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ABSTRACT
This study consists of proposing a new mathematical method to develop a new model for evalu-
ating thermal distributions throughout convergent-divergent channels between non-parallel plane
walls in Jeffery Hamel flow. Subsequently, dimensionless equations that govern temperature fields
and velocity are numerically tackled via the Runge–Kutta-Fehlberg approach based on the shoot-
ing method. Additionally, an analytical study is performed by applying an effective computation
technique namedAdomianDecompositionMethod. Determining the effect of Reynolds and Prandtl
numbers on the heat transfer and fluid velocity inside converging/diverging channels can be men-
tioned as the fundamental purpose of this research. Based on the results obtained for dimensionless
velocity and thermal distributions, a supreme match can be observed between numerical and
analytical results indicating the adopted ADMmethod is valid, applicable, and has great precision.
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Nomenclature

Symbol Definition

a Constant
b Constant
d Thermal diffusivity
An Adomian polynomials
Bn Adomian polynomials
Cp Specificheat of studied fluids, J/Kg.°K
f Function
F Dimensionless velocity
Fn Solution terms for velocity
g Function
G Dimensionless temperature
Gn Solution terms for temperature
K Thermal conductivity,W/m.°K
Nu Nonlinear velocity
Ng Nonlinear temperature
P Fluid pressure,N/m2

Pr Prandtl number
Q Volume flux
r Radial coordinate,m
Re Reynolds number
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T Temperature, Kelvin
T∞ Ambient temperature, Kelvin
Vr Radial velocity,m/s
Vmax Maximal velocity,m/s
Vθ Aziumuthal velocity,m/s
Vz Axial velocity,m/s
Greek Symbols
η Dimensionless angle
α Channel half-angle, °
φ Viscous dissipation
ρ Fluid density, Kg/m3

ν Kinematic viscosity,m2/s
µ Dynamic viscosity, Pa.s
εrr, εθθ , εrθ Strain tensor components
Subscripts
r Radial coordinate,m
θ Angular coordinate,m
z Axial coordinate,m
Operators
∂ Derivative operator
L Linear operator
N Nonlinear operator
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1. Introduction

Fluid flow throughout a non-parallel channel can be enu-
merated as a member of practicable casesusedin vari-
ous applications including chemical, mechanical, biome-
chanical, civil, and environmental engineering (Gho-
lami et al., 2015; Ramezanizadeh et al., 2019; Xu et al.,
2012). Thus, understanding the flow in this kind of
channel to solve engineering problems is extremely cru-
cial (Gao et al., 2018; Goldberg et al., 2010). In this
way, in the past few years, different numerical and
experimental studies have been carried out by many
researchers to obtain knowledge regarding the flow in
channels and cavities (Baghban et al., 2019; Zaji &
Bonakdari, 2015). Initially, Jeffery (1915) developed the
celebrated radial 2D flow of an incompressible viscous
fluid through convergent or divergent channels. The
renowned Jeffery-Hamel flow is of paramount impor-
tance since this is greatly regarded as a member of the
unique exact solution of the Navier-Stokes equation. Due
to their considerable importance for many engineering
applications, flows through convergent-divergent chan-
nels havegained much attention and studied extensively
by several researchers. In fact, thermal distributions
between non-parallel plane walls using finite difference
method are given by Millsaps and Pohlhausen (Mill-
saps & Pohlhausen, 1953). Eagles (1966) investigated
the stability associated with Jeffery-Hamel solutions for
divergent channel flow with the use ofresolving the well-
known Orr-Sommerfeld problem. The temporal stability
of Jeffery-Hamel flowwas investigated (Hamadiche et al.,
1994). In this investigation, the critical Reynolds num-
bers are computed with respect to the axial velocity and
volume flux. Uribe et al. (1997) analyzed the tempo-
ral and linear stability contributed to several flows for
small-width channels via Galerkin approach. Zaturska
and Banks (2003) presented new flows resulting from
vortex stretching and mainly created by the renowned
Jeffery-Hamel flows. Additionally, this investigation con-
sidered the influences of confining side-walls on an espe-
cial Jeffery-Hamel flow. Moradi et al. (2013) studied
analytically and numerically via differential transforma-
tion method (DTM) and Runge–Kutta scheme (RK4)
respectively the nonlinear problem of Jeffery-Hamel in
a nanofluid using several types of solid nanoparticles.
Turkyilmazoglu (2014) extended the classical Jeffery-
Hamel flow in convergent/divergent channels in which
the stationary walls can stretch or shrink. The obtained
results reveal which the stretching/shrinking walls can
significantly affect the traditional flow and heat transfer.
Khan et al. (2017) interested in the Soret and Dufour
influences on the Jeffery-Hamel flow of second-grade

