the �nal solution of the problem. To make sure that the

arti�cial variable does not appear in the �nal solution of the problem we assign it a very

large coe�cient when we include it in the objective function and instead of specifying a

large number for this coe�cient we just useM to represent a large coe�cient. The next

step is to write the objective function in the form z−cx1−c2x2−c3x3−· · ·−cnxn = 0.

The linear program in (3.15) will be as follows.

min
x

z − cx1 − c2x2 − c3x3 − · · · − cnxn + 0s1 + 0s2 + ...+ 0sm = 0

subject to

φ11α1 + φ12α2 + · · ·+ φ1nαn + s1 = b1

φ21α1 + φ22α2 + · · ·+ φ2nαn + s2 = b2

...

φm1α1 + φm2α2 + · · ·+ φmnαn+sm = b

Variables that are non-zero are called basic variables and those that are zero are called

non-basic variables. Non-basic variables correspond to the zero solution to the system
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of equations. A solution to a linear program problem will consist only of the variables

xi for i = 1, 2 . . . , n and sj for j = 1, 2, . . . ,m where at most m variables are not

zero (non-basic variables), i.e. the solution will be (α1, α2, . . . , αn, s1, s2, . . . , sm). This

solution is called a basic solution of a linear program [33]. If all the variables in the

basic solution are non-negative the solution is called a basic feasible solution. Gaussian

elimination is applied to the so called simplex table to solve the linear program. For

our linear program the simplex table will look like that in Table 3.3.

α1 α2 · · · αn s1 s2 · · · sm b

s1 φ11 φ12 · · · φ1n 1 0 · · · 0 b2

s2 φ21 φ22 · · · φ2n 0 1 · · · 0 b1
...

...
...

. . .
...

...
...

. . .
...

...
sm φm1 φm2 · · · φmn 0 0 · · · 1 b1

z −c1 −c2 · · · −cn 0 0 · · · 0 0

Table 3.3: The simplex table

All variables corresponding to a column with zeros and a one are basic variables

and their values corresponds to the b elements that are in the same row as the element

one in that column, and the remaining columns are non-basic variable and the have a

value of zero initially. We start the simplex method at the origin, i.e. at αi = 0 ∀i.
Therefore sj = bj ∀j. The initial solution for the initial table will be

(α1 α2 · · ·αn s1 s2 sm) = (0 0 · · · 0 b1 b2 · · · bm) .

The value of the objective function corresponds to the value at the interception of the

last row and the last column, which is currently zero since we start at the origin. The

last row represents the negative of the coe�cients of the αi in the objective function

and the solution is optimal if their values are zero or positive. In our case the solution

is not optimal since we have negative elements in the last row. To improve the solution

we choose a variable from the non-basic variables to enter the basic variables; this

variable is called the entering variable. Since we will have too many variables for the

basic solution, one variable from the basic variables set must be taken to the non-basic

set, and this variable is called the departing variable. The entering variable is the

variable corresponding to the largest negative value in the last row and the column

corresponding to that variable is called the pivot column. The departing variable

corresponds to the variables with the smallest ratio bi
φij

where φij are in the pivot

column. The value in both the pivot row and the pivot column is called the pivot

quantity. The entering variable is the pivot row divided by the pivot quantity and the

remaining rows are changed using Gaussian elimination in such a way that all values

above and below the pivot quantity are zero. This process is repeated until we do not
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have any negative value in the last row. As an example consider the following linear

program and we use the simplex method to solve it.

max
y

z = 3y1 + y2

subject to

y1 + 2y2 ≤ 4,

y1 + y2 ≤ 3,

y1, y2 ≥ 0.

Then the simplex table will be as follows

y1 y2 s1 s1 b ratio

s1 1 2 1 0 4 4
1
= 4

s2 1 1 0 1 3 3
1
= 3

z −3 −1 0 0 0

The initial solution to the simplex table is
(

0 0 4 3
)
. It is clear that −3 is the

largest negative value, therefore the y1 is the entering variable and the corresponding

column is the pivot table. We divide the elements of the b column with the correspond-

ing values of the pivot column. The smallest non-negative ratio is 3
1
= 3 and it is with

the s2 row, therefore s2 is the departing variable and its row is the pivot row. The

pivot quantity is 1 since it is in both the pivot row, s2 and the pivot column, y1. The

entering variable will then be row s2 divided by the pivot quantity, we then label the

row y1. Then we perform row operations on both row one and row three in such a way

that the element below and above the pivot quantity are zero. With the �rst row we

perform the operation R1−R2 → R1 and with the third row we perform the operation

3R2 +R3 → R3. The simplex table now looks as follows.

y1 y2 s1 s2 b

s1 0 1 1 −1 1

y1 1 1 0 1 3

z 0 2 0 3 9

Since all the elements of the last row are positive the solution to this table is optimal.

Variables y1 and s1 are basic variables since columns corresponding to them contains

zeros and a one and their values corresponds to the b elements that are in the same row

as the one in that column. In this case y1 = 3 and s1 = 1 . Therefore variables y2 and

s2 are non-basic and their values are zero. The solution then becomes
(

3 0 1 0
)
,

but since our original problem only deals with y1 and y2, our solution will be y1 = 3

and y2 = 0 and z = 9. The value for z can be veri�ed by substituting the values of
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y1 and y2 in the objective function i.e. z = 3(3) + (0) = 9. This means that z has a

maximum of 9 and this happens when it is at a point y1 = 3 and y2 = 0. We summarize

the algorithm here.

Algorithm 3.1 The simplex method
• Step 1 Change the constraints into equalities.

• Step 2 Set up the simplex table.

• Step 3 Find the pivot column - correspond to the column with the minimum
negative value in the last row.

• Step 4 Find the pivot row - correspond to the row with the smallest ratio bi
φij

where φij are in the pivot column.

• Step 5 Set up the new simplex matrix.

• Step 6 If the last row has negative values return to step 3.

3.5.3.2 Minimization problem

We will solve the minimization problem using the primal-dual relationship called the

Von Neumann Duality Principle [26]. It states that, the objective value w of a mini-

mization problem in standard form has a minimum value if and only if the objective

value z of the dual maximization problem has a maximum value. Moreover, the min-

imum value of w is equal to the maximum value of z. This means that to �nd the

solution for a minimization problem you need to �nd the solution to the maximization

problem of the dual. The �rst step is to convert the minimization problem into its

dual, then apply the simplex method. The only di�erence is reading the solution on

the simplex table. Here the solution for the minimization problem are the last values

in the slack variables column. Here is an example,

min
x

z = 4x1 + 3x2

subject to

x1 + x2 ≥ 3

2x1 + x2 ≥ 1

x1, x2 ≥ 0.

We �nd the dual as following table.
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x1 x2

y1 1 1 ≥ 3

y2 2 1 ≥ 1

≤ 4 ≤ 3

Therefore the dual will be,

max
y

w = 3y1 + y2

subject to

y1 + 2y2 ≤ 4

y1 + y2 ≤ 3

y1, y2 ≥ 0.

Here y1 and y2 take the sign of x1 and x2 therefore the constraints x1, x2 ≥ 0 is not

represented in the table. This is exactly the same as the example in Section 3.5.4,

therefore we jump to the �nal simplex table.

y1 y2 s1 s1 b

s1 0 1 1 −1 1

s2 1 1 0 1 3

w 0 2 0 3 9

the solution to the maximization problem is y1 = 3 and y2 = 1. The solution to the

minimization problem are the last values in the slack variable columns i.e. x1 = 0

and x2 = 3, but the value of the objective function is still 9 just like the primal-

dual relationship suggested. When we verify the value for the objective function we

substitute x1 = 0 and x2 = 3 in the objective function of the primal i.e. z = 4(0) +

3(3) = 9.

3.5.4 The `1-norm minimization problem (Basis pursuit)

3.5.4.1 Theory

Basis pursuit is a principle for decomposing a signal into an �optimal� superposition of

dictionary elements, where optimal means having the smallest `1 norm of coe�cients

among all such decompositions [11]. The `1 minimization problem is represented math-

ematically as in equation (3.8). Since both the functions ‖x‖1 and Ax = y satis�es

equation (1.3), the `1-norm minimization problem is convex and hence has a unique

solution. Due to the shape of the `1 ball (see Figure 3.1), the `1-minimization prob-

lem promotes sparsity [16]. To use the method of basis pursuit, we need to transform

equation (3.8) to a linear program and use methods for solving linear programs to �nd
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the optimal solution. We formulate the method of basis pursuit as a linear program

as follows. Let Φ = (A,−A) and α =

[
u

v

]
such that x = u− v where u, v both have

dimensions n×1, [11]. Therefore Φ will have dimension m×2n and α will have dimen-

sion 2n × 1. Let c =
(

1 1
)
and s = y, where 1 is a vector of ones with dimension

n× 1. Then the linear program can be formulated as follows,

min
Φα=s

cTα α ≥ 0. (3.16)

We therefore solve for α by solving equation (3.16). Then the solution to the `1-

minimization problem can be solved using the relationship x = u− v. Equation (3.8)

is equivalent to the following

min
(
1Tu+ 1Tv

)
such that (Au− Av) = s. (3.17)

Equation (Au− Av) = s is linear since it is a system of linear equations. The expression

1Tu + 1Tv is also linear since it is a linear combination of linear functions. Therefore

equation (3.8) is linear and hence convex since all linear functions are convex.

3.5.4.2 Algorithm

The algorithm for the `1-minimization problem is just the same as the one in Section

3.5.5.

3.6 Greedy algorithms

3.6.1 Introduction

The idea in greedy algorithms for �nding sparse solution is also to solve the `0-

minimization problem, but as explained before the `0-minimization problem is non-

convex and therefore NP-hard. The greedy algorithms alleviate this problem by ap-

proximating the solution [43]. A greedy algorithm solves the `0 minimization directly,

therefore, it is not a convex approach, however it gives sparse solution since it selects

necessary columns in the matrix of constraints, and use those columns to approximate

the solution [21]. Greedy pursuit methods are de�ned to be those methods that ap-

proximate the sparse solution x iteratively. They consist of three basic steps. Firstly,

the x is set to a zero vector. Secondly, these methods estimate a set of non-zero com-

ponents of x by iteratively adding new components that are deemed to be non-zero.

