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Highlights

• Wild type Catalase-peroxidase enzyme (WT katG) mutated into five mutant katG (MT katG).
• Molecular docking was performed WT and MT katG.
• Screening was performed based on binding energy of Isoniazid and promising katG inhibitors

proposed.
• MD simulation was performed for MT katG-proposed molecules complex.
• Binding energy of proposed molecules was calculated using MM-PBSA approach.
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Abstract

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the 

present age, due to the rapid increase in antibiotic resistance worldwide, TB has become a major 

threat to human life. Regardless of significant efforts have been inclined to improve the healthcare 

systems for improving diagnosis, treatment, and anticipatory measures controlling TB is challenging. 

To date, there are no such therapeutic chemical agents available to fight or control the bacterial drug-

resistance. The catalase-peroxidase enzyme (katG) which encoded by the katG gene of Mtb is most 

frequently getting mutated and hence promotes Isoniazid resistance by diminishing the normal 

activity of katG enzyme. In the current study, an effort has been intended to find novel and 

therapeutically active antibacterial chemical compounds through pharmacoinformatics 

methodologies. Initially, the five mutant katG were generated by mutation of Ser315 by Thr, Ile, Arg, 

Asn, and Gly followed by optimization. About eight thousand small molecules were collected from 

the Asinex antibacterial library. All molecules were docked to five mutant katG and wild type katG. 

To narrow down the chemical space several criteria were imposed including, screening for highest 

binding affinity towards katG proteins, compounds satisfying various criterion drug-likeliness 

properties like Lipinski’s rule of five (RO5), Veber’s rule, absorption, distribution, metabolism, and 

excretion (ADME) profile, and synthetic accessibility. Finally, five molecules were found to be 

important antibacterial katG inhibitors. All the analyzed parameters suggested that selected molecules 

are promising in nature. Binding interactions analysis revealed that proposed molecules are efficient 

enough to form a number of strong binding interactions with katG proteins. Dynamic behavior of the 

proposed molecules with katG protein was evaluated through 100ns of MD simulation. Parameters 

calculated from the MD simulation trajectories adjudged that all molecules can form stable 

complexes with katG. High binding free energy of all proposed molecules definitely suggested strong 

affection towards the katG. Hence, it can be concluded that proposed molecules might be used as 

antibacterial chemical component subjected to experimental validation.

Keywords: Catalase-peroxidase enzyme; Pharmacoinformatics; Virtual screening; Molecular 

docking; Molecular dynamics, Binding energy

1. Introduction

Among many severe infectious and communicable diseases, tuberculosis (TB) is regarded as the most 

serious and challenging global public health problems, majorly induced by the bacterium, 
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Mycobacterium tuberculosis (Mtb) – a bacillus agent [1, 2]. The burden of TB infections remains 

strong-growing realities despite the implementation of cost-effective vaccination strategy for infants 

with Bacille Calmette-Guerin (BCG), as its outcome is not remarkable or fully effective to control the 

Mtb infection. According to the Global Tuberculosis Report 2018, published by the World Health 

Organization (WHO), approximately 1.3 million deaths occur in 2017 worldwide, due to TB infection 

[3]. Moreover, it is also reported that countries like China, Ethiopia, India, Indonesia, Kenya, 

Mozambique, etc. are among the top list of 30 high TB burden countries. The severity of this disease 

burden accounted for the number of incident cases per 10,0000 population per year with not only TB 

infection alone, but also with TB/human immune deficiency virus (TB/HIV) co-infection and 

multidrug resistance TB (MDR-TB) infection in these countries [3]. Treatment of MDR-TB infection 

extremely difficult as because of Mtb get resistance to at least two first-line anti-tubercular drugs - 

Rifampicin (RIF) and Isoniazid (INH) [2, 4, 5]. Resistance to such particular drugs typically occurs 

due to chromosomal replication errors or gene mutations in Mtb which encode specific drug targets 

[6]. Usually, any drug resistant Mtb strains are highly pathogenic in nature and show great potential 

for dissemination [7]. Moreover, treatment of MDR-TB requires much longer than treatment of drug-

susceptible TB. However, to treat MDR-TB, currently available first-line anti-tuberculous drugs 

(rifampicin, isoniazid, ethambutol, pyrazinamide, and streptomycin) are more toxic and have critical 

adverse effects [5], and most importantly, majority of those drugs are developed long back almost 

more than 40 years [4]. Although, availability of such effective frontline chemotherapeutic regimen 

against Mtb, still morbidity and mortality rates of TB remains very high. Therefore, factors associated 

with TB controls and treatments regimens are needed to be fully supervised over the obstacle facing 

today. Recently employed genome-wide association study of MDR and extensively drug-resistant 

clinical Mtb isolates from more than 30 countries have identified resistance causing different 

mutations and resistant phenotypes that may give understanding on the molecular mechanism of drug 

resistance which profoundly will assist in designing of next-generation novel antibiotics [8]. 

