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Abstract 

Au Schottky barrier contacts (SBDs) were DC sputter deposited on Si doped n-type GaAs at 
a power of 150 W. Deep-level transient spectroscopy (DLTS) and Laplace DLTS were used 
to characterize the sputter-induced defects near the surface of the GaAs. In this study, I-V and 
C-V measurements showed that the sputter deposited diodes had a significantly lower barrier 
height and a higher free carrier density. Using DLTS, it was found that this sample contained 
seven defects – three of them were metastable while one of the others was highly dopant 
dependent. The energy levels of these defects are Ec – 0.046 eV, Ec – 0.22 eV, Ec – 0.30 eV, 
Ec – 0.55 eV, Ec – 0.56 eV, Ec – 0.83 eV and Ec – 0.84 eV. The EL2 defect was not observed 
in the sputtered samples, but one of the sputter-induced defects emitted in the same range as 
the EL2, however, it had two components and their DLTS signatures (Ec – 0.83 eV and Ec – 
0.84 eV) differed significantly from that of the EL2. By applying different bias conditions 
(−2 V and zero V) for annealing procedures, the metastable defects (Ec – 0.30 eV and Ec – 
0.56 eV) were transformed into each other. The pre-factor obtained from transformation rate 
of Ec – 0.56 eV Ec – 0.30 eV under reverse bias was 3 × 1015 s−1 which is related to free 
carrier emission. 
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1. Introduction 

Schottky barrier diodes (SBDs) play a significant role in very large-scale integration 
technology [1]. Sputter deposition is one of the methods to fabricate both low and high-
barrier SBDs The advantages of sputter deposition are: ability to deposit metals with high 
melting point, stoichiometric deposition of compounds, high deposition rate and better 
adhesion than resistive deposition [2,3]. However, the energetic particles involved in this 
process introduce surface and sub-surface disorder, and these unwanted disorders affect the 
rectification characteristics of Schottky diodes [2]. The surface and sub-surface disorder 
introduce defects that have both discrete levels in the semiconductor band gap as well as 
continuous energy levels [4]. The barrier height of the sputter deposited metal contacts on n-
type GaAs are lower than similar resistively-deposited contacts and higher for p-type GaAs 
[5]. Recently, deep level transient spectroscopy (DLTS) has been used to investigate the 
defects introduced in epitaxially grown Si-doped and bulk-grown GaAs [3,5,6,7]. 

Laplace DLTS is a high resolution technique capable of resolving defects with closely spaced 
emission rates in order to characterize them. In this study, we used high resolution Laplace 
DLTS, introduced by Dobaczewski et al. in 2004 [8], to investigate the electrical properties in 
the 20–405 K temperature range of defects introduced during sputter deposition of Au on Si-
doped n-type gallium arsenide (GaAs). 
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2. Experimental procedure 

The n-GaAs used in this study was grown by metalorganic vapour phase epitaxy (MOVPE) 
on n+ GaAs substrates. These samples were doped with Si to 1.0 × 1015 cm−3 and 
1.0 × 1016 cm−3, respectively. First, the samples were degreased and chemically etched. 
Thereafter Ni/AuGe/Ni ohmic contacts with thicknesses of 100/1450/300 Å 

were fabricated on the back surface, then they were annealed in Ar at 450 °C for 2 min to 
form the ohmic contact. 

After ohmic contact fabrication, samples were cleaned and etched again, and mounted 
immediately inside the vacuum chamber for the sputter deposition of the Schottky contacts. 
Circular Au Schottky contacts were sputter deposited through a metal contact mask onto the 
GaAs layers. The depositions were carried out at a DC power of 150 W at an Ar pressure of 
8 × 10−2 mbar with a DC bias of 580 V for 5 min. 

