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Abstract

This research work is going to apply the homotopy perturbation method to solve the problem
of flowing Newtonian fluid on a flat plate. For this purpose, initially, the problem, including
the governing equations and boundary conditions, is defined, and after that, the considered
assumptions to solve the defined problem are introduced. Next, the working principle of the
homotopy perturbation method is described, and then, the way to obtain the analytical
solution using the homotopy perturbation method is presented, and finally, the accuracy of
the proposed analytical solution in comparison to the numerical approach is compared for
validation. Both momentum and energy equations are solved. The maple software program is
utilized for carrying out the mathematical calculations, while the validation is done using the
profiles for stream function, velocity distribution, stress, and dimensionless temperature as
the key indicators related to the solution. The conducted comparison shows that the analytical
solution provided by the homotopy perturbation method is able to predict all the important
performance criteria for the problem very well, and therefore, the homotopy perturbation
method has a strong potential to be employed for providing the analytical solution for such
problems.

Keywords: analytical solution; flat plate; homotopy perturbation method (HPM); Maple
software program; Newtonian fluid; porous media

1 INTRODUCTION

There are many types of porous media in different applications.1-4 They are extensively
employed in fuel cells, cooling of electronic devices, medical science, and so on.5-8 Having
such a variety of applications has motivated several researchers to study them from various
viewpoints.9-12

In a group of investigations, as the main objective of the research, using porous media to
enhance the system performance has been studied.13-16 For instance, in order to reduce the
consumption of energy in a building, Sheikholeslami et al.17 replaced a smooth channel with
the sinusoidal type and also took advantage of porous media and nanoparticles at the same
time to improve the heat transfer as far as possible. In another study, Sarafraz et al.18

enhanced the conversion factor in a methanol reformer, and for this purpose, they used a
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porous catalyst. Moreover, Selimefendigil et al.19 installed fins that were made of porous
media on the back surface of a photovoltaic solar panel and developed artificial neural
network models to predict the performance of that. Astanina et al.20 also considered a porous
material as a heat sink to absorb the dissipated heat in the electronic devices and studied that.

In another group of studies, which has a much bigger share in the literature, providing a
numerical or analytical solution for a problem has been fulfilled as the main objective. As an
example, Chamkha et al.21 considered a rotating cylinder and solved the mixed convection
problem for that, which consisted of the fluid and porous medium as the upper and lower
halves, respectively. In addition, Mahmoudi and Karimi22 investigated a pipe a part that was
partially full of porous media numerically in the condition in which there was no thermal
equilibrium. Additionally, as a complementary work, the impact of thermal boundary
condition was studied in Mahmoudi et al.,23 while in the references Mahmoudi,24, 25 the
problem under a non-changed heat flux boundary condition and the impact of changes in
thermal radiation on its solution were investigated, respectively.

Furthermore, Hooman et al.26 presented an analytical model to estimate the permeability of
gas in a porous media, and Ji et al.27 also studied the transportation of Hg in a microporous
material using simulations. Moreover, Maleki et al.28 conducted a study for a porous plate in
which modeling was done numerically to describe the fluid flow and heat transfer criteria.
More investigations were done by their research team in Maleki et al.29, 30 In the first study,29

the transport phenomena for nano-fluids were analyzed, while in the second survey,30 the
problem was solved by taking slip and radiation boundary conditions.

In the study of Selimefendigil et al.,31 by using the superposition, the mixed convection on a
porous layer was mathematically solved for a square cavity in a cylinder that rotates. Faraz et
al.32 also carried out their study with the object of finding the solution for the porous slider
problem. They used a method called integral transform in the condition of no velocity slip.
Another investigation in this field was the one performed by Selimefendigil and Öztop33

where the performance characteristics of a partly layered porous media were studied by
employing the numerical simulation. Selimefendigil and Öztop33 provided modeling of a U-
shaped cavity with a porous part and investigated the impacts of wall corrugation, as well in
Selimefendigil and Öztop.34

Sheikholeslami35 proposed a novel computational method to investigate the entropy
generation and exergy behavior of nano-fluid in a porous media when there is Lorentz force.
One other computer code was also developed by Sheikholeslami36 to obtain transport
phenomena in the problem of flowing a nano-fluid in a porous medium. Additionally, the
improvement potential of using porous media in a pipe was evaluated in the study of
Mahmoudi and Maerefat.37 Moreover, in the investigations carried out by Arasteh et al.,38

Gholamalizadeh et al.,39 Selimefendigil and Chamkha,40 Chamkha and Selimefendigil,41

Keyhani Asl et al.,42 Zehforoosh et al.,43 Khashi'ie et al.,44 Astanina,45 and Maerefat et al.,46

either numerical or analytical solutions for employing heat pipe in some other problems have
been proposed.

