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A B S T R A C T

The effective control of multidrug resistant tuberculosis (MDR-TB) relies upon the timely diagnosis and correct
treatment of all tuberculosis cases. Whole genome sequencing (WGS) has great potential as a method for the
rapid diagnosis of drug resistant Mycobacterium tuberculosis (Mtb) isolates. This method overcomes most of the
problems that are associated with current phenotypic drug susceptibility testing. However, the application of
WGS in the clinical setting has been deterred by data complexities and skill requirements for implementing the
technologies as well as clinical interpretation of the next generation sequencing (NGS) data. The proposed di-
agnostic application was drawn upon recent discoveries of patterns of Mtb clade-specific genetic polymorphisms
associated with antibiotic resistance. A catalogue of genetic determinants of resistance to thirteen anti-TB drugs
for each phylogenetic clade was created. A computational algorithm for the identification of states of diagnostic
polymorphisms was implemented as an online software tool, Resistance Sniffer (http://resistance-sniffer.bi.up.
ac.za/), and as a stand-alone software tool to predict drug resistance in Mtb isolates using complete or partial
genome datasets in different file formats including raw Illumina fastq read files. The program was validated on
sequenced Mtb isolates with data on antibiotic resistance trials available from GMTV database and from the TB
Platform of South African Medical Research Council (SAMRC), Pretoria. The program proved to be suitable for
probabilistic prediction of drug resistance profiles of individual strains and large sequence data sets.

1. Introduction

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) re-
mains the leading global infectious disease killer. Mtb is a slow-
growing, Gram-positive, acid-fast bacterium. The rod shaped, in-
tracellular aerobe has a lipid-rich cell wall which gives Mtb some of its
unique characteristics, such as a high resistance to desiccation. In 2017,
there were an estimated 10 million new cases of TB and an estimated
1.6 million deaths attributed to the disease (World Health Organization,
2018a). Despite the drop in global TB incidence and mortality rates in
recent years, a lot of work still needs to be done if we are to attain the
2030 targets of the End TB Strategy: to reduce TB deaths by 90 % and

TB incidence by 80 % (World Health Organization, 2018b). The
emergence of drug resistant TB (DR-TB) remains a major challenge in
the war against TB. According to the World Health Organization, over
558,000 people had developed TB that was resistant to rifampicin (RR-
TB), the most potent of the first line drugs and 82 % of these were
classified as multi-drug resistant TB (MDR-TB) (World Health
Organization, 2018a).
MDR-TB refers to TB that has developed resistance to the two most

powerful first line drugs, rifampicin and isoniazid. Extensive drug re-
sistance TB (XDR-TB) refers to MDR-TB strains that have developed
further resistance to any of the second line, injectable drugs. With 8.5 %
of the MDR-TB cases classified as XDR-TB in 2017, there is a need to
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prioritize the development of tools for the rapid and accurate diagnosis
of DR-TB isolates. Gandhi et al. (2006) reported that rapid progression
to death was recorded in 98 % of XDR-TB patients during an outbreak
in KwaZulu-Natal, South Africa. Other experts have also coined the
term totally drug resistant TB (TDR-TB) to describe strains that are
resistant to all the currently available drugs although there is no agreed
definition of TDR-TB yet (Coll et al., 2015). Treatment of drug resistant
TB is challenging compared to treatment of drug susceptible TB with
global success rates of less than 50 % for MDR-TB. The treatment
process is costly and is often associated with poor outcomes. The drugs
used are also highly toxic and can lead to severe side effects, such as
permanent deafness and psychiatric disorders (Yang et al., 2017). These
challenges can lead to poor compliance with the treatment regime and
this in turn reduces the cure rates and can even lead to the amplification
of resistance (Shean et al., 2013; Coll et al., 2015). Accurate drug sus-
ceptibility testing (DST) profiles are also crucial in the improvement of
treatment outcomes as they ensure that only the effective anti-TB drugs
are prescribed and reduces exposure to ineffective and toxic drugs (Coll
et al., 2015).
Early diagnosis and correct treatment is the key to the control of

MDR-TB and incorrect treatment of TB can be catastrophic both at
patient and population level. Misdiagnosis and inadequate treatment of
MDR-TB or XDR-TB can lead to the positive selection of resistant sub-
populations and hence the creation of novel resistant strains. This can
also lead to an increase in the number of ineffective drugs against an
already M/XDR-TB strain (Walker et al., 2017). Conventional pheno-
typic DST is still culture based and an arduous process due to the slow
growth rate of Mtb. The method also requires expensive infrastructure
(biosafety level 3 laboratories), which is not affordable in most low- and
middle-income countries which carries the highest burden of TB. This
means that DST results are only available after weeks to months which
are often too late for the TB patient. For complex drugs such as
ethambutol and pyrazinamide, phenotypic DST is frequently inaccurate
and usually lacks reproducibility (Demers et al., 2016; World Health
Organization, 2018b). Several rapid molecular assays have been de-
veloped for the diagnosis of DR-TB. The global roll out of the WHO
endorsed Cepheid Xpert MTB/RIF and Ultra assays (Cepheid, Sunny-
vale, CA, USA) increased the number of detected DR-TB cases (Theron
et al., 2013). Despite this success, these technologies are still limited in
the number of loci they can examine and the number of drugs that can
be tested (Coll et al., 2015). Major diagnostic gaps still remain to be
covered. It was estimated that 558,000 people developed MDR/RR-TB
in 2017 of which only 160,684 cases were detected and notified. Of
these, only 25 % of the patients were put on a treatment regimen that
includes a second line drug (World Health Organization, 2018a). These
challenges make WGS more important in the diagnostics of MDR-TB
than any other infectious disease (Walker et al., 2015). Unlike in most
other bacterial pathogens, resistance plasmids and horizontal gene
transfer play no role in the acquisition of drug resistance in Mtb
(Trauner et al., 2014). The main cause of drug resistance in Mtb is the
accumulation of point mutations and indels in genes coding for drug
targets or converting enzymes (Coll et al., 2015). Mechanisms of action
and genetic mutations associated with drug resistance to the thirteen TB
antibiotics considered in this study are listed in Table 1.
A common approach used in the identification of antibiotic re-