For the control sample the cleaning and ohmic contact deposition procedures were the same 
as for the sputtered samples. After the second cleaning procedure the sample was quickly 
mounted in the same deposition chamber which was used for ohmic contact fabrication, and 
0.6 mm diameter Au Schottky contacts were deposited (1000 Å) on the epitaxially grown 
surface of the samples through a metal contact mask. 

The influence of these sputter-induced defects on the diode properties was assessed by 
current-voltage (I-V) and capacitance-voltage (C-V) measurements. The I-V/C-V 
measurements were performed at 25 °C, meanwhile the bias was applied by an HP 4140 B pA 
meter/Voltage source and a HP 4192 LF Impedance analyser, with the voltage monitored 
with a HP 34401A multimeter. All the control and sputtered samples were measured under 
the same conditions. The electrical properties of the sputter-induced defects in GaAs were 
characterized by DLTS and Laplace DLTS in the 20–405 K temperature range. DLTS 
temperature was measured using a platinum resistance thermometer and bias was applied by 
a dedicated Laplace DLTS card, monitored by an oscilloscope. 

3. Results and discussion 

As shown in Fig. 1, the I-V characteristics of the control samples were close to ideal, with an 
ideality factor of 1.02, indicating that thermionic emission was the dominant current transport 
mechanism. Both the sputtered contacts showed significantly worse I-V characteristics, with a 
higher ideality factor and lowering in barrier height. See Table 1 for details. Despite some 
deviation from ideality, the ideality factor remained close to one and the reverse leakage 
current did not increase significantly above the saturation current, indicating that thermionic 
emission was still the dominant current transport mechanism in the sputtered diodes. The 
lower doped material showed a higher reverse leakage current, probably due to more carrier 
generation by the defects in the wider depletion region. In both cases, the sputtered contacts 
had a higher series resistance than the those on the control samples. 
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Fig. 1. Demonstrates the change in (a) I-V and (b) C-V plots as a result of sputter deposition of Schottky 
contacts on 1.0 × 1015 cm−3 and 1.0 × 1016 cm−3 samples. 

 

The C-V characteristics (plotted as 1/C2 vs V in Fig. 1) showed constant carrier concentration 
profiles for the control samples, while the sputtered samples showed a significant increase in 
carrier concentration and, similar to the I-V characteristics, a decrease in barrier height. The 
C-V barrier heights were higher than the I-V barrier heights, indicating that there might have 
been some barrier height inhomogeneities. The slight deviations from linearity in the C-V 
characteristics indicates a minor variation in the carrier density with depth. It is clear that the 
change in carrier density due to sputter deposition occurs to a depth much deeper than the 
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depletion region probed, because unlike thermal deposition techniques, in plasma sputtering, 
the ions in the plasma gain significant energy before colliding with the substrate. Therefore, 
at the time of arrival, these sputtered particles have energies many times larger than the 
binding energy of the surface of the substrate and therefore can penetrate deeper into the 
material. It is therefore clear that sputter-related defects can diffuse a significant distance into 
the semiconductor [9]. 

The deviation from ideal thermionic emission as well as the reduction in the barrier height 
may be due to near-surface damage, changing the properties of the interface as well as deep 
level defects causing carrier generation and barrier height inhomogeneity, indicating poorer 
rectification due to sputter damage. 

