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Abstract: The expectation-maximization (EM) algorithm is a seminal method to

calculate the maximum likelihood estimators (MLEs) for incomplete data. How-

ever, one drawback of this algorithm is that the asymptotic variance-covariance

matrix of the MLE is not automatically produced. Although there are several

methods proposed to resolve this drawback, limitations exist for these methods. In

this paper, we propose an innovative interpolation procedure to directly estimate

the asymptotic variance-covariance matrix of the MLE obtained by the EM algo-

rithm. Specifically we make use of the cubic spline interpolation to approximate

the first-order and the second-order derivative functions in the Jacobian and Hes-

sian matrices from the EM algorithm. It does not require iterative procedures as

in other previously proposed numerical methods, so it is computationally efficient

and direct. We derive the truncation error bounds of the functions theoretically

and show that the truncation error diminishes to zero as the mesh size approaches

zero. The optimal mesh size is derived as well by minimizing the global error. The

accuracy and the complexity of the novel method is compared with those of the

well-known SEM method. Two numerical examples and a real data are used to

illustrate the accuracy and stability of this novel method.

Key words and phrases: Cubic spline interpolation, Hessian matrix, Incomplete

data, Jacobian matrix, Maximum likelihood estimation.

1. Introduction
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Maximum likelihood estimator (MLE) plays a key role in parameter estima-

tion from observed data in statistics. It is calculated by finding the parameter

values that maximize the likelihood function given the data. However, when

the likelihood is complex or incomplete, the MLE is difficult to obtain. The

expectation-maximization (EM) algorithm (Dempster, Laird and Rubin 1977)

was proposed as an iterative procedure to obtain the MLE. It consists of two

steps: in the E-step, a simple and complete-data likelihood is obtained and in

the M-step, a standard maximum likelihood estimation is performed using the

complete data obtained from the E-step. The simple calculation gains the EM

algorithm a wide application in statistics. However, the asymptotic variance-

covariance matrix of the MLE is not provided directly from the EM algorithm.

As remedies, several methods are proposed to obtain the asymptotic variance-

covariance matrix. However, limitations exist for these methods. Louis (1982)

provided an estimator with closed form, which requires conditional expectation

(conditional on the observed data) of the Hessian matrix of the complete data

and of the square of the complete-data score function, which is specific to each

problem. Oakes (1999) proposed an estimator with closed form as well. How-

ever, this estimator requires the second derivatives of the expected complete-data

likelihood, which is not always available. Meng and Rubin (1991) proposed the

supplemented EM (SEM) algorithm, which only requires the code for EM itself.

However, the SEM requires the calculation of the conditional expectation of the

Hessian matrix and is sometimes infeasible (Beker 1992). Moreover, the com-

putational cost of the SEM is high due to the requirement of running the EM

algorithm for each parameter separately (Belin and Rubin 1995). Furthermore,

it seems to be susceptible to numerical inaccuracies and instability, especially

in high-dimensional settings (Beker 1992, McCulloch 1998, Segal et al. 1994).

Monte Carlo method can be employed by multiple imputation (Rubin 1987) for

missing data given the maximum likelihood estimate, but it is time consuming

and inaccurate for small number of imputations. Recently, Meng and Spall (2017)

showed that the simultaneous perturbation stochastic approximation (Spall 1992,

2005) method performs well for the approximation of the Hessian matrix of the

incomplete data log-likelihood evaluated at the EM estimator. However, it is

still based on numerical differentiation, which may be inaccurate and unstable.
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Among all these methods to estimate the variance of the EM estimator, the SEM

method is deemed to be the best so far and therefore we will compare our newly

proposed method in this paper to the best SEM.

The fundamental difficulty to obtain the asymptotic variance-covariance ma-

trix directly from the EM algorithm is due to the unavailability of the derivatives

of some known functions. In this paper, we propose an innovative interpolation

method to directly estimate the asymptotic variance-covariance matrix of the EM

estimators (hereafter named as iEM). The basic idea of iEM is that we use cubic

spline interpolatory functions to approximate these known functions. Then we

use the derivatives of the cubic spline functions, which are very easy to obtain,

to estimate the derivatives of the known functions, hence the variance-covariance

matrix. The iEM overcomes all limitations in previous methods. First, it does

not require anything other than those provided by the EM algorithm. Therefore,

it is a general method that can apply to any problem where the EM algorithm

is applied. Second, because it does not need iterative calculations, the iEM is

computationally efficient. Third, We derive the optimal mesh size to minimize

the global estimation error of the iEM method, so that the accurate and stable

estimates can be obtained.

This paper is organized as follows. In Section 2, we give an review of the

EM algorithm and the SEM method. We describe the cubic spline interpolation

EM (i.e. iEM) in Section 3 and its applications to the EM algorithm with the

corresponding theories and the instructions on how to select mesh and mesh size

in Section 4. The comparison of the iEM method with the SEM method is given

in Section 5. Two numerical examples are presented in Section 6 followed by

discussions and conclusions in Section 7.

2. Review of the Classical EM Algorithm

2.1 The EM algorithm

Let Yobs and Ymis be the observed data and missing data, respectively.

Y = {Yobs,Ymis} is the complete data with density f(Y|θ), where θ is a d-

dimensional vector of d unknown parameters. The EM algorithm aims to find

the maximum likelihood estimate (MLE) θ∗ of θ based on the observed data

Yobs.

The EM algorithm starts with an initial value θ(0) and iterates between the
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E-step and the M-step. Specifically, at iteration t+ 1,

• E-step: Based on the current estimate θ(t), find the expected complete-data

log-likelihood

Q(θ|θ(t)) =

∫
L(θ|Y)f(Ymis|Yobs,θ = θ(t))dYmis, (2.1)

where L(θ|Y) = logf(Y|θ).

• M-step: Obtain θ(t+1) by maximizing the expected complete-data log-likelihood

(2.1),

θ(t+1) = argmax
θ

Q(θ|θ(t)).

The iteration is repeated until L(θ|Y) converges. Define the mapping θ(t+1) =

M(θ(t)), for t = 0, 1, · · · , the EM algorithm indicates that if M(θ) is continuous,

then θ∗ = M(θ∗).

2.2 The SEM Algorithm

As shown in Meng and Robin (1991), the asymptotic variance-covariance

matrix V of θ∗ is the inverse of the observed information matrix, which is defined

as

Iobs ≡ Io(θ|Yobs) = −∂
2logf(Yobs|θ)

∂θ∂θ
.