sistance mutations is genome-wide association study (GWAS). A com-
prehensive GWAS-based analysis of mutations in 6465 clinical Mtb
isolates showing various patterns of drug resistance has recently been
published (Coll et al., 2018). This approach allows for the identification
of novel mutations but generally ignores the evolution of drug re-
sistance consisting of a series of mutations which may vary in different
Mtb lineages. Lineage-specific development of Mtb antibiotic resistance
was demonstrated in several recent publications (van Niekerk et al.,
2018; Oppong et al., 2019). Multiple mutations in many genes create a
complex network of epistatic interactions which play an important role
in the development of the drug resistant phenotype as they are able to

compensate for the fitness cost that is incurred when resistance is ac-
quired (Borrell and Gagneux, 2011). There is a need for more sophis-
ticated WGS-based approaches besides GWAS for the understanding
and accurate detection of these processes leading to the resistant phe-
notype. Unlike the currently available molecular assays, which can only
examine limited mutations in specific gene targets, WGS based assays
can provide a near complete view of the whole resistome. This means
that by using WGS assays, we have the potential to detect resistance for
all available anti-TB drugs in contrast to current molecular diagnostics
methods, which are limited to only a few drugs (Chen et al., 2019).
WGS has the ability to detect rare mutations as well as indels that may
not be detected by other molecular assays (World Health Organization,
2018b).
Several NGS platforms which can be applied in the clinical setting

have been commercially developed over the years. These sequencing
platforms include Illumina technologies, Ion Torrent, PacBio SMRT RSII
and Sequel technologies; and Oxford Nanopore MinION. It is important
to note that despite the differences associated with the functionality of
these platforms, they have all been proved to be suitable for DR-TB
diagnosis provided that their infrastructural and operational pre-
requisites are met (Phelan et al., 2016). This means that prior to setting
up an NGS based service, a clinical laboratory has some factors to
consider. These factors include cost, turnaround time, data quality and
data output (World Health Organization, 2018b). The current study
focused mostly on Illumina and Ion Torrent sequencing as they are
currently the most feasible techniques for medicinal centers and public
health organizations. Nevertheless, genome scale assemblies generated
from other techniques are also suitable for the analysis by the online
tool proposed in this paper.
The uptake of WGS based technologies in the clinical setting has been

hindered by the complexity of the data generated through NGS and the
general lack of bioinformatics skills among clinical microbiologists
(Macedo et al., 2018). However, the decrease in the cost of NGS has re-
sulted in a number of automated WGS based rapid DR-TB prediction tools
being developed in the past few years. These tools, which include
KvarQ (Steiner et al., 2014), TBProfiler (Coll et al., 2015), CASTB
(Iwai et al., 2015), Mykrobe Predictor (Bradley et al., 2015) and PhyResSE
(Feuerriegel et al., 2015), are freely available online and allows for pro-
cessing of raw sequencing data in the form of fastq files. A few studies that
assess the performance of these rapid tools have been done with the most
extensive study published by Schleusner et al. (Schleusener et al., 2017).
Although these tools are rapid and user friendly, the team cited a number
of limitations associated with these platforms. Despite the improved sen-
sitivity and specificity (when compared to DST), the number of DR loci
interpreted by these tools are still not enough to fully capture the whole
resistance profile of TB. None of these tools are able to interpret low fre-
quency mutations with some of the platforms completely insensitive to
indels and variants in promoter regions (Chen et al., 2019). Only two of
the online platforms (PhyResSE and KvarQ) allows for batch uploads
which can make the process of uploading samples one at a time cum-
bersome in larger settings such as national referral laboratories
(Schleusener et al., 2017). Although these tools were designed to be user-
friendly, some of them still require the end user to possess a certain level of
bioinformatics skills, for example before using Mykrobe Predictor or
KvarQ, the paired-end fastq files have to be merged and this might present
technical challenges for end users. Another hurdle that was noted when
the tools were reviewed was the lack of a standardized way of exporting
and storing results. Only PhyResSE could provide comma-separated (csv)
report files for all strains processed in the same session while CASTB could
not offer any report on the interpreted variants. TBProfiler which yielded
the best accuracy results does not offer any export and storage function-
ality (Schleusener et al., 2017).
In this study, a new computational tool was developed for the rapid

antibiotic susceptibility profiling of Mtb isolates using WGS datasets in
different file formats and on different stages of genome completion,
including raw DNA reads in fastq format. The proposed program was
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trained and validated using publicly available records on Mtb sequen-
cing and antibiotic resistance profiling from the Genome Variation
Mycobacterium Tuberculosis Variation (GMTV) database (Chernyaeva
et al., 2014). Although the program Resistance Sniffer is currently
available for research purposes only, the efficacy of the drug resistance
prediction algorithm was demonstrated using clinical Mtb isolates
available from the Tuberculosis Platform of the South African Medical
Research Council (SAMRC).

2. Methods

2.1. Data sourcing and preparation

Mutation data in the form of 2501 variant call format (VCF) files
was downloaded from the GMTV database (https://mtb.
dobzhanskycenter.org/cgi-bin/beta/main.py#custom/world). The da-
tabase consists of data from Mycobacterium tuberculosis isolates sourced
from different regions of the Russian Federation and worldwide. The
database integrates drug resistance profiles, epidemiology, TB clinical
outcome, year and place of isolation as well as molecular biology data
(Chernyaeva et al., 2014). The metadata includes information on drug
resistance trials with respect to the following antibiotics: amikacin
(AMK), capreomycin (CM), cycloserin (CS), ethambutol (EMB), ethio-
namide (ETH), isoniazid (INH), fluoroquinolones (FLQ), kanamycin
(KAN), ofloxacin (OFL), para-amino salicyclic acid (PAS), pyrazinamide
(PZA), rifampicin (RIF) and streptomycin (SM). The database also
provides information on the phylogenetic clade of each sample. The
quality of the microbiological, WGS and spoligotyping data is guaran-
teed by the institutions that provided the data to the database
(Chernyaeva et al., 2014). The dataset was further split to create a
training dataset of 1300 samples. The validation dataset consisted of
1201 samples whose antibiotic phenotype data was available for all the
drugs included in this study. An independent testing dataset of 742 Mtb
genome sequences was obtained from the SAMRC. We also obtained
from the PATRIC database (Wattam et al., 2013) an additional testing
dataset of 77 Mtb strains isolated in Sierra Leone (ENA accession
number: PRJEB7727). Strains from this database have been described
in previous studies (Homolka et al., 2008; Feuerriegel et al., 2012;
Schleusener et al., 2017).