fluid between stretchable convergent-divergent channels.
Obtained nonlinear ODEs have been solved numeri-
cally and analytically with Runge–Kutta scheme and
Homotopy analysis method, respectively. Energy trans-
fer of Jeffery-Hamel nanofluid flow between inclined
walls employing Maxwell-Garnetts and Brinkman mod-
els was treated analytically by Li et al. (2018) via Galerkin
method. Recently, the effect of magnetic field on fluid
flow and heat transfer characteristics has gained much
attention and studied extensively by many researchers.
On the other hand, Mahmood et al. (2019) also analyt-
ically investigated the thermal performance of a steady
two-dimensional incompressible viscous fluid through-
out convergent-divergent channels by Spectral Homo-
topy Analysis method (S-HAM) influenced by a trans-
versely magnetic field.

Over the past few decades, several semi-analytical
methods (Adomian & Adomian, 1994; He, 2003; He &
Wu, 2007; S. Liao, 2003; S. J. Liao & Cheung, 2003; Tatari
&Dehghan, 2007;Wazwaz, 2000) were developed andex-
tensively used for understanding an extensive range of
nonlinear initial or boundary-value problems. Among
thesemethods, Adomian decomposition approach (Ado-
mian&Adomian, 1994) introduced byGeorgesAdomian
is highly considered as amember of rigorousmethods for
solvingmany problemswhich is a quick convergent series
with favorably computable termswithout linearization or
discretization. In fact, the ADM approach has attracted
researchers’ community to use it for solving many fluid
dynamics problems (Abbasbandy, 2007; Alizadeh et al.,
2009; Alizadeh et al., 2009; Gherieb et al., 2020; Kezzar
& Sari, 2017; RamReddy et al., 2017; Reddy, et al., 2017;
Shakeri Aski et al., 2014).

This research aims at modeling and simulating
thermal distributions for different fluids through Jef-
fery–Hamel flows between non-parallel walls. As a first
step, a new heat transfer model is developed in Jef-
fery–Hamel flow. Thereafter, dimensionless velocity and
thermal equations arising from mathematical modeling
are solved analytically and numerically utilizing the Ado-
mian decompositionmethod and Runge–Kutta-Fehlberg
based on the shooting approach, respectively.

After establishing and validating the computing code,
it is used to study the velocity and temperature distri-
butions for different working fluids such as steam, liq-
uid metal, air, and water flowing through convergent or
divergent channels. This study mainly shows the effect
of Reynolds and Prandtl numbers on the studied Jef-
fery–Hamel flow. Also, acomparison between ADM and
numerical outcomes is provided for the aim of testing the
effectiveness of the ADM technique.
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2. Governing equations

2.1. Hydrodynamical problem

Consider the steady two-dimensional Jeffery-Hamel flow
between non-parallel plane walls. Figure 1 shows a
schematic of the geometry studied in this research.
In fact, uniform flow in the z-direction and entirely
radial motion are assumed. It can be written: (Vr =
V(r, θ);Vθ = Vz = 0).

In vector form, the continuity andNavier-Stokes equa-
tions for Jeffery-Hamel flow are expressed as:

∇ . �V = 0 (1)

ρ[( �V �∇) �V] = −∇P + μ.
 �V (2)

The Navier-Stokes equations can be provided as fol-
lows for cylindrical coordinates (r,θ , z):

ρ

r
.
∂

∂r
(rVr) = 0 (3)

Vr.
∂Vr

∂r
= − 1

ρ
.
∂P
∂r

+ ν.

×
[
∂2Vr

∂r2
+ 1

r
.
∂Vr

∂r
+ 1

r2
.
∂2Vr

∂θ2
− Vr

r2

]
(4)

− 1
ρ.r

.
∂P
∂θ

+ 2.ν
r2

.
∂Vr

∂θ
= 0 (5)

where:Vr: radial velocity; ρ: density; ν: kinematic viscos-
ity; P: fluid pressure.

In accordance with Equation (3), the quantities (r.Vr)

which aremainly dependant on θ can be provided below:

r.Vr = f (θ) (6)

It is well known that the net volume flux into the channel
from the source at the origin is given as:

Q =
∫ +α

−α

r.Vrdθ (7)

Figure 1. Geometry of Jeffery-Hamel flow.

Noted that any constant section, r = cte, is traveled by
the same quantity Q.