The Mtb cell wall is unique due to the presence of mycolic acid and since the last few decades, the 

focus has been shifted on targeting the synthetic components of the cell wall. One of the main 

enzymes in the synthetic process is catalase-peroxidase enzyme (katG). It is well-testified fact that 

katG - heme enzyme which encoded by the katG gene of Mtb is most frequently getting mutated and 

hence promotes INH resistance by diminishing the normal activity of katG enzyme [8]. Normally, the 

prodrug INH activated by this enzyme and the activated form inhibits mycolic acid biosynthesis by 
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means of preventing cell wall synthesis in Mtb [5]. However, mutations in katG led inability to 

activate INH. Mutation of katG at Ser315 is most prevalent and virulent among other several 

mutations have been identified so far [5, 9-12]. In our previous studies, we have designed and 

identified some potential anti-bacterial and anti-tubercular chemical entities as DNA gyrase B (Gyr 

B) inhibitors using de novo design technique, pharmacophore-based virtual screening, molecular

docking and dynamics simulations studies [4, 13]. In the present study, we employed advanced multi-

pharmacoinformatics techniques to closely looked into the most prevalent five types of mutations 

observed in katG viz. S315T, S315I, S315R, S315N, and S315G to identify novel anti-tubercular 

drugs [14]. Additionally, the structure-based drug design (SBDD) strategy for developing novel 

molecular entities for INH resistance specific different variant katG proteins are compared with wild 

type Mtb - katG protein. Earlier, numbers of studies have adopted computational molecular modeling 

techniques for accelerating the anti-tubercular drug developmental process applied to various 

multifunctional biological target receptors or proteins of Mtb [15-25]. However, very few studies 

were employed earlier targeting specifically selected five mutation types (at codon S315 of katG) for 

enhancing anti-tubercular drug design and development [26-28]. A number of studies were performed 

in the detection and exploration of S315 mutation, and, their implication only [1, 29, 30]. The present 

study mainly focuses on screening of promising molecules for pharmacologically-relevant chemical 

libraries of lead-like molecules, fragments or building blocks of Asinex antibacterial chemical library 

database for identification and optimization to obtain novel katG mutant inhibitors. Further, 

molecular inhibition mechanisms of identified novel inhibitors were explored rigorously applying in 

silico methods such as molecular docking and dynamics simulations, binding free energy estimations 

and ADME (absorption, distribution, metabolism, and excretion) predictions. The ADME efficiency 

of the finally selected five compounds have been determined which indicate good pharmacokinetics 

and pharmacodynamics profiles, hence, suggested the possibility of being better anti-tubercular drugs 

in the future. 

2. Materials and Methods

2.1 Selection and preparation of molecular database

The Asinex antibacterial chemical library (http://www.asinex.com/antibacterial_compound_library-

html/) was chosen for in-silico modeling study over the various chemical compounds libraries are 

freely available for virtual screening. The antibacterial chemical dataset was downloaded in structural 
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data format (sdf) followed by conversion into a different file format (.pdb and .mol2) with the help of 

Open Babel [31], an open-source software tool for different molecular file format compatibility. 

Selected above chemical library comprising of 8044 unique compounds those are developed by 

Asinex for antibacterial research or virtual screening. Moreover, these compounds are held natural 

product-like scaffolds with the presence of polar functional groups which can be used for hit-to-lead 

identification and optimization, fragment-based drug design (FBDD), and SBDD, etc. All selected 

compounds were prepared in ‘LigPrep’ wizard of Maestro. Further, all compounds were saved as 

PDBQT format, as a special file format specifically used in AutoDock Vina [32] tool for future uses. 

Additionally, long been used drug molecule INH has been considered as a control molecule 

throughout the study also prepared following the same procedure.

2.2 Selection of wild-type(WT) and mutant-type (MT)katG proteins

For the selection of wild-type (WT) x-ray crystal structure of catalase-peroxidase (katG), a search 

was made in TubercuList database (http://genolist.pasteur.fr/TubercuList/) that in turn gives cross-

reference Protein Data Bank (PDB) [33] ID as a result. Based on the availability of structural 

information and resolution of the crystal structure of the WT katG encoded by katG gene of Mtb 

(strain ATCC 25618 / H37Rv) was retrieved from PDB [PDB ID - 1SJ2], comprising of 743 amino 

acid residues [34]. In Mtb strain, mutations at codon 315 of the katG confer moderate to the high 

level of resistance to INH [35]. Particularly, five different mutant types viz. S315T, S315I, S315R, 

S315N, and S315G were selected for the present study and their models generated using Swiss-

PdbViewer [36] by substituting serine residue with respective different mutated amino acid residues. 

The retrieved 1SJ2 PDB file was considered as the template structure for all mutant PDB structures 

model generation. All model structures were prepared and optimized using the ‘Protein Preparation 

Wizard’ of Maestro [37]. 