Thirdly, the values for all non-zero components are optimized. The greedy strategy

provides a special way to obtain an approximate sparse representation solution [43].

The greedy strategy actually cannot directly solve the optimization problem so it only
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seeks an approximate solution for equation (3.5) [43]. In each iteration the greedy

algorithms �nd the global optimum solution which will lead to achieving the optimal

holistic solution and if we want a k−sparse solution the greedy algorithm will stop at

the k-th column leading to a k-sparse solution [43]. We de�ne greedy algorithms so

that we can compare the results of sparse convex optimization techniques to the results

of sparse non-convex optimization techniques. We discuss two such convex algorithms

next.

3.6.2 Matching pursuit

3.6.2.1 Theory

The main idea of the matching pursuit (MP) is to interactively choose the best column

from the the matrix A based on a certain similarity measurement to approximately

obtain the sparse solution [43]. Suppose y = Ax as explained in Section 2.1, with

A = (a1, a2, ...., an) and ‖ai‖2 = 1 for i = 1, 2, ..., n. let R0 be the initial residual

(this initialized at the beginning of the iterations). First, matching pursuit chooses the

best column aj that satis�es the following property called the mutual incoherence [6],

namely

|〈R0, aj〉| = sup |〈R0, ai〉| (3.18)

where aj is the chosen column from the matrix A and j represent the iterations. Match-

ing pursuit correlates the residual R, with all the columns of A and then chooses the

column that contribute the most in terms of correlation. Therefore y can be decom-

posed as follows:

y = 〈y, aj〉 aj +R1

= 〈R0, aj〉 aj +R1,
(3.19)

so that the next residual can be calculated using the formula R1 = R0 − 〈R0, aj〉 aj.
By introducing the square of the `2-norm on both side of equation (3.19), we can write

it in the following way

‖y‖2
2 = |〈y, aj〉|

2 + ‖R1‖2
2 . (3.20)

Here R1 is the representation residual by using aj to represent R1, and 〈R0, aj〉 aj is
the orthogonal projection of y onto aj, considering the fact that aj is orthogonal to R1

[43]. Basically matching pursuit �nds the best column in A that satis�es the mutual

incohorence and then uses the corresponding residual as the next approximation target

and it continues until the stopping criteria has been met. At the tth iteration we have

the following,

|〈Rt, at〉| = sup |〈Rt, ai〉|
Rt = 〈Rt, at〉 at +Rt+1

‖Rt‖2
2 = |〈Rt, at〉|2 + ‖Rt+1‖2

2 .

(3.21)
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At the kth iteration (k-sparse) ‖Rk‖2 ≤ c where c is a some small constant. In the

second and next iterations the dot product of the residuals with the columns that have

already been chosen may not be computed as they are orthogonal to that residual and

the dot product will be zero. Therefore y can be represented as follows,

y =
k−1∑
l=0

〈Rj,aj〉 aj +Rk (3.22)

where k < n. Equation (3.22) is the representation of y with only a few columns of A.

The algorithm is summarized here.

Algorithm 3.2 Matching pursuit algorithm
• Step 1 Input matrix A and vector y

• Step 2 Initialize D0 = ∅, R0 = y

• Step 3 Compute 〈R0, ai〉 = RT
0 ai

• Step 4 Choose aSk
such that |〈R0, aSk

〉| = max |〈R0, ai〉| and update D0 as
D1 = D0 ∪ aSk

• Step 5 Calculate the estimate x̃ of x by minimizing ‖y −D1x̃‖2
2 i.e x̃ =

(DT
1 D1)

−1DT
1 y then R1 = R0 − 〈R0, aSt〉 aSt .

• Step 6 Repeat from step 3 until ‖Rk‖ ≤ c with c a small constant and rk the
residual at the k-th iteration

• Step 7 Output Dk and x̃

3.6.2.2 Complications

In matching pursuit after subtracting the projection from the residual may result in

a subsequent residual which is not orthogonal to the previously chosen column(s) i.e.

R1 = R0 − 〈R0, aj〉 aj may not be orthogonal to aj. This means that computing R1

introduces some component that is not orthogonal to the span of the �rst column

chosen. This causes the solution to take time to converge. This happens because the

columns in A are not mutually orthogonal. When there is no orthogonality between

R1 and aSk
the iteration might choose the same column more than once. When there

is orthogonality, the dot product between R1 and aSk
is zero, so the probability of

choosing the same column more than once is small since we are choosing a column that

has a maximum dot product with the residual. Consider the following example.

A =

(
1 0.5 −1.4
0 0.8 −1.4

)
y =

(
1

1.4

)
.
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We initialize the residual matrix R0 to y. The �rst step is to calculate the absolute

value of the dot product between the columns of A and R0. We get |〈R0, A〉| =
∣∣RT

0A
∣∣ =(

1 1.62 3.36
)
. Here 3.36 is the maximum of |〈R0, A〉|, therefore the third vector(

−1.4
−1.4

)
is the �rst chosen vector. The next residual becomes

R1 = R0 −

〈
R0,

(
−1.4
−1.4

)〉
=

(
−3.704
−3.304

)
.

Since two vectors are orthogonal if their dot product is zero. Then

〈
R1,

(
−1.4
−1.4

)〉
=

9.8112 which is not zero, so R1 is not orthogonal to a3 =

(
−1.4
−1.4

)
. This shows

that the matching pursuit computes residuals that are not orthogonal to the span of

previously chosen columns. This complication is dealt with by the use of orthogonal

matching pursuit.

3.6.3 Orthogonal matching pursuit

3.6.3.1 Theory

Matching pursuit was introduced in this mini-dissertation so that it will be easier to

understand the concept of orthogonal matching (OMP) pursuit and where it comes

from. Orthogonal matching pursuit is an improvement of matching pursuit. The

orthogonal matching pursuit employs the process of orthogonalization to guarantee the

orthogonal direction of projection in each iteration [43]. Orthogonal matching pursuit

is an iterative greedy algorithm that selects at each step the column, which is most

correlated with the current residuals [6]. Di�erent from matching pursuit, orthogonal

matching pursuit never reselects a column and the residual at any iteration is always

orthogonal to all currently selected columns in the dictionary. Another di�erence is that

OMP minimizes the coe�cients for all selected columns at iteration k, while MP only

updates the coe�cient of the most recently selected column [21]. Orthogonal matching

pursuit is similar to matching pursuit, the only di�erence is the calculations of residual

since orthogonal matching pursuit makes sure that the residual is orthogonal to the

span of all the chosen vectors by projecting the residual to the vector space that is

orthogonal to the vector space spanned by all the chosen columns. At the kth iteration

orthogonal matching pursuit selects the column aSk
as part of the representation of y

from the matrix A that satis�es,

|〈Rk, aSk
〉| = max |〈Rk, ai〉| , (3.23)
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where Sk is the index set tracking the indices of all selected columns up to iteration k,

and the residual is calculated as follows

Rk = (I − PSk
)Rk−1 (3.24)

where PSk
(called the projection matrix) is the orthogonal projection onto the vector

space spanned by all the columns that are already chosen. If Dk is a matrix made up

of previously chosen columns at iteration k then

PSk
= Dk(D

T
kDk)

−1DT
k . (3.25)

One can always �nd the estimated coe�cient, x̃ at each iteration by solving the fol-

lowing least squares problem,

min ‖y −Dkx̃‖2
2 (3.26)

and then use that estimate to calculate the residual. Then

x̃ = (DT
kDk)

−1DT
k y (3.27)

and the residual can be calculated as

Ri = y −Dkx̃. (3.28)

The process continues until the stopping criteria has been met. We should note that

when calculating the residual using equation (3.24) and equation (3.28) we will not re-

ceive the equivalent solutions but the results using both methods are similar. They both

select the same columns that are going to be used to represents y, but the estimate for

the vector x is di�erent. Using the projection matrix to calculate the residuals results

in a smaller error than using the least squares method. The algorithm is summarized

here.
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Algorithm 3.3 Orthogonal matching pursuit algorithm
• Step 1 Input matrix A and vector y

• Step 2 Initialize D0 = ∅ r0 = y R0 = r0

• Step 3 Compute 〈r0, ai〉 = rT0 ai

• Step 4 Choose aSk
such that |〈r0, aSk

〉| = max |〈r0, ai〉| and update D0 as D1 =
D0 ∪ aSk

• Step 5 Calculate the estimate x̃ of x by minimizing ‖y −Dtx̃‖2
2 i.e x̃ =

(DT
1 D1)

−1DT
1 y then r1 = y −D1x̃ and update R0 as R1 = R0 ∪ r1

• Step 6 Repeat from step 3 until ‖rk‖ ≤ c with c a small constant and rk the
residual at the k-th iteration

• Step 7 Output Dk and x̃

Consider the example in Section 4.3.2.3. We are now solving the problem using the

orthogonal matching pursuit to stress the fact that the residual is orthogonal to the

vector space spanned by the chosen columns.

A =

(
1 0.5 −1.4
0 0.8 −1.4

)
y =

(
1

1.4

)

We initialize the residual matrix R0 to y. The �rst step is to calculate the absolute

value of the dot product between the columns of A and R0. We get |〈R0, A〉| =
∣∣RT

0A
∣∣ =(

1 1.62 3.36
)
. Here again 3.36 is the maximum element of |〈R0, A〉|, therefore the

third vector

(
−1.4
−1.4

)
is the �rst chosen vector. This time the residual is calculated

as

r1 = (I − PSk
)r0

where

PSk
= D1(D

T
1 D1)

−1DT
1

and D1 =

(
−1.4
−1.4

)
therefore r1 =

(
−0.2
0.2

)
. To see that r1 to aS1 are orthogonal

we prove that their dot product equals zero i.e. rT1 aS1 =
(
−0.2 0.2

)( −1.4
−1.4

)
= 0.