This function is usually very difficult to obtain directly. To overcome this diffi-

culty, Meng and Rubin (1991) derived the following formula for the asymptotic

variance-covariance matrix V,

V = I−1
oc (I−DM)−1, (2.2)

where Ioc = E[Io(θ|Y)|Yobs,θ]|θ=θ∗ and Io(θ|Y) = −∂2logf(Y|θ)
∂θ·∂θ is the complete-

data observed information matrix. DM is the Jacobian matrix of M at θ∗ with

elements

DM ji =
(
∂Mj(θ)
∂θi

) ∣∣∣∣
θ=θ∗

, (2.3)

for i, j = 1, · · · , d. In their calculation of V, Ioc is assumed to be obtained

directly from the complete data. To estimate DM, they used numerical (forward)

differentiation to estimate the first derivative of the M function. Specifically,
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using an EM sequence not equal to the one for calculating the EM estimator,

θ(t)(i) =
(
θ∗1, θ

∗
2, · · · , θ

(t)
i , θ∗i+1, · · · , θ∗d

)
, for i, j = 1, · · · , d, calculate

DM
(t)
ji =

Mj(θ
(t)(i))−Mj(θ

∗)

θ
(t)
i − θ∗i

,

stop the d2 sequence until DM
(t)
ji converges. The converged value is the estimate

of DMji. Although this is a major breakthrough in EM algorithm, it has been

known that SEM still suffers from some limitations as discussed in the introduc-

tion.

3. iEM: the Cubic Spline Interpolation EM

To overcome the limitations in the SEM method (Meng and Rubin 1991),

we propose to use cubic spline interpolation method, instead of the numerical

differentiation, to estimate Ioc and DM in (2.2). We first introduce one dimen-

sional cubic spline interpolation and two dimensional cubic spline interpolation.

Then we describe the applications of these interpolations to build iEM method.

3.1 One Dimensional Cubic Spline Interpolation

Spline interpolation (Ahlberg, Nilson and Walsh 1967) is first used by drafts-

men to get a smooth curve passing through specified points. With the recent

development of computer technology, its applications extended to many areas

including mathematics, statistics, computer science and engineering (Su and

Liu 2014). The properties of spline interpolation are thoroughly investigated

(Birkhoff and De Boor 1964, Hall and Meyer 1976, Dolezal and Tewarson 1982,

Dubeau and Savoie 1996). There are many interpolation methods available

(Akima 1970, 1974, 1991, Franke 1982, Getreuer 2011, Schumaker 2015). We

choose cubic spline interpolation method because the cubic spline interpolatory

function has both continuous first and second derivatives, which are required to

estimate the asymptotic variance-covariance matrix of the EM estimators. In

addition, it has strong convergence property in mathematical sense.

In an interval [a b], let a = x0 < x1 < · · · < xn = b be a uniform mesh

with mesh size h≡|xi − xi−1|, i = 1, · · · , n, and denote this mesh set as χ =

{a = x0, x1, · · · , xn = b}. A cubic spline S(x) is defined as a C2 piecewise

cubic polynomial between consecutive knots xi and it satisfies that S(x) is cubic

in each subinterval [xi−1, xi] and S(x) is continuous with continuous first and
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second derivatives in the support of x. To be specific,

S(x) =


s1(x) = a1 + b1(x− x0) + c1(x− x0)2 + d1(x− x0)3, x ∈ [x0, x1],

s2(x) = a2 + b2(x− x1) + c2(x− x1)2 + d2(x− x1)3, x ∈ [x1, x2],

· · ·
sn(x) = an + bn(x− xn−1) + cn(x− xn−1)2 + dn(x− xn−1)3, x ∈ [xn−1, xn].

In short, the interpolation value at x is si(x) = AiX
T , x ∈ [xi−1, xi], where Ai =

[ai bi ci di] is the local coefficient and X = [1 (x−xi−1) (x−xi−1)2 (x−xi−1)3].

To interpolate a function g(x) using a cubic spline function, suppose the data

are {xi, g(xi)}, i = 0, 1, · · · , n and h ≡ |xi − xi−1|. a = x0 < x1 < · · · < xn = b

are considered as knots. To obtain a unique interpolatory cubic spline Sg(x), we

need 4n constraints on the 4n coefficients, ai, bi, ci, di, i = 1, · · · , n in S(x).

First, the cubic spline function requires that S(x) is continuous and has

continuous first and second derivatives. Notice that within each interval [xi−1, xi],

the corresponding cubic polynomial is continuous and hence has continuous first

and second derivatives. However, the function S(x) has two cubic pieces incident

at the interior knot xi, the function si(x) to the left of xi and the function

si+1(x) to the right of xi. Therefore, we need constraints to ensure the function

itself and its first and second derivatives are continuous at the interior knots.

That is, si(x) and si+1(x), as well as their respective first and second derivatives,

should match in value at xi. Mathematically, the following conditions should be

imposed on S(x), si(xi) = si+1(xi), s
(1)
i (xi) = s

(1)
i+1(xi), and s

(2)
i (xi) = s

(2)
i+1(xi),

for i = 1, · · · , n − 1. The same constraints can be expressed in the following

matrix form, AiX
T
i = ai+1, AiX

(1)
i = bi+1, AiX

(2)
i = 2ci+1, where Xi = [1 (xi−

xi−1) (xi−xi−1)2 (xi−xi−1)3], X
(1)
i = [0 1 2(xi−xi−1) 3(xi−xi−1)2] and X

(2)
i =

[0 0 2 6(xi − xi−1)] are the first and second derivatives of Xi. It is obvious that

we have 3(n− 1) linear constraints imposed on the coefficients to ensure S(x) is

continuous and has both continuous first and second derivatives.

Second, to interpolate the data, we require the S(x) function passes through

the data points g(xi). That is, for i = 0, 1, · · · , n, S(xi) = g(xi), which is equiva-

lent to AiX
T
i−1 = g(xi−1), and AnX

T
n = g(xn). Clearly, this imposes n+ 1 linear

constraints on the coefficients. Now, we have 4n − 2 linear constraints in total.

Two more constraints are needed to obtain a unique cubic spline interpolatory

function. These two constraints are usually imposed near the ends of the interval
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[a, b], therefore they are referred to as end conditions. Different end conditions

(Holmes 2016) have been proposed. Because other conditions require known

first or second derivatives of g(a) and g(b), we use the ”not-a-knot” condition.