2.2. Construction of the diagnostic key

In total, 90,533 SNPs and indels leading to amino acid substitutions
were selected from the GMTV database (https://mtb.dobzhanskycenter.
org/cgi-bin/beta/main.py#custom/world) for the analysis of their as-
sociations with Mtb clades and antibiotic resistance patterns.
Additionally, allelic states and locations of SNPs associated with anti-
biotic resistance were obtained from the TB Drug Resistance Mutation
Database (https://tbdreamdb.ki.se/Info/Default.aspx) (Sandgren et al.,
2009).
Discriminative power of SNPs used for distinguishing between Mtb

clades and/or drug sensitive versus drug resistant variants in the same
clade was calculated by the following equation:

=Power A B
N N

1
min( , )k

A B (1)

where A∩B is the number of strains in the clades A and B sharing the
same allelic state of the locus k; NA and NB – sample sizes of the clades A
and B, respectively. Power values were in the range from 0 to 1.
SNPs with the highest discriminative power values estimated to

distinguish between clades and/or antibiotic sensitive and resistant
variants were selected to create the diagnostic key as explained below.
The diagnostic key comprises of 1458 selected missense SNPs. The al-
lelic states of these diagnostic SNPs predicted for 1201 Mtb genomes
including drug resistance metadata from the GMTV database are shown
in Supplementary file 1 in FASTA format as a pseudo-sequence of
variable amino acids. Annotation information about each SNP location
in the reference genome Mtb H37Rv (NC_000962.3) is given in
Supplementary file 2. These files served as the program training da-
taset.

2.3. Mtb lineage classification

M. tuberculosis H37Rv reference genome (NC_000962.3) was used to
determine the polymorphisms. In addition to this data, discriminative
single nucleotide polymorphisms (SNPs) were identified by whole
genome alignment against reference genomes of M. bovis (NC_016804,
NC_020245, NC_012207, NC_008769 and NC_002945) and M. canettii
(NC_015848, NC_019950, NC_019965, NC_019951 and NC_019952)
available from the NCBI database. Variant calling for these strains was

Table 1
Anti-TB antibiotics and possible mechanisms of drug resistance.

Antibiotic Abbreviation Mechanism of action Mutated genes associated with drug
resistance

Amikacin, Capreomycin,
Kanamycin

AMK, CM, KAN Inhibits protein synthesis through ribosomal binding. rrs, eis, tlyA (Alangaden et al., 1998)

Cycloserin CS Cell wall biosynthesis inhibitor. alr, ddlA, cycA (Chen et al., 2017; Oppong
et al., 2019)

Ethambutol EMB The drug disrupts several pathways of actively multiplying bacilli, most
importantly those that are involved in arabinogalactan biosynthesis in the cell
wall. This inhibition of arabinan polymerization helps to facilitate the
permeability of other drugs that are used in TB treatment.

embB, ubiA (Telenti et al., 1997)

Ethionamide ETH Structural analogue of INH (Dookie et al., 2018). The prodrug is activated by
the mono-oxygenase enzyme to inhibit the binding of the enoyl-acyl carrier
protein reductase and therefore inhibit cell wall synthesis.

ethA, mshA, ndh, inhA, inhA promoter (Hicks
et al., 2019).

Isoniazid INH INH is a prodrug which is activated by the catalase /peroxidase enzyme
encoded by the katG gene (Van Niekerk et al., 2018). The activated drug
interferes with mycolic acid synthesis.

katG, inhA, kasA (Ramaswamy et al., 2003)

Fluoroquinolones FLQ Inhibit bacterial replication by blocking DNA gyrase important for the
replication pathway.

gyrA and gyrB (Takiff et al., 1994)

Para-amino salicyclic acid PAS A para- amino benzoic acid that inhibits folate synthesis. thyA (Dookie et al., 2018)
Pyrazinamide PZA Disrupts the proton motive force which is essential for membrane transport. pncA (Demers et al., 2016)
Rifampicin RIF The drug is known to disrupt the elongation of mRNA by binding to the beta

subunit of RNA polymerase.
rpoB (Koch et al., 2014)

Streptomycin SM Inhibits protein synthesis by irreversibly binding to the ribosomal protein S12
and 16S rRNA and therefore interfering with the binding of formyl-methionyl-
tRNA to the 30S subunit of the bacterial ribosome.

rrs and rpsL (Brzostek et al., 2004), gidB
(Okamoto et al., 2007). whib7 (Reeves et al.,
2013)

D. Muzondiwa, et al. International Journal of Medical Microbiology 310 (2020) 151399

3

https://mtb.dobzhanskycenter.org/cgi-bin/beta/main.py#custom/world
https://mtb.dobzhanskycenter.org/cgi-bin/beta/main.py#custom/world
https://mtb.dobzhanskycenter.org/cgi-bin/beta/main.py#custom/world
https://mtb.dobzhanskycenter.org/cgi-bin/beta/main.py#custom/world
https://tbdreamdb.ki.se/Info/Default.aspx


performed using Mauve 2.3.1 (Darling et al., 2004). Clade identification
by the Resistance Sniffer program was compared to the results obtained
by TBProfiler (Coll et al., 2015), CASTB (Iwai et al., 2015), Mykrobe
Predictor (Bradley et al., 2015), PhyResSE (Feuerriegel et al., 2015) and
KvarQ (Steiner et al., 2014).