2.3 Molecular docking

Using AutoDock Tool (ADT) v4.2 [38], WT and all MT katG proteins were prepared for docking 

study. Water molecules were removed from all crystal structures and the appropriate number of polar 

hydrogen atoms added to the structures. Additionally, Gasteiger charges were assigned to all MT and 

WT katG protein structures. After completion of protein preparation step, the docking was performed 

using a grid box of dimension of 40 Å × 40 Å × 40 Å in ADT covering the protein structure with 
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keeping the center of the binding site coordinates at (45.084, -10.162, 22.978). The grid box, protein, 

and ligand information were kept inside a config file as in text format for using in ADT [38]. During 

docking execution, each protein structure was kept as rigid; while all 8044 prepared ligands allowed 

full flexibility. Autodock vina is installed at Linux based CHPC Lengau server 

(https://www.chpc.ac.za/index.php/resources/lengau-cluster). On completion the molecular docking 

of all 8044 antibacterial compounds with WT and all MT katG proteins the results were explored 

based on the lowest binding affinity score. The binding affinity score of INH was considered as a cut-

off score for the best active compound selection. Therefore, all protein-ligand complexes were 

checked critically to screen-out top binding mode conformations having high negative binding 

affinity score than INH and subsequently selected for further modeling analysis. Initially, using the 

MOE (https://www.chemcomp.com/,V2018), molecular interactions map were observed and protein-

ligand contacts analyzed for all complexes, individually. However, for better understanding selected 

protein-ligand complexes were further visualized in PyMol tool for analyzing different mode of 

molecular interactions profiles in three-dimensional (3D) space.

2.4 Molecular dynamics (MD) simulation and binding free energy calculation using MM-PBSA 

(Molecular Mechanics Poisson-Boltzmann Surface Area) method

In order to evaluate the dynamic behavior of proposed inhibitors-katG complexes, the all-atom MD 

simulation was carried out for 100 ns of time span. The MD simulation was performed in Gromacs 

2018.2 (http://www.gromacs.org/) software tool installed at Lengau CHPC server 

(https://www.chpc.ac.za/index.php/resources/lengau-cluster). SwissParam tool [39] was used to 

create a topology file of all small molecules. The CHARMM27 atom force field was applied to the 

system for carrying out the MD simulation. A cubic water box of spc216 water molecules was 

surrounded to each complex of protein-ligand system. The space between the boundary of the cubic 

box and any atom of the protein was maintained at a minimum distance of 10Å. To neutralize the 

system appropriately, suitable numbers of Na⁺ and Cl⁻ ions were utilized added in the system. The 

neutral system was well equilibrated and minimized by using the steepest descent algorithm 10,000 

steps. For long-range interactions, a cutoff range of 0.9 and 1.4 nm were used for van der Waals and 

electrostatic interactions respectively. At every 1 ps interval the snapshots were recorded and saved 

for further analyses of each trajectory of MD simulation productions. All atomistic MD simulation 

was carried out for 100 ns MD production with a time step of 2 fs at the constant pressure of 1 atm 
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and constant temperature of 300 K. After successful completion of MD simulation, several analyzing 

parameters included root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF) and 

radius of gyration (Rg) were analyzed to check the conformational and performance stability of each 

molecular complex system in a dynamic environment. The RMSD of protein backbone atoms were 

calculated based on the atom selection aligned on the reference frame backbone atoms. Followed by 

the MD simulation the entire trajectories of each system were considered to estimate the binding free 

energy through MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method by the 

help of g_mmpbsa – Gromacs tool [40]. Details of MM-PBSA procedure can be found in our 

previous publication [41].

3. Results and discussion

The crystals structure of the katG (PDB ID: 1SJ2) [34] was retrieved from the RCSB-PDB followed 

by mutation made at Ser315 to generate five MT katG proteins such as MT katG: S315T, MT katG: 

S315I, MT katG: S315R, MT katG: S315N, and MT katG: S315G. The 3D-structure of all mutant 

and wildtype KatG are given in Figure S1 (Supplementary data). Detailed flow diagram of the 

employed work for the current study is portrayed in Figure 1. 

3.1 Virtual screening

More than eight thousand molecules from the Asinex database (antibacterial chemical library) were 

obtained for molecular docking study with WT katG and all MT katG proteins. Further, to identify 

promising and potential drug-like molecules from the large pool of chemical library showing binding 

affinity to interacting with selected katG proteins, the molecular docking was performed considering 

as one of the crucial and pivotal methods used in modern days drug discovery research practice. 

Entire dataset of antibacterial molecules and including the INH were docked using widely utilized 

molecular docking program Autodock vina. Binding affinity distribution of all 8044 antibacterial 

compounds docked with five different mutant katG and wild type katG protein are presented in 

Figure S2. In molecular docking analysis, the binding affinity of INH with WT katG protein was 

found to be - 6.2 Kcal/mol (Table 1). Hence, to narrow down the chemical space of the molecule, cut-

off value of binding affinity was considered as -6.20 Kcal/mol. The binding affinity of all docked 

molecules from both wild and mutant types was explored. Molecules succeeded in the above criteria 

(binding energy  -6.2 Kcal/mol) from all WT and MT were merged. After deletion of duplicates 
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from merged molecules, finally altogether 4456 molecules retained, thus accounted for further 

screening. 