For the studied Jeffery–Hamel flow, fluids can radi-
ally move outwards (i.e. in the diverging channel,
Q > 0) or inwards (i.e. in converging channel, Q < 0).
Also, it is well established that the maximal fluid velocity
is undoubtedly provided at θ = 0. In fact, we obtain:

r.Vmax = f (0) (8)

Consequently, f (0) ≥ f (θ) in the range −α ≤
θ ≤ +α.

Now introducing the dimensionless parameters

F(η) = r.Vr

r.Vmax
= f (θ)

fmax
, (9)

where: η = θ/α with: −1 ≤ η ≤ +1
Considering the kinematic fluid viscosity, ν, the

dimensionless quantities of the net volumeflux (Equation
(7)) may be expressed as follows:

Q
ν

= Re.
∫ +1

−1
F(η)dη (10)

Where the Reynolds number can be introduced like:

Re = rVmaxα

ν
= fmax.α

ν

×
{
Vmax > 0,α > 0 Divergent channel
Vmax < 0,α < 0 Convergent channel

(11)

fmax expresses the velocity at the channel’s centerline,
and, α indicates the channel half-angle. It is also worth
noting that (α.r) measures the width of the channel.

By removing the pressure terms in Equations (4) and
(5), it can be obtained:

F′′′ + 2ReαFF′ + 4α2F′ = 0 (12)

The boundary conditions associated with the Jeffery-
Hamel flow in terms of F(η) can be stated like:

F(η) = 1, F′(η) = 0, (13)

at the centerline of channel

F(±η) = 0, (14)

at the body of channelAccording to Batchelor [40],
the Reynolds number based on the center-plane fluid
velocityVmax, gives a direct measure of the flow intensity
compared to the Reynolds number based on the flux:

R = Q
2ν

= 1
2
Q
ν

= 1
2
Re

∫ +1

−1
F(η)dη (15)
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2.2. Heat transferin Jeffery–Hamel flow

In the previous section, the governing Equations (3)–(5)
mainly serve to achieve the hydrodynamical solution of
the investigated flow inside convergent-divergent chan-
nels. For the aim of obtaining the thermal distribution
in Jeffery-Hamel flow, we introduce the solution of the
hydrodynamical part into the energy equation. In fact,
the energy equationis given as:

ρ.cp( �V �∇)T = φ + K.∇2T (16)

where K and cp indicate thermal conductivity and the
specific heat at constant pressure, respectively.

Additionally, φ expresses the viscous dissipation term
which is provided below:

φ = μ · [2ε2rr + 2ε2θθ + ε2rθ ] (17)

The components of the strain tensor can be determined
by: ⎧⎪⎪⎨

⎪⎪⎩
εrr = ∂Vr

∂r

εθθ = 1
r .

∂Vθ

∂θ
+ Vr

r

εrθ = 1
r .

∂Vr
∂θ

+ ∂Vθ

∂r − Vθ

r

(18)

By taking into account the following transformations:

T − T∞ = G(θ)

r2
(19)

In which T∞ indicates the ambient temperature. The
partial differential Equation (16) describing the thermal
distribution in Jeffery–Hamel flow is lowered to an ODE
after simplification:

G′′(θ) + 4G(θ) + 2f (θ)

d
G(θ) = − ν

acp
(4f 2(θ) + f ′2(θ))

(20)
Where: d = (K/ρcp) is the thermal diffusivity and, upon
introducing the transformation (9) with the following
quantities: ⎧⎪⎨

⎪⎩
= θ

α

G′(θ) = 1
α
G′(η)

G′′(θ) = 1
α2G′′(η)

(21)

further reduction gives the dimensionless thermal
distribution:

G′′(η) + 4α2G(η) + 2ReαPrFG(η)

+ Pr.Xr(4α2F2 + F
′2) = 0 (22)

In which Re and Pr expressthe Re number given
by (11) and Prandtl number (Pr = (ν/d) = (μ.Cp/K)),
respectively.

The Xr term in Equation (22) can be determined
below:

Xr = R2e .ν2

α2.Cp
(23)

The function G(η) represents the dimensionless thermal
distribution.

In terms of G(η), the boundary conditions of heat
transfer problem are given as:

G′(0) = 0, (24)

at the centerline of channel

G(±η) = 0, (25)

at the body of channel

3. Application of Adomian decomposition
method to the Jeffery–Hamel problem

In this study, the set of nonlinear differential Equations
(12) and (22) under the defined boundary conditions
(13), (14), (24) and (25) were solved analytically utilizing
the Adomian decomposition method.