As a member of the second mentioned group of the studies about porous media, here, the
Newtonian boundary layer on a porous flat plate is investigated. As the novelty, the
governing equations, including the equations for continuity, momentum, and energy, which
are from nonlinear partial differential type, are solved using a method, which have both more
accuracy and speed of calculation. In the employed method, taking advantage of a similarity
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variable, the nonlinear governing equations become ordinary, and then, the analytical solution
for them is found by applying the homotopy perturbation method (HPM).47-49 The HPM has
been widely employed as a robust tool for solving similar problems in the studies like
Sadeghy et al.,50 Hayat et al.,51 Hayat and Abbas,52 Mamaloukas et al.,53 Anwar and
Makinde,54 Sajid et al.,55 Abel et al.,56 Karimiasl et al.,57 Jafarimoghaddam,58 Eldabe and
Eldabe,59 Saradhadevi and Beulah, and 60 and Riaz et al.61 However, to the best of authors'
knowledge, it has not been utilized to solve the problem of this study yet. The methods have
also been developed in different studies, such as Yu et al.,62 Shqair,63 Altaie et al.,64 Kharrat
and Toma,65 and De la Luz Sosa et al.66

Having provided explanations for this part, that is, Section 1, the details for modeling are
presented in Section 2. Then, the results and discussion are given in Section 3, and finally, the
conclusions are introduced in Section 4.

2 MODELING

This part provides the details of done modeling, including the generation description and
assumptions, governing equations, converting equations to ordinary differential forms, and
more details about the equations of the investigated case. They are presented in Sections 2.1–
2.5, 2.1–2.5, respectively.

2.1 General description and assumptions

The governing equations for the flow of the boundary layer are solved analytically, and the
velocity distribution and temperature distribution are obtained. For this purpose, first, the
boundary layer equations, which are in the form of partial derivatives, are converted by
similarity transformation to ordinary nonlinear differential equations. In the governing
equations,  and u are dependent, and x, y are independent variables. Moreover, Tw is the
plate temperature, and U = U  is the free flow rate.

Furthermore, modeling is done by considering the following assumptions:

The medium is continuous.
The fluid is incompressible.
Properties are constant.
The fluid flow is laminar and steady.
The flow is single phase.

2.2 HPM

HPM was initially proposed by Ji-Huan He47 in 1999, and it has been widely used since then
because it enjoys the great benefits such as high efficiency in solving nonlinear and even
linear problems. HPM method works based on the given description47:

Initially, a differential equation, like Equation (1) is assumed, for which the boundary
conditions are like Equation (2)47:

(1)
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(2)

In Equations (1) and (2), the boundary and general differential operators are shown by A and
B, respectively. Moreover, f(r) and  denote the analytic function and boundary in  space.

There are two parts that make A: one is the linear and another is nonlinear components.
Consequently, Equation (1) can be written in the form of Equation (3)47:

(3)

If the homotopy approach67, 68 is applied, a homotopy structure like (r,p) :  × [0,1] 
could be built in a way that47

(4)

In another form, Equation (4) could also be expressed as follows47:

(5)

p, which has a value between 0 and unity, is called the embedding criterion. The initial guess
is also shown by u0. Using Equation (4), Equations (6) and (7) could be obtained47:

(6)

(7)

Variation of p from 0 to 1 is in a way that of H( p) from one bound to another one. The
bounds are u0(r) and u(r). The term deformation refers to that. The word “homotopic” also
refers to the differences in Equations (6) and (7).