Figure 1. Flow diagram of screening and designing of katG inhibitors

Further, the Lipinski’s rule of five (RO5) [42] and Veber’s rule [43] were checked for all 4456 

molecules obtained from the previous step. More precisely, RO5 implies prediction or identification 

of drug-like pharmacological properties of molecules applied to drug discovery research to prioritize 

molecules with an increased likelihood of good oral absorption or permeation. Lipinski’s RO5 states 
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that an orally active compound or drug candidate should have the following parameters such as 

hydrogen bond donors ≤ 5, hydrogen bond acceptors ≤ 10, molecular weight ≤ 500, and an 

octanol‐water partition coefficient (logp) value < 5. On the other hand, Veber’s rule implies that 

compounds will show good oral bioavailability when candidate obey the following criteria such as 

rotatable bonds (ROTB) and polar surface area (PSA) less than 10 and 140 Å2 respectively. Total 

4267 molecules were failed to pass both rules and subsequently remaining 189 compounds taken for 

in-silico pharmacokinetics study. In the ADME analysis, 149 molecules failed to show acceptable 

pharmacokinetics profile (i.e. they are not displaying high GI absorption, or not exhibiting good 

solubility and skin or blood-brain barrier permeability profiles) and therefore removed from further 

analysis. Finally, the synthetic accessibility [44] of the remaining 40 molecules was checked. 

Distribution of synthetic accessibility values of 40 compounds is given in Figure S3 (Supplementary 

data). It is illustrated that high synthetic accessibility value indicates the difficulty to synthesize, 

hence low synthetic value always recommended in pharmaceutical and medicinal chemistry research. 

In our analysis, synthetic accessibility of five molecules was found to be less than 5 and conceived as 

potentially strong interacting molecules for exhibiting inhibitory action against mutant katG protein. 

Two-dimensional representation of finally selected 5 molecules (L1, L2, L3, L4, and L5) are given in 

Figure 2. 

Figure 2. Two-dimensional representation of final screened mutant katG inhibitors
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3.2 Molecular docking and binding interactions analysis

The binding affinity of all five promising molecules and INH towards all mutants and WT katG was 

rigorously explored for molecular interaction analysis and results presented in Table 1. On a detailed 

analysis of binding affinity, it can be seen that all proposed molecules showed a strong affinity 

towards WT and MT katG enzyme in comparison to the INH. It is also interesting to observe that all 

proposed molecules except L2 were found to give higher binding energy when docked to the MT 

katG. The binding energy of L2 with WT katG and MT katG was found to be comparable. From 

Table 1, it can also be observed that the binding affinity of all proposed molecules (L1, L2, L3, L4, 

and L5) found to be the higher when docked with S315R in comparison to WT katG and other MT 

katG proteins. Hence, in subsequent analysis, the binding interactions and all atom-based MD 

simulation study were performed for selected protein-ligand complexes between proposed molecules 

and MT katG: S315R. Two-dimensional representation of best-docked conformation of each of the 

final proposed molecules (Figure 2) and INH with MT katG: S315R are displayed in Figure 3.

Table 1: Binding energy of the final proposed katG inhibitors and INH

Binding energy (Kcal/mol)

Mutant katGMolecule
katG: WT

S315T S315I S315R S315N S315G

INH -6.20 -5.80 -5.70 -6.10 -5.90 -5.70

L1 -8.00 -8.10 -8.70 -8.90 -8.50 -8.30

L2 -8.20 -8.30 -8.20 -8.50 -8.20 -8.20

L3 -7.80 -7.90 -8.10 -8.40 -8.10 -7.70

L4 -8.40 -8.80 -9.00 -9.20 -8.80 -8.60

L5 -7.90 -8.00 -8.30 -8.40 -8.00 -8.00
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Figure 3. Binding interactions potentialities between finally selected 5 inhibitors and MT katG: 

S315R in 2D representation

From Figure 3, it can be ascertained that Arg315 (mutated amino residue) directly interacted with L5, 

for other molecules, Arg315 was found to be in the close proximity or vicinity of the receptor cavity 

which might indicate that structural or conformational changes of molecules can form binding 

interaction with the same. Arg104 and Asp137 were found to be crucial to form hydrogen bond (HB) 

interactions with both L1 and INH molecules. Both L3 and L4 clashed with Pro136 through HB 

interactions. Two residues, Ala139 and Pro286 were found to be crucial to interact with L3. Figure 3 

indicated that Ala282, Val284, and Arg304 were successfully established binding interactions with 

L4. On the other hand, L2 was able to connect with Trp300 through HB interactions. Gly285 and 

Glu287 were critical to form interaction with L5. Beyond above mentioned participating amino acid 

residues and interactions, a number of other crucial amino residues were found around the proposed 

promising molecules. In an earlier study by Lingaraja Jena et al., was reported that docking analysis 

of WT-katG protein with INH have yielded the binding energy score of -5.36 kcal/mol, where as in 
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the present study the docking analysis of WT-katG protein with INH binding energy score observed 

as -6.20 kcal/mol. Furthermore, the same study was also reported INH docking analysis with two 

mutant types i.e. S315T and S315N, the binding energy found to be -4.98 and -5.15 kcal/mol, 

respectively [27]. The binding energy of INH in the present study was found to be -5.80 and -5.90 

kcal/mol for S315T and S315N, respectively. In another study, INH was shown the highest binding 

interaction affinity with MT-S315G katG than the WT-katG, and followed by MT-S315I, MT-S315T 

and MT-S315N [28]. In addition to the above mentioned findings, Strivastava et al., were also 

reported similar kind of docking interaction profiles when INH docked with MT-katG S315T protein 

[45]. In the above study, authors were able to show that amino acid residues Arg104 and Asp137 of 

MT-katG S315T protein interacted with INH. In our study, molecular docking analysis revealed 

similar kind of molecular interaction profiles for screened compounds. More interestingly, among the 

five finally proposed katG inhibitors, L1 and L4 were found to form alike H-bond interactions profile 

with the MT-KatG protein. Another important residue Asn137 was also found be in close proximity 

of the binding site for forming molecular interaction with the all five selected katG inhibitors. 