It is worth noting that for solving the energy equation
which governs the heat transfer in Jeffery-Hamel flow, it
is necessary as a first step to solve the hydrodynamical
part of the studied flow.

3.1. Hydrodynamical problem

According to the Adomian algorithm, Equation (12) can
be written as:

LF = −2ReαFF′ − 4α2F′ (26)

In whichL is the differential operator that can be deter-
mined: L = (d3/dη3).

The inverse of the operator L is indicatedby L−1. It is
provided below:

L−1 =
∫ η

0

∫ η

0

∫ η

0
(•)dηdηdη (27)

By considering Equations (27), (26), and the boundary
conditions (13) and (14), it can be obtained:

F(η) = F(0) + F′(0)η + F′′(0)
η2

2
+ L−1(Nu) (28)

where:

Nu = −2ReαFF′ − 4α2F′ (29)

Now, using boundary conditions (13), (14), and
F′′(0) = a, the following can be obtained:

F(η) =
∞∑
n=0

Fn = F0 + L−1(Nu) (30)
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where:

F0 = 1 + a
η2

2
(31)

The first few terms of Adomian polynomials can
beobtained with the use of the Adomian decomposition
algorithm (Adomian & Adomian, 1994). In fact, we get:

A0 = −2aReαη − 4aα2η − a2Reαη3 (32)

A1 = 2
3
aRe2α2η3 + 8

3
aReα3η3 + 8

3
aα4η3

+ 3
5
a2Re2α2η5 + 6

5
a2Reα3η5 + 1

15
a3Re2α2η7

(33)

A2 = 1
15

aRe3α3η5 + 2
5
aRe2α4η5 + 4

5
aReα5η5

+ 8
15

aα6η5 + 11
630

a2Re3α3η7

+ 22
315

a2Re2α4η7 + 22
315

a2Reα5η7

+ 11a3Re3α3η9

1890
+ 11

945
a3Re2α4η9

+ a4Re3α3η11

3600
(34)

On the other hand, by using Adomian decomposi-
tion algorithm (Adomian&Adomian, 1994), the first few
components of the solution are:

F1 = − 1
12

aReαη4 − 1
6
aα2η4 − 1

120
a2Reαη6 (35)

F2 = − 1
180

aRe2α2η6 − 1
45

aReα3η6 − 1
45

aα4η6

− 1
560

a2Re2α2η8 − 1
280

a2Reα3η8 − a3Re2α2η10

10800
(36)

F3 = −aRe3α3η8

5040
− 1

840
aRe2α4η8 − 1

420
aReα5η8

− 1
630

aα6η8 − 11a2Re3α3η10

453600
− 11a2Re2α4η10

113400

− 11a2Reα5η10

113400
− a3Re3α3η12

226800
− a3Re2α4η12

113400

− a4Re3α3η14

7862400
(37)

Ultimately, the estimated answer for the hydrodynam-
ical problem can be provided:

F(η) = F0 + F1 + F2 + F3 + . . . + Fn (38)

With using Equations (38) and (14), the constant a
could be determined.

3.2. Heat transfer problem

With usingADMon the heat transfer problem,we obtain:

LG + Pr.Xr(4α2F2 + F
′2) = −4α2G − 2ReαPrFG

(39)
In whichL can be provided as L = (d2/dη2).

Additionally, the inverse of L can be provided like:

L−1 =
∫ η

0

∫ η

0
.dηdη(40)

The application of Equation (40) on Equation (39)
yields:

G(η) = G(0) + L−1(Ng) (41)

where:

Ng = −4α2G − 2ReαPrFG (42)

In contrast, if the boundary conditions (24)–(25), and
G(0) = b are applied, the following could be achieved:

G(η) =
∞∑
n=0

Gn = G0 + L−1(Ng) (43)

where

G0 = b − 1
2
F′2Pr Xr η2 − 2F2 Pr Xrα2η2 (44)

For heat transfer problem, with using ADM (Ado-
mian & Adomian, 1994), the terms of solution and the
Adomian polynomials can be provided:

B0 = −2bFPrReα − 4bα2 − 4cα2η + F′2FPr2ReXrαη2

+ 2F′2PrXrα2η2

+ 4F3Pr2ReXrα3η2 + 8F2 PrXrα4η2 (45)

G1 = −bFPrReαη2 − 2bα2η2 + 1
12

F′2FPr2ReXrαη4

+ 1
6
F′2PrXrα2η4 + 1

3
FF2Pr2ReXrα3η4

+ 2
3
F2Pr Xrα4η4 (46)