This shows that in orthogonal matching pursuit the residual is always orthogonal to

the vector space spanned by the columns that are already chosen.
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3.6.3.2 The maximum of k (for k-sparse)

We aim to write y with only a few columns of the matrix A. That is we want x to be

k-sparse with k < n. A has dimension m × n with m < n. Greedy algorithms solve

the `1-norm minimization problem by choosing one column in each iteration. In each

iteration, after the column is chosen it is stored in a matrix D, the estimate of x is

computed by minimizing the sum of squares of the residual i.e.

x̂ = (DTD)−1DTy. (3.29)

Equation (3.29) has a solution if and only if DTD is invertible (non-singular). In this

case for DTD to be invertible D must not be under-determined (if rank(D) = m ≤ n).

Since we are choosing one column at a time, the matrix D is updated by one column at

a time and it will not be under-determined until m columns are added. After adding

the mth column the matrix D will have a dimension m×m and adding more column

makes D under-determined and causing equation (3.29) to have no solution. This

means that the programs will run for m iterations or less depending on the stopping

criterion. Therefore the maximum sparsity x can get is m i.e. k ≤ m. Consider the

graph in Figure 3.2.

Figure 3.2: The plot of k vs the determinant and the sum of squared errors of the
residual with m = 8 and n = 10

In Figure 3.2, k is the level of sparsity and the number of iterations, the blue line is

the determinant of a DTD matrix for each iteration and the red line is the `2-nom (sum

of squared error) of the residual at each iteration. The graph shows that as the number

of iterations increases the determinant gets closer to zero and eventually becomes zero

at k = m. It means that the more we add columns to the matrix D the more we

decrease its determinant. This shows that k can go to a maximum of m iterations i.e.

k has an upper bound of m. As k increases the norm of the residual decreases. We are
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using the norm of a residual as our stopping criteria i.e. we stop the iterations if the

norm of the residual in that iteration is less than some small constant c. And on the

graph the norm of the residual is small at iteration m, so the iteration stops at k = 8

which can also be seen on the plot of the determinant. This applies to both matching

pursuit and orthogonal matching pursuit.

3.7 Iterative thresholding

3.7.1 Introduction

Iterative thresholding also approximates the `0 minimization problem by solving the

`1 minimization problem. Iterative thresholding is a convex approach since it solve

a convex minimization problem. For the solution to be sparse, iterative thresholding

uses what is called the threshold operator to select which elements of the solution are

going to be replaced by zero. The threshold operator we are going discuss are hard

threshold and soft threshold.

3.7.2 Iterative hard thresholding

Iterative hard thresholding is used to solve equation (3.8) recursively. This method

is used for solving the under-determined system of equations of the form Ax = b.

To solve the system of equations we know that ATAx = AT b which leads to a �xed

point equation x = (I−ATA)x+AT b. Classical iterative methods suggests to de�ne a
sequence (xi) by the recursion xi+1 = (I−ATA)xi+AT b [17]. Since we want a k-sparse
solution, in each iteration we will only select the k largest elements of (I−ATA)x+AT b.
This leads to the following formula [3],

xi+1 = Hk

[
Ixi + AT (b− Axi)

]
(3.30)

where

Hk(z) =

 0

zi

|zi| < λ

|zi| > λ
.

Note that

(I − ATA)xi + AT b = Ixi − ATAxi + AT b

= Ixi + AT (b− Axi).

Here Hk(z) is called the hard threshold operator which is a non-linear operator that

sets all but the largest (in absolute value) k elements of z to zero. This is demonstrated

in Figure 3.3.
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Figure 3.3: The plot of the hard threshold operator Hk(z)

From the graph in Figure 3.3 we can see that the hard threshold operator Hk(z)

is a non-linear function. Iterative hard thresholding guarantees convergence to a local

minimum if ‖A‖2 < 1 [3]. The algorithm is summarized here,

Algorithm 3.4 Iterative hard thresholding, Hk(z)

• Step 1 Input matrix A and vector b

• Step 2 Initialize x0 = 0

• Step 3 Compute xi+1 = Hk

[
Ixi + AT (b− Axi)

]
• Step 4 Repeat step 3 until |xi − xi+1| is close to zero.

• Step 5 Output x

3.7.3 Iterative soft thresholding

De�nition 18. A soft threshold function is a non-linear function of the form

soft(x, T ) =


x+ T

0

x− T

x ≤ −T

|x| ≤ T

x ≥ T

(3.31)

where T is the threshold parameter. The function can also be written in the form

soft(x, T ) = sign(x)max(0, |x| − T ).

Figure 3.4 shows the soft threshold function.
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Figure 3.4: The plot of the soft threshold operator

This function sets values small values (less than T in absolute value) to zero and

shrinks large values (greater than T in absolute value) towards zero, and this is why

it is sometimes called the shrinkage operator [34]. We next discuss what is called

the majorization minimization which we are going to use to derive the soft threshold

function for solving the `1 minimization problem.

Majorization minimization

De�nition 19. Suppose we have two functions f : w → w and g : w → w. The

function f majorizes g if f(x) ≥ g(x) for all x ∈ w [12].

If we have a function J(x) that we want to minimize, we can choose a functionG(x) that

majorizes J(x). That is G(x) ≥ J(x), where the inequality is true at some initialized

point xk called the minimizer. Then we minimize G(x) at xk to �nd xk+1, i.e. we

�nd xk+1 such that G(xk+1) ≤ G(xk) [35]. In the second iteration we set xk+1 as our

minimizer and �nd xk+2 such that G(xk+2) ≤ G(xk+1). This continues until there is

convergence. Since G(x) changes in each iteration we can denote it as Gk(x) and we

can represent it as follows [35],

Gk(x) = J(x) + non-negative function of x (3.32)

Suppose we want to minimize the following,

O(x) = ‖y − Ax‖2
2 + λ‖x‖1 (3.33)

where
f
y − Ax

f
2
2 is the sum of squared errors,

f
x

f
1 a penalty function and λ the

shrinkage parameter. The shrinkage parameter controls the strength of the penalty

function, i.e. it controls the sparsity level. If λ = 0 no element in x will be zero and λ

increases more elements are penalized to zero. To minimize a function it is su�cient to

�nd its derivative and set that derivative to zero. Equation (3.33) is not di�erentiable
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since the penalty function i.e. the `1-norm is not di�erentiable, as explained in Section

2.2. To minimize equation (3.33) we will use majorization minimization. De�ne Gk(x)

to be

Gk(x) = O(x) + (x− xk)T (αI − ATA)(x− xk)

where Gk(x) ≥ O(x) since we are adding a positive function to O(x). The equality

here is at x = xk, that is Gk(xk) = O(xk) [34]. Substituting O(x) we get

Gk(x) = ‖y − Ax‖2
2 + λ‖x‖1 + (x− xk)T (αI − ATA)(x− xk). (3.34)

To make sure that the function Gk(x) is positive, the scalar α is chosen such that α is

greater or equal to the maximum eigenvalue of ATA [35]. First let us consider the case

where the case where A = I, that is,

O(x) = ‖y − x‖2
2 + λ‖x‖1. (3.35)

Expanding O(x) gives,

O(x) = (y1 − x1)
2 + λ|x1|1 + (y2 − x2)

2 + λ|x2|2 + ...+ (yN − xN)2 + λ|xN |1.

Therefore we can minimize O(x) by minimizing the term (yi − xi)
2 + λ|xi|1 . Let

f(x) = (y − x)2 + λ|x|. Then,

f ′(x) = −2(y − x) + λsign(x).

Setting f ′(x) = 0 we get,

y = x+
λ

2
sign(x). (3.36)

Therefore solving for x is the same as applying the threshold function with a threshold

of λ
2
. Therefore we have

x = soft

(
y,
λ

2

)
.

Back to equation (3.34) we have

Gk(x) = α‖xk +
1

α
AT (y − Axk)− x‖2

2 + λ‖x‖1.

Minimizing Gk(x) is the same as minimizing
1
α
Gk(x). Therefore we get [35],

1

α
Gk(x) = ‖xk +

1

α
AT (y − Axk)− x‖2

2 +
λ

α
‖x‖1. (3.37)

Comparing equation (3.37) with equation (3.35) we get that minimizing equation (3.37)

is the same applying the soft threshold function to xk+
1
α
AT (y−Axk) with a threshold
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of λ
α
. Therefore we have

xk+1 = soft

(
xk +

1

α
AT (y − Axk),

λ

α

)
where α ≥ maxeig(ATA), where maxeig is the maximum eigenvalue. Therefore α

should be greater than the maximum eigenvalue of ATA [35].

Algorithm 3.5 Iterative hard thresholding, Hk(z)

• Step 1 Input matrix A, vector b and the threshold T = λ
α

• Step 2 Initialize x0 = 0

• Step 3 Compute xi+1 = soft(Ixi + AT (b− Axi), T )

• Step 4 Repeat step 3 until convergence.

• Step 5 Output x

3.8 Conclusion

In this section we discussed the algorithms for solving sparse convex optimization. Of

those algorithms basis pursuit, iterative hard thresholding and iterative soft threshold-

ing are sparse convex optimization techniques while matching pursuit and orthogonal

matching pursuit are sparse non-convex optimization techniques. For an algorithm

to be a convex optimization technique it needs to solve the `1 minimization problem

instead of the `0 minimization problem and both the constraints and the objective func-

tion should be convex. An algorithm is a sparse optimization algorithm if it returns a

sparse solution.

Basis pursuit, iterative hard thresholding and iterative soft thresholding are convex op-

timization algorithms since they approximate problem (3.5) by minimizing `1 instead,

and it has been shown that `1 is a convex function. Matching pursuit and orthogonal

matching pursuit are non-convex optimization algorithms since they directly approxi-

mate problem (3.5), which is a non-convex problem. All of the algorithms we discussed

in this section return sparse solutions, therefore they are all sparse optimization algo-

rithms. In the next chapter we discuss the game sudoku and the application of the

techniques discussed in Chapter 3 on a sudoku problem.



Chapter 4

Application

4.1 The sudoku problem

A sudoku problem is a 9 × 9 grid consisting of 9 3 × 3 grids, where a single player

inserts numbers one to nine in each cell of the grid in such a way that all rows, all

columns and all 3×3 grids contains numbers one to nine. The puzzle comes with some

of the cells already �lled in and these values are called clues. The number of clues for

a sudoku problem to have a unique solution is not known. McQuire et al [28] proved

that with 16 clues a unique solution is not possible. There however do exist problems

with unique solutions having 17 clues. However, it is not guaranteed that all 17 clue

sudoku problems will have a unique solution. To summarise, the rules for solving a

sudoku problem are as follows:

• All rows should contain numbers one to nine.