The parameter p is the imbedding criterion. p is small, and it could be stated in the form of
power series47:

(8)

An approximate answer for Equation (1) is obtained when p = 147:

(9)

As the name suggest, HPM is the combination of homotopy approach and perturbation
technique. Converging HPM has a direct relation relationship with A, while N ( ) should be

smaller than . In addition, having a value of lower than unity for the norm is
necessary for converging the method for a problem. In addition to the original reference, that
is, He,47 more information about HPM could be also found in different studies of He et al.,
including the recent ones, for example, He and El-Dib48 and He et al.49
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2.3 Governing equations
The boundary layer equations are obtained from three main equations: the continuity and the
momentum and the energy equations.69-71 Because the properties are considered constant, the
momentum equation is investigated independently from the energy equation.72 For a two-
dimensional laminar and steady flow in a porous medium, the continuity and momentum
equations are written as follows:

(10)

(11)

(12)

 is the fluid viscosity and the terms are the elastic terms. Additionally, the

terms are viscosity terms dFv is also the volumetric force.

Based on the boundary layer theory and using the order of magnitude approach,

(13)

By simplifying Equations (11) and (12), Equations (14) and (15) are obtained:

(14)

(15)

 is the Darcy term for the porous medium and k is the penetration coefficient. If there was
not a porous medium, the pressure gradient in the x direction could be ignored. However,
because in the investigated problem there is a porous medium, the extended Darcy
generalized model could be employed for the outside boundary layer. Therefore,

(16)

 (17)

There are five known parameters in Equations (16) and (17), which are p, xy, xx, , and u.



6

In order to make number of equations equal to the unknown parameters, and consequently,
solve the system of equations, we first need an equation that associates the stress with the
deformation field. In the rest of this part, for providing a better insight, the general forms for
the equations are written, and finally, they are simplified for the Newtonian fluid.

In general, Equation (18) can be written:

(18)

where  is the the coefficient of viscosity and  is the relaxation time. Furthermore, the time

derivative of  is determined from Equation (19):

 (19)

in which Lij is the velosity gradient tensor.

By substituting the tension components in Equation (16), the momentum equation is
obtained.

 (20)

Additionally, according to the generalized Darcy model for porous media,

 (21)

(22)

In addition,

(23)

Therefore, it is concluded that

   (24)

When there is no slip, the boundary conditions are

(25)

The general form of the energy equation for a fluid flow on a porous medium is

(26)
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In equation (26) are total thermal capacity, total thermal conductivity
coefficient, and total heat production per volume unit of the porous medium, respectively.
Because there is no temperature gradient with respect to time (because of the steady-state
assumption) and the internal heat generation is 0, the energy equation for the boundary layer
could be written in the form of Equations (27) and (28):

(27)

(28)

Here, ks is the solid particle conductivity coefficient and kf is the fluid conductivity
coefficient. The boundary conditions for the energy equation, as shown in Equation (29)

(29)

2.4 Converting equations to ordinary differential forms
By defining the stream function, the number of unknown parameters in Equation (24) is
reduced to one:

(30)

By putting Equation (30) in Equation (24), Equation (31) is obtained. (It is done using
Maple14 software program.)

 (31)

By defining

(32)

As a result,

(33)

By multiplying the equation by  Equation (34) is obtained:
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(34)

Darcy number is defined as which could be found in Equation (34).
If the equation is multiplied by 14 2 , Equation (35) is obtained:

(35)

As a result,

(36)

In Equation (36), . The boundary conditions for the
Equation (37) are

(37)

(38)

The energy equation, that is, Equation (27), is considered again. According to the previous

discussions and setting the dimensionless temperature and based on the
simplifications in the Maple software program, Equation (39) is obtained:

(39)

By Equation (39) by Equation (40) is written:

(40)

If Equation (40) is multiplied by  Equation (41) is obtained:

(41)
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Therefore,

(42)

in which boundary conditions could be written as Equation (43) shows:

(43)

2.5 The investigated case: Newtonian fluid flow in the porous medium on the flat plate
In order to solve the problem, first, the momentum equation is considered, and by solving it, f
is determined. Then, by putting f into, solving the energy equation is done. For this case, it is
enough to consider both De and R in Equation (36) 0. For this case,

 (44)

 (45)

In order to obtain f( ), the auxiliary linear operator, introduced in equation (46), is utilized:

 (46)

The corresponding differential equation could be written as follows:

 (47)

The boundary conditions, in this case, are

 (48)

The value of  is adjusted in a way that the least possible error compared to the numerical
answer is achieved.