2.4. Resistance sniffer algorithm

The program, Resistance Sniffer, was developed in Python 2.7 (also
compatible with Python 2.5) and implemented as an on-line tool at
http://resistance-sniffer.bi.up.ac.za/. The program is also available for
download, with example input files, from http://resistance-sniffer.bi.
up.ac.za/Mycobacterium_tuberculosis/help/ as a stand-alone tool. The
accepted input includes complete sequences in Genbank or FASTA
formats; sequences of predicted genes or proteins in FASTA format,
uncompressed VCF files and raw Illumina fastq paired-end read files.
The program maps raw sequences to the embedded reference genome
sequence (M. tuberculosis H37Rv, NC_000962.3). The detected patterns
of polymorphisms are then processed using the diagnosis key, which
consists of a catalogue of clade-specific polymorphisms and genetic
determinants of antibiotic resistance. The diagnosis key consists of bi-
furcating splits for each decision point (Fig. 1). At each intermediate
node, the program calculates normalized counts of power values (Eq. 1)
of diagnostic polymorphisms depending on the states of these sites in
the given genome. As the program was designed to perform predictions
based on partially sequenced genomes, the program does not expect to
receive the states of all polymorphic sites assigned for a split and tries to
make a decision based on the available sites. Optimally, the score for
one bifurcating branch is expected to be 1.0, and for another branch –
0.0. If the maximal score is below 0.75, the program explores both al-
ternative branches to avoid an erroneous decision on a top-level split.
Moreover, reaching the leaf-node corresponding to an Mtb clade, the
program tries a possibility that the strain may belong to a sister clade
sharing similar polymorphisms. It must be emphasized that in this work
we did not attempt to distinguish between phylogenetically significant
traits and convergent polymorphisms. No conclusions regarding the

phylogenetic relatedness between clades should be drawn from the
neighboring of the clades in the diagnostic key in Fig. 1.
It should be noted that in many cases there are no clear borders

between Mtb clades and intermediate strains do exist, hence in in-
stances where the program cannot reach a confident conclusion with
regards to strain affiliation, the program returns two top-scored clades.
Contrary to a general belief in the existence of DR mutations

common for all Mtb strains, this approach proceeds from an assumption
of parallel drug resistance evolution in Mtb clades which resulted in the
creation of different clade-specific patterns of polymorphic sites asso-
ciated with the antibiotic resistance phenotype (van Niekerk et al.,
2018). Each clade node of the diagnostic key consists of associated sets
of polymorphic sites which distinguish between antibiotic resistant and
antibiotic sensitive variants for every Mtb clade. Using the same
method described in the clade identification step above, the program
calculates normalized counts of polymorphisms associated with the
drug sensitivity (SenCount) and drug resistance (ResCount). In the next
step, antibiotic resistance scores (q values) are calculated for every
individual antibiotic by Eq. 2.

=
+ +

+( )
Iq

1 log

2

ResCount
SenCount2

1
1

(2)

In the following steps, the resistance value (R) and the standard
error (Err) are calculated by Eqs. 3 and 4, respectively.

= × ×R q 2 ResCount(2 1) (3)

= × ×
Err q q

N
2 (1 ) 2

1

ResCount(2 1)

(4)

In Eq. 4, N is the number of diagnostic sites found in the given
genome.
Fig. 1 details the sequence of steps taken by the program in as-

signing the clade to the sample. This is followed by determining whe-
ther the strain is resistant or susceptible to each of the antibiotics. It
must be noted that the number of antibiotics a strain may be resistant to

Fig. 1. The decision-making tree implemented in the Resistance Sniffer. Titled nodes denote Mtb clades: EAI – East African and Indian (Lineage 1.1); L1.2 – lineage
1.2; Bj – Beijing strains (lineage 2); CAS – Central Asian Strains (lineage 3); Xt – X-type strains; L4.1 – lineage 4.1 (H37Rv type strain clade); Ur – Ural strains (lineage
4.2); L4.3 – lineage 4.3; Hr – Haarlem strains (subtype of lineage 4.3); St – S-type (subtype of lineage 4.3); L7 – lineage 7; Mb –M. bovis and Mc –M. canettii (relate to
lineages 5 and 6). Intermediate nodes represent groups of clades. Antibiotic resistance nodes are amikacin (AMK), capreomycin (CM), cycloserin (CS), ethambutol
(EMB), ethionamide (ETH), isoniazid (INH), fluoroquinolones (FLQ), kanamycin (KAN), ofloxacin (OFL), para-amino salicyclic acid (PAS), pyrazinamide (PZA),
rifampicin (RIF) and streptomycin (SM).
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depends on the clade affiliation of the given strain. East African and
Indian (EAI) clade, Lineage 7 and M. canettii are considered to be sen-
sitive to all antibiotics by default since the antibiotic metadata from
GMTV and SA MRC indicated that none of the isolates belonging to
these clades was resistant to any antibiotic. M. bovis isolates are by
default set to be resistant to PZA (Ritz et al., 2009) and sensitive to all
the other antibiotics (Rousseau and Dupuis, 1990). However, this does
not rule out the possibility of the future discovery of antibiotic
resistance in M. canettii and M. bovis strains. The diagnostic key was
implemented as an external text file table.txt located in the subdirectory
sources of the local version of the program and on the server. This file
may be edited to incorporate new diagnostic keys without any other
changes to program. Antibiotic resistance diagnostic keys will be added
to these nodes when more data becomes available.
Program validation was performed first on 1201 Mtb strains from

GMTV combined with 742 new Mtb isolates from SA MRC, which were
provided with antibiotic resistance/susceptibility patterns.
Additionally, the program was tested on a set of 77 Mtb isolates from
Sierra Leone available from the PATRIC database (Wattam et al., 2013)
with data on their sensitivity/resistance to several antibiotics (project
PRJEB7727). The program performance was characterized by sensi-
tivity (SENS), specificity (SPEC), Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) as shown in Eqs. 5–8:

=
+

SENS TP
TP FN (5)

=
+

SPEC TN
FP TN (6)

=
+

PPV TP
TP FP (7)

=
+

NPV TN
TN FN (8)

In Eqs. 5–8, TP – number of true positive predictions; FP – false
positives; TN – true negatives; and FN – false negatives.