• All columns should contain numbers one to nine.

• All three by three regions should contain numbers one to nine.

• All cells should be �lled.

The modern sudoku was most likely designed anonymously by Howard Garns, a 74-

year-old retired architect and freelance puzzle constructor from Connersville, Indiana,

and �rst published in 1979 by Dell Magazines as Number Place (the earliest known

examples of modern Sudoku) [27]. The puzzle was introduced in Japan by Nikoli in the

paper Monthly Nikolist in April 1984 as S	uji wa dokushin ni kagiru, which also can be

translated as the digits must be single or the digits are limited to one occurrence. At

a later date, the name was abbreviated to sudoku by Maki Kaji [30]. A 9× 9 sudoku

puzzle with 3 × 3 grids is the most common sudoku puzzle but other variations exist

[42]. There are di�erent ways of solving a sudoku puzzle mathematically, this includes

recursive backtracking [36] and integer programming [2]. In this mini-desertation we

53
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use the sparse optimization techniques to solve the the sudoku puzzle. We thus write

the sudoku puzzle as the minimization problem.

4.2 Sudoku as a linear program

Figure 4.1: A 9× 9 sudoku puzzle

Suppose we have a 9× 9 sudoku puzzle, say S. The contents of each cell of S can

be represented as Sn where Sn ∈ {1, 2, . . . 9} and n ∈ {1, 2, . . . 81}, where the cells are
numbered left to right and then top to bottom (a raster scan). Figure 4.1 represents

an example of a 9 × 9 Sudoku puzzle. Let i = (I(Sn = 1), I(Sn = 2), . . . , I(Sn = 9))

be an indicator vector [1], where

I(Sn = k) =

 1

0

if Sn = k

Otherwise.

This indicator vector helps us to code the integers 1 to 9 as follows [39],

integer binary vector integer binary vector

1 (1, 0, 0, 0, 0, 0, 0, 0, 0) 6 (0, 0, 0, 0, 0, 1, 0, 0, 0)

2 (0, 1, 0, 0, 0, 0, 0, 0, 0) 7 (0, 0, 0, 0, 0, 0, 1, 0, 0)

3 (0, 0, 1, 0, 0, 0, 0, 0, 0) 8 (0, 0, 0, 0, 0, 0, 0, 1, 0)

4 (0, 0, 0, 1, 0, 0, 0, 0, 0) 9 (0, 0, 0, 0, 0, 0, 0, 0, 1)

5 (0, 0, 0, 0, 1, 0, 0, 0, 0)

Every entry in the 9×9 sudoku puzzle thus has a 9 dimensional variable representation,
as represented above. Therefore we will have 729 variables (9 × 9 × 9) for the puzzle

[39]. We will denote the solution to our sudoku puzzle as x729×1 = [i1, i2, . . . , i81]. The

solution of the sudoku puzzle must satisfy all the rules. In the form of a linear program

we represent the sudoku rules as our constraints. The rules of the sudoku are as follows.
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• Rule 1: All rows must contain all numbers 1 to 9. Each row constraint can be

represented as a linear combination of x as follows.[
I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 O9×648

]
x = 1[

O9×81 I9×9 I9×9 I9×9 I9×9 . . . I9×9 I9×9 I9×9 O9×567

]
x = 1

...[
O9×648 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9 I9×9

]
x = 1

.

where 1 : 9 × 1 =


1

1
...

1

, In×n an n × n identity matrix and Om×n a matrix

containing zeros.

The �rst equation represents the constraints that the �rst row contains numbers 1

to 9, and the further equations represent the constraints for the remaining 8 rows.

The constraints are setup in such a way that 1 : 9 × 1 represents an indicator

function, where 1 represents that the constraint is true and 0 otherwise. In this

case it is a vector of ones only since the constraints should always be true.

• Rule 2: All columns must contain all numbers 1 to 9. Each column constraint

can be represented as a linear combination of x as follows

[I9×9O9×72 . . . I9×9O9×72]x = 1

[O9×9I9×9O9×72 . . . I9×9O9×72]x = 1

...

[O9×72I9×9O9×72 . . . I9×9O9×72]x = 1

The �rst equation represents the constraints that the �rst column contains num-

bers 1 to 9, and the equations that follow represents the constraints for the re-

maining 8 rows. The equation [I9×9O9×72 . . . I9×9O9×72]x represents a statement

that the �rst column contains numbers 1 to 9, and by equating it to an indicator

vector of ones means that the the statement is true.

• Rule 3: All 3× 3 box must contain all numbers 1 to 9. Each box constraint can
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be represented as a linear combination of x as follows.[
J9×27O9×54 J9×27O9×54 J9×27O9×540

]
x = 1[

O9×27 J9×27O9×54 J9×27O9×54 J9×27O9×513

]
x = 1[

O9×54J9×27O9×54 J9×27O9×54 J9×27O9×486

]
x = 1[

O9×243 J9×27O9×54 J9×27O9×54 J9×27O9×293

]
x = 1[

O9×270 J9×27O9×54 J9×27O9×54 J9×27O9×270

]
x = 1[

O9×297J9×27O9×54 J9×27O9×54 J9×27O9×243

]
x = 1[

O9×486 J9×27O9×54 J9×27O9×54 J9×27O9×54

]
x = 1[

O9×513 J9×27O9×54 J9×27O9×54 J9×27O9×27

]
x = 1[

O9×540 J9×27O9×54 J9×27O9×54 J9×27

]
x = 1

.

where J9×27 = I9×9I9×9I9×9. Each equation represents a constraint that each box

contains numbers 1 to 9, starting from the box on the top left corner to the right.

Again here a vector of ones represents that a box constraint is true.

• Rule 4: All cells should be �lled. An example of representing a cell constraint

is as follows. The constraints that cells one and two are �lled

[1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 . . . 0 0]x = 1

[0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 . . . 0 0]x = 1

We continue like this for all 81 cells [39]. The ones in this statement represents

that the �rst cell should contain one of the numbers 1 to 9, and the second

statement that cell 2 should contain one of the numbers 1 to 9.

• Rule 5: The clues can also be written as a linear combination x. As an example,
the clue that cell 2 contains 5 and the clue that cell 1 contains 5 are as follows,

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 . . . 0 0]x

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 . . . 0 0]x

Therefore the linear system can be represented as follows,

Ax =


Arow

Acol

Abox

Acell

Aclue

x =



1

1

1
...

1


= b

where the matrix A is a matrix containing clues. The size of the matrix A will be of

size (4N2 + c)×N3 where c is the number of clues [1].
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4.3 Application

4.3.1 Introduction

In this section we apply the algorithms explained in Chapter 3 on 100 9 × 9 unique

sudoku problems with 17 clues. Therefore a solution vector x will be of size 729×1 and

the matrix of constraints, A, will be of size 341× 729. When solving for x, we cannot

always �nd a solution that only has zeros and ones. This may happen depending on

the algorithms used. In the case where the solution is not zeros and ones, we transform

x in the following manner,

T (i) =

 1,

0,

i = maxindex(T )

otherwise

where maxindex(y) is the position of the maximum value for y [39]. As an example, sup-

pose the �rst 9 elements of x are T = (0.1, 0.01, 0.5, 0.03, 0.2, 0.05, 0.34, 0.25, 0.43),

i.e. the �rst element of a sudoku puzzle. Then after the transformation we will have

T = (0, 0, 1, 0, 0, 0, 0, 0, 0) which means that the �rst element of the sudoku puz-

zle is 3. We thus solve the following system of linear equations using the algorithms

explained in Chapter 3:

Ax =


Arow

Acol

Abox

Acell

Aclue

x =



1

1

1
...

1


= b.

4.3.2 `1-minimization (Basis pursuit)

For `1-minimization we solve the following minimization problem,

min ‖x‖1

Ax = y
,

by �rst transforming the problem into a linear program. We then �nd x by solving the

following linear program:

min
Φα=s

cTα α ≥ 0

where α =

[
u

v

]
and x = u− v.
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Figure 4.2: Histogram of times in seconds to complete a sudoku problem

Figure 4.2 represents the histogram of the times taken to solve the 100 sudoku

puzzles. In this plot we note that most values are clustered together in the range 0.024

to 0.032 seconds. This illustrates that the time taken to solve one sudoku puzzle for

this method is approximately the same and hence the algorithm is consistent.

Minimum time maximum time average time standard deviation
5.55556× e−6 1.333361111× e−5 7.32222222× e−6 1.0597777778× e−6

Table 4.1: Summary statistics for time (seconds) taken to solve 100 sudoku puzzles

Table 4.1 represents summary statistics for the time taken to solve the puzzles.

The average time to solve one sudoku puzzle was 7.32222222 × e−6 with a standard

deviation of 1.0597777778× e−6 hours. A small standard deviation indicates that the

times taken to solve 100 sudoku puzzles are close to the average time of 7.32222222×e−6

hours. This means that each di�erent sudoku problem was solved in approximately

7.32222222× e−6 hours. The minimum and maximum time to solve one Sudoku puzzle

are 5.55556× e−6 hours and 1.333361111× e−5 hours respectively.

4.3.3 Iterative soft thresholding

For iterative soft threshold we use the residual error, and this is de�ned to be the true

value for b minus the estimated value for b i.e. residuals = b− Ax̂ where x̂. Since the

residual is a vector, we can stop the iteration when the maximum of the elements of

the residual is small. We thus solve

min ‖Ax− y‖2
2 + λ ‖x‖1 .
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For iterative soft thresholding, we calculated the value for x in the following manner

xk+1 = soft

(
xk +

1

α
AT (y − Axk),

λ

α

)
.

We chose α to be the maximum of the eigenvalues ATA [35]. To get a good estimate

of the solution, we need to select the best λ, which controls the level of sparsity. We

selected λ using trial and error. We measure the performance of the algorithm using

the time taken to solve the puzzles and the percentage of correct cells in the sudoku

puzzle. The percentage of correct cells in the sudoku puzzle is de�ned as:

%correct =
number of correct cells

number of cells
× 100.