It adds two linear constraints on the third derivatives, i.e., s
(3)
1 (x1) = s

(3)
2 (x1)

and s
(3)
n−1(xn−1) = s

(3)
n (xn−1), which are equivalent to d1 = d2, and dn−1 = dn,

respectively.

With the above 4n linear constraints, the system can be solved to obtain

the unique cubic spline interpolatory function Sg(x). Because all constraints are

linear in the coefficients, it is obvious that

AT = k(χ)gT (x)

where A = [A1 · · · An], k(χ) is the inverse of the matrix constructed by the

constraints related to xi (i = 0, 1, · · · , n) in the mesh set χ, and g(x) is the

vector [g(x0) g(x1) · · · g(xn)]. Let x ∈ [xi−1, xi] and AT
i = [k(χ)gT (x)]i, then

the interpolatory cubic spline function is

sgi (x) = XAT
i = X[k(χ)gT (x)]i. (3.1)

Now it is easy to obtain the first and second derivatives of Sg(x). For x ∈
[xi−1, xi], the first and the second derivatives are

s
g(1)
i (x) = [1 2(x− xi−1) 3(x− xi−1)2][bi ci di]

T , and

s
g(2)
i (x) = [2 6(x− xi−1)][ci di]

T .

3.2 Two Dimensional Cubic Spline Interpolation on a Grid

When we seek an estimate of a function with two independent variables

g(x1, x2), we use the bicubic spline interpolation method. Bicubic spline inter-

polation is an extension of one dimensional cubic spline interpolation to two

variables on a two dimensional grid. The basic idea is to break up the problem

into a succession of one dimensional interpolations.

Suppose we have a two dimensional grid {x1i, x2j}, where i = 0, 1, · · · ,M ,

and j = 0, 1, · · · ,K. We know the function values gij = g(x1i, x2j) at these

grid points. To interpolate the function g(x1, x2) using bicubic spline, we first

construct K one-dimensional cubic spline interpolation in x1 direction across the

g(x1i, x2j), i = 0, 1, · · · ,M, values for each fixed x2j to get a vector of the esti-
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mated function values sgi (x1, x2j), j = 0, 1, · · · ,K, x1 ∈ [x1(i−1), x1i]. To be spe-

cific, let Aj = [a1j b1j c1j d1j · · · aMj bMj cMj dMj ] and Aij = [aij bij cij dij ].

Then for each j = 0, 1, · · · ,K,

AT
j = k(χ1)gT (x1, x2j), (3.2)

where g(x1, x2j) = [g(x10, x2j) g(x11, x2j) · · · g(x1M , x2j)]. Aj is estimated us-

ing the one dimensional cubic spline interpolation of the data {(x1i, x2j), g(x1i, x2j), i =

0, 1, · · · ,M} introduced in Section 3.1. k(χ1) is the inverse of the matrix con-

structed by the constraints related to x1i, i = 0, 1, · · · ,M in the x1-mesh set

χ1 = {x1i, i = 0, · · · ,M}. Then the interpolation value at {x1, x2j} is

sgi (x1, x2j) = [1 (x1 − x1(i−1)) (x1 − x1(i−1))
2 (x1 − x1(i−1))

3][aij bij cij dij ]
T

= X1A
T
ij = X1[k(χ1)gT (x1, x2j)]i,

where AT
ij = [k(χ1)gT (x1, x2j)]i. Next we do another one dimensional cubic

spline interpolation across these vector values sgi (x1, x2j), j = 0, 1, · · · ,K, to ob-

tain the estimated function sg(x1, x2). Specifically, let A′ = [a′1 b
′
1 c
′
1 d
′
1 · · · a′K b′K c′K d′K ]

and A′j = [a′j b
′
j c
′
j d
′
j ]. Then

A′
T

= k(χ2)sgi (x1,x2)
T
, (3.3)

where sgi (x1,x2) = [si(x1, x20) si(x1, x21) · · · si(x1, x2K)] and k(χ2) is the in-

verse of the matrix constructed by the constraints related to the x2-mesh set

χ2 = {x2j , j = 0, 1, · · · ,K}. Let B = k(χ2)gT (x1,x2)kT (χ1), x2 = [1 (x2 −
x2(j−1)) (x2−x2(j−1))

2 (x2−x2(j−1))
3], x1 = [1 (x1−x1(i−1)) (x1−x1(i−1))

2 (x1−
x1(i−1))

3], then the interpolation value at {x1, x2}, x2 ∈ [x2(j−1), x2j ], x1 ∈ [x1(i−1), x1i]

is

sg(x1, x2) = x2[a′j b
′
j c
′
j d
′
j ]
TxT1 ,

= x2[k(χ2)gT (x1,x2)kT (χ1)]ijx
T
1 (3.4)

= x2Bijx
T
1

where Bij is B[(4j + 1) : (4j + 4), (4i+ 1) : (4i+ 4)], and

g(x1,x2) =


g(x10, x20) g(x10, x21) · · · g(x10, x2K)

g(x11, x20) g(x11, x21) · · · g(x11, x2K)

· · · · · · · · · · · ·
g(x1M , x20) g(x1M , x21) · · · g(x1M , x2K)
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Therefore, the first and second derivatives with respect to x1 are respectively

sg(1,0)(x1, x2) = x2Bij [0 1 2(x1 − x1(i−1)) 3(x1 − x1(i−1))
2]T

and

sg(2,0)(x1, x2) = x2Bij [0 0 2 6(x1 − x1(i−1))]
T .

Similarly, the first and second derivatives with respect to x2 are respectively

sg(0,1)(x1, x2) = [0 1 2(x2 − x2(j−1)) 3(x2 − x2(j−1))
2]Bijx

T
1

and

sg(0,2)(x1, x2) = [0 0 2 6(x2 − x2(j−1))]Bijx
T
1 .

The cross derivative ∂sg(x1, x2)/∂x1∂x2 is

sg(1,1)(x1, x2) = [0 1 2(x2−x2(j−1)) 3(x2−x2(j−1))
2]Bij [0 1 2(x1−x1(i−1)) 3(x1−x1(i−1))

2]T .