B1 = 2bF2Pr2Re2α2η2 + 8bFPrReα3η2 + 8bα4η2

− 1
6
F′2F2Pr3Re2Xrα2η4

− 2
3
F′2FPr2ReXrα3η4 − 2

3
F′2PrXrα4η4

− 2
3
F4Pr3Re2Xrα4η4 − 8

3
F3Pr2ReXrα5η4

− 8
3
F2PrXrα6η4 (47)



1378 H. SAIFI ET AL.

G2 = 1
6
bF2Pr2Re2α2η4 + 2

3
bFPrReα3η4 + 2

3
bα4η4

− 1
180

F′2F2Pr3Re2Xrα2η6

− 1
45

F′2FPr2ReXrα3η6 − 1
45

F′2PrXrα4η6

− 1
45

F4Pr3Re2Xrα4η6 − 4
45

F3Pr2ReXrα5η6

− 4
45

F2PrXrα6η6 (48)

B2 = − 1
3
bF3Pr3Re3α3η4 − 2bF2Pr2Re2α4η4

− 4bFPrReα5η4 − 8
3
bα6η4

+ 1
90

F′2F3Pr4Re3Xrα3η6 + 1
15

F′2F2Pr3Re2

× Xrα4η6 + 2
15

F′2FPr2ReXrα5η6

+ 2
45

F5Pr4Re3Xrα5η6 + 4
45

F′2PrXrα6η6

+ 4
15

F4Pr3Re2Xrα6η6 + 8
15

F3Pr2ReXrα7η6

+ 16
45

F2PrXrα8η6 (49)

G3 = − 1
90

bF3Pr3Re3α3η6 − 1
15

bF2Pr2Re2α4η6

− 2
15

bFPrReα5η6 − 4
45

bα6η6

+ 1
5040

F′2F3Pr4Re3Xrα3η8

+ 1
840

F′2F2Pr3Re2Xrα4η8

+ 1
420

F′2FPr2ReXrα5η8

+ 1
1260

F5Pr4Re3Xrα5η8 + 1
630

F′2PrXrα6η8

+ 1
210

F4Pr3Re2Xrα6η8

+ 1
105

F3Pr2ReXrα7η8 + 2
315

F2PrXrα8η8 (50)

B3 = 1
2520

bF4Pr4Re4α4η8 + 1
315

bF3Pr3Re3α5η8

+ 1
105

bF2Pr2Re2α6η8

+ 4
315

bFPrReα7η8 + 2
315

bα8η8

− 1
226800

F′2F4Pr5Re4Xrα4η10

− 1
28350

F′2F3Pr4Re3Xrα5η10

− 1
9450

F′2F2Pr3Re2Xrα6η10

− 1
56700

F6Pr5Re4Xrα6η10

− 2
14175

F′2FPr2ReXrα7η10

− 2
14175

F5Pr4Re3Xrα7η10

− 1
14175

F′2PrXrα8η10

− 2
4725

F4Pr3Re2Xrα8η10

− 8
14175

F3Pr2ReXrα9η10

− 4
14175

F2PrXrα10η10 (51)

G4 = 1
2520

bF4Pr4Re4α4η8 + 1
315

bF3Pr3Re3α5η8

+ 1
105

bF2Pr2Re2α6η8 + 4
315

bFPrReα7η8

+ 2
315

bα8η8 − 1
226800

F′2F4Pr5Re4Xrα4η10

− 1
28350

F′2F3Pr4Re3Xrα5η10

− 1
9450

F′2F2Pr3Re2Xrα6η10

− 1
56700

F6Pr5Re4Xrα6η10

− 2
14175

F′2FPr2ReXrα7η10

− 2
14175

F5Pr4Re3Xrα7η10

− 1
14175

F′2PrXrα8η10

− 2
4725

F4Pr3Re2Xrα8η10 − 8
14175

F3Pr2ReXrα9η10

− 4
14175

F2PrXrα10η10 (52)

Ultimately, the estimated answer of the heat transfer
model in Jeffery-Hamel flow can be provided as:

G(η) = G0 + G1 + G2 + G3 + . . . + Gn (53)

Equations (53) and (25) can be employed to calculate
the constant of b.
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Table 1. Thermophysical properties of the studied fluids.