Binding mode of all proposed molecules in surface view representations with the MT katG: S315R is 

given in Figure 4. From Figure 4, it is clearly visible that all molecules perfectly organized and fitted 

inside the receptor cavity of MT katG: S315R. Therefore, molecular docking analysis distinctly 

explained that all proposed molecules would be extensively promising to inhibit the MT katG. It is 

also crucial to note that the binding affinity of INH reduces when it binds to the MT katG but the 

proposed molecules showed enhanced binding affinity towards the MT katG. The above observations 

undoubtedly explained that proposed molecules hold specific chemical characteristics for expressing 

strong potentiality to inhibit the MT katG and can address to manage the drug-resistant issue in the 

treatment of TB.

Taken together, it can be suggested that plausible inhibitory mechanism of the newly identified 

potential chemical entities lies on their specific chemical structural features such as compound L1 

holds carbonyl and amine groups participated to form strong intermolecular interaction with active 

site residues of mutant katG protein. Likewise, compound L1, compounds L3, L4 and L5 have also 

shown similar interaction mechanisms for inhibiting the mutant katG activity. Additionally, these 

three compounds (L3, L4 and L5) hold molecular interactions with other carbon atom and methyl 

group to hold sufficiently strong and potential interaction profiles as inhibitory mechanism. Identified 

compound L2, although hold various functional groups containing F, N, O atoms, but only nitrogen 
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atom interacted with residue Trp300 to show molecular interaction and hence exhibiting inhibitory 

mechanism. Whereas, for the standard drug INH, it has been earlier illustrated that KatG oxidatively 

activates the INH to inhibits Mtb cell wall lipid synthesis by interacting or producing a range of 

oxygen-, nitrogen- and carbon-centered free radical species [46]. From the interaction profiles of the 

newly identified katG mutant inhibitors it can be clearly observed a greater number of molecular 

interactions as compared to the INH. This is probably due to the comparatively less or minimum 

numbers of hydrogen-bond acceptors and hydrogen-bond donors atoms present in INH as compared 

to the newly identified compounds. Hence, it can be postulated that the proposed katG inhibitors 

possess higher or comparable inhibitory mechanism as INH towards the katG protein.

Figure 4. Binding pose of proposed katG inhibitors and INH in 3D surface view orientation.
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3.3 Quality assessment of proposed molecules

Pharmacokinetics and physicochemical properties analyses of any given chemical substance can 

explain the potentiality of the chemical substance to reach the active site with therapeutic 

concentration. Therefore, all proposed molecules (L1, L2, L3, L4, and L5) were considered for in-

silico pharmacokinetics and physicochemical analyses. Different important pharmacokinetics and 

physicochemical parameters including the lipophilicity were obtained from the online tool 

SwissADME (http://www.swissadme.ch/) and values are presented in Table 2. The range of 

molecular weight of all molecules was found between 350 to 431 g/mol. Polar surface area can give 

an idea about the orally active characteristics of the molecule. For molecule L1, L2, L3, L4, and L5 

the polar surface area was found to be 116.00, 107.21, 121.78, 117.42 and 94.57 Å2 respectively 

which undoubtedly indicated that all molecules are orally active in nature. Except for molecule L5, 

all molecules were found to be moderately or highly soluble in nature. Most importantly, 

gastrointestinal absorption (GI) parameter comes out with high value for all molecules indicates 

easily and highly absorbable in the intestine. Additionally, apparently low synthetic accessibility of 

all molecules evidently suggested that none of the molecules is difficult to synthesize. 

Table 2. Physicochemical parameters of selected katG inhibitors.

Parameters L1 L2 L3 L4 L5
Formula C17H18N6O3 C18H21F3N6O3 C18H21N5O4S C22H27N5O3 C25H28N5O2

1MW (g/mol) 354.36 426.39 403.46 409.48 430.52
2NHA 26 30 28 30 32

3NAHA 15 10 11 12 18
4NRB 5 6 4 9 6
5MR 97.34 104.21 108.26 117.42 127.60

6TPSA (Å2) 116.00 107.21 121.78 117.42 94.57
7LogS -4.91 -3.95 -4.25 -5.74 -7.42

8SC Very soluble Soluble Very soluble
Moderately 

soluble
Poorly 
soluble

9GI High High High High High
10vROF 0 0 0 0 0

11BS 0.55 0.55 0.55 0.55 0.55
12SA 3.01 3.61 3.79 2.99 4.16
LogP 1.69 1.49 2.07 2.62 3.41

1Molecular weight; 2No. of heavy atoms; 3No. of aromatic heavy atoms; 4No. of rotatable bonds; 5Molar refractivity; 
6Topological polar surface area; 7Solubility; 8Solubility class; 9Gastrointestinal absorption; 10Violation of Lipinski’s rule 
of five; 11Bioavailability Score; 12Synthetic accessibility
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The graphical representation of drug-likeness properties of the molecules can be viewed in 

bioavailability radar plot for better understanding. For all five proposed molecules bioavailability 

radar plot obtained from SwissADME and given in Figure 5. Different properties of the molecule 

included unsaturation (INSATU), insolubility (INSOLU), hydrophobicity (LIPO), rotatable bonds 

(FLEXI), molecular weight (SIZE) and polar surface area (POLAR) are represented by the pink area. 