3.3 iEM: Estimate the Variance-Covariance Matrix in EM Algorithm

To estimate the asymptotic variance-covariance matrix, we need to estimate

Ioc and DM in (2.2), which may be difficult to calculate directly. However, the

elements of these two matrices are derivatives of known functions Q(θ|θ̂∗) ≡
E[logf(Y|θ)|Yobs,θ

∗] and M(.) in the EM algorithm, respectively. Therefore,

the iEM is developed to estimate these two functions, which allows the derivatives

to be calculated easily.

Note as in Meng and Rubin (1991), we are estimating the complete-data ob-

served information matrix, Io(θ|Y), instead of the Fisher information matrix Ioc.

Therefore, the iEM is to estimate the elements of DM by the first derivatives

of the one dimensional cubic spline interpolatory functions of the M(.). And

for Io(θ|Y), the iEM is to estimate the diagonal elements by the second deriva-

tives of one dimensional cubic spline interpolatory functions of Q(θ|θ̂∗), and to

estimate the off-diagonal elements by the cross derivatives of the bicubic spline

interpolatory functions of Q(θ|θ̂∗).
4. iEM: Theory and Implementation

4.1 Truncation Error Bounds of iEM

The numerical analysis is affected by a global error including truncation error

and rounding error. The following two theorems establish the truncation error

bounds of the elements of DM and Ioc based on the cubic spline interpolation,

we defer the theoretical proofs to Appendix.
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Theorem 1. Assume Mj(θ(i)) ∈ C4[a, b] and maxa≤θi≤b |M
(4)
j (θ(i))| = Hij.

Furthermore, SMj (θ(i)) is the unique cubic spline interpolatory function with

not-a-knot boundary conditions, the uniform mesh a = θi0 ≤ θi1 ≤ θi2 ≤ · · · ≤
θiM = b and h = i(m+ 1)− i(m),m = 0, 1, · · · , (M − 1), then for θ∗i ∈ [a, b],

|DM ij − SMj(1)(θ∗(i))| ≤ 7

2
Hijh

3.

Theorem 2. Assume Q(θ(i, j)) ∈ C4,4[Ω] where Ω = [a1, b1] × [a2, b2], and

maxa1≤θi≤b1 Q
(4,0)(θ(i, j)) = Hi, maxΩQ

(4,4)(θ(i, j)) = Hij, maxa2≤θj≤b2 Q
(0,4)(θ(i, j)) =

Hj. The uniform mesh for θi is a1 = θi0 ≤ θi1 ≤ θi2 ≤ · · · ≤ θiM = b1 and

h1 = i(m + 1) − i(m),m = 0, 1, · · · , (M − 1). The uniform mesh for θj is a2 =

θj0 ≤ θj1 ≤ θj2 ≤ · · · ≤ θjK = b2 and h2 = j(k+ 1)− j(k), k = 0, 1, · · · , (K − 1).

(i) SQ(θ(i)) is the unique cubic spline interpolatory function of Q(θ(i)) with

not-a-knot boundary conditions, then for θ∗i ∈ [a1, b1], the error bound for the ith

diagonal element of Ioc is

|Iiioc − SQ(2)(θ∗(i))| ≤ 7

2
Hih

2
1.

(ii) SQ(θ(i, j)) is the unique bicubic spline interpolatory function of Q(θ(i, j))

with not-a-knot boundary conditions, then for (θ∗i , θ
∗
j ) ∈ Ω, the error bound for

the (i, j)th off-diagonal element of Ioc is

|Iijoc − SQ(1,1)(θ∗(i, j))| ≤ 7

2
Hih

3
1 +

49

4
Hijh

3
1h

3
2 +

7

2
Hjh

3
2.

4.2 Rounding Error of iEM

Now, we derive the rounding error for iEM method. It is shown in Appendix

B that the rounding error (RE) for the local coefficients in the intervals of a one

dimensional cubic spline interpolation are

RE(ai) ∝ O(ε), RE(bi) ∝ O(ε/h), RE(ci) ∝ O(ε/h2) and RE(di) ∝ O(ε/h3),

(4.1)

where i = 1, · · · , n are the local coefficients, ε is the machine accuracy and h is

the uniform mesh size. Based on these rounding errors, it is easy to see that the

rounding errors for the first and second derivatives of a cubic spline interpolatory

function are O(ε/h) and O(ε/h2), respectively. For the cross derivative, we use

two one dimensional cubic spline interpolation in succession. For the second in-

terpolation, the first derivatives of the one dimensional cubic spline interpolatory
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functions are used as the function values. Therefore, the rounding error is also

O(ε/h2).

4.3 Knots and Mesh Selection in iEM

In practice, the cubic spline interpolation method requires selecting an inter-

val and mesh for each parameter. We use a uniform mesh not only because it is

convenient but also because it results in estimators with smaller truncation error

than non-uniform mesh (De Boor 1984, Tyagi 2016). The computational time of

the interpolation increases with the increase of the number of knots. However, as

shown in the Theorems above, the number of knots does not affect the truncation

error and the rounding error. Therefore, we can use a small number of knots to

improve computational efficiency. However, as discussed in Tyagi (2016), the

interpolatory cubic spline function and its derivatives at the boundary (around

two end knots) of the interval might have larger truncation errors than those not

at the boundary of the interval, we therefore put the EM estimator value as a

knot in the middle of the interval and use five knots.

To obtain the optimal mesh size for the first derivatives, we make use of the

conclusions from the Theorem that the truncation error isO(h3) and the rounding

error is O(ε/h). Therefore, for the case of double precision where ε = 10−16, the

optimal mesh size minimizing the global error is 10−4. Similarly, we can derive

the optimal mesh size for the second derivatives which is also 10−4. For cross

derivative, the optimal mesh size is shown to be 10−16/5.

5. Comparison between iEM and SEM

Because the SEM method cannot estimate Ioc, we compare these two algo-

rithms in estimating DM.

5.1 Global Error

As shown in the Theorems 1 and 2, the truncation error of the iEM method

(TEi) is O(h3). It is well known that the truncation error of forward differentia-

tion used in SEM (TEs) is O(h). Therefore, when the same small mesh size h is

used, the iEM estimator of DM has significantly smaller truncation error than

the SEM estimator.

To show the relationship between TEi and TEs, we put θ∗ as a knot in iEM.

For each Mj , j = 1, · · · , d, and θ∗i , i = 1, · · · , d, let [alj blj clj dlj ] be the local co-

efficients of the cubic spline in the subinterval to the left of θ∗i and [arj brj crj drj ]
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be the local coefficients of the cubic spline in the subinterval to the right θ∗i . It

is easy to show that

TEsj = TEij +
Mj(θ

∗
i + h)−Mj(θ

∗
i )

h
− brj .