Properties LiquidMetal Air Steam Water

Kinematic viscosity, ν (m2/s) 38758.753× 10−11 5.850× 10−5 0.372× 10−5 1.007× 10−6

Prandtl number, Pr 0.01174 0.6843 1.11 7
Heat capacity, Cp(J/Kg.°K) 913 1063 2305 4178

4. Results and Discussions

Aparametric investigation has been performed for show-
ing the effect of Reynolds and Prandtl numbers on the
behavior of heat transfer and fluid velocity in Jeffery-
Hamel flow between non-parallel plane walls. It is worth
stating that, for the heat transfer problem, four ranges of
fluids flow including steam, liquid metal, air, and water
have been considered. Table 1 states the thermophysical
properties of used fluids in this study.

In this research, both analytical and numerical solu-
tions were computed. In fact, an analytical solution
is gained using the Adomian Decomposition Method
(ADM); however, the numerical solution is achieved
by using Runge–Kutta-Fehlberg based on the shooting
approach.

Figures 2–12 show thermal distributions and the
velocity profiles in convergent-divergent channels asso-
ciated with the obtained analytical and numerical values
for the objective of highlighting the significance of the
studied flow.

Figure 2 illustrates the influences of Re number on the
fluid velocity of the convergent flow.

In fact, a flatter profile at the center of the channel
with great gradients close to the walls can be obtained
by augmenting Re number. As a consequence, the thick-
nesses of the boundary layer decreases. For convergent
flow cases, it is well clear that the backflow is entirely
precluded. Figure 3 illustrates the influence of Reynolds
number on divergent flow which is to concentrate the

Figure 2. Effects of Reynolds number on fluid velocity profiles
inside convergent channel.

Figure 3. Effects of Reynolds number on fluid velocity inside
divergent channel.

Figure 4. Effect of channel-half angle α on fluid velocity inside
convergent channel.

Figure 5. Effect of channel-half angle α on fluid velocity inside
divergent channel.



1380 H. SAIFI ET AL.

Figure 6. Thermal profiles under the effect of Reynolds number
in converging channel for steam flow.

Figure 7. Thermal profiles under the effect of Reynolds number
in converging channel for air flow.

Figure 8. Thermal profiles under the effect of Reynolds number
in converging channel for metal liquid flow.

volume flux at the center of channels with smaller gradi-
ents near the walls. For purely divergent channels, results
obtained reveal that the flow reversal is highly favored.
Figures 4 and 5 illustrate the impact of the channel-half
angle α on the fluid velocity. Here, the velocity behav-
ior is expected to be identical, which occurred in the
case of Re number influence. As shown in Figure 4 for

Figure 9. Thermal profiles under the effect of Reynolds number
in diverging channel for steam flow.

Figure 10. Thermal profiles under the effect of Reynolds number
in diverging channel for air flow.

Figure 11. Thermal profiles under the effect of Reynolds number
in diverging channel for metal liquid flow.

the case of convergent flow, we observe that the back-
flow phenomenon is precluded, but this phenomenon is
highly observed inside divergent channels as depicted in
Figure 5.

Heat transfer behavior in convergent-divergentchannels
is displayed in Figures 6–12. In the convergent channel,
for the case of steam and Air flows as shown in Fig-
ures 6 and 7, we notice that the minimum temperature
is observed through the channel axis, while the maxi-
mum temperature occurs in the vicinity of the plates.
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Figure 12. Thermal profiles under the effect of Reynolds number
in diverging channel for water flow.

Furthermore, as presented in Figure 8, for liquid metal
flow in convergent channels, the thermal profiles show
an identical behavior on the entire channel.

As displayed in Figures 9–11, the characteristic behav-
ior of fluid temperature in the diverging channel is fairly
various in which the oscillations are worthy. The pres-
ence of oscillations depends on the nature of the studied
fluids. Here, it is highly noted that the apparition of oscil-
lations is mainly related to the Prandtl number. In fact,
we notice the total absence of oscillations for liquidmetal
flow (Figure 11), while their presence is clearly noticed in
the case of Air and Steam flows (Figures 9 and 10).

According to the obtained results for both convergent-
divergent channels, it can be concluded which the steam
(Pr=1.11) and air (Pr=0.6843) have vicious behavior.
In fact, with increasing Reynolds number Re it appears
that the heat dissipation is very higher near the plates
than that observed along the channel axis. Also, it is
clearly noticed that the heat dissipation is higher for air
flow when compared to that occurred in regards to the
steam flow. In contrast, the liquid metal (Pr=0.01174)
is considered as a conductor fluid for both convergent-
divergent channels. In such a case, the heat dissipation
for liquid metal flow is lower when compared to that
occurred for the other ranges of fluids.