3. Results

3.1. Phylogenetic clade classification

The accuracy of this tool depends on the correct classification of the
phylogenetic lineage of the Mtb sequences. The precision of the
Resistance Sniffer program for lineage classification was assessed using
lineage information from the original GMTV test dataset, as well as
lineage information from the Sierra Leone dataset. It is important to
note that lineage information was not available for all the samples from
the SAMRC, 121 samples from the GMTV as well as for 11 of the Sierra
Leone samples. Supplementary file 3 presents the results of identifica-
tion of clades of Mtb strains from Sierra Leone by 6 different tools,
PhyResSE, KvarQ, Mykrobe Predictor, TBProfiler, CASTB and
Resistance Sniffer, and compared to the original prediction provided for
these strains in the PATRIC database. Generally, lineage predictions by
different programs were in concordance. The main reason for dis-
cordance in classifying samples can be attributed to alternative naming
of clades, different levels of resolution in classifying sub-lineages of Mtb
by different tools and rather arbitrary delineation between lineages
with a great abundance of intermediate strains. For example, classifi-
cation ambiguities were observed for 4 strains from the Sierra Leone
dataset (ERS457923, ERS457211, ERS457423, and ERS457331) which
were misclassified as either CAS, or Beijing, or Lineage 1.2. For
Resistance Sniffer there was ambiguous delineation between M. bovis,
M. africanum and predominately African Mtb isolates of lineages 5 and
6 which may have resulted due to a small number of representatives of
these groups in the initial training dataset. However, in terms of mul-
tidrug resistance development these groups are not very important (or
maybe not sufficiently studied until now) except for M. bovis which
isolates are naturally resistant to PZA (Ritz et al., 2009).
The predicted clades for the GMTV and SAMRC strains are shown in

Fig. 2. The GMTV database is predominantly comprised of Mtb strains
isolated in Russia, while SA MRC presents clinical isolates from South
Africa. The majority of the GMTV strains belong to the highly virulent
Beijing clade, European lineage 4.3, Asian lineage 4.1 (type strain
lineage from India) and Ural clade specific for central Russia. European
lineage 4.3 is the most prevalent clade among South African isolates. It
is followed by the S-type variants of this lineage, Beijing and CAS
clades. This finding indicates that the TB pandemic was introduced to
South Africa by infected European settlers and to a lesser extent by
Asian travelers. EAI clade is present among South African isolates but
not frequent, most likely due to a relatively lower virulence. Ural, X-
type and lineage 4.1 were not found among the SA MRC isolates.

3.2. Accuracy of antibiotic resistance prediction

In total, 1201 Mtb strains from GMTV and 742 strains from SA MRC
were characterized by their sensitivity to one or several antibiotics re-
sulting in 8559 data entries. This information was used to validate
performance of the Resistance Sniffer program. Antibiotic resistance
was predicted by R-values calculated using Eq. 3. This equation returns
values in the range of 0–2; however, the majority of tested strains R-
values were below 1.0, and those strains showing higher R-values were
antibiotic resistant. The program was set to reduce R-values to 1.0 if
they were larger than 1.0.
Assignment of strains as sensitive or resistant with respect to a given

antibiotic was performed by setting a cut-off R-value. If the cut-off

Fig. 2. Frequencies of clades assigned to Mtb strains from GMTV and SA MRC.
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value is 0, all the strains will be deemed resistant and fall either into
true positive (TP) or false positive (FP) categories. Sensitivity of the
program will be maximal (1.0) and specificity will be minimal (0.0).
Conversely, all the strains will be deemed sensitive and fall into either
the true negative (TN) or false negative (FN) categories with the cut-off
value of 1.0. The R cut-off value was gradually changed from 0 to 1.0
with a step of 0.25 and the distribution of FP, FN, TP and TN strains was
evaluated using Eqs. 5–8. The calculated specificity and sensitivity of
the program for different cut-off values are shown in Fig. 3.
Resistance R-value above 0.75 predicts the strain to be resistant

against the given antibiotic with a likelihood of 55 % or higher. If the R-
value is below 0.3, the strain is deemed sensitive to the antibiotic with a
likelihood of 55 % or higher. The strains with intermediate R-values are
either sensitive or resistant with equal likelihoods. This area of un-
certainty has an important biological meaning as it depicts Mtb strains
which may currently be sensitive but are rapidly approaching resistance
and should be marked as potentially dangerous.
Testing of the program on 77 Mtb isolates from Sierra Leone char-

acterized by sensitivity to EMB, INH, PZA, RIF and SM, or at least to one
or several of these antibiotics (in total 285 strains per antibiotic mea-
surements in Supplementary file 4) was performed with different cut-off
R-values. Average values of sensitivity (0.5) and specificity (0.5) were
achieved under an assumption that a strain is resistant to an antibiotic if
the estimated R-value ≥ 0.25. An increase of the R-value cut-off led to a
rapid increase in specificity and decrease in sensitivity. To improve the
program performance, an additional parameter ‘Sensitive’ was in-
troduced to reflect in the program output. This parameter was calcu-
lated as 1 eaverage of the top 6 R-values determined for different an-
tibiotics. The rational of this approach was that a multidrug resistant
Mtb strain may very likely show some level of resistance to other an-
tibiotics even if no specific genetic determinants of the specific anti-
biotic resistance were found. The optimal program performance was
achieved with the R-value cutoff 0.3 under an assumption that the
strain is resistant to all antibiotics, if the Sensitivity coefficient is equal
or lower than 0.2. With these settings, the susceptibility to antibiotics
was correctly predicted in 184 cases and the resistance was correctly
predicted in 19 cases. There were 41 false susceptibility predictions and
41 false resistance predictions. Calculated sensitivity and specificity
were 0.32 and 0.82, respectively. As no data on the reliability of applied
DST techniques was made available, it is not possible to judge whether
the false negative and false positive predictions should be attributed to
the experimental procedures of drug susceptibility testing or to the

program algorithm. It should be noted that antibiotic resistance pro-
filing of Mtb isolates in bacteriological laboratories is an error-prone
procedure showing a relatively weak correlation with the clinical re-
sponse due to the slow growth rate of this bacterium and bad stan-
dardization of the procedures (Kim, 2005). The accuracy is even worse
when the data originates from different laboratories. It is expected that
the sensitivity and specificity of the program cannot exceed the accu-
racy of the training dataset, but it seems that the antibiotic resistance
prediction by Resistance Sniffer does not add significantly to the ex-
pected level of errors seen in laboratory drug resistance trials. The
meaning of antibiotic resistance likelihood predicted by Resistance
Sniffer will be discussed in more details below.