Note
Mj(θ∗i +h)−Mj(θ∗i )

h is the slope of the linear interpolation that connects the

two points Mj(θ
∗
i + h) and Mj(θ

∗
i ), while brj is the slope of the cubic spline

interpolation at θ∗i . It is obvious that the difference of these two slopes is O(h).

When the EM algorithm is slow, Jamshidian and Jennrich (2000) showed the

truncation error of V has an error magnification, because the truncation error

in DM is multiplied by a large number. In SEM, the size of increments h is

chosen automatically by the EM algorithm. When the algorithm is slow, the

increment h increases. This results in a larger truncation error in the estimation

of DM. Hence the SEM algorithm has larger truncation error in estimating V

when the EM algorithm is slow. In contrast, the iEM chooses the mesh size

h by minimizing the global error. It does not increase the truncation error in

estimating DM. Consequently, the error magnification will have smaller effect

on the estimation of V for the iEM method. In this sense, the iEM method is

more stable than the SEM algorithm.

Kim and Shao (2013) showed that asymptotically,

θ(t) = (I− Jmis)θ
∗ + Jmisθ

(t−1),

where Jmis ≡ ImisI
−1
oc is the fraction of missing information matrix (Rubin, 1987)

and Imis ≡ Ioc−Iobs is the missing information matrix. This means that the true

M function is linear asymptotically. In other words, the forward differentiation

used in the SEM algorithm has no truncation error. Similarly, the iEM method

has no truncation error as well. Therefore the global error should be small

because there is only rounding error for both methods asymptotically.

Regarding the rounding error, both the SEM algorithm and the iEM method

have rounding error O(ε/h). Apparently, small h results in larger rounding error.

5.2 Complexity and Computation

Both the SEM and iEM require d2 sequences of approximate derivatives.

For one element in DM, the computational complexity of the iEM method is

O(N), where N is the number of knots. However as discussed above, N can
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be as small as 5, so the iEM is very efficient computationally. In contrast, the

SEM algorithm is much more time-consuming due to the iterative nature of the

algorithm, especially when the EM algorithm is slow.

In addition, the computational implementation of the iEM method is general

enough for any EM algorithm. In other words, the coding of the interpolation will

be essentially the same for different problems. However, the SEM algorithm is

specific to each problem, i.e., the coding of the E-step and the M-step is specific to

each problem. This not only adds complexity to the algorithm, but also increases

the chances of programming errors.

6. Numerical Examples

To study the finite-sample performance of the iEM, in this section we apply

the iEM method on two classic examples and one real data example.

6.1 Univariate Contaminated Normal Mixture

This example is previously analyzed by Meng and Rubin (1991) and Little

and Rubin (1987). Let x1, · · · , xn be an independent sample from the univariate

contaminated normal model

f(x|µ, σ2) = (1− π)N(µ, σ2) + πN(µ, σ2/λ),

where 0 < π < 1 and λ > 0 are known. The goal is to find the MLE θ∗ =

(µ∗, log σ2∗) for θ = (µ, log σ2).

To facilitate the calculation of MLE, let

h(q) = 1− π,

= π,

= 0,

if q = 1,

if q = λ,

otherwise.

Consider an independent sample x1, · · · , xn from a population with density

xi|θ, qi ∼ N(µ, σ2/qi), (6.1)

where the qi are unobserved iid random variables with known density h(qi). The

EM algorithm can be employed to compute θ∗. In the E-step, the unobserved qi

can be obtained,

wi(θ
(t)) = E(qi|xi,θ(t))

=
1− π + πλ3/2exp{(1− λ)z2

i /2}
1− π + πλ1/2exp{(1− λ)z2

i /2}
(6.2)
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where z2
i = (xi−µ(t))2/σ2(t). In the M-step, we calculate the complete data MLE

using

µ(t+1) =
n∑
i=1

qixi/
n∑
i=1

qi, (6.3)

and

log σ2(t+1) = log

{
1

n

n∑
i=1

qi(xi − µ(t+1))2

}
. (6.4)

It is clear that the M = [M1(µ, log σ2) M2(µ, log σ2)]T where M1(µ, log σ2) is

(6.3) and M2(µ, log σ2) is (6.4) with qi obtained by (6.2). In addition,

Q(θ|θ∗) ≡ E[logf(Y |θ)|Yobs,θ∗] = −1/2

n∑
i=1

log(2πσ2)qi(xi − µ)2/(2σ2). (6.5)

To investigate the performance of the proposed method, we generate a ran-

dom sample of 100 observations from the distribution (6.1) with µ = 0, σ2 =

1, λ = 2, π = .1. The EM estimator obtained is θ∗ = (−0.05357040,−0.02361871).

We calculate both the true DM and Ioc by taking derivatives with respect to

the M and Q(θ|θ∗) at θ∗. The corresponding estimated values are calculated by

iEM method. In order to investigate the effect of mesh size, several different sizes

are used in the iEM method. Table 1 shows the true values and the estimated

values for DM and Ioc.

From Table 1, we can see that the optimal mesh size works well for both

DM and Ioc. We notice that all mesh sizes work well in estimating DM. The

reason, as discussed above (Kim and Shao 2013), is that M is asymptotically

linear, so the truncation error is very small. Consequently, compared with the

true values, the estimator of DM is more accurate than that of Ioc because of

the smaller truncation error.

6.2 Poisson Mixture

As pointed out in Section 5.1, when the EM algorithm is slow, the error

magnification has smaller effect on the iEM method than that on the SEM.

We demonstrate this effect by using an example with slow EM algorithm in

Jamshidian and Jennrich (2000).

Let y1, · · · , yn be an independent sample from the mixture of two Poisson

densities

f(y|θ) = γ
e−θ1θy1
y!

+ (1− γ)
e−θ2θy2
y!
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where 0 < γ < 1, θ1 > 0 and θ2 > 0. Let cj be the number of yi equal to

j = 0, 1, 2, · · · . Then the log-likelihood for θ given y1, · · · , yn can be expressed

as
∞∑
j=0

cjlog{γe−θ1θj1 + (1− γ)e−θ2θj2}+
∞∑
j=0

cjlogj!

The goal is to find the MLE θ∗ = (γ∗, θ∗1, θ
∗
2) for θ = (γ, θ1, θ2).