As presented in Figure 12 in the case of the diver-
gent channel, it is clearly shown for higher Prandtl
value (Pr=7; water flow case) that the thermal behavior
becomes quite different. In fact, thermal profiles contain
a large number of oscillations with several minima and
maxima.

Figure 13 shows the behavior of CPU time versus
channel-half angle (α) and the order of approximation.
In fact, obtained results reveal that the CPU time is very
short (i.e. few seconds), thus justifying the fast conver-
gence of the adopted ADM algorithm.

For all simulations cases, as displayed in Figures 2–12,
comparison between ADM results and numerical one

Figure 13. CPU time of ADM vs approximation order in converg-
ing/diverging channels.

used as a guide reveals that the outcomes are identi-
cal to each other, which justify and confirm that both
the Adomian Decomposition method and numerical
Runge–Kutta–Fehlberg are valid, applicable, and have
great precision.

As depicted in Table 2, for velocity distribution
through convergent/divergent channels when Re=43
and α =3°, the error between ADM and numerical data
is introduced as:

|FNumerical − FADM|

The numerical data of F”(0) for different values of
Re and α =±5° are expressed in Table 3. From results
obtained, as drawn in Tables 2 and 3, an appropriate
agreement is monitored between ADM analytical solu-
tion, numerical RK4 solution, and available data in ref-
erences (Abbasbandy & Shivanian, 2012; Kezzar et al.,
2018).

On the other hand, Tables 4 and 6 illustrate the numer-
ical data of thermal distributions in convergent-divergent
channels (case of liquid metal, Air and Steam) once
Reynolds number is equal to 50 and channel-half angle
α =3°. In these tables, the error is introduced as Table 5:

Error =
∣∣∣∣G(η)Num − G(η)ADM

G(η)NUM

∣∣∣∣
According to the results obtained, it should be stressed

which a great match can be observed in both numerical
and analytical data.

Finally, the values of constant G(0) = b which repre-
sents the temperature at the level of channel’s center are
gathered in Table 7. These values are calculated for all
temperature curves (Figures 6–12).
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Table 2. Comparison between Numerical and ADM solutions for velocity distribution through convergent/divergent channels when
Re = 43.

Divergingchannel (α = + 3°) Convergingchannel(α = - 3°)

η FNumerical FADM |FNumerical - FADM | FNumerical FADM |FNumerical - FADM |
0.00 1.000000000000 1.000000000000 0.00000000 1.00000000000 1.00000000000 0.00000000
0.25 0.9176760582677312 0.9176760639989867 5.73×10−9 0.952601226585409 0.952601233559707 6.97×10−9

0.50 0.6916137868663034 0.6916137895560733 2.68×10−9 0.7974632865663513 0.7974632807505999 5.81×10−9

0.75 0.370363266835419 0.37036327154516463 4.70×10−9 0.497128632405185 0.4971286000590072 3.23×10−8

1.00 0.000000000000 0.000000000000 0.000000000 0.00000000000 0.0000000000 0.0000000

Table 3. ADM analytical results for F”(0).

Convergingchannel (α = −5°) Divergingchannel (α = +5°)

Re

F”(0)(Abbasbandy
& Shivanian,

2012)
F”(0) (Kezzar
et al., 2018)

F”(0)
[Presentstudy]

F”(0) (Abbasbandy
& Shivanian, 2012)

F”(0) (Kezzar
et al., 2018)

F”(0)
[Presentstudy]

10 −1.7845468 −1.7845469 −1.7845467711404606 −2.2519486 −2.2519485 −2.251948586722248
20 −1.5881535 −1.5881533 −1.5881534850176322 −2.5271922 −2.5271921 −2.527192251461816
30 −1.4136920 −1.4136921 −1.4136920839885079 −2.8326293 −2.8326295 −2.832629313353397
40 −1.2589939 −1.2589937 −1.2589939169568094 −3.1697121 −3.1697120 −3.169712202009959
50 −1.1219890 −1.1219891 −1.121989146674565 −3.5394156 −3.5394155 −3.539415629020588

Table 4. Comparison between ADM and Numerical results in convergent-divergent channels when Re= 50 and α = 3° (Thermal
distribution in the case of liquid metal flow).