It is illustrated that recommended value of different parameters are -0.7 < LIPO < +5, SIZE < 

500g/mol, 20 Å2 < POLAR < 130 Å2, 0 < INSOLU < 6, 0.25 < INSATU < 1, and 0 < FLEX < 9 for 

drug-like molecules. The radar plots of the proposed molecules clearly enlightened that all 

compounds possess acceptable drug-likeliness characteristics.

Figure 5. Bioavailability radar plot for the final katG inhibitors

Further, the human intestinal absorption (HIA) and blood-brain barrier (BBB) were explored using 

the egg-boiled model portrayed in Figure 6. In the egg-boiled model, a molecule can be considered to 

possess high HIA penetration if it belongs to the white region (albumin). Conversely, a molecule 

present in the yellow region (yolk) indicates high BBB penetration.  Both white and yellow regions in 

the egg-boiled model are not mutually exclusive. All five molecules were found in the albumin area 
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suggested good absorption in the HIA. Most importantly none of the molecules was found to be 

outside the boiled-egg region. Another parameter, substrates (PGP+) and non-substrates (PGP-) of the 

permeability glycoprotein (PGP) are indicated with blue and red color circles correspond to the egg-

boiled model. The PGP decreases the efficiency of PGP+ molecule due to pushes them back into the 

intestinal lumen in the liver. Therefore, egg-boiled model (Figure 6) illustrated that all molecules are 

in the category of PGP+ hence they belong to the substrate. From above pharmacokinetics and 

physicochemical parameters analyses significantly explained that all proposed molecules possess 

enough potential to be drug-like characteristics.

Figure 6. The EGG-BOILED model for the final screened katG inhibitors

3.4 Bioactivity prediction and quality assessment

The binding energy obtained from molecular docking study performed in AutoDock vina was used to 

calculate the inhibitory constant (Ki) of the final selected molecules along with ligand efficiency (LE), 

LE scale (LEscale), fit quality (FQ) and LE-dependent lipophilicity (LELP). All analyzed parameters 

are given in Table 3. 

The following equation (1) [47] was used to calculate the Ki (μM) in which R represents as the gas 

constant (1.987 × 10–3kcal/K-mol)) and T (298.15 K) represents to the absolute temperature of the 

protein-ligand complex. 

(1)
G

RT
iK e




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According to the Ki value in Table 3, proposed katG inhibitors can be arranged with their potentiality 

as L4, L1, L2, L3, and L5. The low Ki value of all molecules strongly favors being lead molecules 

with high potency [48, 49]. 

Another parameter, LE can be used to check lead-likeness of the molecules and which recommended 

by Hopkins et al.[50]. The LE can be calculated by the negative ratio between binding energy and the 

number of heavy atoms (Equation 2). All proposed molecules showed the LE value less than 0.350 

that indicated as a lead-like molecule. 

(2)BELE
NHA




According to Reynolds et al. [51], the LE parameter is unable to calculate without molecular size. 

They have proposed the LE scaling (LE_Scale) which is a size-independent comparison of ligands 

and can be calculated using equation (3). The LE_Scale of all proposed molecules was calculated and 

given in Table 3. A low value (less than 0.4) of LE_Scaled effusively suggested that proposed 

molecules might be potential katG inhibitors. 

(3)0.026_ 0.873 0.064NHALE Scale e   

Table 3. Bioactivity and efficiency parameters of proposed katG inhibitors

Molecule 1BE 2Ki (μM) 3LE 4LE_Scale 5FQ 6LELP

L1 -8.90 0.295 0.342 0.380 0.900 4.942

L2 -8.50 0.581 0.283 0.336 0.842 5.265

L3 -8.40 0.688 0.300 0.358 0.838 6.900

L4 -9.20 0.178 0.307 0.336 0.914 8.534

L5 -8.40 0.688 0.263 0.316 0.832 10.791
1Binding energy; 2Predicted inhibition constant; 3Ligand efficiency; 4Ligand efficiency scale; 5Fit 
quality; 6 ligand-efficiency-dependent lipophilicity

Equation 4 was used to calculate the fit quality (FQ) which is the ratio of LE and LE_Scale. The 

value of FQ near 1 explain good binding to the receptor [52]. Not a single molecule was found to 

have FQ value less than 0.830 (Table 3) which undoubtedly explained that molecules efficient 

enough to perfect binding to the studied katG protein. 