Since there are 81 cells, if %correct equals 100, then all cells have been estimated

correctly. With this algorithm all the sudoku puzzles have been solved correctly.

Figure 4.3: Histogram of time in hours to complete a sudoku problem

Figure 4.3 represents the histogram of times taken to solve 100 sudoku puzzles.

In this plot we note that most values are clustered together in the range 4.5 to 4.95

seconds. This illustrate that the time taken to solve one sudoku puzzle for this method

is approximately the same and hence the algorithm is consistent.

Minimum time maximum time average time standard deviation
4.01147 5.09826 4.574537 0.30793

Table 4.2: Summary statistics for time (hours) taken to solve 100 sudoku sudoku
puzzles

Table 4.2 represents summary statistics for the times taken to solve the puzzles.

The average time to solve one sudoku puzzle was 4.8 hours with a standard deviation

of 0.30793 hours. The standard deviation is small with respect to hours. A small
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standard deviation indicates that the times taken to solve 100 sudoku puzzles are close

to the average time of 4.574537 hours. This means that each di�erent sudoku problem

was solved in approximately 4.574537 hours. The minimum and maximum time taken

to solve one sudoku puzzle is 4.01147 hours and 5.09826 hours respectively

4.3.4 Iterative hard thresholding

For iterative hard threshold we want to solve the following minimization problem for

x,

min ‖Ax− y‖2
2 + λ ‖x‖1 .

We solve for x iteratively using the following

xi+1 = Hk

[
Ixi + AT (b− Axi)

]
where

Hk(z) =

 0

zi

|zi| < λ

|zi| > λ
.

Here λ was selected by trial and error. With this algorithm, all the sudoku puzzles can

be solved exactly.

Figure 4.4: Histogram of time in hours to complete a sudoku problem

Figure 4.4 represents the distribution of the time taken to solve one sudoku puzzle.

In this plot we note that most values are clustered together in the range 4.2 to 4.6

hours. This illustrate that the time taken to solve one sudoku puzzle for this method

is approximately the same and hence the algorithm is consistent.
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Minimum time maximum time average time standard deviation
4.00137 5.28171 4.599476 0.387

Table 4.3: Summary statistics for time (hours) taken to solve 100 sudoku puzzles

Table 4.3 represents summary statistics for the time taken to solve the puzzles. The

average time to solve one sudoku puzzle was 4.599476 hours with a standard deviation

of 0.387 seconds. The standard deviation is small with respect to hours. A small

standard deviation indicates that the times taken to solve 100 sudoku puzzles are close

to the average time of 4.599476 hours. This means that each di�erent sudoku problem

was solved in approximately 4.599476 hours. The minimum and maximum time taken

to solve the puzzles are 4.00137 and 5.28171 seconds.

4.3.5 Orthogonal Matching pursuit

Orthogonal matching pursuit iteratively selects columns that are correlated with the

current residuals the best. At each iteration, only one column is selected. This is done

by selecting columns that satisfy the following.

|〈Rk, aSk
〉| = sup |〈Rk, ai〉| .

We then use the selected columns to estimate x. For instance, suppose D represents a

matrix made up of the columns that are selected. Then we estimate x as follows:

x̃ = (DTD)−1DT b.

This will have a solution if (DTD)−1 exists. In Section 4.3.3.2 we explained that

(DTD)−1 exists when D : m×n must not be under-determined (if rank(D) = m ≤ n).

In our case we have Ax = b, where A : 325× 729 is a matrix of the sudoku restrictions.

Since there are 729 columns in A and in each iteration we are selecting one column,

there will be less than 729 iterations. This is because after we are �nished with 729

columns there will no longer be any more columns to choose from. Since we are adding

one column at a time in D, D will be under-determined until we add the 325th column.

This means that our algorithm will run for 325 iterations. From 326 on wards (DTD)−1

will no longer exists. We could make use of the generalized inverse but this does not

provide a unique solution. We used the percentage of elements in the sudoku table

that are predicted correctly and the time taken to solve the puzzles to measure the

performance of the algorithm. Percentage of elements in the sudoku table that are

predicted correctly is de�ned as follows:

%correct =
number of correct cells

number of cells
× 100.
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To get a threshold in each iteration, we calculated the percentage of correct solutions

and we chose the x value in the iteration that gives the best proportion of correct

solutions. With this algorithm not all of the Sudoku puzzles were solved exactly. This

is due to the fact that non-convex methods may converge to a solution that is not

global.

Figure 4.5: Histogram of time in seconds to complete a sudoku problem

Figure 4.5 represent the distribution of the time taken to solve one sudoku puzzle.

Table 4.4 represents summary statistics for the time taken to solve the puzzles.

Minimum time maximum time average time standard deviation
0.0222383333 0.02833583333 0.025151069444 0.001253716667

Table 4.4: Summary statistics for time taken to solve 100 sudoku puzzles in seconds

The average time to solve one sudoku puzzle was 0.025 hours with a standard

deviation of 0.00125 hours. The standard deviation is small with respect to hours. A

small standard deviation indicates that the times taken to solve 100 sudoku puzzles

are close to the average time of 0.025 hours. This means that each di�erent sudoku

problem was solved in approximately 0.025 hours. For each puzzle, we deleted the

values that were solved incorrectly and then ran the algorithm again. However, this

technique did not provide better results.
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Figure 4.6: Histogram of the number of correct cells for 100 sudoku problems

Figure 4.6 represents a histogram of the number of correct cells for each of the 100

sudoku problem. Figure 4.6 shows that more data lies below 20. This means that for

most puzzles, the orthogonal matching pursuit algorithm managed to solve less than

20 cells of the 64 unknowns correctly. The minimum number of correct cells is 5 and

the maximum number of correct cells is 35

4.3.6 Discussion

Number of
solved
puzzles

Total
time(sec)

Average
time(sec)

`1-minimization
(BP)

100 2.6359999 0.02636

IST 100 27447.2191 274.47222
IHT 100 27576.856 275.96856
OMP 0 9054.385 90.54385

Table 4.5: Summary results of all algorithms

Table 4.5 represents the summary for all the di�erent methods we considered in this

mini-dissertation. The algorithms are ordered according to the number of correct so-

lutions and average time, with the �rst order being the correct solution. Based on

our results, it has been noted that the `1-minimization algorithm is the best method

for solving the sudoku puzzles since it solved all the sudoku puzzles correctly in a

short amount of time (0.026 seconds per puzzle on average). Iterative hard thresh-

old and iterative soft threshold solved all the sudoku puzzles correctly but it took a

long amount of time to converge (4.85 hours and 4.97 hours per puzzle on average

respectively). Orthogonal matching pursuit is a non-convex method since it estimates
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the `0-minimization problem directly. It took 90.66 seconds to solve each sudoku puz-

zle, which is faster than iterative soft threshold and iterative hard threshold, but the

problem is that not all cells are estimated correctly. The second step for orthogonal

matching pursuit improved the results but it still did not estimate all cells correctly.
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Conclusion

This mini-dissertation provided an overview of sparse optimization algorithms. The

algorithms considered here were, the `1-minimization, iterative hard thresholding, it-

erative soft thresholding and orthogonal matching pursuit. We then applied the al-

gorithms to 100 9 × 9 unique sudoku puzzles each with 17 clues. The times taken to

solve the 100 sudoku puzzles were recorded, analyzed and compared. The performance

of the algorithm was measured by the number of sudoku puzzles solved completely

and the time taken to solve the puzzle. It has been noted that the `1-minimization

performed better than iterative hard thresholding, iterative soft thresholding and or-

thogonal matching pursuit since it solves all the sudoku puzzles completely in a short

period of time.

We presented an algorithm for non-convex sparse optimization, namely orthogonal

matching. This algorithm was included to show that for a non-convex algorithm it

may take time to converge to a global solution. We discussed the advantages and

disadvantages of each algorithm presented. We implemented the algorithms to solve 100

sudoku puzzles. We �nally, compared the performance of sparse convex optimization

to sparse non-convex optimization on the application at hand. We noted that the

algorithms for convex optimization solved the puzzles completely while the algorithm

for non-convex optimization did not. This shows that for the problem at hand convex

optimization methods performed better.

For iterative hard thresholding and iterative soft thresholding, we needed to �nd a

suitable threshold λ. In this mini-dissertation we found the threshold by trial and

error, but there are various methods for �nding the threshold. One of the methods is

called cross-validation [25]. In this method we ran the algorithm for di�erent values

of λ and each time we calculated the percentage of correct solutions. We then chose

the λ that returns the best percentage of correct solutions. For future work, we can

look at sudoku puzzles with non-unique solutions and also compare the performance

65
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of convex and non-convex algorithms on sudoku puzzles with non-unique solutions.



Bibliography

[1] P Babu, K Pelckmans, P Stoica, and J. Li. Linear systems, sparse solution, and

sudoku. IEEE Signal Processing Letters, 17(1), January 2010.

[2] A Bartlett, TP Chartier, AN Langville, and TD Rankin. An integer programming

model for the sudoku problem. Journal of Online Mathematics and its Applica-

tions, 8(1), 2008.

[3] T Blumensath and M Davies. Iterative thresholding for sparse approximations.

Fourier Analysis and Applications, Special Issue on Sparsity, 2008.

[4] S Boyd and L Vaddenberghe. Convex Optimization. Cambridge University Press,

2014.

[5] A Buluç, JT Fineman, M Frigo, JR Gilbert, and CE Leiserson. Parallel sparse

matrix-vector and matrix-transpose-vector multiplication using compressed sparse

blocks. In Proceedings of the twenty-�rst Annual Symposium on Parallelism in

Algorithms and Architectures, pages 233�244. ACM, 2009.

[6] TT Cai and L Wang. Orthogonal matching pursuit for sparse signal recovery with

noise. Transactions on Information Theory, 57(7), July 2011.

[7] EJ Candes. Mathematics of sparsity (and few other things). Proceedings of the

International Congress of Mathematicians, Seoul, South Korea, 2014.

[8] EJ Candes and T Tao. Decoding by linear programming. IEEE Transactions on

Information Theory, 51(12):489�509, 2005.