Converging Diverging

η Numerical× 10−10 ADM× 10−10 Error Numerical× 10−10 ADM x10−10 Error

0 5,884051 5,884084 0.00000560838 7,726855 7,726817 0.00000491791
0,2 5,880418 5,880451 0.00000561185 7,691383 7,691345 0.00000494059
0,4 5,798519 5,798552 0.00000569111 7,369621 7,369586 0.00000474923
0,6 5,366264 5,366292 0.00000521778 6,266984 6,266959 0.00000398916
0,8 3,911092 3,911106 0.00000357956 3,905974 3,905967 0.00000179213

Table 5. Comparison between ADM and Numerical results in convergent-divergent channels when Re= 50 and α = 3° (Thermal
distribution in the case of Air flow).

Converging Diverging

η Numerical× 10−8 ADM× 10−8 Error Numerical× 10−7 ADM× 10−7 Error

0 1,267192 1,2672 0.0000063131 −2,251551 −2,251531 0.00000888277
0,2 1,352753 1,352762 0.0000066531 −2,094514 −2,094496 0.00000859388
0,4 1,574144 1,574154 0.00000635266 −1,673251 −1,673237 0.00000836695
0,6 1,780953 1,780962 0.00000505347 −1,107112 −1,107102 0.00000903251
0,8 1,561094 1,561098 0.00000256231 −0,5215149 −0,5215095 0.00000103545

Table 6. Comparison between ADM and Numerical results in convergent-divergent channels when Re= 50 and α = 3° (Thermal
distribution in the case of Steam flow).

η Converging Diverging

η Numerical× 10−10 ADM× 10−10 Error Numerical× 10−9 ADM× 10−9 Error

0 4,509989 4,510017 0.00000620844 −3,053678 −3,053661 0.00000556706
0,2 5,010631 5,010664 0.000006586 −2,715585 −2,71557 0.00000552367
0,4 6,36858 6,368621 0.00000643786 −1,874873 −1,874862 0.00000586706
0,6 7,88654 7,886584 0.00000557913 −0,9252627 −0,9252555 0.00000778157
0,8 7,431525 7,431546 0.0000028258 −0,2338741 −0,2338685 0.00000239445

Table 7. Values of dimensionless temperature at the channel centerline:G(0) = b.

Re Convergingchannel(α = − 3°) Divergingchannel(α = ± 3°)

Liquid Metal Air Steam Liquid Metal Air Steam Water

100 1.96×10−12 4.33×10−7 7.28×10−10 3.42×10−12 −3.586×10−6 −6.26×10−9 4.26×10−10

200 7.04×10−12 5.98×10−7 7.83×10−10 2.20×10−11 −0.00001049 −2.3×10−8 2.45×10−9

300 1.47×10−11 5.93×10−7 6.4×10−10 7.67×10−11 −0.00002583 −6.14×10−8 6.63×10−9

400 2.46×10−11 5.34×10−7 5.07×10−10 1.89×10−10 −0.00005122 −1.21×10−7 9.31×10−9

500 3.63×10−11 4.65×10−7 4.07×10−10 3.78×10−10 −0.00008621 −2.01×10−7 1.41×10−8
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5. Concluding Remarks

In this investigation, the steady 2D flows between non-
parallel plane walls have been considered. The arising
ODEs frommathematical modeling have been computed
analytically and numerically. In fact, an analytical solu-
tion is gained via the Adomian Decomposition Method,
while the numerical solution is computed with the help
of Runge–Kutta-Fehlberg scheme based on shooting
technique.

Some crucial findings can be enumerated as the fun-
damental conclusions of this research:

• A straighter profile at the channel’s center can be
achieved by augmenting Reynolds number of the con-
vergent flow; subsequently, it results in a reduction in
the boundary layer thickness.

• In divergent flow, augmenting Re number leads to
the concentration of the volume flux at the channel’s
center. In such cases, the boundary layer thickness
expands by augmenting Re number.

• Fluid velocity in the convergent channel is increased
by a rise in the channel half-angle (α), whereas a
reverse behavior may occur in the divergent channel.

• The backflow phenomenon in divergent channels
might happen for greater amounts of channel half-
angle (α) under the condition of a high adverse pres-
sure gradient.

• Thermal distributions in the converging channel are
similar in the case of Air and Steam flows, whereas
the behavior is extensively distinct in the diverging
channel in which the oscillations are notable.

• The oscillations number in divergent channels mainly
depends on the nature of flowing fluid. In fact, an
increase in Prandtl number results in raising the oscil-
lations.

• The heat dissipation is lower for liquid metal flow
compared to the heat dissipation observed for Air and
Steam flows.

• Results obtained for dimensionless fluid velocity and
thermal distribution illustrate a great match between
ADMandnumerical solution. Therefore, both numer-
ical and analytical methods are valid, applicable, and
have great precision.
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