To apply the EM algorithm, we consider a latent variable z with density

h(z|γ) = γ,

= 1− γ,

= 0,

if z = 1,

if z = 2,

otherwise.

Therefore, the density of the complete data (y1, z1), · · · , (yn, zn) is

f̃(y, z|θ) =
{
e−θzθyz/y!

}
h(z|γ). (6.6)

In the E-step, we calculate the Q(θ|θ(t)) function as

Q(θ|θ(t)) =

∞∑
j=0

{
cj(logγ − θ1 + jlogθ1)w(j,θ(t))

}
+

∞∑
j=0

[
cj{log(1− γ)− θ2 + jlogθ2}{1− w(j,θ(t))}

]
(6.7)

where w(j,θ(t)) =
{
γ(t)e−θ

(t)
1 θ

(t)j
1 /j!

}
f
(
j|θ(t)

)
. In the subsequent M-step, the

complete data MLE is obtained as

γ(t+1) =

∞∑
j=0

cjw(j,θ(t))/

∞∑
j=0

cj , (6.8)

θ
(t+1)
1 =

∞∑
j=0

jcjw(j,θ(t))/
∞∑
j=0

cjw(j,θ(t)), (6.9)

θ
(t+1)
2 =

∞∑
j=0

jcj(1− w(j,θ(t)))/

∞∑
j=0

cj(1− w(j,θ(t))). (6.10)

Obviously, the M functions are (6.8) to (6.10).

To investigate the performance of the proposed method, we generate a ran-

dom sample of 2000 observations from the distribution (6.6) with γ = 0.3, θ1 = 1,
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and θ2 = 5. The EM estimator is θ∗ = (0.285070, 0.855829, 4.917305). The true

and estimated values by iEM method of DM and Ioc are provided in Table 2.

Compared with Table 1, the estimated DM has similar accuracy as those

in Table 1. Because the Ioc in Table 2 is much larger than those in Table 1, we

compare the relative accuracy of the estimators. The relative accuracy for each

element is defined as

IRijoc =
Iijoc − SQ(1,1)(θ∗(i, j))

Iijoc
,

where Iijoc is the true value and SQ(1,1)(θ∗(i, j)) is the estimated value based on

the optimal mesh size. The largest relative accuracy of Ioc in both Table 1 and

Table 2 is in the order of 10−7. This indicates the slow EM algorithm does not

affect the estimation accuracy for iEM method.

6.3 A Real Data Example

Hartley (1958) studied the pollution of seeds of Phleum pratense by the

presence of a few noxious weed seeds. It is observed the number of the noxious

weed seeds ranges from 2 to 9 in 78 quarter-ounce samples. The corresponding

frequencies are 26, 16, 18, 9, 3, 5, 0, and 1, respectively. In addition, it is known

that the numbers of the noxious weed seeds are 0 and 1 in some samples, but

their frequencies are unknown. The goal is to estimate the average number of

the noxious weed seeds. We will apply the proposed iEM algorithm on the data

used in Hartley (1958) to estimate the average number of noxious weed seeds.

Let X represent the number of the noxious weed seeds. It follows Poisson

distribution with probability density function

f(X | θ) =
exp(−θ)θX

X!
.

Let xi, i = 1, · · · , 8 be the observed distinct values of X and nxi be the corre-

sponding frequencies. Let n00, n01 represent the frequencies of the samples with

0 and 1 noxious weed seeds, respectively. In the E-step, the unobserved n00 and

n01 are calculated by

w00(θ(t)) ≡ E(n00 | θ(t)) = 78× f00/(1− f00 − f01),

w01(θ(t)) ≡ E(n01 | θ(t)) = 78× f01/(1− f00 − f01),



Interpolation Method 17

where f00 and f01 are the probabilities when X = 0 and X = 1, respectively. In

the M-step, we calculate the complete data MLE using

θ(t+1) = (
8∑
i=1

xinxi + w01(θ(t)))/(78 + w00(θ(t)) + w01(θ(t))). (6.11)

Then the M function is (6.11) and the expected log-likelihood is

Q(θ | θ∗) = −(78 + n00 + n01)θ∗ + (

8∑
i=1

xinxi + w01)log(θ∗)−
8∑
i=1

nxilog(xi!)).

The estimated mean number of noxious weed seeds by the proposed iEM estima-

tor is 3.025 and the corresponding estimated variance is 0.036. The estimated

variance is very close to the true asymptotic variance of the EM estimator (0.033),

calculated based on the inverse of the observed information matrix. It shows that

a very accurate variance estimate can be obtained by the proposed variance es-

timator in a more computationally efficient way.

7. Discussions and Conclusions

In this paper, we proposed a novel iEM algorithm using cubic spline inter-

polation method to directly estimate the asymptotic variance-covariance matrix

in the classical EM algorithm. This method is general enough for many methods

of calculating the asymptotic variance-covariance matrix, such as Oaks (1992)

formula and the second derivative of the observed data likelihood. We used the

form in Meng and Rubin (1991) because we would like to compare the newly pro-

posed iEM method with the best SEM method. Future research can be done to

investigate its performance on other forms of the asymptotic variance-covariance

matrix.

Compared with other numerical differentiation methods, such as forward

differentiation and Richardson extrapolation, the iEM is more accurate. The

SEM uses forward differentiation, which can be derived from Lagrange polyno-

mial interpolation with two points. Similarly, the Richardson extrapolation can

be obtained by Lagrange polynomial interpolation with five points. In contrast,

the iEM uses cubic spline interpolation. Spline functions are usually superior to

Lagrangian polynomial fits in respect to interpolation (Forsythe, Malcolm and

Moler 1977, Mcnamee 1985). One exception to this preference is when the La-

grangian polynomial performs better than the splines for moderate to large mesh
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sizes and fairly accurate to accurate data (Mcnamee 1985). In the iEM method,

we can usually choose the optimal mesh size and it is small, so spline interpo-

lation usually performs better when calculating asymptotic variance-covariance

matrix. Therefore, we prefer cubic spline interpolation method to the numerical

differentiation method.
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Appendix A

Proof of Theorem 1:

Tyagi (2016) showed for θi ∈ [a, b],

|M (2)
j (θ(i))− SMj(2)(θ(i))| ≤ 7

2
Hijh

2.