[9] E.J Candes and M.B Wakin. An introduction to compressive sensing. IEEE Signal

Processing Magazine, (21), March 2008.

[10] M Cavazzuti. Optimization Methods: From Theory to Design Scienti�c and Tech-

nological Aspects in Mechanics. Springer Science & Business Media, 2012.

[11] S.S Chen, D.L Donoho, and M.A Saunders. Atomic decomposition by basis pur-

suit. SIAM REV Society for Industrial and Applied Mathematics, 43(1):129�159,

2001.

67



BIBLIOGRAPHY 68

[12] P Cholak, N Greenberg, and JS Miller. Uniform almost everywhere domination.

arXiv:math/0506019v2, November 2005.

[13] G Dantzig. Linear programming and extensions. Princeton University Press, 2016.

[14] D Donoho, M Elad, and V Temlyakov. Stable recovery of sparse overcomplete rep-

resentations in the presence of noise. IEEE Transactions on Information Theory,

52(1), 2006.

[15] DL Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289�1306, April 2006.

[16] YC Eldar and G Kutyniok. Compressed sensing: theory and applications. Cam-

bridge University Press, 2012.

[17] S Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM

Journal on Numerical Analysis, pages 2543�2563, 2011.

[18] R Gagan, S Arabinda, and Sahoo. A comparative study of some greedy pursuit

algorithms for sparse approximation. Signal Processing Conference, 2009 17th

European., pages 398�402, 2009.

[19] J Gallier and J Quaintance. Fundamentals of Linear Algebra and Optimization.

University of Pennsylvania, 2017.

[20] A Gupta, G Karypis, and V Kumar. Highly scalable parallel algorithms for

sparse matrix factorization. Parallel and Distributed Systems, IEEE Transactions,

8(5):502�520, May 1997.

[21] R Huamin, P Hong, OS Ingvor, and M Thomas B. Greedy vs. l1 convex optimiza-

tion in sparse coding : Comparative study in abnormal event detection. Paper

presented at ICML '15 workshop, Lille, France, 2015.

[22] M Jaggi. Sparse convex optimization methods for machine learning. PhD thesis,

ETH Zurich, 2011.

[23] F Jianqing, Lv Jinchi, and Lei Q. Sparse high-dimensional models in economics.

Annual Review of Economics, pages 291�317, September 2011.

[24] L Jiao, L Bo, and L Wang. Fast sparse approximation for least squares support

vector machine. Neural Networks, IEEE Transactions, 18(3):685�697, May 2007.

[25] R Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. Appears in the international joint conference on arti�cial

intelligence(IJCAI), 1995.



BIBLIOGRAPHY 69

[26] R Larson. Elementary Linear Algebra. Cengage Learning, 1999.

[27] G Lev. The answer men. Time New york, March 2013.

[28] G McGuire, B Tugemann, and G Civario. There is no 16-clue sudoku: Solv-

ing the sudoku minimum number of clues problem via hitting set enumeration.

arXiv:1201.0749, August 2013.

[29] HP Mulholland. On generalizations of minkowski's inequality in the form of a

triangle inequality. Proceedings of the London Mathematical Society, Proceedings

of the London Mathematical Society(1):294�307, June 1949.

[30] E Pegg. Ed Pegg Jr's math games: Sudoku variations. MAA online. The Mathe-

matical Association of America, October 2006.

[31] S Qaisar, RM Bila, W Iqbal, M Naureen, and S Lee. Compressive sensing:

From theory to applications, a survey. Journal of Communications and Networks,

15(5):443�456, 2013.

[32] C Ramirez, V Kreinovich, and M Argaez. Why l1 is a good approximation to l0 :

A geometric explanation. Journal of Uncertain Systems, 7, 2013.

[33] R Robere. Interior point methods and linear programming. University of Toronto,

2012.

[34] I Selesnick. Penalty and shrinkage functions for sparse signal processing. Connex-

ions, 11, 2012.

[35] Ivan W Selesnick. Sparse signal restoration. Connexions, pages 1�13, 2009.

[36] PJ Simha, KV Suraj, and T Ahobala. Recognition of numbers and position using

image processing techniques for solving sudoku puzzles. In Advances in Engi-

neering, Science and Management (ICAESM), 2012 International Conference on,

pages 1�5. IEEE, 2012.

[37] J Stewart. Calculus: early transcendentals. Cengage Learning, 2010.

[38] Y Tang, Z Wu, and C Zhu. An improved strategy for solving sudoku by sparse

optimization methods. arXiv preprint arXiv:1507.05995, 2015.

[39] Y Tang, Z Wu, and C Zhu. An improved strategy for solving sudoku by sparse

optimization methods. arXiv:1507.05995, 2015.

[40] JA Tropp and SJ Wright. Computational methods for sparse solution of linear

inverse problems. Proceedings of the IEEE, 98(6):948�958, 2010.



BIBLIOGRAPHY 70

[41] J Wright, A Yang, A Ganesh, S Sastry, and Y Ma. Robust face recognition via

sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions, 2008.

[42] B Youngkyun, K Bokyeong, Y Seongchul, and C Donguk. E�ects of two types of

sudoku puzzles on students logical thinking. In Proceedings of the second European

conference on games based learning, pages 19�24. Academic Publishing Limited

UK, 2008.

[43] Z Zhang, Y Xu, J Yang, X Li, and D Zhang. A survey of sparse representation:

algorithms and applications. arXiv:1602.07017v1 [cs.CV], February 2016.



APPENDIX 71

Appendix

The `1-minimization algorithm

proc iml ; use datamy ;

read a l l i n to j a c ;

use so lu ; read a l l i n to so lu ;

/∗ Star t t imer ∗/ %l e t _timer_start = %sys func ( datet ime ( ) ) ;

∗−−−−−−−−−−−−−−−−−−−−row con s t r a i n t s−−−−−−−−−−−−;
xx=repeat ( I ( 9 ) , 1 , 9 ) ; do i=81 to (648−81) by 81 ;

c=c //( J (9 , i , 0 ) | | xx | | j (9 ,648− i , 0 ) ) ;

end ; Ar=(xx | | j ( 9 , 648 , 0 ) )// c //( j ( 9 , 6 4 8 , 0 ) | | xx ) ;

∗−−−−−−−−−−−−−−−−−−column con s t r a i n t s−−−−−−−−−−−;
xxx=I ( 9 ) | | J ( 9 , 7 2 , 0 ) ;

c1=repeat ( xxx , 1 , 9 ) ;

do i=9 to (72−9) by 9 ;

cc=cc //( j (9 , i , 0 ) | | ( r epeat ( xxx , 1 , 8 ) ) | | I ( 9 ) | | j (9 ,72− i , 0 ) ) ;

end ;

Ac=c1// cc // repeat ( ( j ( 9 , 7 2 , 0 ) | | I ( 9 ) ) , 1 , 9 ) ;

∗−−−−−−−−−−−−−−−−−−box con s t r a i n t s−−−−−−−−−−−−−−−−−−−−−−−−−;
j o=repeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ;

b1=repeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 0 , 0 ) ;

do i=27 to (2∗27) by 27 ;

bbb=bbb//( j (9 , i , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 )

| | j (9 ,540− i , 0 ) ) ;

end ;

aba1=( j ( 9 , 2 4 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 9 7 , 0 ) ) ;

aba2=( j ( 9 , 2 7 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 0 , 0 ) ) ;

aba3=( j ( 9 , 2 9 7 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 4 3 , 0 ) ) ;

ab1=( j ( 9 , 4 8 6 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ) ;

ab2=( j ( 9 , 5 1 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 , 0 ) ) ;

ab3=j ( 9 , 5 4 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) ;

Ab=b1//bbb//aba1//aba2//aba3//ab1//ab2//ab3 ;

∗−−−−−−−−−−−−−−−−−−a l l c e l l f i l l e d con s t r a i n t s−−−−−−−−−−−−−−;
ccc=j ( 1 , 9 , 1 ) ;

do i=1 to (729) by 9 ;

cc1=j ( 1 , 7 29 , 0 ) ;

cc1 [ , i : i +8]=ccc ;

Acf=Acf // cc1 ; end ;

∗−−−−−−−−−−−−−−−−−−−c l u e s con s t r a i n t s−−−−−−−−−−−;
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do a l l=1 to 100 ;

s o l u t i o n=so lu [ a l l , ] ` ;

AAA=jac [ a l l , ] ` ;

do abb=1 to ( nrow (AAA) ) ;

i f AAA[ abb]^=0 then c lu=c lu //( j ( 1 , ( abb−1)∗9+(AAA[ abb ] −1 ) , 0 ) | |
1 | | j (1 ,728−(( abb−1)∗9+(AAA[ abb ] −1 ) ) , 0 ) ) ;

end ;

s s=c lu ;

f r e e c lu ;

∗−−−−−−−−−−−−−−−−−matrix o f c on s t r a i n t s and vec to r b−−−−−−−−;
A=Ar//Ac//Ab//Acf // s s ; b=j ( nrow (A) , 1 , 1 ) ;

c o e f=A||(−A) ; ∗phi ;
ob j e c t=j ( nco l ( c o e f ) , 1 , 1 ) ; ∗c ;
b=j ( nrow (A) , 1 , 1 ) ; ∗b ;
∗−−−−−−−−−−−−−−−−−−−−−−opt imiz ing−−−−−−−−−−−−−−−−−−−−−;
c a l l l p s o l v e ( rc , objv , x , dual , rd , object , coe f , b ) ; dua=dual ` ;

sol_xx=x [1 :729 , ] − x [ 7 3 0 : 1 4 5 8 , ] ; xx_sol=shape ( sol_xx , 8 1 , 9 ) ;

maxx=xx_sol [ , <>]; maxind=xx_sol [ , <: >] ; check=( s o l u t i o n=maxind ) ;

perc_corr=perc_corr //( ( sum( check ) )/ nrow ( check ) )∗100 ;
a l l l=a l l l // a l l ;

dur = dur //( datet ime ( ) − &_timer_start ) ;

end ;