Fig. 2 depicts the DLTS spectra from sputter-induced defects and a control sample of n-
GaAs, Si doped with concentration of 1.0 × 1015 cm−3 and 1.0 × 1016 cm−3. The DLTS spectra 
were obtained at rate windows of 80 s−1 and in the 20–405 K temperature range by applying a 
reverse bias and filling pulse amplitude of −1 V and 1.4 V, respectively. For the control 
sample (curve (a)) we observed only the EL2 defect. For the sputtered diodes on 
1.0 × 1016 cm−3 doped GaAs, we observed seven defects (S1, S2, S3, S4, S5 and S6a & S6b), 
as shown in curve (b). Curves (c) and (d) (recorded on 1.0 × 1015 cm−3 doped GaAs) indicate 
the S5 and S3 are metastable: By applying −2 V at 400 K for 10 min and cooling under the 
same bias, S5 transformed to S3 and when zero bias at 400 K was applied for 10 min, 
followed by cooling under the same bias, the S3 transformed back to S5. Similarly, the S1 
defect was metastable, and, as seen in Fig. 2, applying a reverse bias of −2 V at 400 K for 10 
minutes introduced the S1 while zero bias at 400 K for 10 minutes totally removed it. 
However, no new defects was observed when the S1 was removed. 
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Fig. 2. DLTS spectra of (a) a control sample, (b) sample (1.0 × 1016 cm−3 Si doped) directly after sputtering, (c) 
sputtered sample (1.0 × 1015 cm−3 Si doped) after applying −2 V at 400 K for 10 minutes and (d) sputtered 
sample (1.0 × 1015 cm−3 Si doped) after applying zero bias for 10 minutes at 400 K. The reverse bias, Vr, and 
filling pulse amplitude, Vp, were −1.0 and 1.4 V, respectively with 1 ms pulse width and the rate window was 80 
s−1 for all samples. 

From Fig. 2 it is also clear that the S4 defect was highly dependent on the carrier density and 
the peak height decreased by about a factor ten when the dopant concentration was reduced 
by a factor 10. Note that in curves (c) and (d) the S4 peak height was multiplied by a factor of 
10. The S2 was only observed in one of the 1.0 × 1016 cm−3 doped samples, the reason for this 
is not yet clear. 

Fig. 3 shows Arrhenius plots of the seven sputter-induced defects (at 26 K, 140 K, 180 K, 
265 K, 320 K and 384 K in Fig. 3) in n-type GaAs with a carrier concentration of 
1.0 × 1015 cm−3. The activation energies of the sputter-induced defects are listed in Table 2. 
As seen in Fig. 3 the activation energy and apparent capture cross-sections of the sputter-
induced defects differed from those of the high energy electron irradiation-induced defects. 
Laplace DLTS measurements (see later) showed that the S6 defect had two components 
which we labelled S6a and S6b. Some of the sputter-deposition induced defects were similar 
to sputter-etching induced defects reported by Venter et al. [10], nitride encapsulation [11] 
and hydrogen plasma treatment [12,13] (Comparison included in Table 2). 
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Fig. 3. Arrhenius plots of sputter-deposition induced defects (circle symbols), n-GaAs electron irradiation-
induced defects (square symbols, labelled as in Table 1) and the EL2 (triangle symbols). 

 

Fig. 4 depicts the Laplace DLTS results for the S6 defect in the sputtered sample and the EL2 
defect in the control sample. It is clear that the S6 defect has two components (S6a and S6b) 
and they do not directly correspond to the EL2 defect. It is interesting that the EL2 defect in 
the control sample had a small component that was not previously observed. The samples that 
were sputter deposited did not have the EL2 defect, and we speculate that the EL2 was 
modified to S6a and S6b. 
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Fig. 4. Laplace spectra of EL2 and S6 defects as observed in 1.0 × 1015 cm−3 doped material. Both spectra were 
recorded at 350 K with a reverse bias of −1 V and a filling pulse amplitude of 1.4 V. 

As shown in Fig. 3, the S3 and S5 defects were metastable. From Fig. 5, it is evident that the 
S3 transformed into the S5 after annealing under zero bias at 400 K for 10 minutes followed 
by cooling down under zero bias to 295 K, where the spectrum was measured under a bias of 
−1 V. Similarly, S5 could be transformed back to S3 under reverse bias (−2 V) while 
annealing at 400 K for 10 minutes followed by cooling down under −2 V to 180 K where the 
spectrum was measured under a bias of −1 V. It is interesting to observe the direct correlation 
between the concentration of S3 and S5. Fig. 5 shows the introduction and removal curves of 
the metastable defects. Transformation curves were measured by transforming as much as 
possible of the defect into one state at 400 K (−2 V bias for the S3, 0 V bias for the S5) 
followed by cooling (under the same bias conditions) to the annealing temperature, where the 
sample was annealed under the transformation conditions (0 V bias or −2 V bias respectively) 
for 5 minutes, followed by rapid cooling to the measurement temperature (295 K or 180 K) 
under the transformation conditions. 