Now consider e(t) = Mj(t) − SMj (t), because e(θim) = 0,m = 0, 1, · · · ,M , by

Rolle’s theorem there exist ξim in each subinterval [θi(m−1), θim],m = 1, · · · ,M ,

such that e(1)(ξim) = 0. Then for every θ ∈ [θi(m−1), θim], we have |θ − ξim| ≤ h.

Write e(1)(θ) as

|M (1)
j (θ(i))− SMj(1)(θ(i))| =

∫ θ

ξim

(M
(2)
j (t)− SMj(2)(t))dt

Thus,

|e(1)| ≤ |θ − ξim|||e(2)||∞ ≤
7

2
Hijh

3,

and this completes the proof of Theorem 1.
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Proof of Theorem 2:

The proof of (i) in Theorem 2 is obvious based on Theorem 5 of Tyagi (2016).

To prove (ii), we make use of equations (3.1), (3.2), (3.3) and (3.4), and write

SQi (θ(i, j)) =
M∑
m=0

Q(θ(im, j))φi(θ(im)),

SQj (θ(i, j)) =
K∑
k=0

Q(θ(i, jk)ϕj(θ(jk)),

SQ(θ(i, j))) =
M∑
m=0

K∑
k=0

Q(θ(im, jk))φi(θ(im))ϕj(θ(jk)),

where SQi (θ(i, j)) is one dimensional cubic spline interpolatory function based

on {θ(im, j), Q(θ(im, j))} for fixed j; SQj (θ(i, j)) is one dimensional cubic spline

interpolatory function based on {θ(i, jk), Q(θ(i, jk))} for fixed i; SQ(θ(i, j))) is

bicubic spline interpolatory function based on {θ(im, jk), Q(θ(im, jk))}. φi(θ(im))

is a function based on θi and ϕj(θ(jk)) is based on θj . Then for (θi, θj) ∈ Ω,

Q(1,1)(θ(i, j))−SQ(1,1)(θ(i, j)) = (Q(1,1)(θ(i, j))−SQ(1,1)
j (θ(i, j)))+(S

Q(1,1)
j (θ(i, j))−SQ(1,1)(θ(i, j)))

(8.1)

The first term of (8.1) is obvious based on theorem 1, which is

Q(1,1)(θ(i, j))− SQ(1,1)
j (θ(i, j)) ≤ 7

2
Hjh

3
2.

For the second term of (8.1), letR1(θ(i, jk)) = Q(θ(i, jk)−
∑M

m=0Q(θ(im, jk))φi(θ(im))

and ϕR1 =
∑K

k=0R1(θ(i, jk))ϕj(θ(jk)),

SQj (θ(i, j))− SQ(θ(i, j)) =

K∑
k=0

R1(θ(i, jk))ϕj(θ(jk)),

and

S
Q(1,1)
j (θ(i, j))− SQ(1,1)(θ(i, j)) = (ϕ

(1,1)
R1
−R(1,1)

1 ) +R
(1,1)
1

≤ 49

4
max

Ω
|Q(4,4)|h3

1h
3
2 +R

(1,1)
1

Then the proof of Theorem 2 is complete.
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Appendix B

Let x1 < x2 < x3 represent the uniform mesh with mesh size h = xi − xi−1, i =

2, 3. The cubic spline interpolation can be written as

a1 + b1(x− x1) + c1(x− x1)2 + d1(x− x1)3 = f(x), x ∈ [x1, x2],

and

a2 + b2(x− x1) + c2(x− x1)2 + d2(x− x1)3 = f(x), x ∈ [x2, x3].

Now evaluate f(x), f (1), f (2) at x2, which belongs to both [x1, x2] and [x2, x3].

We have, respectively

a1 + b1h+ c1h
2 + d1h

3 = a2, (9.1)

b1 + 2c1h+ 3d1h
2 = b2, (9.2)

2c1 + 6d1h = 2c2. (9.3)

From (9.3), we obtain d1 = c2−c1
3h . Similarly, from (9.2) and (9.1), we derive

c1 + c2 = b2−b1
h and b1h+ (c2/3 + 2c1/3)h2 = a2 − a1. Note ai, i = 1, 2, 3 are the

function values and bi, ci are the first and second derivatives at the knots. Then

if we denote the rounding error for ai, i = 1, 2, 3, as O(ε), we can obtain (4.1)

immediately.

References

[1] Ahlberg, JH., Nilson, EN., and Walsh, JL. (1967). The theory of splines and their

applications. Academic Press, New York.

[2] Akima, H. (1970). A new method of interpolation and smooth curve fitting based on local

procedures. Journal of the association for computing machinery, 17, 589-602.

[3] Akima, H. (1974). A method of bivariate interpolation and smooth surface fitting based

on local procedures. Numerical mathematics, 17, 18-20.

[4] Akima, H. (1991). A new method of univariate interpolation that has the accuracy of a

third-degree polynomial. ACM transactions on mathematical software, 17, 341-366.

[5] Becker, N. G. (1992). Statistical challenges of AIDS. Australian Journal of Statistics,

34, 129-l44.



REFERENCES 21

[6] Belin, T. and Rubin, DB. (1995). A Method for Calibrating False-Match Rates in Record

Linkage. Journal of the American Statistical Association, 90, 694-707.

[7] Birkhoff, G. and De Boor, C. (1964). Error bounds for spline interpolation. Journal

of mathematics and mechanics, 13, 827-835.

[8] De Boor, C. (1984). Convergence of cubic spline interpolation with the not-a-knot condi-

tion. Mathematics Research Center preprint, University of Wisconsin, Madison.

[9] Dempster, AP., Laird, NM., and Rubin, DB. (1977). Maximum Likelihood Estimation

From Incomplete Data Via the EM Algorithm” (with discussion). Journal of the Royal

Statistical Society, Ser. B, 39, 1-38.

[10] Dolezal, V. and Tewarson, R. (1982). Error bounds for spline-on-spline interpolation.

Journal of approximation theory, 36, 213-225.

[11] Dubeau, F. and Savoie, J. (1996). Optimal error bounds for quadratic spline interpola-

tion. Journal of mathematical analysis and applications, 198, 49-63.

[12] Forsythe, GE., Malcolm, MA., and Moler, CB. (1977). Computer Methods for

Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ.

[13] Franke, R. (1982). Scattered data interpolation: Tests of some methods. Mathematics of

computation, 157, 181-200.

[14] Getreuer, P. (2011). Linear methods for image interpolation. Image processing on line,

1, 238-259.