∗−−−−−−−−−−−−−−−−−−−−uncumulate time−−−−−−−−−−−−−;
time_in_sec=dur [ 1 ] / / j ( nrow ( dur )−1 ,1 ,1) ;
do z ip=2 to ( nrow ( dur ) ) ;

time_in_sec [ z ip ]=dur [ z ip ]−dur [ z ip −1] ;
end ;

total_time_in_sec=sum( time_in_sec ) ;

av_time_in_sec=mean( time_in_sec ) ;

std_time_in_sec=std ( time_in_sec ) ;

p r i n t a l l l perc_corr time_in_sec ;

p r i n t total_time_in_sec av_time_in_sec std_time_in_sec ;

qu i t ;

Iterative soft threshold algorithm

proc iml ;

use datamy ;

read a l l i n to j a c ; use s o l ;

read a l l i n to so lu ;
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/∗ Star t t imer ∗/ %l e t _timer_start = %sys func ( datet ime ( ) ) ;

∗−−−−−−−−−−−−−−−−−−−−row con s t r a i n t s−−−−−−−−−−−−;
xx=repeat ( I ( 9 ) , 1 , 9 ) ;

do i=81 to (648−81) by 81 ;

c=c //( J (9 , i , 0 ) | | xx | | j (9 ,648− i , 0 ) ) ;

end ;

Ar=(xx | | j ( 9 , 648 ,0 ) )// c //( j ( 9 , 6 4 8 , 0 ) | | xx ) ;

∗−−−−−−−−−−−−−−−−−−column con s t r a i n t s−−−−−−−−−−−;
xxx=I ( 9 ) | | J ( 9 , 7 2 , 0 ) ; c1=repeat ( xxx , 1 , 9 ) ;

do i=9 to (72−9) by 9 ;

cc=cc //( j (9 , i , 0 ) | | ( r epeat ( xxx , 1 , 8 ) ) | | I ( 9 ) | | j (9 ,72− i , 0 ) ) ;

end ; Ac=c1// cc // repeat ( ( j ( 9 , 7 2 , 0 ) | | I ( 9 ) ) , 1 , 9 ) ;

∗−−−−−−−−−−−−−−−−−−box con s t r a i n t s−−−−−−−−−−−−−−−−−−−−−−−−−;
j o=repeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ;

b1=repeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 0 , 0 ) ;

do i=27 to (2∗27) by 27 ;

bbb=bbb//( j (9 , i , 0 ) | | r epeat ( jo , 1 , 2 )

| | r epeat ( I ( 9 ) , 1 , 3 ) | | j (9 ,540− i , 0 ) ) ;

end ;

aba1=( j ( 9 , 2 4 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 9 7 , 0 ) ) ;

aba2=( j ( 9 , 2 7 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 0 , 0 ) ) ;

aba3=( j ( 9 , 2 9 7 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 4 3 , 0 ) ) ;

ab1=( j ( 9 , 4 8 6 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ) ;

ab2=( j ( 9 , 5 1 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 , 0 ) ) ;

ab3=j ( 9 , 5 4 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) ;

Ab=b1//bbb//aba1//aba2//aba3//ab1//ab2//ab3 ;

∗−−−−−−−−−−−−−−−−−−a l l c e l l f i l l e d con s t r a i n t s−−−−−−−−−−−−−−;
ccc=j ( 1 , 9 , 1 ) ;

do i=1 to (729) by 9 ;

cc1=j ( 1 , 7 29 , 0 ) ;

cc1 [ , i : i +8]=ccc ;

Acf=Acf // cc1 ; end ;

∗−−−−−−−−−−−−−−−−−−−−−−−c l u e s con s t r a i n t s−−−−−−−−−−−−−−−−−−−−−−;
do a l l=1 to 2 ;

s o l u t i o n=so lu [ a l l , ] ` ;

AAA=jac [ a l l , ] ` ;

do abb=1 to 81 ;

i f AAA[ abb]^=0 then c lu=c lu //( j ( 1 , ( abb−1)∗9+(AAA[ abb ]−1) ,0)
| | 1 | | j (1 ,728−(( abb−1)∗9+(AAA[ abb ] −1 ) ) , 0 ) ) ;
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end ;

s s=c lu ;

f r e e c lu ;

∗−−−−−−−−−−−−−−−−−matrix o f c on s t r a i n t s and vec to r b−−−−−−−−;
A=Ar//Ac//Ab//Acf // s s ;

b=j ( nrow (A) , 1 , 1 ) ;

∗==========i t e r a t i v e s o f t th r e sho ld ing==================;

x = A; d1=norm(x , " L2 " ) ;

A=x/d1 ; aa=(t (A))∗A;

c a l l e i g en ( e igv , e igve , aa ) ;

a l=max( e igv ) ;

∗ lam=95;

do lam=−30 to 30 by 5 ;

x_0 = j ( nco l ( x ) , 1 , 0 . 5 ) ;

T = lam/ a l ; s t =10000000000;

s to =0.000000000000000000000000000000001;

m=2;

i t e =0;

do i=1 to m whi le ( st>sto ) ;

xk = x_0+(ginv (A))∗ (1/ a l )∗ ( b−A∗x_0 ) ;
do i i =1 to nrow ( xk ) ;

i f ( xk [ i i ]<(−T)) then xk [ i i ]=xk [ i i ]+T;

i f ( xk [ i i ]>(T) ) then xk [ i i ]=xk [ i i ]−T;
e l s e xk [ i i ]=0;

end ;

y_sparse=A∗( xk ) ;
s t=max( abs (b−y_sparse ) ) ;

nor=norm(xk , " L1 " ) ;

x_0=xk ;

i t e=i t e +1;

end ;

e r r o r=e r r o r // s t ;

sod=shape (xk , 8 1 , 9 ) ;

maxind=sod [ , <: >] ;

check=( s o l u t i o n=maxind ) ;

c o r r e c t=(sum( check ) )/ nrow ( check ) ;

s aveco r r=saveco r r // c o r r e c t ;

norm=norm//nor ;

end ;
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e r ro1=er ro1 //min ( e r r o r ) ;

normL1=min (norm ) ;

perc_corr=perc_corr //(max( saveco r r ) )∗100 ;
Num_correct=Num_correct //(max( saveco r r ) )∗81 ;
f r e e s tep ;

f r e e saveco r r ;

f r e e norm ;

dur = dur //( datet ime ( ) − &_timer_start ) ;

end ;

∗−−−−−−−−−summary o f time s t a t i s t i c s −−−−−−−−−−−;
time_in_sec=dur [ 1 ] / / j ( nrow ( dur )−1 ,1 ,1) ;
do z ip=2 to ( nrow ( dur ) ) ;

time_in_sec [ z ip ]=dur [ z ip ]−dur [ z ip −1] ;
end ;

total_time_in_sec=sum( time_in_sec ) ;

av_time_in_sec=mean( time_in_sec ) ;

std_time_in_sec=std ( time_in_sec ) ;

p r i n t perc_corr Num_correct e r ro1 time_in_sec ;

p r i n t total_time_in_sec av_time_in_sec std_time_in_sec ;

qu i t ;

Iterative hard threshold

proc iml ;

use datamy ;

read a l l i n to j a c ;

use s o l ;

read a l l i n to so lu ;

/∗ Star t t imer ∗/ %l e t _timer_start = %sys func ( datet ime ( ) ) ;

∗−−−−−−−−−−−−−−−−−−−−row con s t r a i n t s−−−−−−−−−−−−;
xx=repeat ( I ( 9 ) , 1 , 9 ) ;

do i=81 to (648−81) by 81 ;

c=c //( J (9 , i , 0 ) | | xx | | j (9 ,648− i , 0 ) ) ;

end ; Ar=(xx | | j ( 9 , 648 ,0 ) )// c //( j ( 9 , 6 4 8 , 0 ) | | xx ) ;

∗−−−−−−−−−−−−−−−−−−column con s t r a i n t s−−−−−−−−−−−;
xxx=I ( 9 ) | | J ( 9 , 7 2 , 0 ) ;

c1=repeat ( xxx , 1 , 9 ) ;

do i=9 to (72−9) by 9 ;

cc=cc //( j (9 , i , 0 ) | | ( r epeat ( xxx , 1 , 8 ) ) | | I ( 9 ) | | j (9 ,72− i , 0 ) ) ;

end ;
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Ac=c1// cc // repeat ( ( j ( 9 , 7 2 , 0 ) | | I ( 9 ) ) , 1 , 9 ) ;

∗−−−−−−−−−−−−−−−−−−box con s t r a i n t s−−−−−−−−−−−−−−−−−−−−−−−−−;
j o=repeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ;

b1=repeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 0 , 0 ) ;

do i=27 to (2∗27) by 27 ;

bbb=bbb//( j (9 , i , 0 ) | | r epeat ( jo , 1 , 2 )

| | r epeat ( I ( 9 ) , 1 , 3 ) | | j (9 ,540− i , 0 ) ) ;

end ;

aba1=( j ( 9 , 2 4 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 9 7 , 0 ) ) ;

aba2=( j ( 9 , 2 7 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 0 , 0 ) ) ;

aba3=( j ( 9 , 2 9 7 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 4 3 , 0 ) ) ;

ab1=( j ( 9 , 4 8 6 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ) ;

ab2=( j ( 9 , 5 1 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 , 0 ) ) ;

ab3=j ( 9 , 5 4 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) ;

Ab=b1//bbb//aba1//aba2//aba3//ab1//ab2//ab3 ;

∗−−−−−−−−−−−−−−−−−−a l l c e l l f i l l e d con s t r a i n t s−−−−−−−−−−−−−−;
ccc=j ( 1 , 9 , 1 ) ;

do i=1 to (729) by 9 ;

cc1=j ( 1 , 7 29 , 0 ) ;

cc1 [ , i : i +8]=ccc ;

Acf=Acf // cc1 ;

end ;

∗−−−−−−−−−−−−−−−−−−−c l u e s con s t r a i n t s−−−−−−−−−−−;
do a l l=1 to 2 ;

s o l u t i o n=so lu [ a l l , ] ` ;

AAA=jac [ a l l , ] ` ;

do abb=1 to ( nrow (AAA) ) ;

i f AAA[ abb]^=0 then c lu=c lu //( j ( 1 , ( abb−1)∗9+(AAA[ abb ]−1) ,0)
| | 1 | | j (1 ,728−(( abb−1)∗9+(AAA[ abb ] −1 ) ) , 0 ) ) ;

end ;

s s=c lu ;

f r e e c lu ;