(4)
_
LEFQ

LE Scale

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Keseru and Makara [53] proposed another important parameter, ligand-efficiency-dependent 

lipophilicity (LELP) which can be obtained by dividing the logP value by LE (Equation 5). It is 

illustrated that being a lead-like molecule LELP should be > 3 [52]. LELP value of all proposed katG 

inhibitors was calculated and given in Table 3. High LELP value definitely suggested that molecules 

optimized the affinity with respect to lipophilicity. 

(5)log pLELP
LE



3.5 Molecular dynamics

The dynamic behavior of the complex of each protein-bound molecules was explored through a long 

range up to 100 ns MD simulation study. Several analyzing parameters included RMSD, RMSF and 

Rg were explored to analyze the relative stability of the simulated complexes. From start to end MD 

simulated trajectories were used to calculate the protein backbone RMSD and plotted against 

simulation time (Figure 7). In Figure 7, it can be observed that all trajectories were substantially 

equilibrated during the simulation phase except the protein-bound with L4 molecule. The protein 

backbone of the complex of L4 was shown stability up to about 30 ns of simulation time. Afterward, 

RMSD was started increasing and finally showed stability. For each simulated complex, average, 

maximum and minimum RMSD values were calculated and given in Table 4. Difference between 

maximum and minimum RMSD values were found to be 0.329, 0.318, 0.340, 0.560, 0.372 and 0.330 

nm for L1, L2, L3, L4, L5, and INH respectively. This low difference suggests that all MD 

simulations have been substantially equilibrated. Small differences or changes observed in RMSD in 

the order of 1-3 nm which undoubtedly suggested that selected katG inhibitors bound protein 

complexes not underwent for any noticeable structural or conformational changes throughout the 

simulation run.
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Figure 7. RMSD vs time of katG backbone obtained from complexes of katG-screened inhibitors and 

katG-INH

In addition to RMSD of the protein backbone, the ligand RMSD was also estimated which found to 

be very low for all ligands. The average value of ligand RMSD was found as 0.194, 0.192, 0.098, 

0.192, 0.155 and 0.082 nm for L1, L2, L3, L4, L5, and INH, respectively. Ligand’s maximum and 

minimum RMSD values were found to be 0.300 and 0.001; 0.326 and 0.0005; 0.291 and 0.0005; 

0.301 and 0.0005; 0.239 and 0.0005; and, 0.140 and 0.0005 nm for L1, L2, L3, L4, L5, and INH, 

respectively. The RMSD vs time of the simulation plot of all ligands is given in Figure S4 

(Supplementary file). 

Individual amino residue plays a critical role in the stability of the molecule inside the receptor 

cavity. The RMSF value of each amino acids was calculated and given in Figure 8. Average, 

maximum and minimum RMSF values of all complexes were calculated and given in Table 4. From 

Figure 8, it was also observed that amino acids present at the amine terminal region of the sequence 

fluctuated about 1.50 nm but remaining amino residues were not attended much deviation. Average 

RMSF can give an idea about the fluctuation of the amino acid of the protein molecule. Mean RMSF 

was found to be 0.158, 0.161, 0.150, 0.163, 0.136, and 0.131 nm for L1, L2, L3, L4, L5, and INH 

respectively. Moreover, the average value of ligand RMSF was estimated and found to be as 0.118, 

0.107, 0.106, 0.158, 0.072 and 0.078 nm for L1, L2, L3, L4, L5, and INH, respectively. Difference 
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between maximum and minimum RMSF value of ligand was found to be 0.199, 0.160, 0.213, 0.293, 

0.151 and 0.150 nm for L1, L2, L3, L4, L5, and INH, respectively. No doubt, the above RMSD and 

RMSF values of ligand and protein, suggest that all ligand were stable enough in a dynamic 

environment and hence suggesting ligand stability inside the binding pocket of katG.   

Table 4: Maximum, minimum and average value RMSD, RMSF and radius of gyration (Rg) of final 
proposed molecules

RMSD RMSF Rg
Complex

1Max. 2Min. 3Avg. 1Max. 2Min. 3Avg. 1Max. 2Min. 3Avg.

L1 0.367 0.038 0.251 1.305 0.060 0.158 2.939 2.791 2.864

L2 0.357 0.039 0.284 1.075 0.057 0.161 2.915 2.813 2.863

L3 0.377 0.037 0.284 1.084 0.053 0.150 2.921 2.812 2.867

L4 0.599 0.039 0.422 1.642 0.0632 0.163 2.948 2.816 2.884

L5 0.411 0.039 0.344 0.633 0.052 0.136 2.900 2.813 2.865

Isoniazid 0.369 0.039 0.256 1.191 0.050 0.131 2.935 2.810 2.865
1Maximum; 2Minimum; 3Average

Figure 8. RMSF vs residue number of katG when bound to final screened katG inhibitors and INH

Moreover, the Rg fluctuations of the studied protein-ligand complexes can be explained by Rg 

parameter obtained from the MD simulation trajectories. Rg values of all proposed molecules along 
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with INH were recorded and portrayed in Figure 9. Trajectories of Rg explained without any doubt 

that all system remains rigid during the simulation. Maximum, minimum and average Rg values are 

given in Table 4. Difference between maximum and minimum Rg can give a clear picture about the 

fluctuation of the system during the MD simulation. The differences in Rg i.e. value of (Maximum 

Rg – Minimum Rg) was found to be 0.148, 0.102, 0.109, 0.132, 0.087 and 0.125 nm for L1, L2, L3, 

L4, L5, and INH, respectively which clearly explained the rigidity of the systems. Hence, detailed 

exploration of RMSD, RMSF and Rg values of all the MD simulated systems suggested that all 

proposed molecules can form a dynamically stable complex with katG enzyme.