[15] Hall, C. and Meyer, W. (1976). Optimal error bounds for cubic spline interpolation.

Journal of approximation theory, 16, 105-122.

[16] Holmes, M. (2016). Introduction to Scientific Computing and Data Analysis. Springer,

Switzerland.

[17] Jamshidian, M. and Jennrich, R. (2000). Standard errors for EM estimation. Journal

of the Royal Statistical Society, Ser. B,62, 257-270.

[18] Little, RJA., and Rubin, DB. (1987). Statistical Analysis With Missing Data. New

York, John Wiley.



22 Lili Yu, Ding-Geng Chen and Jun Liu

[19] Louis, TA. (1982). Finding the Observed Information Matrix When Using the EM Algo-

rithm. Journal of the Royal Statistical Society, Ser. B, 44, 226-233.

[20] McCulloch, CE. (1998). Review of ”EM Algorithm and Extensions”. Journal of the

American Statistical Association, 93, 403-404.

[21] McNAMEE, J. (1986). Comparison of spline and Lagrangian interpolation. Journal of

Computational and Applied Mathematics, 16, 237-240.

[22] Meng, XL. and Rubin, DB. (1991). Using EM to Obtain Asymptotic Variance-Covariance

Matrix: The SEM Algorithm. Journal of the American Statistical Association, 86, 899-909.

[23] Meng, L. and Spall. J. (2017). Efficient computation of the Fisher information matrix

in the EM algorithm. Baltimore, MD.

[24] Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm.

Journal of the Royal Statistical Society, Ser. B, 61, 479-482.

[25] Rubin, DB. (1987). Multiple imputation for Nonresponse in surveys. New York, John

Wiley.

[26] Schumaker, L (2015). Spline Functions: Computational Methods. SIAM-Society for

Industrial and Applied Mathematics, Philadelphia, PA.

[27] Segal, MR., Bacchetti, P. and Jewell, NP. (1994). Variances for Maximum Penalized

Likelihood Estimates Obtained via the EM Algorithm. Journal of the Royal Statistical

Society. Ser B, 56, 345-352.

[28] Smith, C. A. B. (1977). Discussion of ”Maximum Likelihood Estimation From Incomplete

Data Via the EM Algorithm,” by A. P. Dempster, N. M. Laird, and D. B. Rubin. Journal

of the Royal Statistical Society, Ser. B, 39, 24-25.

[29] Spall, JC. (1992). Multivariate Stochastic Approximation Using a Simultaneous Pertur-

bation Gradient Approximation. IEEE Transactions on Automatic Control, 37, 332-341.

[30] Spall, JC. (2005). Monte Carlo Computation of the Fisher Information Matrix in Non-

standard Settings. Journal of Computational and Graphical Statistics, 14, 889-909.

[31] Su, BQ. and Liu, DY. (2014). Computational Geometry: Curve and Surface Modeling.

Academic Press, Inc. San Diego, CA.



REFERENCES 23

[32] Tyagi, H. (2016). On low dimensional models for functions in high dimensions. Disserta-

tion. https://doi.org/10.3929/ethz-a-010666821.



24 Lili Yu, Ding-Geng Chen and Jun Liu

Tables

Table 1: Values of “True”, estimated DM and Ioc for the univariate contaminated

normal example.

h DM11 DM12 DM21 DM22

True 0.044758195347040 -0.001097609405997 -0.002468769797289 0.038461732545600

10−2 0.044758195312330 -0.001097609402873 -0.002468769787017 0.038461732584883

10−3 0.044758195347042 -0.001097609405996 -0.002468769786110 0.038461732587692

10−4 0.044758195347352 -0.001097609406090 -0.002468769782901 0.038461732593630

10−5 0.044758195343133 -0.001097609402152 -0.002468769723693 0.038461732602420

10−6 0.044758195311436 -0.001097609362199 -0.002468769761824 0.038461732682825

h I11oc I12oc I22oc

True -112.4612167553670 0 -50

10−2 -112.4612167526351 0.0000000004401 -49.9991666463017

10−3 -112.4612167515691 -0.0000000159872 -49.9999916669940

10−4 -112.4611976877246 0.0000024079503 -49.9999991632200

10−5 -112.4612225568687 0.0001717144945 -50.0012475868102

10−6 -112.3154902413744 -0.0301980662698 -49.7450969309843



REFERENCES 25

Table 2: Values of “True”, estimated DM and Ioc for the Poisson mixture example.

h DM11 DM12 DM13

True 0.3228126176426 0.0735845071369 0.0415333630905

10−2 0.3228123247310 0.0735845067503 0.0415333630917

10−3 0.3228126176134 0.0735845071369 0.0415333630905

10−4 0.3228126176417 0.0735845071367 0.0415333630915

10−5 0.3228126176569 0.0735845071351 0.0415333630955

10−6 0.3228126175968 0.0735845071338 0.0415333630901

h DM21 DM22 DM23

True 1.0839440899135 0.5213031071185 0.0917347609661

10−2 1.0839434308930 0.5213031054224 0.0917347609764

10−3 1.0839440898480 0.5213031071181 0.0917347609658

10−4 1.0839440899153 0.5213031071191 0.0917347609623

10−5 1.0839440898597 0.5213031071309 0.0917347609416

10−6 1.0839440899167 0.5213031070213 0.0917347610338

h DM31 DM32 DM33

True 1.4016696744534 0.2101657848169 0.1993704571866

10−2 1.4016684866946 0.2101657832012 0.1993704571911

10−3 1.4016696743348 0.2101657848164 0.1993704571872

10−4 1.4016696744650 0.2101657848189 0.1993704571892

10−5 1.4016696743487 0.2101657847513 0.1993704572635

10−6 1.4016696751628 0.2101657836862 0.1993704570785

h I11oc I12oc I13oc

True -9813.2975 0 0

10−2 -9804.0666 -0.0000 -0.0000

10−3 -9813.2057 0.0000 -0.0000

10−4 -9813.2963 0.0000 -0.0000

10−5 -9813.2977 -0.0004 0.0043

10−6 -9812.7657 -0.0505 -0.0505

h I22oc I23oc I33oc

True -666.1844 0 -290.7812

10−2 -666.0934 0.0000 -290.7800

10−3 -666.1835 -0.0000 -290.7812

10−4 -666.1844 0.0000 -290.7813

10−5 -666.1798 -0.0020 -290.8041

10−6 -665.5227 0.0000 -294.4489