∗−−−−−−−−−−−−−−−−−matrix o f c on s t r a i n t s and vec to r b−−−−−−−−;
A=Ar//Ac//Ab//Acf // s s ;

b=j ( nrow (A) , 1 , 1 ) ;

x_sol=ginv (A)∗b ;
sol_x=shape ( x_sol , 8 1 , 9 ) ;

minxsol=sol_x [ , <: >] ;

sud=shape ( minxsol , 9 , 9 ) ;
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∗========i t e r a t i v e hard th r e sho ld ing==========;

x = A;

d1=norm(x , " L2 " ) ;

A=x/d1 ;

do k=0 to 1 by 0 . 1 ;

x_0 = j ( nco l ( x ) , 1 , 0 ) ;

∗k = 0 . 0 7 ;

s t =10000000000;

s to =0.05;

m=2;

i t e =0;

do i=1 to m whi le ( st>sto ) ;

xk = x_0+(ginv (A) )∗ ( b−A∗x_0 ) ;
in = ( ( abs ( xk))>k ) ;

x_k = ( in )#(xk ) ;

y_sparse=A∗(x_k ) ;
s t=max( abs (b−y_sparse ) ) ;

nor=norm(x_k, " L1 " ) ;

x_0=x_k ;

i t e=i t e +1;

end ;

e r r o r=e r r o r // s t ;

x_sparse=shape (x_k , 8 1 , 9 ) ;

maxx=x_sparse [ , <>];

maxind=x_sparse [ , <: >] ;

check=( s o l u t i o n=maxind ) ;

c o r r e c t=(sum( check ) )/ nrow ( check ) ;

s aveco r r=saveco r r // c o r r e c t ;

end ;

sudoku=shape (maxind , 9 , 9 ) ;

perc_corr=perc_corr //( (max( saveco r r ) )∗10 0 ) ;
Num_correct=Num_correct //( (max( saveco r r ) ) ∗ 8 1 ) ;
e r r o r 1=e r r o r 1 //min ( e r r o r ) ; f r e e e r r o r ;

f r e e saveco r r ;

dur = dur //( datet ime ( ) − &_timer_start ) ;

end ;

∗−−−−−−−−−−−−−−−−−−−summary o f time s t a t i s t i c s −−−−−−−−−−−;
time_in_sec=dur [ 1 ] / / j ( nrow ( dur )−1 ,1 ,1) ;
do z ip=2 to ( nrow ( dur ) ) ;
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time_in_sec [ z ip ]=dur [ z ip ]−dur [ z ip −1] ;
end ; total_time_in_sec=sum( time_in_sec ) ;

av_time_in_sec=mean( time_in_sec ) ;

std_time_in_sec=std ( time_in_sec ) ;

p r i n t perc_corr Num_correct e r r o r 1 time_in_sec ;

p r i n t total_time_in_sec av_time_in_sec std_time_in_sec ;

qu i t ;

Orthogonal matching pursuit

proc iml ;

use datamy ;

read a l l i n to j a c ;

use s o l ;

read a l l i n to so lu ;

/∗ Star t t imer ∗/ %l e t _timer_start = %sys func ( datet ime ( ) ) ;

∗−−−−−−−−−−−−−−−−−−−−row con s t r a i n t s−−−−−−−−−−−−;
xx=repeat ( I ( 9 ) , 1 , 9 ) ;

do i=81 to (648−81) by 81 ;

c=c //( J (9 , i , 0 ) | | xx | | j (9 ,648− i , 0 ) ) ;

end ; Ar=(xx | | j ( 9 , 648 ,0 ) )// c //( j ( 9 , 6 4 8 , 0 ) | | xx ) ;

∗−−−−−−−−−−−−−−−−−−column con s t r a i n t s−−−−−−−−−−−;
xxx=I ( 9 ) | | J ( 9 , 7 2 , 0 ) ;

c1=repeat ( xxx , 1 , 9 ) ;

do i=9 to (72−9) by 9 ;

cc=cc //( j (9 , i , 0 ) | | ( r epeat ( xxx , 1 , 8 ) ) | | I ( 9 ) | | j (9 ,72− i , 0 ) ) ;

end ;

Ac=c1// cc // repeat ( ( j ( 9 , 7 2 , 0 ) | | I ( 9 ) ) , 1 , 9 ) ;

∗−−−−−−−−−−−−−−−−−−box con s t r a i n t s−−−−−−−−−−−−−−−−−−−−−−−−−;
j o=repeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ;

b1=repeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 0 , 0 ) ;

do i=27 to (2∗27) by 27 ;

bbb=bbb//( j (9 , i , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 )

| | j (9 ,540− i , 0 ) ) ;

end ;

aba1=( j ( 9 , 2 4 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 9 7 , 0 ) ) ;

aba2=( j ( 9 , 2 7 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 0 , 0 ) ) ;

aba3=( j ( 9 , 2 9 7 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 4 3 , 0 ) ) ;

ab1=( j ( 9 , 4 8 6 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 5 4 , 0 ) ) ;

ab2=( j ( 9 , 5 1 3 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) | | j ( 9 , 2 7 , 0 ) ) ;
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ab3=j ( 9 , 5 4 0 , 0 ) | | r epeat ( jo , 1 , 2 ) | | r epeat ( I ( 9 ) , 1 , 3 ) ;

Ab=b1//bbb//aba1//aba2//aba3//ab1//ab2//ab3 ;

∗−−−−−−−−−−−−−−−−−−a l l c e l l f i l l e d con s t r a i n t s−−−−−−−−−−−−−−;
ccc=j ( 1 , 9 , 1 ) ;

do i=1 to (729) by 9 ;

cc1=j ( 1 , 7 29 , 0 ) ;

cc1 [ , i : i +8]=ccc ;

Acf=Acf // cc1 ;

end ;

∗−−−−−−−−−−−−−−−−−−−c l u e s con s t r a i n t s−−−−−−−−−−−;
do a l l=1 to 100 ;

s o l u t i o n=so lu [ a l l , ] ` ;

AAA=jac [ a l l , ] ` ;

do abb=1 to ( nrow (AAA) ) ;

i f AAA[ abb]^=0 then c lu=c lu //( j ( 1 , ( abb−1)∗9+(AAA[ abb ]−1) ,0)
| | 1 | | j (1 ,728−(( abb−1)∗9+(AAA[ abb ] −1 ) ) , 0 ) ) ;

end ;

s s=c lu ;

f r e e c lu ;

∗−−−−−−−−−−−−−−−−−matrix o f c on s t r a i n t s and vec to r b−−−−−−−−;
A=Ar//Ac//Ab//Acf // s s ; b=j ( nrow (A) , 1 , 1 ) ;

∗−−−−−−−−−−−−−−−Orthogonal matching pursu i t−−−−−−−−−−;
z=A;

y=b ;

c=0.00000000000000000000000000000000000001;

n=nco l ( z ) ;

∗p=nrow (y ) ;

∗p=81;

∗__________________normalizing A_________________;

do j=1 to n ; n1=norm( z [ , j ] , " L2 " ) ; d1=d1 | | n1 ; end ; A=z/d1 ;

∗______________orthogonal matching pursuit________________;

do p=1 to 200 ;

r0=y ; i nd i c a t o r =1;

sol_x=j ( 729 , 1 , 0 ) ;

normr=100000000000000000000000000;

do i=1 to p whi l e ( normr>c ) ;

dot_product=abs ( ( r0 ` ) ∗A) ;

l o c=dot_product [ <: >];

sol_x [ l o c ]=1;
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a j=A[ , l o c ] ;

D=D| | a j ; ∗ s t o r i n g chosen columns ;

DD=D` ;

x_hat=(ginv ( (DD)∗D) )∗ (D` ) ∗ y ;
r e s=y−(D)∗x_hat ;

r0=r e s ;

normr=(norm( res , " L2 " ) ) ;

end ;

do s s s=1 to nrow ( sol_x ) ;

i f sol_x [ s s s ]=1 then sol_x [ s s s ]= x_hat [ i n d i c a t o r ] ;

i f sol_x [ s s s ]^=0 then i nd i c a t o r=i nd i c a t o r +1;

end ;

e r r=e r r //normr ;

xs_sol=shape ( sol_x , 8 1 , 9 ) ;

locmax=xs_sol [ , <: >] ;

newda=newda | | locmax ;

co r r=( s o l u t i o n=locmax ) ;

so l_cor r=so l_cor r //(sum( co r r ) ) / ( nrow ( co r r ) ) ;

f r e e D; end ;

l o ca=so l_corr [ <: >];

newdata=newdata//newda [ , l o ca ] ;

perc_correct=perc_correct //(max( so l_cor r )∗100 ) ;
Num_correct=Num_correct //(max( so l_cor r )∗81 ) ;
e r rorL=errorL //(min ( e r r ) ) ; f r e e c lu e ;

f r e e d1 ;

f r e e e r r ;

f r e e so l_corr ;

f r e e newda ;

dur = dur //( datet ime ( ) − &_timer_start ) ;

end ;

∗−−−−−−−−−−−−−−−−−−−summary o f time s t a t i s t i c s −−−−−−−−−−−;
time_in_sec=dur [ 1 ] / / j ( nrow ( dur )−1 ,1 ,1) ;
do z ip=2 to ( nrow ( dur ) ) ;

time_in_sec [ z ip ]=dur [ z ip ]−dur [ z ip −1] ;
end ;

total_time_in_sec=sum( time_in_sec ) ;

av_time_in_sec=mean( time_in_sec ) ;

std_time_in_sec=std ( time_in_sec ) ;

p r i n t perc_correct Num_correct e r rorL time_in_sec ;
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p r i n t total_time_in_sec av_time_in_sec std_time_in_sec ;

∗−−−−−−−−−−−−−−−−−−−−−−−−−c r e a t e data set−−−−−−−−−−−−−−−−−;
c r e a t e s a su s e r . data from newdata [ colname={' so l ' } ] ;

append from newdata ;

run ;

qu i t ;