 

Fig. 5. Introduction and removal of S3 and S5 metastable defects. The conditions for the transformations are 
indicated in the figure. 
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The isochronal transformation of S3 S5 and S5 S3 was modelled by first order kinetics: 

 

and 

 

where NX corresponds to the defect being removed and NY to the defect being introduced. 

In these equations, N0 is the maximum defect concentration, t is the annealing time in seconds 
and e0(T) is the temperature dependent transformation rate, in s−1. The transformation rates 
can be written as: 

 

In this equation, 𝛼𝛼, is a pre-factor with units of s−1, E is the activation barrier for the 
particular transformation of the defect and k is the Boltzmann constant. 

In Fig. 6, Arrhenius data of introduction and removal rate of S3 and S5 metastable defects are 
shown and transformation rate for each one was calculated. 

 

Fig. 6. Arrhenius data for the transformation of  

In these transformation rates we have 3 × 1015 s−1 and 4 × 1021 s−1, respectively, as pre-factors 
for equation. (3). The pre-factor obtained from our measurements to transform S5 from S3 is 
almost the same as the one reported by Buchwald et al. [11] (1021 s−1 pre-factor of formation 
M4 and decay of M3). For the transformation of S3 to S5 the pre-factor was 1015 s−1, which is 
higher than the 107 s−1 reported by Buchwald et al. [11], 108 s−1 reported by Conibear et al. 
[12] and 1011 s−1 reported by Pfeiffer and Weber [13]. 

The pre-factor can be physically related to the attempt frequency of the process and can be 
used to deduce the physical mechanism leading to the temperature dependence. Some 
mechanisms identified so far [14] include elementary atomic jump (𝛼𝛼 ∼1012 s−1), free-carrier 



9 
 

capture by multiphonon emission (𝛼𝛼 ∼107 s−1), free-carrier emission (𝛼𝛼 ∼1013 - 1014 s−1). The 
high prefactor for the transformation of S3 to S5 (𝛼𝛼 ∼1021 s−1) is even larger than would be 
expected for direct free-carrier capture by a potential well with a large capture cross-section. 
The smaller capture prefactor for the transformation S5 to S3 seems to indicate free carrier 
emission. 

4. Conclusions 

Au Schottky barrier contacts (SBDs) were fabricated on n-type GaAs using DC sputtering 
and their electrical properties were investigated. I-V and C-V results indicate that the ideality 
factor and Schottky barrier height significantly changed compared to the resistively deposited 
control sample. DLTS spectra were recorded over a temperature range of 20–400 K. Sputter 
deposition introduced seven defects in GaAs, of which the energy levels range from Ec – 
0.046 eV to Ec – 0.84 eV, of which one was highly dopant dependent. Laplace DLTS was 
used to characterize the defects. From the Arrhenius plots we extracted the activation energy 
and apparent capture cross-section of each defect. One defect, labelled the S6, consisted of 
two different components and differed significantly from the EL2 defect which appears in the 
same temperature range, but was not observed in the sputtered samples. 

None of the defects were similar to those observed after electron irradiation but three were 
similar to those found in nitride encapsulation, hydrogen plasma and Ar plasma etched 
samples. Annealing the sample at 400 K under two different bias conditions, namely -2 V and 
0 V, showed that three of them are metastable. Two peaks, Ec – 0.30 eV and Ec – 0.56 eV, 
transformed into each other with electron capture being the rate determining step for one of 
the transformation processes. The Ec – 0.046 eV defect was metastable as well but we could 
not find the defect which it transforms into. 
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