By solving the differential equation that has been presented in Equation (47), the
corresponding solution to the auxiliary linear operator is obtained with the boundary
conditions of the problem. This function, which is also called the guess function, is equal to

 (49)

In the HPM, the equation and the corresponding boundary conditions for the present problem
are expressed as

 (50)

 (51)
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where p is called the embedding parameter that is p  [0  1]. L[F( p)+N(F( p)] refers to
the equation. For p = 0 and p = 1, we have

 (52)

Therefore, when P increases from 0 to 1, F( p) changes from f0( ) to f( ). The equation for
k* = 0.2 is solved by Maple, which leads to obtaining the following solution:

(53)

By considering f in the form of f( ) = f0( )+pf1( )+p2f2( ) in Equation (53) and sorting it
based on p, f0( ), f1( ) and f2( ) are obtained.

 (54)

(55)

(56)

Consequently, f( ) is determined:

(57)

Next, the energy equation is solved. As indicated before, for this purpose, f( )is known from
the solved momentum equation. Here, the auxiliary linear operator introduced in
Equation (58) is considered:

 (58)

The corresponding differential equation is expressed as follows:

 (59)
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While in this case, the boundary conditions are

 (60)

Having the similar fashion as the momentum equation, the guess function can be also used
here:

 (61)

Again, like the momentum equation, Equations (62) and (63) could be written, which leads to
finding the analytical solution. Equation (64) presents the obtained solution when Pr = 0.7
and k* = 0.2, which is determined by Maple software program:

 (62)

 (63)

 (64)

If the energy function is considered as  ( ) = _0 ( ) + _1 ( ) + p ^ 2 _2 ( ), and the
similar process is done, 0( ), 1( ), and 2( ) are obtained in the form of Equations (65)–
(67), respectively.

 (65)

(66)

(67)

As an important point, it is worth mentioning that despite having employed widely, the
differential model for the porous medium is an approximate one, and it is not able to model
the effect of porosity (size and distribution) on the flow properties. It is taken into account as
a limitation of the current work, and using two-scale fractal calculus could be suggested to
overcome that for future research.



12

FIGURE 1.Comparing the accuracy of homotopy perturbation method (HPM) solution with the numerical one
for k* = 0.2,De = 0.01 for different parameters (A) stream function, (B) velocity distribution, (C) stress
distribution, and (D) dimensionless temperature
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3 VALIDATION

As it has been indicated in different studies in various fields of knowledge, including Sohani
et al.,73-77 for each simulation approach, validation is a necessary part to become sure about
working the approach in a satisfactory way. Therefore, validation is done. For this purpose,
the prediction of the HPM for different cases is compared with the numerical method of
boundary value problems calculated by the Maple software. The comparison is done using
the profiles for the dimensionless stream function, velocity distribution, stress distribution,
and heat distribution, which are all illustrated in Figure 1A–D, respectively. Figure 1 has
provided an acceptable accuracy, which confirms that the developed analytical model is
valid. In addition, as observed, when  goes up, the function f has an almost linear
enhancement, while the function f  increases and approaches a constant value. The behavior
of  function is the same as , whereas the function  experiences a drastic decrease and
approaching a constant level afterward.

4 CONCLUSION

In this study, the HPM was employed to provide an analytical solution for a given problem,
which was flowing a Newtonian fluid on a flat porous plate. The problem was defined by
presenting the governing equations as well as the boundary conditions, and then, the working
principle of HPM was introduced. Next, the momentum and energy equations are solved
using the HPM. Finally, the obtained analytical solution was validated using the profiles for
four important indicators related to the problem, which were stream function, velocity and
stress distribution, and dimensionless temperature profiles. The results implied that there was
a perfect agreement between the analytical and numerical solutions, based on which the
developed analytical solution was verified. Moreover, as the validation data showed,
increasing  leads to increase in f  and  functions initially, and they got constant then.
Furthermore, f  had a downward trend and approached a constant value. The function f also
went up almost linearly.
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