3.3. Program interface and output visualization

Resistance Sniffer comes with a user-friendly Web interface (Fig. 4),
which allows the end user to upload files in different sequence file
formats, including NGS read files. Even fragmented genomes can be
used for antibiotic resistance prediction as every identification step is
based on an analysis of the states of multiple diagnostic sites distributed
throughout the complete genome sequence. This means that the tool
can be used at different stages of whole genome completion which may
be in raw reads to a SNP level.
Instead of uploading one genome at a time, users may download the

stand-alone version of the program and analyze all available sequence
files in a single run. However, the local version of the program cannot
analyze fastq input files as it requires Bowtie2 to be locally installed.
Depending on the format of the input file, the program run may take
from several seconds to a few minutes on a regular desktop computer.
The online version of the program allows optional entering of the user
e-mail address to be notified of the task completion by a message with a
link to the results. A detailed description on using the program is
available from the download webpage at http://resistance-sniffer.bi.up.
ac.za/Mycobacterium_tuberculosis/help/.
Most DR-TB databases approach the drug resistant phenotype as a

binary entity which means that a strain is classified as either resistant or
susceptible. However, our study suggests that the progression to the
drug resistant phenotype is a stepwise process which highlights the
need to develop ways to account for intermediate levels of drug re-
sistance as well. Resistance Sniffer outputs the results as a bar plot of
the probability that the strain is drug sensitive or drug resistant to the
thirteen antibiotics. Fig. 5 shows several examples of graphical outputs

Fig. 3. Sensitivity and specificity of antibiotic resistance prediction with different R cutoff values. Vertical lines depict borders set in the program to distinguish
between sensitive, potentially resistant and antibiotic resistant Mtb strains.
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of the program. The drug susceptibility pattern estimated for the strain
TB0775 from GMTV is demonstrated in Fig. 5A. The strain was pre-
dicted to belong to the Beijing clade. The program prediction shows
that this isolate has a high likelihood to be resistant to INH, KAN and
SM, and may have an intermediate resistance towards FLQ, OFL, PAS
and RIF. The experimentally detected profile of drug susceptibility
available for this strain from GMTV confirms resistance to INH, SM and
RIF, and sensitivity to EMB which agrees with the software prediction.
This strain was not tested for other antibiotics.
Fig. 5B shows the prediction of drug resistance for a highly frag-

mented assembly of a clinical isolate from the SAMRC. The strain was
assigned with equal likelihoods of belonging to either CAS or to X-type.
It may be possible that the queried sequence is from an intermediate
variant; however, the ambiguity could be attributed to the quality of
sequencing. Only small fractions of diagnostic sites were found in the
sequences which resulted in an increased standard error of R-value
estimation depicted on the plot by an increased length of black vertical
whiskers. Nevertheless, the program predicted a high likelihood that
this strain may be resistant to ETA, KAN and OFL, and may also show an
intermediate resistance to CM, EMB, FLQ, INH, RIF and SM. Because the
program could not distinguish between CAS and X-type, patterns of
resistance were analyzed for both these clades and the biggest R-values
were selected. Resistance to PAS was not expected for either CAS or X-
type isolates as there were no such isolates in the training dataset used
for this program. This is why the program set this strain sensitive to PAS
by default without any estimation. Setting of the drug sensitivity by

default is depicted by short grey bar.
Only a few diagnostic sites needed for PZA resistance prediction

were found in this fragmented genome and they were uninformative.
For example, in PZA sensitive CAS isolates, a Met residue is expected on
the 134th codon of the Rv0040c gene while Ile is expected on the same
locus for PZA resistant isolates. In the given strain, Val was found on
this locus, a finding that does not fit with the expectations. The program
marked this antibiotic on the plot with a short red bar indicating an
insufficiency in the information to make any decision.
In Fig. 5C, isolate ERS458164 from Sierra Leone was predicted asM.

bovis clade, which also includes predominantly drug susceptible Wes-
tern African and M. africanum isolates. The current version of the pro-
gram was not designed to analyses the drug resistance in this clade due
to lack of published data. The program displays by default that the
isolate is most likely susceptible to all antibiotics except for the vacci-
nation M. bovis strains reported to be PZA resistant (Ritz et al., 2009)
that is indicated by highlighting the PZA resistance in the output file.
In Fig. 5D, an example is given of the analysis of historical DNA, in

NGS format, obtained from human remains of an individual who died
from tuberculosis in XVIII century in Hungary (Kay et al., 2015). The
current analysis confirmed the affiliation of the Mtb strain with lineage
4 as reported in the original paper but with a better precision of the
identification to the sub-lineage 4.3, which is common for Europe. This
strain already possessed many mutations specific to future multidrug
resistant Mtb variants of this lineage; however, this strain most likely
was still susceptible to all antibiotics (sensitivity coef. 0.55).

Fig. 4. Web user interface of Resistance Sniffer showing the accepted input file types.
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Both the online and stand-alone program implementations also re-
turn a text output file listing the states of all diagnostic sites in addition
to the graphical output in SVG file format.
Resistance Sniffer predicts the resistance to antibiotics by analyzing

patterns of diagnostic polymorphisms in genome sequences. The actual
resistance of a bacterium to antibiotics may be affected by some other
factors that the program does not consider; particularly by epigenetic
modifications. For example, a recent study on the application of a new
drug, FS-1, which causes the reversion of multidrug resistant bacteria
back to the sensitive phenotype showed that the pattern of drug re-
sistant mutations remained unchanged in the strains with reversed
susceptibility to antibiotics (Ilin et al., 2017). Thus, the strains with
reversed antibiotic sensitivity due to epigenetic modifications will be
predicted as resistant by the pattern of diagnostic polymorphisms.
Moreover, the same study showed that Mtb isolates from experimen-
tally infected laboratory guinea pigs showed a range of antibiotic sus-
ceptibility values due to natural variations within the population even
though all the animals were injected with the same MDR-TB strain.
Hence the antibiotic resistance prediction is probabilistic by nature. The
Resistance Sniffer program estimates a rough likelihood for an isolate to
be resistant to one of thirteen antibiotics or to be sensitive to all of
them. These estimations are recorded in the text output file or may be
displayed on the screen when the mouse pointer is placed over the bar
on the plot (see Fig. 5A).