 Figure 9. Radius of gyration vs time obtained from complexes of katG-screened inhibitors and katG-

INH

3.6 Binding free energy analysis using MM-PBSA method

To calculate the binding free energy from MD simulation trajectory of proposed ligands along with 

INH, the MM-PBSA method was used. The binding free energy against the time of the simulation of 

all complexes was plotted and given in Figure 10. The average value of binding free energy was 

found to be -198.117, -180.166, -184.150, -217.446, -201.833, and –156.338 Kcal/mol for L1, L2, 

L3, L4, L5, and INH respectively. In Table 5, the MM-PBSA based estimated binding free energies 

of the corresponding protein-ligand complexes over 100000 trajectories during the MD production 

period of 100 ns are presented along with the standard error. From the above data and Figure 10, it 
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was observed that the binding free energy of all final proposed molecules better than INH. Srivastava 

et. al., have reported binding free energy values calculated using MM-PBSA method for MT-S315T 

katG proteins, however, the study has found weak binding energy of -33.307 kJ/mol in the binding site-

1 [45]. Therefore, it is undoubtedly clear that final selected molecules might have a strong binding 

affinity towards the studied katG. 

Table 5: MM-PBSA based binding free energies (kcal/mol) with standard error of mean of finally 
selected five protein-ligand complexes and INH-katG complex.

MM-PBSA based binding free energies (kcal/mol)
Complex

1Max. 2Min. 3Avg. /  Standard error

L1 -100.798 -262.224 -198.117 ± 0.261

L2 -90.63 -257.098 -180.166 ± 0.253

L3 -117.735 -240.853 -184.150 ± 0.155

L4 -166.876 -331.601 -217.446 ± 0.251

L5 -176.06 -301.969 -201.833 ± 0.161

Isoniazid -128.811 -176.081 -156.338 ±  0.085
1Maximum; 2Minimum; 3Average

Figure 10. Binding free energies towards katG of final proposed katG inhibitors and INH.
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4. Future perspectives

Traditional drug discovery approach is extensively time and resource-consuming as well as expensive 

method. In this situation, pharmacoinformatics approaches such as virtual screening, molecular 

docking, and MD simulations became effective and pivotal tools in modern drug discovery research. 

Although the application of pharmacoinformatics methods in drug development is faster and cheaper 

but there is still a need for experimental validation for further confirmation. Herein, aiming towards 

the identification of potential anti-tubercular drug-like candidate molecules proposed as katG 

inhibitors employing advanced pharmacoinformatics approaches need further experimental 

validations by means of in vitro and in vivo studies to confirm as lead molecules before stepping into 

clinical trials. Binding affinity can be verified using thermal-melt assays and subsequently by 

physiological functions against the bacteria - Mtb. Furthermore, experimental approaches can be 

adopted to explore the binding and non-binding events or the drug-protein residence time can be 

implemented for a good experiment-based understanding of the inhibitory activity of the final 

proposed katG molecules [54].

5. Conclusion 

Five different mutant katG enzyme crystal structures were generated by replacing Ser315 by drug-

resistance causing mutant amino acid residues viz. Thr, Ile, Arg, Asn, and Gly.  More than eight 

thousand antibacterial molecules were collected from Asinex database and molecular docking based 

virtual screening was performed with all mutant and wild type katG enzyme. All docked compounds 

were screened out by comparing the binding energy of INH followed by RO5, Veber’s rule, ADME 

profile, and synthetic accessibility parameters. Finally, five molecules were found to be promising 

and potential against the katG enzyme and being important antibacterial chemical agents. Molecular 

docking study demonstrated a number of binding interactions with catalytic amino residues of the 

katG. Various pharmacokinetics parameters of the proposed molecules favor the good absorption, 

distribution, and penetration to the HIA. Predicted low inhibitory constant (Ki) value undoubtedly 

explain that molecules are potential inhibitors. The quality of the molecules was assessed using 

several parameters including ligand efficiency, ligand efficiency scale, fit quality, and ligand-

efficiency-dependent lipophilicity. Value of the above parameters substantiated in favor of the lead 

like molecules. The dynamic behavior of both protein and proposed molecules was checked through a 
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100ns MD simulation study. The RMSD, RMSF, and Rg values were calculated from the MD 

simulation trajectories and clearly suggested all complexes were equilibrated in nature. Finally, the 

affinity of the proposed molecules was checked through the binding free energy calculation using the 

MM-PBSA approach. The negative binding energy was found in both molecular docking and MM-

PBSA methods which undoubtedly explained that all proposed molecule are efficient enough to form 

strong binding interactions with the katG enzyme. Hence, it can be concluded that proposed 

molecules might be potent and safer lead-like chemical agents for the treatment of bacterial infection 

subjected to confirmation through experimental studies. 
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