4. Discussion

Resistance polymorphisms appear to be clade specific, which means
that some mutations are more likely to be present in specific Mtb
lineages (Sandgren et al., 2009; Comas et al., 2010; Spies et al., 2011;
Fonseca et al., 2015). There is also evidence suggesting that strains from
certain lineages are predisposed to develop into MDR-TB strains (Bifani
et al., 2002; Drobniewski et al., 2005; Borrell and Gagneux, 2009). In
the present study, we sought to identify clade specific patterns of
polymorphisms that may be associated with the drug resistant pheno-
type in Mtb. Multiple mutations associated with antibiotic resistance in
Mtb are known from literature and are available from public databases
(e.g. https://tbdreamdb.ki.se/Info/Default.aspx) (Sandgren et al.,
2009). However, for this study a decision was made to perform a de
novo search for relevant mutations by calculating power coefficients
(Eq. 1) of association between polymorphisms and the drug resistant
phenotype for each antibiotic per clade. In many cases, but not always,
high scored polymorphisms were consistent with known drug resistance
mutations in literature. Some of these high scored polymorphisms were
also located in genes associated with the antibiotic resistance and there
is a need for further interrogation of these findings. Several examples
are discussed below.
Mutations in the embCAB operon have been known to be associated

with resistance to EMB, particularly the substitutions in codons 306,

Fig. 5. Drug resistance predictions by Resistance Sniffer for the strains (A) GMTV strain TB0775; (B) SA MRC strain 1324269.3; (C) Sierra Leone isolate ERS458164;
(D) DNA sequences obtained from a XVIII century Hungarian mummy who died from tuberculosis. White columns show sensitivity to antibiotics with the confidence
above 55 %; red columns predict the resistance with the confidence above 55 %; and orange columns show intermediate results. The green most right column depicts
the likelihood for this strain to be sensitive to all 13 antibiotics. Estimated R-values are shown along the vertical axis. Standard errors of calculation are depicted by
black vertical whiskers. Antibiotic resistance nodes are amikacin (AMK), capreomycin (CM), cycloserin (CS), ethambutol (EMB), ethionamide (ETH), isoniazid (INH),
fluoroquinolones (FLQ), kanamycin (KAN), ofloxacin (OFL), para-amino salicyclic acid (PAS), pyrazinamide (PZA), rifampicin (RIF) and streptomycin (SM). (For
interpretation of the references to colour in the figure, the reader is referred to the web version of this article).

D. Muzondiwa, et al. International Journal of Medical Microbiology 310 (2020) 151399

8

https://tbdreamdb.ki.se/Info/Default.aspx


406 and 497 of embB (Zhao et al., 2015). The current study confirmed
that in the Beijing clade several polymorphisms were highly scored on
these loci, particularly in codons 306, 354 and 406 of the embB gene.
Strain TB0012 has mutations in codons 306 and 354 but shows a sus-
ceptible phenotype according to the GMTV database records. Strain
TB0011 shows a resistant phenotype and possesses mutations in codons
354 and 406. Two other strains, TB0004 and TB0005, have mutations
in all three codons although they both show a susceptible phenotype.
These findings highlight the complexity of the development of anti-
biotic resistance in Mtb which requires accumulation of many other
subordinate mutations acquired in a stepwise manner to develop sus-
tainable drug resistance. This assumption was used as the basis of the
Resistance Sniffer algorithm of estimation of the drug resistance like-
lihood by assessing the whole pool of genetic determinants biasedly
distributed between antibiotic sensitive and resistant Mtb variants. This
hypothesis was confirmed in numerous publications (Telenti et al.,
1997; Safi et al., 2010; Safi et al., 2013; Fonseca et al., 2015). It was
hypothesized that the mut gene may play a significant role in the ac-
quisition of drug resistance in Mtb because missense mutations in these
genes lead to higher mutations rates (Rad et al., 2003; Fonseca et al.,
2015). Indeed, mutations in the mutT4 gene (Rv3908) were associated
with the drug resistance phenotype of Mtb strains of the Beijing clade,
but no specific mutations were found in the strains of lineage 4.1 and S-
type lineage, which, in contrast to Beijing strains, usually do not de-
velop a wide spectrum of drug resistance (see Fig. 1). The Beijing clade
has been associated with high levels of drug resistance and a higher
propensity to develop into MDR-TB and XDR-TB. The reason why
Beijing isolates are often associated with MDR-TB remains elusive.
Researchers have suggested that the strain background could be more
efficient in mitigating the effects of fitness cost imposed by drug re-
sistance (Borrell and Gagneux, 2009; Fenner et al., 2012).
Another gene of interest in this study was ogt (Rv1316), which is

known to remove methyl groups from O-6-methylguanine in DNA.
Mutations in this gene were associated with SM resistance in Ural,
Haarlem, lineage 4.3 and X-type clades. However, no significant asso-
ciations with mutations in this gene and SM resistance were revealed in
Beijing, CAS, S-type and lineage 4.1, which also have a high propensity
to develop SM resistance but in a different way. Strangely enough, this
study did not discover any significant correlation between mutations in
genes inhA, eis and tylA, and the drug resistance phenotype despite
many publications linking these genes with drug resistance. Mutations
in the inhA regulatory regions are known to confer low level INH and
ETH resistance. The tylA and eis genes are both drug targets for the
second-line injectable antibiotics. This work discovered several muta-
tions in the phenolpthiocerol synthesis polyketide gene (ppsC) and
multifunctional mycoserosic acid synthase gene (masA) to be associated
with rifampicin resistance in the lineage 4.3. A study by Bisson et al.
(2012) showed that the expression level of pps can be up to 10 fold
higher in rpoB mutant strains relative to the RIF susceptible parent
strain.
Our study suggests that the progression to the drug resistant phe-

notype is a stepwise process involving the accumulation of multiple
mutations contributing to the antibiotic resistant phenotype.
Alternative hypotheses involving rare drug resistance mutations in Mtb
populations were proposed by other authors. For example, in the pub-
lication by Carvalho et al. (2018) it was suggested that rare cases of
resistance to D-cycloserine is caused by low frequency mutations in
target genes, cycA, alr and ddlA, rather than fitness cost reduction
mediated by other compensatory mutations. Our study confirmed the
importance of CycA V67C, L322R and M343 T Alr, and T365A DdlA
substitutions in the development of CS resistance; however, significant
associations with multiple compensatory mutations linked to other
antibiotic resistance were also observed. It may explain the insignificant
fitness cost of the CS resistance mutations as they occur only in or-
ganisms already possessing the compensatory mutations. The Re-
sistance Sniffer program may identify Mtb strains on a trajectory to

developing drug resistance by accumulation of pre-requisite mutations,
even if phenotypic DST results for these strains do not show any evi-
dence of antibiotic resistance yet.
The key to the total eradication of TB globally lies in early diagnosis

and correct treatment. This has been hampered by the limitations in
current laboratory methodologies in performing drug susceptibility
testing. Current DST procedures for Mtb are time consuming, expensive
and inaccurate, especially for the second line antibiotics. Horizontal gene
transfer plays no role in the development of antibiotic resistance in Mtb.
This makes WGS an attractive option in the diagnosis of TB as it has the
potential to determine the full antibiogram provided we have detailed
knowledge of all the genetic determinants of drug resistance (Coll et al.,
2015). In this study, we used a derivative of GWAS to identify clade
specific patterns of polymorphisms which showed a biased distribution
regarding the drug resistant phenotype. The study was designed first of
all as a proof of concept of the ability to predict drug resistance or the
predisposition for drug resistance acquisition by Mtb isolates. However,
the designed software tool, Resistance Sniffer, showed the sensitivity and
specificity of the clade and the drug resistance identification similar to
that of other available tools such as TBProfiler, MyKrobe, KvarQ and
PhyResSE. A recent large-scale benchmarking comparison of the avail-
able tools on 6746 Mtb isolated characterized by drug susceptibility
patterns showed applicability but also some limitations of the available
tools (Ngo and Teo, 2019). According to this report, the specificity and
sensitivity of the programs varied from 0.6 to 0.9 depending on which
antibiotic was tested with the best results achieved when they are con-
firmed by more than one program. All the programs showed a much
better ability to predict the absence of drug resistance rather than the
specific drug resistance pattern. This is also true for the Resistance Sniffer
program. It was not discussed in this review to which extent the per-
formance of the program was affected by the level of fragmentation of
the genome of interest as only whole genome sequences were used in the
reported study. While the estimated sensitivity and specificity of Re-
sistance Sniffer were lower than those of the above-mentioned programs,
it should be noted that the current program was developed to analyze
fragmented partial genome sequences including historical sequences (see
Fig. 5D) represented by different file formats. Particularly, unordered
contigs of Mtb isolates from Sierra Leone in plain fasta format were used
for the program evaluation The aim of the study was to estimate the
propensity of a Mtb isolate to gain the antibiotic resistance rather than to
delineate antibiotic resistant from antibiotic sensitive strains. The per-
formance of the program may be improved in future studies by editing
the diagnostic key table without the need to modify the program itself. A
limiting factor of the current version was the size of the training dataset
of Mtb strains with known drug susceptibility profiles. For certain clades,
the number of available records was not sufficient to boost the associa-
tion power. Although there are currently more than 20 drugs that are
used in the treatment of TB, this study was limited to only thirteen an-
tibiotics due to the unavailability of phenotypic DST data for the omitted
drugs. As more data becomes available, the diagnostic key table of the
program will be updated.
It is expected that in the future NGS based assays will replace

phenotypic DST methods (Gröschel et al., 2018). This study has de-
monstrated how whole or partial genome sequence data can be used to
rapidly predict drug resistance in M. tuberculosis. However, it should be
emphasized that the current version of the program was not designed
for application in clinics or for assessing antibiotic treatment regiments.
The major objective of the program was to provide scientists working in
public health control institutes with reliable software to estimate the
distribution of drug resistant infections by using NGS datasets in dif-
ferent stages of genome assembly including raw fastq files generated by
sequencers. This work also added to the current body of knowledge a
valid suggestion that drug resistant phenotype is associated not with
individual mutations but with clade-specific patterns of polymorph-
isms. Effective prediction of drug resistance should start from a proper
identification of clade affiliation of Mtb isolates.
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5. Conclusion

We have developed a rapid online tool that uses both complete and
partial NGS datasets to predict resistance to thirteen anti-TB drugs in a
lineage specific manner. Given the need for rapid and accurate diag-
nosis in the management of TB, WGS has the potential to bridge most of
the diagnosis gaps left by current phenotypic DST methods. Although
sequencing directly from sputum is currently challenging, there is a
need to continue elucidating the complex evolution of drug resistance
in Mtb. In future, this shall not only spur the innovation of improved
diagnostic tools but will also help clinicians in designing effective
treatment regimens and speed up the treatment before mutations de-
velop. The flexibility of the proposed methodology also allows for easy
updating of the diagnosis table as well as addition of new antibiotics.
While many alternative tools are currently available for Mtb clade
identification and antibiotic resistance prediction, the Resistance
Sniffer program combines these procedures and allows analyzing of
sequence datasets in multiple file formats and at different stages of
genome sequence completion including files with raw DNA reads in
fastq format generated by NGS sequencers. Other tools often require
knowledge of the command line as well as the Linux operating system
which often deters non-specialist end users from adopting NGS tech-
nologies; and requires also input files in sophisticated formats such as
VCF. Resistance Sniffer comes with a user-friendly graphical user in-
terface and produces easy to interpret output. The program considers
the development of drug resistance in Mtb to be a multistep process
which involves the sequential acquisition and accumulation of drug
resistance mutations. Estimated likelihoods of resistance to thirteen
anti-TB antibiotics allows for the prediction of Mtb strains possessing
high levels of drug resistance as well as those strains that are likely to
acquire high levels of drug resistance in future.
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